4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include "timeconst.h"
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
50 struct timezone sys_tz
;
52 EXPORT_SYMBOL(sys_tz
);
54 #ifdef __ARCH_WANT_SYS_TIME
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
62 SYSCALL_DEFINE1(time
, time_t __user
*, tloc
)
64 time_t i
= get_seconds();
70 force_successful_syscall_return();
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
81 SYSCALL_DEFINE1(stime
, time_t __user
*, tptr
)
86 if (get_user(tv
.tv_sec
, tptr
))
91 err
= security_settime(&tv
, NULL
);
99 #endif /* __ARCH_WANT_SYS_TIME */
101 SYSCALL_DEFINE2(gettimeofday
, struct timeval __user
*, tv
,
102 struct timezone __user
*, tz
)
104 if (likely(tv
!= NULL
)) {
106 do_gettimeofday(&ktv
);
107 if (copy_to_user(tv
, &ktv
, sizeof(ktv
)))
110 if (unlikely(tz
!= NULL
)) {
111 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
118 * Indicates if there is an offset between the system clock and the hardware
119 * clock/persistent clock/rtc.
121 int persistent_clock_is_local
;
124 * Adjust the time obtained from the CMOS to be UTC time instead of
127 * This is ugly, but preferable to the alternatives. Otherwise we
128 * would either need to write a program to do it in /etc/rc (and risk
129 * confusion if the program gets run more than once; it would also be
130 * hard to make the program warp the clock precisely n hours) or
131 * compile in the timezone information into the kernel. Bad, bad....
135 * The best thing to do is to keep the CMOS clock in universal time (UTC)
136 * as real UNIX machines always do it. This avoids all headaches about
137 * daylight saving times and warping kernel clocks.
139 static inline void warp_clock(void)
141 if (sys_tz
.tz_minuteswest
!= 0) {
142 struct timespec adjust
;
144 persistent_clock_is_local
= 1;
145 adjust
.tv_sec
= sys_tz
.tz_minuteswest
* 60;
147 timekeeping_inject_offset(&adjust
);
152 * In case for some reason the CMOS clock has not already been running
153 * in UTC, but in some local time: The first time we set the timezone,
154 * we will warp the clock so that it is ticking UTC time instead of
155 * local time. Presumably, if someone is setting the timezone then we
156 * are running in an environment where the programs understand about
157 * timezones. This should be done at boot time in the /etc/rc script,
158 * as soon as possible, so that the clock can be set right. Otherwise,
159 * various programs will get confused when the clock gets warped.
162 int do_sys_settimeofday(const struct timespec
*tv
, const struct timezone
*tz
)
164 static int firsttime
= 1;
167 if (tv
&& !timespec_valid(tv
))
170 error
= security_settime(tv
, tz
);
176 update_vsyscall_tz();
184 return do_settimeofday(tv
);
188 SYSCALL_DEFINE2(settimeofday
, struct timeval __user
*, tv
,
189 struct timezone __user
*, tz
)
191 struct timeval user_tv
;
192 struct timespec new_ts
;
193 struct timezone new_tz
;
196 if (copy_from_user(&user_tv
, tv
, sizeof(*tv
)))
198 new_ts
.tv_sec
= user_tv
.tv_sec
;
199 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
202 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
206 return do_sys_settimeofday(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
209 SYSCALL_DEFINE1(adjtimex
, struct timex __user
*, txc_p
)
211 struct timex txc
; /* Local copy of parameter */
214 /* Copy the user data space into the kernel copy
215 * structure. But bear in mind that the structures
218 if(copy_from_user(&txc
, txc_p
, sizeof(struct timex
)))
220 ret
= do_adjtimex(&txc
);
221 return copy_to_user(txc_p
, &txc
, sizeof(struct timex
)) ? -EFAULT
: ret
;
225 * current_fs_time - Return FS time
228 * Return the current time truncated to the time granularity supported by
231 struct timespec
current_fs_time(struct super_block
*sb
)
233 struct timespec now
= current_kernel_time();
234 return timespec_trunc(now
, sb
->s_time_gran
);
236 EXPORT_SYMBOL(current_fs_time
);
239 * Convert jiffies to milliseconds and back.
241 * Avoid unnecessary multiplications/divisions in the
242 * two most common HZ cases:
244 unsigned int jiffies_to_msecs(const unsigned long j
)
246 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
247 return (MSEC_PER_SEC
/ HZ
) * j
;
248 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
249 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
251 # if BITS_PER_LONG == 32
252 return (HZ_TO_MSEC_MUL32
* j
) >> HZ_TO_MSEC_SHR32
;
254 return (j
* HZ_TO_MSEC_NUM
) / HZ_TO_MSEC_DEN
;
258 EXPORT_SYMBOL(jiffies_to_msecs
);
260 unsigned int jiffies_to_usecs(const unsigned long j
)
262 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
263 return (USEC_PER_SEC
/ HZ
) * j
;
264 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
265 return (j
+ (HZ
/ USEC_PER_SEC
) - 1)/(HZ
/ USEC_PER_SEC
);
267 # if BITS_PER_LONG == 32
268 return (HZ_TO_USEC_MUL32
* j
) >> HZ_TO_USEC_SHR32
;
270 return (j
* HZ_TO_USEC_NUM
) / HZ_TO_USEC_DEN
;
274 EXPORT_SYMBOL(jiffies_to_usecs
);
277 * timespec_trunc - Truncate timespec to a granularity
279 * @gran: Granularity in ns.
281 * Truncate a timespec to a granularity. gran must be smaller than a second.
282 * Always rounds down.
284 * This function should be only used for timestamps returned by
285 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
286 * it doesn't handle the better resolution of the latter.
288 struct timespec
timespec_trunc(struct timespec t
, unsigned gran
)
291 * Division is pretty slow so avoid it for common cases.
292 * Currently current_kernel_time() never returns better than
293 * jiffies resolution. Exploit that.
295 if (gran
<= jiffies_to_usecs(1) * 1000) {
297 } else if (gran
== 1000000000) {
300 t
.tv_nsec
-= t
.tv_nsec
% gran
;
304 EXPORT_SYMBOL(timespec_trunc
);
306 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
307 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
308 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
310 * [For the Julian calendar (which was used in Russia before 1917,
311 * Britain & colonies before 1752, anywhere else before 1582,
312 * and is still in use by some communities) leave out the
313 * -year/100+year/400 terms, and add 10.]
315 * This algorithm was first published by Gauss (I think).
317 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
318 * machines where long is 32-bit! (However, as time_t is signed, we
319 * will already get problems at other places on 2038-01-19 03:14:08)
322 mktime(const unsigned int year0
, const unsigned int mon0
,
323 const unsigned int day
, const unsigned int hour
,
324 const unsigned int min
, const unsigned int sec
)
326 unsigned int mon
= mon0
, year
= year0
;
328 /* 1..12 -> 11,12,1..10 */
329 if (0 >= (int) (mon
-= 2)) {
330 mon
+= 12; /* Puts Feb last since it has leap day */
334 return ((((unsigned long)
335 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
337 )*24 + hour
/* now have hours */
338 )*60 + min
/* now have minutes */
339 )*60 + sec
; /* finally seconds */
342 EXPORT_SYMBOL(mktime
);
345 * set_normalized_timespec - set timespec sec and nsec parts and normalize
347 * @ts: pointer to timespec variable to be set
348 * @sec: seconds to set
349 * @nsec: nanoseconds to set
351 * Set seconds and nanoseconds field of a timespec variable and
352 * normalize to the timespec storage format
354 * Note: The tv_nsec part is always in the range of
355 * 0 <= tv_nsec < NSEC_PER_SEC
356 * For negative values only the tv_sec field is negative !
358 void set_normalized_timespec(struct timespec
*ts
, time_t sec
, s64 nsec
)
360 while (nsec
>= NSEC_PER_SEC
) {
362 * The following asm() prevents the compiler from
363 * optimising this loop into a modulo operation. See
364 * also __iter_div_u64_rem() in include/linux/time.h
366 asm("" : "+rm"(nsec
));
367 nsec
-= NSEC_PER_SEC
;
371 asm("" : "+rm"(nsec
));
372 nsec
+= NSEC_PER_SEC
;
378 EXPORT_SYMBOL(set_normalized_timespec
);
381 * ns_to_timespec - Convert nanoseconds to timespec
382 * @nsec: the nanoseconds value to be converted
384 * Returns the timespec representation of the nsec parameter.
386 struct timespec
ns_to_timespec(const s64 nsec
)
392 return (struct timespec
) {0, 0};
394 ts
.tv_sec
= div_s64_rem(nsec
, NSEC_PER_SEC
, &rem
);
395 if (unlikely(rem
< 0)) {
403 EXPORT_SYMBOL(ns_to_timespec
);
406 * ns_to_timeval - Convert nanoseconds to timeval
407 * @nsec: the nanoseconds value to be converted
409 * Returns the timeval representation of the nsec parameter.
411 struct timeval
ns_to_timeval(const s64 nsec
)
413 struct timespec ts
= ns_to_timespec(nsec
);
416 tv
.tv_sec
= ts
.tv_sec
;
417 tv
.tv_usec
= (suseconds_t
) ts
.tv_nsec
/ 1000;
421 EXPORT_SYMBOL(ns_to_timeval
);
424 * When we convert to jiffies then we interpret incoming values
427 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
429 * - 'too large' values [that would result in larger than
430 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
432 * - all other values are converted to jiffies by either multiplying
433 * the input value by a factor or dividing it with a factor
435 * We must also be careful about 32-bit overflows.
437 unsigned long msecs_to_jiffies(const unsigned int m
)
440 * Negative value, means infinite timeout:
443 return MAX_JIFFY_OFFSET
;
445 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
447 * HZ is equal to or smaller than 1000, and 1000 is a nice
448 * round multiple of HZ, divide with the factor between them,
451 return (m
+ (MSEC_PER_SEC
/ HZ
) - 1) / (MSEC_PER_SEC
/ HZ
);
452 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
454 * HZ is larger than 1000, and HZ is a nice round multiple of
455 * 1000 - simply multiply with the factor between them.
457 * But first make sure the multiplication result cannot
460 if (m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
461 return MAX_JIFFY_OFFSET
;
463 return m
* (HZ
/ MSEC_PER_SEC
);
466 * Generic case - multiply, round and divide. But first
467 * check that if we are doing a net multiplication, that
468 * we wouldn't overflow:
470 if (HZ
> MSEC_PER_SEC
&& m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
471 return MAX_JIFFY_OFFSET
;
473 return (MSEC_TO_HZ_MUL32
* m
+ MSEC_TO_HZ_ADJ32
)
477 EXPORT_SYMBOL(msecs_to_jiffies
);
479 unsigned long usecs_to_jiffies(const unsigned int u
)
481 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
482 return MAX_JIFFY_OFFSET
;
483 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
484 return (u
+ (USEC_PER_SEC
/ HZ
) - 1) / (USEC_PER_SEC
/ HZ
);
485 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
486 return u
* (HZ
/ USEC_PER_SEC
);
488 return (USEC_TO_HZ_MUL32
* u
+ USEC_TO_HZ_ADJ32
)
492 EXPORT_SYMBOL(usecs_to_jiffies
);
495 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
496 * that a remainder subtract here would not do the right thing as the
497 * resolution values don't fall on second boundries. I.e. the line:
498 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
500 * Rather, we just shift the bits off the right.
502 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
503 * value to a scaled second value.
506 timespec_to_jiffies(const struct timespec
*value
)
508 unsigned long sec
= value
->tv_sec
;
509 long nsec
= value
->tv_nsec
+ TICK_NSEC
- 1;
511 if (sec
>= MAX_SEC_IN_JIFFIES
){
512 sec
= MAX_SEC_IN_JIFFIES
;
515 return (((u64
)sec
* SEC_CONVERSION
) +
516 (((u64
)nsec
* NSEC_CONVERSION
) >>
517 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
520 EXPORT_SYMBOL(timespec_to_jiffies
);
523 jiffies_to_timespec(const unsigned long jiffies
, struct timespec
*value
)
526 * Convert jiffies to nanoseconds and separate with
530 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
532 value
->tv_nsec
= rem
;
534 EXPORT_SYMBOL(jiffies_to_timespec
);
536 /* Same for "timeval"
538 * Well, almost. The problem here is that the real system resolution is
539 * in nanoseconds and the value being converted is in micro seconds.
540 * Also for some machines (those that use HZ = 1024, in-particular),
541 * there is a LARGE error in the tick size in microseconds.
543 * The solution we use is to do the rounding AFTER we convert the
544 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
545 * Instruction wise, this should cost only an additional add with carry
546 * instruction above the way it was done above.
549 timeval_to_jiffies(const struct timeval
*value
)
551 unsigned long sec
= value
->tv_sec
;
552 long usec
= value
->tv_usec
;
554 if (sec
>= MAX_SEC_IN_JIFFIES
){
555 sec
= MAX_SEC_IN_JIFFIES
;
558 return (((u64
)sec
* SEC_CONVERSION
) +
559 (((u64
)usec
* USEC_CONVERSION
+ USEC_ROUND
) >>
560 (USEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
562 EXPORT_SYMBOL(timeval_to_jiffies
);
564 void jiffies_to_timeval(const unsigned long jiffies
, struct timeval
*value
)
567 * Convert jiffies to nanoseconds and separate with
572 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
574 value
->tv_usec
= rem
/ NSEC_PER_USEC
;
576 EXPORT_SYMBOL(jiffies_to_timeval
);
579 * Convert jiffies/jiffies_64 to clock_t and back.
581 clock_t jiffies_to_clock_t(unsigned long x
)
583 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
585 return x
* (USER_HZ
/ HZ
);
587 return x
/ (HZ
/ USER_HZ
);
590 return div_u64((u64
)x
* TICK_NSEC
, NSEC_PER_SEC
/ USER_HZ
);
593 EXPORT_SYMBOL(jiffies_to_clock_t
);
595 unsigned long clock_t_to_jiffies(unsigned long x
)
597 #if (HZ % USER_HZ)==0
598 if (x
>= ~0UL / (HZ
/ USER_HZ
))
600 return x
* (HZ
/ USER_HZ
);
602 /* Don't worry about loss of precision here .. */
603 if (x
>= ~0UL / HZ
* USER_HZ
)
606 /* .. but do try to contain it here */
607 return div_u64((u64
)x
* HZ
, USER_HZ
);
610 EXPORT_SYMBOL(clock_t_to_jiffies
);
612 u64
jiffies_64_to_clock_t(u64 x
)
614 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
616 x
= div_u64(x
* USER_HZ
, HZ
);
618 x
= div_u64(x
, HZ
/ USER_HZ
);
624 * There are better ways that don't overflow early,
625 * but even this doesn't overflow in hundreds of years
628 x
= div_u64(x
* TICK_NSEC
, (NSEC_PER_SEC
/ USER_HZ
));
632 EXPORT_SYMBOL(jiffies_64_to_clock_t
);
634 u64
nsec_to_clock_t(u64 x
)
636 #if (NSEC_PER_SEC % USER_HZ) == 0
637 return div_u64(x
, NSEC_PER_SEC
/ USER_HZ
);
638 #elif (USER_HZ % 512) == 0
639 return div_u64(x
* USER_HZ
/ 512, NSEC_PER_SEC
/ 512);
642 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
643 * overflow after 64.99 years.
644 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
646 return div_u64(x
* 9, (9ull * NSEC_PER_SEC
+ (USER_HZ
/ 2)) / USER_HZ
);
651 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
655 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
656 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
657 * for scheduler, not for use in device drivers to calculate timeout value.
660 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
661 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
663 u64
nsecs_to_jiffies64(u64 n
)
665 #if (NSEC_PER_SEC % HZ) == 0
666 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
667 return div_u64(n
, NSEC_PER_SEC
/ HZ
);
668 #elif (HZ % 512) == 0
669 /* overflow after 292 years if HZ = 1024 */
670 return div_u64(n
* HZ
/ 512, NSEC_PER_SEC
/ 512);
673 * Generic case - optimized for cases where HZ is a multiple of 3.
674 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
676 return div_u64(n
* 9, (9ull * NSEC_PER_SEC
+ HZ
/ 2) / HZ
);
681 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
685 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
686 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
687 * for scheduler, not for use in device drivers to calculate timeout value.
690 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
691 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
693 unsigned long nsecs_to_jiffies(u64 n
)
695 return (unsigned long)nsecs_to_jiffies64(n
);
699 * Add two timespec values and do a safety check for overflow.
700 * It's assumed that both values are valid (>= 0)
702 struct timespec
timespec_add_safe(const struct timespec lhs
,
703 const struct timespec rhs
)
707 set_normalized_timespec(&res
, lhs
.tv_sec
+ rhs
.tv_sec
,
708 lhs
.tv_nsec
+ rhs
.tv_nsec
);
710 if (res
.tv_sec
< lhs
.tv_sec
|| res
.tv_sec
< rhs
.tv_sec
)
711 res
.tv_sec
= TIME_T_MAX
;