1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
87 /* number of audit rules */
90 /* determines whether we collect data for signals sent */
93 struct audit_cap_data
{
94 kernel_cap_t permitted
;
95 kernel_cap_t inheritable
;
97 unsigned int fE
; /* effective bit of a file capability */
98 kernel_cap_t effective
; /* effective set of a process */
102 /* When fs/namei.c:getname() is called, we store the pointer in name and
103 * we don't let putname() free it (instead we free all of the saved
104 * pointers at syscall exit time).
106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
109 struct list_head list
; /* audit_context->names_list */
110 struct filename
*name
;
118 struct audit_cap_data fcap
;
119 unsigned int fcap_ver
;
120 int name_len
; /* number of name's characters to log */
121 unsigned char type
; /* record type */
122 bool name_put
; /* call __putname() for this name */
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
131 struct audit_aux_data
{
132 struct audit_aux_data
*next
;
136 #define AUDIT_AUX_IPCPERM 0
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
141 struct audit_aux_data_execve
{
142 struct audit_aux_data d
;
145 struct mm_struct
*mm
;
148 struct audit_aux_data_pids
{
149 struct audit_aux_data d
;
150 pid_t target_pid
[AUDIT_AUX_PIDS
];
151 kuid_t target_auid
[AUDIT_AUX_PIDS
];
152 kuid_t target_uid
[AUDIT_AUX_PIDS
];
153 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
154 u32 target_sid
[AUDIT_AUX_PIDS
];
155 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
159 struct audit_aux_data_bprm_fcaps
{
160 struct audit_aux_data d
;
161 struct audit_cap_data fcap
;
162 unsigned int fcap_ver
;
163 struct audit_cap_data old_pcap
;
164 struct audit_cap_data new_pcap
;
167 struct audit_aux_data_capset
{
168 struct audit_aux_data d
;
170 struct audit_cap_data cap
;
173 struct audit_tree_refs
{
174 struct audit_tree_refs
*next
;
175 struct audit_chunk
*c
[31];
178 /* The per-task audit context. */
179 struct audit_context
{
180 int dummy
; /* must be the first element */
181 int in_syscall
; /* 1 if task is in a syscall */
182 enum audit_state state
, current_state
;
183 unsigned int serial
; /* serial number for record */
184 int major
; /* syscall number */
185 struct timespec ctime
; /* time of syscall entry */
186 unsigned long argv
[4]; /* syscall arguments */
187 long return_code
;/* syscall return code */
189 int return_valid
; /* return code is valid */
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
198 struct audit_names preallocated_names
[AUDIT_NAMES
];
199 int name_count
; /* total records in names_list */
200 struct list_head names_list
; /* anchor for struct audit_names->list */
201 char * filterkey
; /* key for rule that triggered record */
203 struct audit_aux_data
*aux
;
204 struct audit_aux_data
*aux_pids
;
205 struct sockaddr_storage
*sockaddr
;
207 /* Save things to print about task_struct */
209 kuid_t uid
, euid
, suid
, fsuid
;
210 kgid_t gid
, egid
, sgid
, fsgid
;
211 unsigned long personality
;
217 unsigned int target_sessionid
;
219 char target_comm
[TASK_COMM_LEN
];
221 struct audit_tree_refs
*trees
, *first_trees
;
222 struct list_head killed_trees
;
240 unsigned long qbytes
;
244 struct mq_attr mqstat
;
253 unsigned int msg_prio
;
254 struct timespec abs_timeout
;
263 struct audit_cap_data cap
;
278 static inline int open_arg(int flags
, int mask
)
280 int n
= ACC_MODE(flags
);
281 if (flags
& (O_TRUNC
| O_CREAT
))
282 n
|= AUDIT_PERM_WRITE
;
286 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
293 switch (audit_classify_syscall(ctx
->arch
, n
)) {
295 if ((mask
& AUDIT_PERM_WRITE
) &&
296 audit_match_class(AUDIT_CLASS_WRITE
, n
))
298 if ((mask
& AUDIT_PERM_READ
) &&
299 audit_match_class(AUDIT_CLASS_READ
, n
))
301 if ((mask
& AUDIT_PERM_ATTR
) &&
302 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
305 case 1: /* 32bit on biarch */
306 if ((mask
& AUDIT_PERM_WRITE
) &&
307 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
309 if ((mask
& AUDIT_PERM_READ
) &&
310 audit_match_class(AUDIT_CLASS_READ_32
, n
))
312 if ((mask
& AUDIT_PERM_ATTR
) &&
313 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
317 return mask
& ACC_MODE(ctx
->argv
[1]);
319 return mask
& ACC_MODE(ctx
->argv
[2]);
320 case 4: /* socketcall */
321 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
323 return mask
& AUDIT_PERM_EXEC
;
329 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
331 struct audit_names
*n
;
332 umode_t mode
= (umode_t
)val
;
337 list_for_each_entry(n
, &ctx
->names_list
, list
) {
338 if ((n
->ino
!= -1) &&
339 ((n
->mode
& S_IFMT
) == mode
))
347 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
348 * ->first_trees points to its beginning, ->trees - to the current end of data.
349 * ->tree_count is the number of free entries in array pointed to by ->trees.
350 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
351 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
352 * it's going to remain 1-element for almost any setup) until we free context itself.
353 * References in it _are_ dropped - at the same time we free/drop aux stuff.
356 #ifdef CONFIG_AUDIT_TREE
357 static void audit_set_auditable(struct audit_context
*ctx
)
361 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
365 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
367 struct audit_tree_refs
*p
= ctx
->trees
;
368 int left
= ctx
->tree_count
;
370 p
->c
[--left
] = chunk
;
371 ctx
->tree_count
= left
;
380 ctx
->tree_count
= 30;
386 static int grow_tree_refs(struct audit_context
*ctx
)
388 struct audit_tree_refs
*p
= ctx
->trees
;
389 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
395 p
->next
= ctx
->trees
;
397 ctx
->first_trees
= ctx
->trees
;
398 ctx
->tree_count
= 31;
403 static void unroll_tree_refs(struct audit_context
*ctx
,
404 struct audit_tree_refs
*p
, int count
)
406 #ifdef CONFIG_AUDIT_TREE
407 struct audit_tree_refs
*q
;
410 /* we started with empty chain */
411 p
= ctx
->first_trees
;
413 /* if the very first allocation has failed, nothing to do */
418 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
420 audit_put_chunk(q
->c
[n
]);
424 while (n
-- > ctx
->tree_count
) {
425 audit_put_chunk(q
->c
[n
]);
429 ctx
->tree_count
= count
;
433 static void free_tree_refs(struct audit_context
*ctx
)
435 struct audit_tree_refs
*p
, *q
;
436 for (p
= ctx
->first_trees
; p
; p
= q
) {
442 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
444 #ifdef CONFIG_AUDIT_TREE
445 struct audit_tree_refs
*p
;
450 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
451 for (n
= 0; n
< 31; n
++)
452 if (audit_tree_match(p
->c
[n
], tree
))
457 for (n
= ctx
->tree_count
; n
< 31; n
++)
458 if (audit_tree_match(p
->c
[n
], tree
))
465 static int audit_compare_uid(kuid_t uid
,
466 struct audit_names
*name
,
467 struct audit_field
*f
,
468 struct audit_context
*ctx
)
470 struct audit_names
*n
;
474 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
480 list_for_each_entry(n
, &ctx
->names_list
, list
) {
481 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
489 static int audit_compare_gid(kgid_t gid
,
490 struct audit_names
*name
,
491 struct audit_field
*f
,
492 struct audit_context
*ctx
)
494 struct audit_names
*n
;
498 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
504 list_for_each_entry(n
, &ctx
->names_list
, list
) {
505 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
513 static int audit_field_compare(struct task_struct
*tsk
,
514 const struct cred
*cred
,
515 struct audit_field
*f
,
516 struct audit_context
*ctx
,
517 struct audit_names
*name
)
520 /* process to file object comparisons */
521 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
522 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
523 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
524 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
525 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
526 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
527 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
528 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
529 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
530 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
531 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
532 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
533 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
534 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
535 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
536 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
537 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
538 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
539 /* uid comparisons */
540 case AUDIT_COMPARE_UID_TO_AUID
:
541 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
542 case AUDIT_COMPARE_UID_TO_EUID
:
543 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
544 case AUDIT_COMPARE_UID_TO_SUID
:
545 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
546 case AUDIT_COMPARE_UID_TO_FSUID
:
547 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
548 /* auid comparisons */
549 case AUDIT_COMPARE_AUID_TO_EUID
:
550 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
551 case AUDIT_COMPARE_AUID_TO_SUID
:
552 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
553 case AUDIT_COMPARE_AUID_TO_FSUID
:
554 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
555 /* euid comparisons */
556 case AUDIT_COMPARE_EUID_TO_SUID
:
557 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
558 case AUDIT_COMPARE_EUID_TO_FSUID
:
559 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
560 /* suid comparisons */
561 case AUDIT_COMPARE_SUID_TO_FSUID
:
562 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
563 /* gid comparisons */
564 case AUDIT_COMPARE_GID_TO_EGID
:
565 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
566 case AUDIT_COMPARE_GID_TO_SGID
:
567 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
568 case AUDIT_COMPARE_GID_TO_FSGID
:
569 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
570 /* egid comparisons */
571 case AUDIT_COMPARE_EGID_TO_SGID
:
572 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
573 case AUDIT_COMPARE_EGID_TO_FSGID
:
574 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
575 /* sgid comparison */
576 case AUDIT_COMPARE_SGID_TO_FSGID
:
577 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
579 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
585 /* Determine if any context name data matches a rule's watch data */
586 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
589 * If task_creation is true, this is an explicit indication that we are
590 * filtering a task rule at task creation time. This and tsk == current are
591 * the only situations where tsk->cred may be accessed without an rcu read lock.
593 static int audit_filter_rules(struct task_struct
*tsk
,
594 struct audit_krule
*rule
,
595 struct audit_context
*ctx
,
596 struct audit_names
*name
,
597 enum audit_state
*state
,
600 const struct cred
*cred
;
604 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
606 for (i
= 0; i
< rule
->field_count
; i
++) {
607 struct audit_field
*f
= &rule
->fields
[i
];
608 struct audit_names
*n
;
613 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
618 ctx
->ppid
= sys_getppid();
619 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
623 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
626 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
629 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
632 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
635 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
638 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
641 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
644 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
647 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
651 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
655 if (ctx
&& ctx
->return_valid
)
656 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
659 if (ctx
&& ctx
->return_valid
) {
661 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
663 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
668 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
669 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
672 list_for_each_entry(n
, &ctx
->names_list
, list
) {
673 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
674 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
683 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
684 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
687 list_for_each_entry(n
, &ctx
->names_list
, list
) {
688 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
689 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
698 result
= (name
->ino
== f
->val
);
700 list_for_each_entry(n
, &ctx
->names_list
, list
) {
701 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
710 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
712 list_for_each_entry(n
, &ctx
->names_list
, list
) {
713 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
722 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
724 list_for_each_entry(n
, &ctx
->names_list
, list
) {
725 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
734 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
738 result
= match_tree_refs(ctx
, rule
->tree
);
743 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
745 case AUDIT_SUBJ_USER
:
746 case AUDIT_SUBJ_ROLE
:
747 case AUDIT_SUBJ_TYPE
:
750 /* NOTE: this may return negative values indicating
751 a temporary error. We simply treat this as a
752 match for now to avoid losing information that
753 may be wanted. An error message will also be
757 security_task_getsecid(tsk
, &sid
);
760 result
= security_audit_rule_match(sid
, f
->type
,
769 case AUDIT_OBJ_LEV_LOW
:
770 case AUDIT_OBJ_LEV_HIGH
:
771 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
774 /* Find files that match */
776 result
= security_audit_rule_match(
777 name
->osid
, f
->type
, f
->op
,
780 list_for_each_entry(n
, &ctx
->names_list
, list
) {
781 if (security_audit_rule_match(n
->osid
, f
->type
,
789 /* Find ipc objects that match */
790 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
792 if (security_audit_rule_match(ctx
->ipc
.osid
,
803 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
805 case AUDIT_FILTERKEY
:
806 /* ignore this field for filtering */
810 result
= audit_match_perm(ctx
, f
->val
);
813 result
= audit_match_filetype(ctx
, f
->val
);
815 case AUDIT_FIELD_COMPARE
:
816 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
824 if (rule
->prio
<= ctx
->prio
)
826 if (rule
->filterkey
) {
827 kfree(ctx
->filterkey
);
828 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
830 ctx
->prio
= rule
->prio
;
832 switch (rule
->action
) {
833 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
834 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
839 /* At process creation time, we can determine if system-call auditing is
840 * completely disabled for this task. Since we only have the task
841 * structure at this point, we can only check uid and gid.
843 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
845 struct audit_entry
*e
;
846 enum audit_state state
;
849 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
850 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
852 if (state
== AUDIT_RECORD_CONTEXT
)
853 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
859 return AUDIT_BUILD_CONTEXT
;
862 /* At syscall entry and exit time, this filter is called if the
863 * audit_state is not low enough that auditing cannot take place, but is
864 * also not high enough that we already know we have to write an audit
865 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
867 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
868 struct audit_context
*ctx
,
869 struct list_head
*list
)
871 struct audit_entry
*e
;
872 enum audit_state state
;
874 if (audit_pid
&& tsk
->tgid
== audit_pid
)
875 return AUDIT_DISABLED
;
878 if (!list_empty(list
)) {
879 int word
= AUDIT_WORD(ctx
->major
);
880 int bit
= AUDIT_BIT(ctx
->major
);
882 list_for_each_entry_rcu(e
, list
, list
) {
883 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
884 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
887 ctx
->current_state
= state
;
893 return AUDIT_BUILD_CONTEXT
;
897 * Given an audit_name check the inode hash table to see if they match.
898 * Called holding the rcu read lock to protect the use of audit_inode_hash
900 static int audit_filter_inode_name(struct task_struct
*tsk
,
901 struct audit_names
*n
,
902 struct audit_context
*ctx
) {
904 int h
= audit_hash_ino((u32
)n
->ino
);
905 struct list_head
*list
= &audit_inode_hash
[h
];
906 struct audit_entry
*e
;
907 enum audit_state state
;
909 word
= AUDIT_WORD(ctx
->major
);
910 bit
= AUDIT_BIT(ctx
->major
);
912 if (list_empty(list
))
915 list_for_each_entry_rcu(e
, list
, list
) {
916 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
917 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
918 ctx
->current_state
= state
;
926 /* At syscall exit time, this filter is called if any audit_names have been
927 * collected during syscall processing. We only check rules in sublists at hash
928 * buckets applicable to the inode numbers in audit_names.
929 * Regarding audit_state, same rules apply as for audit_filter_syscall().
931 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
933 struct audit_names
*n
;
935 if (audit_pid
&& tsk
->tgid
== audit_pid
)
940 list_for_each_entry(n
, &ctx
->names_list
, list
) {
941 if (audit_filter_inode_name(tsk
, n
, ctx
))
947 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
951 struct audit_context
*context
= tsk
->audit_context
;
955 context
->return_valid
= return_valid
;
958 * we need to fix up the return code in the audit logs if the actual
959 * return codes are later going to be fixed up by the arch specific
962 * This is actually a test for:
963 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
964 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
966 * but is faster than a bunch of ||
968 if (unlikely(return_code
<= -ERESTARTSYS
) &&
969 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
970 (return_code
!= -ENOIOCTLCMD
))
971 context
->return_code
= -EINTR
;
973 context
->return_code
= return_code
;
975 if (context
->in_syscall
&& !context
->dummy
) {
976 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
977 audit_filter_inodes(tsk
, context
);
980 tsk
->audit_context
= NULL
;
984 static inline void audit_free_names(struct audit_context
*context
)
986 struct audit_names
*n
, *next
;
989 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
990 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
991 " name_count=%d put_count=%d"
992 " ino_count=%d [NOT freeing]\n",
994 context
->serial
, context
->major
, context
->in_syscall
,
995 context
->name_count
, context
->put_count
,
997 list_for_each_entry(n
, &context
->names_list
, list
) {
998 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
999 n
->name
, n
->name
->name
?: "(null)");
1006 context
->put_count
= 0;
1007 context
->ino_count
= 0;
1010 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
1012 if (n
->name
&& n
->name_put
)
1017 context
->name_count
= 0;
1018 path_put(&context
->pwd
);
1019 context
->pwd
.dentry
= NULL
;
1020 context
->pwd
.mnt
= NULL
;
1023 static inline void audit_free_aux(struct audit_context
*context
)
1025 struct audit_aux_data
*aux
;
1027 while ((aux
= context
->aux
)) {
1028 context
->aux
= aux
->next
;
1031 while ((aux
= context
->aux_pids
)) {
1032 context
->aux_pids
= aux
->next
;
1037 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
1039 struct audit_context
*context
;
1041 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
1044 context
->state
= state
;
1045 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1046 INIT_LIST_HEAD(&context
->killed_trees
);
1047 INIT_LIST_HEAD(&context
->names_list
);
1052 * audit_alloc - allocate an audit context block for a task
1055 * Filter on the task information and allocate a per-task audit context
1056 * if necessary. Doing so turns on system call auditing for the
1057 * specified task. This is called from copy_process, so no lock is
1060 int audit_alloc(struct task_struct
*tsk
)
1062 struct audit_context
*context
;
1063 enum audit_state state
;
1066 if (likely(!audit_ever_enabled
))
1067 return 0; /* Return if not auditing. */
1069 state
= audit_filter_task(tsk
, &key
);
1070 if (state
== AUDIT_DISABLED
)
1073 if (!(context
= audit_alloc_context(state
))) {
1075 audit_log_lost("out of memory in audit_alloc");
1078 context
->filterkey
= key
;
1080 tsk
->audit_context
= context
;
1081 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
1085 static inline void audit_free_context(struct audit_context
*context
)
1087 audit_free_names(context
);
1088 unroll_tree_refs(context
, NULL
, 0);
1089 free_tree_refs(context
);
1090 audit_free_aux(context
);
1091 kfree(context
->filterkey
);
1092 kfree(context
->sockaddr
);
1096 void audit_log_task_context(struct audit_buffer
*ab
)
1103 security_task_getsecid(current
, &sid
);
1107 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
1109 if (error
!= -EINVAL
)
1114 audit_log_format(ab
, " subj=%s", ctx
);
1115 security_release_secctx(ctx
, len
);
1119 audit_panic("error in audit_log_task_context");
1123 EXPORT_SYMBOL(audit_log_task_context
);
1125 void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
1127 const struct cred
*cred
;
1128 char name
[sizeof(tsk
->comm
)];
1129 struct mm_struct
*mm
= tsk
->mm
;
1135 /* tsk == current */
1136 cred
= current_cred();
1138 spin_lock_irq(&tsk
->sighand
->siglock
);
1139 if (tsk
->signal
&& tsk
->signal
->tty
)
1140 tty
= tsk
->signal
->tty
->name
;
1143 spin_unlock_irq(&tsk
->sighand
->siglock
);
1146 audit_log_format(ab
,
1147 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1148 " euid=%u suid=%u fsuid=%u"
1149 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1152 from_kuid(&init_user_ns
, tsk
->loginuid
),
1153 from_kuid(&init_user_ns
, cred
->uid
),
1154 from_kgid(&init_user_ns
, cred
->gid
),
1155 from_kuid(&init_user_ns
, cred
->euid
),
1156 from_kuid(&init_user_ns
, cred
->suid
),
1157 from_kuid(&init_user_ns
, cred
->fsuid
),
1158 from_kgid(&init_user_ns
, cred
->egid
),
1159 from_kgid(&init_user_ns
, cred
->sgid
),
1160 from_kgid(&init_user_ns
, cred
->fsgid
),
1161 tsk
->sessionid
, tty
);
1163 get_task_comm(name
, tsk
);
1164 audit_log_format(ab
, " comm=");
1165 audit_log_untrustedstring(ab
, name
);
1168 down_read(&mm
->mmap_sem
);
1170 audit_log_d_path(ab
, " exe=", &mm
->exe_file
->f_path
);
1171 up_read(&mm
->mmap_sem
);
1173 audit_log_task_context(ab
);
1176 EXPORT_SYMBOL(audit_log_task_info
);
1178 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
1179 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
1180 u32 sid
, char *comm
)
1182 struct audit_buffer
*ab
;
1187 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
1191 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
1192 from_kuid(&init_user_ns
, auid
),
1193 from_kuid(&init_user_ns
, uid
), sessionid
);
1194 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
1195 audit_log_format(ab
, " obj=(none)");
1198 audit_log_format(ab
, " obj=%s", ctx
);
1199 security_release_secctx(ctx
, len
);
1201 audit_log_format(ab
, " ocomm=");
1202 audit_log_untrustedstring(ab
, comm
);
1209 * to_send and len_sent accounting are very loose estimates. We aren't
1210 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1211 * within about 500 bytes (next page boundary)
1213 * why snprintf? an int is up to 12 digits long. if we just assumed when
1214 * logging that a[%d]= was going to be 16 characters long we would be wasting
1215 * space in every audit message. In one 7500 byte message we can log up to
1216 * about 1000 min size arguments. That comes down to about 50% waste of space
1217 * if we didn't do the snprintf to find out how long arg_num_len was.
1219 static int audit_log_single_execve_arg(struct audit_context
*context
,
1220 struct audit_buffer
**ab
,
1223 const char __user
*p
,
1226 char arg_num_len_buf
[12];
1227 const char __user
*tmp_p
= p
;
1228 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1229 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1230 size_t len
, len_left
, to_send
;
1231 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1232 unsigned int i
, has_cntl
= 0, too_long
= 0;
1235 /* strnlen_user includes the null we don't want to send */
1236 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1239 * We just created this mm, if we can't find the strings
1240 * we just copied into it something is _very_ wrong. Similar
1241 * for strings that are too long, we should not have created
1244 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1246 send_sig(SIGKILL
, current
, 0);
1250 /* walk the whole argument looking for non-ascii chars */
1252 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1253 to_send
= MAX_EXECVE_AUDIT_LEN
;
1256 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1258 * There is no reason for this copy to be short. We just
1259 * copied them here, and the mm hasn't been exposed to user-
1264 send_sig(SIGKILL
, current
, 0);
1267 buf
[to_send
] = '\0';
1268 has_cntl
= audit_string_contains_control(buf
, to_send
);
1271 * hex messages get logged as 2 bytes, so we can only
1272 * send half as much in each message
1274 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1277 len_left
-= to_send
;
1279 } while (len_left
> 0);
1283 if (len
> max_execve_audit_len
)
1286 /* rewalk the argument actually logging the message */
1287 for (i
= 0; len_left
> 0; i
++) {
1290 if (len_left
> max_execve_audit_len
)
1291 to_send
= max_execve_audit_len
;
1295 /* do we have space left to send this argument in this ab? */
1296 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1298 room_left
-= (to_send
* 2);
1300 room_left
-= to_send
;
1301 if (room_left
< 0) {
1304 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1310 * first record needs to say how long the original string was
1311 * so we can be sure nothing was lost.
1313 if ((i
== 0) && (too_long
))
1314 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1315 has_cntl
? 2*len
: len
);
1318 * normally arguments are small enough to fit and we already
1319 * filled buf above when we checked for control characters
1320 * so don't bother with another copy_from_user
1322 if (len
>= max_execve_audit_len
)
1323 ret
= copy_from_user(buf
, p
, to_send
);
1328 send_sig(SIGKILL
, current
, 0);
1331 buf
[to_send
] = '\0';
1333 /* actually log it */
1334 audit_log_format(*ab
, " a%d", arg_num
);
1336 audit_log_format(*ab
, "[%d]", i
);
1337 audit_log_format(*ab
, "=");
1339 audit_log_n_hex(*ab
, buf
, to_send
);
1341 audit_log_string(*ab
, buf
);
1344 len_left
-= to_send
;
1345 *len_sent
+= arg_num_len
;
1347 *len_sent
+= to_send
* 2;
1349 *len_sent
+= to_send
;
1351 /* include the null we didn't log */
1355 static void audit_log_execve_info(struct audit_context
*context
,
1356 struct audit_buffer
**ab
,
1357 struct audit_aux_data_execve
*axi
)
1360 size_t len_sent
= 0;
1361 const char __user
*p
;
1364 if (axi
->mm
!= current
->mm
)
1365 return; /* execve failed, no additional info */
1367 p
= (const char __user
*)axi
->mm
->arg_start
;
1369 audit_log_format(*ab
, "argc=%d", axi
->argc
);
1372 * we need some kernel buffer to hold the userspace args. Just
1373 * allocate one big one rather than allocating one of the right size
1374 * for every single argument inside audit_log_single_execve_arg()
1375 * should be <8k allocation so should be pretty safe.
1377 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1379 audit_panic("out of memory for argv string\n");
1383 for (i
= 0; i
< axi
->argc
; i
++) {
1384 len
= audit_log_single_execve_arg(context
, ab
, i
,
1393 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
, kernel_cap_t
*cap
)
1397 audit_log_format(ab
, " %s=", prefix
);
1398 CAP_FOR_EACH_U32(i
) {
1399 audit_log_format(ab
, "%08x", cap
->cap
[(_KERNEL_CAPABILITY_U32S
-1) - i
]);
1403 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1405 kernel_cap_t
*perm
= &name
->fcap
.permitted
;
1406 kernel_cap_t
*inh
= &name
->fcap
.inheritable
;
1409 if (!cap_isclear(*perm
)) {
1410 audit_log_cap(ab
, "cap_fp", perm
);
1413 if (!cap_isclear(*inh
)) {
1414 audit_log_cap(ab
, "cap_fi", inh
);
1419 audit_log_format(ab
, " cap_fe=%d cap_fver=%x", name
->fcap
.fE
, name
->fcap_ver
);
1422 static void show_special(struct audit_context
*context
, int *call_panic
)
1424 struct audit_buffer
*ab
;
1427 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1431 switch (context
->type
) {
1432 case AUDIT_SOCKETCALL
: {
1433 int nargs
= context
->socketcall
.nargs
;
1434 audit_log_format(ab
, "nargs=%d", nargs
);
1435 for (i
= 0; i
< nargs
; i
++)
1436 audit_log_format(ab
, " a%d=%lx", i
,
1437 context
->socketcall
.args
[i
]);
1440 u32 osid
= context
->ipc
.osid
;
1442 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1443 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1444 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1449 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1450 audit_log_format(ab
, " osid=%u", osid
);
1453 audit_log_format(ab
, " obj=%s", ctx
);
1454 security_release_secctx(ctx
, len
);
1457 if (context
->ipc
.has_perm
) {
1459 ab
= audit_log_start(context
, GFP_KERNEL
,
1460 AUDIT_IPC_SET_PERM
);
1463 audit_log_format(ab
,
1464 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1465 context
->ipc
.qbytes
,
1466 context
->ipc
.perm_uid
,
1467 context
->ipc
.perm_gid
,
1468 context
->ipc
.perm_mode
);
1471 case AUDIT_MQ_OPEN
: {
1472 audit_log_format(ab
,
1473 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1474 "mq_msgsize=%ld mq_curmsgs=%ld",
1475 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1476 context
->mq_open
.attr
.mq_flags
,
1477 context
->mq_open
.attr
.mq_maxmsg
,
1478 context
->mq_open
.attr
.mq_msgsize
,
1479 context
->mq_open
.attr
.mq_curmsgs
);
1481 case AUDIT_MQ_SENDRECV
: {
1482 audit_log_format(ab
,
1483 "mqdes=%d msg_len=%zd msg_prio=%u "
1484 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1485 context
->mq_sendrecv
.mqdes
,
1486 context
->mq_sendrecv
.msg_len
,
1487 context
->mq_sendrecv
.msg_prio
,
1488 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1489 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1491 case AUDIT_MQ_NOTIFY
: {
1492 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1493 context
->mq_notify
.mqdes
,
1494 context
->mq_notify
.sigev_signo
);
1496 case AUDIT_MQ_GETSETATTR
: {
1497 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1498 audit_log_format(ab
,
1499 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1501 context
->mq_getsetattr
.mqdes
,
1502 attr
->mq_flags
, attr
->mq_maxmsg
,
1503 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1505 case AUDIT_CAPSET
: {
1506 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1507 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1508 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1509 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1512 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1513 context
->mmap
.flags
);
1519 static void audit_log_name(struct audit_context
*context
, struct audit_names
*n
,
1520 int record_num
, int *call_panic
)
1522 struct audit_buffer
*ab
;
1523 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1525 return; /* audit_panic has been called */
1527 audit_log_format(ab
, "item=%d", record_num
);
1530 switch (n
->name_len
) {
1531 case AUDIT_NAME_FULL
:
1532 /* log the full path */
1533 audit_log_format(ab
, " name=");
1534 audit_log_untrustedstring(ab
, n
->name
->name
);
1537 /* name was specified as a relative path and the
1538 * directory component is the cwd */
1539 audit_log_d_path(ab
, " name=", &context
->pwd
);
1542 /* log the name's directory component */
1543 audit_log_format(ab
, " name=");
1544 audit_log_n_untrustedstring(ab
, n
->name
->name
,
1548 audit_log_format(ab
, " name=(null)");
1550 if (n
->ino
!= (unsigned long)-1) {
1551 audit_log_format(ab
, " inode=%lu"
1552 " dev=%02x:%02x mode=%#ho"
1553 " ouid=%u ogid=%u rdev=%02x:%02x",
1558 from_kuid(&init_user_ns
, n
->uid
),
1559 from_kgid(&init_user_ns
, n
->gid
),
1566 if (security_secid_to_secctx(
1567 n
->osid
, &ctx
, &len
)) {
1568 audit_log_format(ab
, " osid=%u", n
->osid
);
1571 audit_log_format(ab
, " obj=%s", ctx
);
1572 security_release_secctx(ctx
, len
);
1576 audit_log_fcaps(ab
, n
);
1581 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1583 int i
, call_panic
= 0;
1584 struct audit_buffer
*ab
;
1585 struct audit_aux_data
*aux
;
1586 struct audit_names
*n
;
1588 /* tsk == current */
1589 context
->personality
= tsk
->personality
;
1591 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1593 return; /* audit_panic has been called */
1594 audit_log_format(ab
, "arch=%x syscall=%d",
1595 context
->arch
, context
->major
);
1596 if (context
->personality
!= PER_LINUX
)
1597 audit_log_format(ab
, " per=%lx", context
->personality
);
1598 if (context
->return_valid
)
1599 audit_log_format(ab
, " success=%s exit=%ld",
1600 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1601 context
->return_code
);
1603 audit_log_format(ab
,
1604 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1609 context
->name_count
);
1611 audit_log_task_info(ab
, tsk
);
1612 audit_log_key(ab
, context
->filterkey
);
1615 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1617 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1619 continue; /* audit_panic has been called */
1621 switch (aux
->type
) {
1623 case AUDIT_EXECVE
: {
1624 struct audit_aux_data_execve
*axi
= (void *)aux
;
1625 audit_log_execve_info(context
, &ab
, axi
);
1628 case AUDIT_BPRM_FCAPS
: {
1629 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1630 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1631 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1632 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1633 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1634 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1635 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1636 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1637 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1638 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1639 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1647 show_special(context
, &call_panic
);
1649 if (context
->fds
[0] >= 0) {
1650 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1652 audit_log_format(ab
, "fd0=%d fd1=%d",
1653 context
->fds
[0], context
->fds
[1]);
1658 if (context
->sockaddr_len
) {
1659 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1661 audit_log_format(ab
, "saddr=");
1662 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1663 context
->sockaddr_len
);
1668 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1669 struct audit_aux_data_pids
*axs
= (void *)aux
;
1671 for (i
= 0; i
< axs
->pid_count
; i
++)
1672 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1673 axs
->target_auid
[i
],
1675 axs
->target_sessionid
[i
],
1677 axs
->target_comm
[i
]))
1681 if (context
->target_pid
&&
1682 audit_log_pid_context(context
, context
->target_pid
,
1683 context
->target_auid
, context
->target_uid
,
1684 context
->target_sessionid
,
1685 context
->target_sid
, context
->target_comm
))
1688 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1689 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1691 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1697 list_for_each_entry(n
, &context
->names_list
, list
)
1698 audit_log_name(context
, n
, i
++, &call_panic
);
1700 /* Send end of event record to help user space know we are finished */
1701 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1705 audit_panic("error converting sid to string");
1709 * audit_free - free a per-task audit context
1710 * @tsk: task whose audit context block to free
1712 * Called from copy_process and do_exit
1714 void __audit_free(struct task_struct
*tsk
)
1716 struct audit_context
*context
;
1718 context
= audit_get_context(tsk
, 0, 0);
1722 /* Check for system calls that do not go through the exit
1723 * function (e.g., exit_group), then free context block.
1724 * We use GFP_ATOMIC here because we might be doing this
1725 * in the context of the idle thread */
1726 /* that can happen only if we are called from do_exit() */
1727 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1728 audit_log_exit(context
, tsk
);
1729 if (!list_empty(&context
->killed_trees
))
1730 audit_kill_trees(&context
->killed_trees
);
1732 audit_free_context(context
);
1736 * audit_syscall_entry - fill in an audit record at syscall entry
1737 * @arch: architecture type
1738 * @major: major syscall type (function)
1739 * @a1: additional syscall register 1
1740 * @a2: additional syscall register 2
1741 * @a3: additional syscall register 3
1742 * @a4: additional syscall register 4
1744 * Fill in audit context at syscall entry. This only happens if the
1745 * audit context was created when the task was created and the state or
1746 * filters demand the audit context be built. If the state from the
1747 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1748 * then the record will be written at syscall exit time (otherwise, it
1749 * will only be written if another part of the kernel requests that it
1752 void __audit_syscall_entry(int arch
, int major
,
1753 unsigned long a1
, unsigned long a2
,
1754 unsigned long a3
, unsigned long a4
)
1756 struct task_struct
*tsk
= current
;
1757 struct audit_context
*context
= tsk
->audit_context
;
1758 enum audit_state state
;
1763 BUG_ON(context
->in_syscall
|| context
->name_count
);
1768 context
->arch
= arch
;
1769 context
->major
= major
;
1770 context
->argv
[0] = a1
;
1771 context
->argv
[1] = a2
;
1772 context
->argv
[2] = a3
;
1773 context
->argv
[3] = a4
;
1775 state
= context
->state
;
1776 context
->dummy
= !audit_n_rules
;
1777 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1779 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1781 if (state
== AUDIT_DISABLED
)
1784 context
->serial
= 0;
1785 context
->ctime
= CURRENT_TIME
;
1786 context
->in_syscall
= 1;
1787 context
->current_state
= state
;
1792 * audit_syscall_exit - deallocate audit context after a system call
1793 * @success: success value of the syscall
1794 * @return_code: return value of the syscall
1796 * Tear down after system call. If the audit context has been marked as
1797 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1798 * filtering, or because some other part of the kernel wrote an audit
1799 * message), then write out the syscall information. In call cases,
1800 * free the names stored from getname().
1802 void __audit_syscall_exit(int success
, long return_code
)
1804 struct task_struct
*tsk
= current
;
1805 struct audit_context
*context
;
1808 success
= AUDITSC_SUCCESS
;
1810 success
= AUDITSC_FAILURE
;
1812 context
= audit_get_context(tsk
, success
, return_code
);
1816 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1817 audit_log_exit(context
, tsk
);
1819 context
->in_syscall
= 0;
1820 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1822 if (!list_empty(&context
->killed_trees
))
1823 audit_kill_trees(&context
->killed_trees
);
1825 audit_free_names(context
);
1826 unroll_tree_refs(context
, NULL
, 0);
1827 audit_free_aux(context
);
1828 context
->aux
= NULL
;
1829 context
->aux_pids
= NULL
;
1830 context
->target_pid
= 0;
1831 context
->target_sid
= 0;
1832 context
->sockaddr_len
= 0;
1834 context
->fds
[0] = -1;
1835 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1836 kfree(context
->filterkey
);
1837 context
->filterkey
= NULL
;
1839 tsk
->audit_context
= context
;
1842 static inline void handle_one(const struct inode
*inode
)
1844 #ifdef CONFIG_AUDIT_TREE
1845 struct audit_context
*context
;
1846 struct audit_tree_refs
*p
;
1847 struct audit_chunk
*chunk
;
1849 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1851 context
= current
->audit_context
;
1853 count
= context
->tree_count
;
1855 chunk
= audit_tree_lookup(inode
);
1859 if (likely(put_tree_ref(context
, chunk
)))
1861 if (unlikely(!grow_tree_refs(context
))) {
1862 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1863 audit_set_auditable(context
);
1864 audit_put_chunk(chunk
);
1865 unroll_tree_refs(context
, p
, count
);
1868 put_tree_ref(context
, chunk
);
1872 static void handle_path(const struct dentry
*dentry
)
1874 #ifdef CONFIG_AUDIT_TREE
1875 struct audit_context
*context
;
1876 struct audit_tree_refs
*p
;
1877 const struct dentry
*d
, *parent
;
1878 struct audit_chunk
*drop
;
1882 context
= current
->audit_context
;
1884 count
= context
->tree_count
;
1889 seq
= read_seqbegin(&rename_lock
);
1891 struct inode
*inode
= d
->d_inode
;
1892 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1893 struct audit_chunk
*chunk
;
1894 chunk
= audit_tree_lookup(inode
);
1896 if (unlikely(!put_tree_ref(context
, chunk
))) {
1902 parent
= d
->d_parent
;
1907 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1910 /* just a race with rename */
1911 unroll_tree_refs(context
, p
, count
);
1914 audit_put_chunk(drop
);
1915 if (grow_tree_refs(context
)) {
1916 /* OK, got more space */
1917 unroll_tree_refs(context
, p
, count
);
1922 "out of memory, audit has lost a tree reference\n");
1923 unroll_tree_refs(context
, p
, count
);
1924 audit_set_auditable(context
);
1931 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1934 struct audit_names
*aname
;
1936 if (context
->name_count
< AUDIT_NAMES
) {
1937 aname
= &context
->preallocated_names
[context
->name_count
];
1938 memset(aname
, 0, sizeof(*aname
));
1940 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1943 aname
->should_free
= true;
1946 aname
->ino
= (unsigned long)-1;
1948 list_add_tail(&aname
->list
, &context
->names_list
);
1950 context
->name_count
++;
1952 context
->ino_count
++;
1958 * audit_reusename - fill out filename with info from existing entry
1959 * @uptr: userland ptr to pathname
1961 * Search the audit_names list for the current audit context. If there is an
1962 * existing entry with a matching "uptr" then return the filename
1963 * associated with that audit_name. If not, return NULL.
1966 __audit_reusename(const __user
char *uptr
)
1968 struct audit_context
*context
= current
->audit_context
;
1969 struct audit_names
*n
;
1971 list_for_each_entry(n
, &context
->names_list
, list
) {
1974 if (n
->name
->uptr
== uptr
)
1981 * audit_getname - add a name to the list
1982 * @name: name to add
1984 * Add a name to the list of audit names for this context.
1985 * Called from fs/namei.c:getname().
1987 void __audit_getname(struct filename
*name
)
1989 struct audit_context
*context
= current
->audit_context
;
1990 struct audit_names
*n
;
1992 if (!context
->in_syscall
) {
1993 #if AUDIT_DEBUG == 2
1994 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1995 __FILE__
, __LINE__
, context
->serial
, name
);
2002 /* The filename _must_ have a populated ->name */
2003 BUG_ON(!name
->name
);
2006 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
2011 n
->name_len
= AUDIT_NAME_FULL
;
2015 if (!context
->pwd
.dentry
)
2016 get_fs_pwd(current
->fs
, &context
->pwd
);
2019 /* audit_putname - intercept a putname request
2020 * @name: name to intercept and delay for putname
2022 * If we have stored the name from getname in the audit context,
2023 * then we delay the putname until syscall exit.
2024 * Called from include/linux/fs.h:putname().
2026 void audit_putname(struct filename
*name
)
2028 struct audit_context
*context
= current
->audit_context
;
2031 if (!context
->in_syscall
) {
2032 #if AUDIT_DEBUG == 2
2033 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
2034 __FILE__
, __LINE__
, context
->serial
, name
);
2035 if (context
->name_count
) {
2036 struct audit_names
*n
;
2039 list_for_each_entry(n
, &context
->names_list
, list
)
2040 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
2041 n
->name
, n
->name
->name
?: "(null)");
2048 ++context
->put_count
;
2049 if (context
->put_count
> context
->name_count
) {
2050 printk(KERN_ERR
"%s:%d(:%d): major=%d"
2051 " in_syscall=%d putname(%p) name_count=%d"
2054 context
->serial
, context
->major
,
2055 context
->in_syscall
, name
->name
,
2056 context
->name_count
, context
->put_count
);
2063 static inline int audit_copy_fcaps(struct audit_names
*name
, const struct dentry
*dentry
)
2065 struct cpu_vfs_cap_data caps
;
2071 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
2075 name
->fcap
.permitted
= caps
.permitted
;
2076 name
->fcap
.inheritable
= caps
.inheritable
;
2077 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2078 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2084 /* Copy inode data into an audit_names. */
2085 static void audit_copy_inode(struct audit_names
*name
, const struct dentry
*dentry
,
2086 const struct inode
*inode
)
2088 name
->ino
= inode
->i_ino
;
2089 name
->dev
= inode
->i_sb
->s_dev
;
2090 name
->mode
= inode
->i_mode
;
2091 name
->uid
= inode
->i_uid
;
2092 name
->gid
= inode
->i_gid
;
2093 name
->rdev
= inode
->i_rdev
;
2094 security_inode_getsecid(inode
, &name
->osid
);
2095 audit_copy_fcaps(name
, dentry
);
2099 * __audit_inode - store the inode and device from a lookup
2100 * @name: name being audited
2101 * @dentry: dentry being audited
2102 * @parent: does this dentry represent the parent?
2104 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
2105 unsigned int parent
)
2107 struct audit_context
*context
= current
->audit_context
;
2108 const struct inode
*inode
= dentry
->d_inode
;
2109 struct audit_names
*n
;
2111 if (!context
->in_syscall
)
2118 /* The struct filename _must_ have a populated ->name */
2119 BUG_ON(!name
->name
);
2122 * If we have a pointer to an audit_names entry already, then we can
2123 * just use it directly if the type is correct.
2128 if (n
->type
== AUDIT_TYPE_PARENT
||
2129 n
->type
== AUDIT_TYPE_UNKNOWN
)
2132 if (n
->type
!= AUDIT_TYPE_PARENT
)
2137 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
2138 /* does the name pointer match? */
2139 if (!n
->name
|| n
->name
->name
!= name
->name
)
2142 /* match the correct record type */
2144 if (n
->type
== AUDIT_TYPE_PARENT
||
2145 n
->type
== AUDIT_TYPE_UNKNOWN
)
2148 if (n
->type
!= AUDIT_TYPE_PARENT
)
2154 /* unable to find the name from a previous getname(). Allocate a new
2157 n
= audit_alloc_name(context
, AUDIT_TYPE_NORMAL
);
2162 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
2163 n
->type
= AUDIT_TYPE_PARENT
;
2165 n
->name_len
= AUDIT_NAME_FULL
;
2166 n
->type
= AUDIT_TYPE_NORMAL
;
2168 handle_path(dentry
);
2169 audit_copy_inode(n
, dentry
, inode
);
2173 * __audit_inode_child - collect inode info for created/removed objects
2174 * @parent: inode of dentry parent
2175 * @dentry: dentry being audited
2176 * @type: AUDIT_TYPE_* value that we're looking for
2178 * For syscalls that create or remove filesystem objects, audit_inode
2179 * can only collect information for the filesystem object's parent.
2180 * This call updates the audit context with the child's information.
2181 * Syscalls that create a new filesystem object must be hooked after
2182 * the object is created. Syscalls that remove a filesystem object
2183 * must be hooked prior, in order to capture the target inode during
2184 * unsuccessful attempts.
2186 void __audit_inode_child(const struct inode
*parent
,
2187 const struct dentry
*dentry
,
2188 const unsigned char type
)
2190 struct audit_context
*context
= current
->audit_context
;
2191 const struct inode
*inode
= dentry
->d_inode
;
2192 const char *dname
= dentry
->d_name
.name
;
2193 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
2195 if (!context
->in_syscall
)
2201 /* look for a parent entry first */
2202 list_for_each_entry(n
, &context
->names_list
, list
) {
2203 if (!n
->name
|| n
->type
!= AUDIT_TYPE_PARENT
)
2206 if (n
->ino
== parent
->i_ino
&&
2207 !audit_compare_dname_path(dname
, n
->name
->name
, n
->name_len
)) {
2213 /* is there a matching child entry? */
2214 list_for_each_entry(n
, &context
->names_list
, list
) {
2215 /* can only match entries that have a name */
2216 if (!n
->name
|| n
->type
!= type
)
2219 /* if we found a parent, make sure this one is a child of it */
2220 if (found_parent
&& (n
->name
!= found_parent
->name
))
2223 if (!strcmp(dname
, n
->name
->name
) ||
2224 !audit_compare_dname_path(dname
, n
->name
->name
,
2226 found_parent
->name_len
:
2233 if (!found_parent
) {
2234 /* create a new, "anonymous" parent record */
2235 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
2238 audit_copy_inode(n
, NULL
, parent
);
2242 found_child
= audit_alloc_name(context
, type
);
2246 /* Re-use the name belonging to the slot for a matching parent
2247 * directory. All names for this context are relinquished in
2248 * audit_free_names() */
2250 found_child
->name
= found_parent
->name
;
2251 found_child
->name_len
= AUDIT_NAME_FULL
;
2252 /* don't call __putname() */
2253 found_child
->name_put
= false;
2257 audit_copy_inode(found_child
, dentry
, inode
);
2259 found_child
->ino
= (unsigned long)-1;
2261 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2264 * auditsc_get_stamp - get local copies of audit_context values
2265 * @ctx: audit_context for the task
2266 * @t: timespec to store time recorded in the audit_context
2267 * @serial: serial value that is recorded in the audit_context
2269 * Also sets the context as auditable.
2271 int auditsc_get_stamp(struct audit_context
*ctx
,
2272 struct timespec
*t
, unsigned int *serial
)
2274 if (!ctx
->in_syscall
)
2277 ctx
->serial
= audit_serial();
2278 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2279 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2280 *serial
= ctx
->serial
;
2283 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2288 /* global counter which is incremented every time something logs in */
2289 static atomic_t session_id
= ATOMIC_INIT(0);
2292 * audit_set_loginuid - set current task's audit_context loginuid
2293 * @loginuid: loginuid value
2297 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2299 int audit_set_loginuid(kuid_t loginuid
)
2301 struct task_struct
*task
= current
;
2302 struct audit_context
*context
= task
->audit_context
;
2303 unsigned int sessionid
;
2305 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2306 if (uid_valid(task
->loginuid
))
2308 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2309 if (!capable(CAP_AUDIT_CONTROL
))
2311 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2313 sessionid
= atomic_inc_return(&session_id
);
2314 if (context
&& context
->in_syscall
) {
2315 struct audit_buffer
*ab
;
2317 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2319 audit_log_format(ab
, "login pid=%d uid=%u "
2320 "old auid=%u new auid=%u"
2321 " old ses=%u new ses=%u",
2323 from_kuid(&init_user_ns
, task_uid(task
)),
2324 from_kuid(&init_user_ns
, task
->loginuid
),
2325 from_kuid(&init_user_ns
, loginuid
),
2326 task
->sessionid
, sessionid
);
2330 task
->sessionid
= sessionid
;
2331 task
->loginuid
= loginuid
;
2336 * __audit_mq_open - record audit data for a POSIX MQ open
2339 * @attr: queue attributes
2342 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2344 struct audit_context
*context
= current
->audit_context
;
2347 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2349 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2351 context
->mq_open
.oflag
= oflag
;
2352 context
->mq_open
.mode
= mode
;
2354 context
->type
= AUDIT_MQ_OPEN
;
2358 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2359 * @mqdes: MQ descriptor
2360 * @msg_len: Message length
2361 * @msg_prio: Message priority
2362 * @abs_timeout: Message timeout in absolute time
2365 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2366 const struct timespec
*abs_timeout
)
2368 struct audit_context
*context
= current
->audit_context
;
2369 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2372 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2374 memset(p
, 0, sizeof(struct timespec
));
2376 context
->mq_sendrecv
.mqdes
= mqdes
;
2377 context
->mq_sendrecv
.msg_len
= msg_len
;
2378 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2380 context
->type
= AUDIT_MQ_SENDRECV
;
2384 * __audit_mq_notify - record audit data for a POSIX MQ notify
2385 * @mqdes: MQ descriptor
2386 * @notification: Notification event
2390 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2392 struct audit_context
*context
= current
->audit_context
;
2395 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2397 context
->mq_notify
.sigev_signo
= 0;
2399 context
->mq_notify
.mqdes
= mqdes
;
2400 context
->type
= AUDIT_MQ_NOTIFY
;
2404 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2405 * @mqdes: MQ descriptor
2409 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2411 struct audit_context
*context
= current
->audit_context
;
2412 context
->mq_getsetattr
.mqdes
= mqdes
;
2413 context
->mq_getsetattr
.mqstat
= *mqstat
;
2414 context
->type
= AUDIT_MQ_GETSETATTR
;
2418 * audit_ipc_obj - record audit data for ipc object
2419 * @ipcp: ipc permissions
2422 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2424 struct audit_context
*context
= current
->audit_context
;
2425 context
->ipc
.uid
= ipcp
->uid
;
2426 context
->ipc
.gid
= ipcp
->gid
;
2427 context
->ipc
.mode
= ipcp
->mode
;
2428 context
->ipc
.has_perm
= 0;
2429 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2430 context
->type
= AUDIT_IPC
;
2434 * audit_ipc_set_perm - record audit data for new ipc permissions
2435 * @qbytes: msgq bytes
2436 * @uid: msgq user id
2437 * @gid: msgq group id
2438 * @mode: msgq mode (permissions)
2440 * Called only after audit_ipc_obj().
2442 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2444 struct audit_context
*context
= current
->audit_context
;
2446 context
->ipc
.qbytes
= qbytes
;
2447 context
->ipc
.perm_uid
= uid
;
2448 context
->ipc
.perm_gid
= gid
;
2449 context
->ipc
.perm_mode
= mode
;
2450 context
->ipc
.has_perm
= 1;
2453 int __audit_bprm(struct linux_binprm
*bprm
)
2455 struct audit_aux_data_execve
*ax
;
2456 struct audit_context
*context
= current
->audit_context
;
2458 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2462 ax
->argc
= bprm
->argc
;
2463 ax
->envc
= bprm
->envc
;
2465 ax
->d
.type
= AUDIT_EXECVE
;
2466 ax
->d
.next
= context
->aux
;
2467 context
->aux
= (void *)ax
;
2473 * audit_socketcall - record audit data for sys_socketcall
2474 * @nargs: number of args
2478 void __audit_socketcall(int nargs
, unsigned long *args
)
2480 struct audit_context
*context
= current
->audit_context
;
2482 context
->type
= AUDIT_SOCKETCALL
;
2483 context
->socketcall
.nargs
= nargs
;
2484 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2488 * __audit_fd_pair - record audit data for pipe and socketpair
2489 * @fd1: the first file descriptor
2490 * @fd2: the second file descriptor
2493 void __audit_fd_pair(int fd1
, int fd2
)
2495 struct audit_context
*context
= current
->audit_context
;
2496 context
->fds
[0] = fd1
;
2497 context
->fds
[1] = fd2
;
2501 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2502 * @len: data length in user space
2503 * @a: data address in kernel space
2505 * Returns 0 for success or NULL context or < 0 on error.
2507 int __audit_sockaddr(int len
, void *a
)
2509 struct audit_context
*context
= current
->audit_context
;
2511 if (!context
->sockaddr
) {
2512 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2515 context
->sockaddr
= p
;
2518 context
->sockaddr_len
= len
;
2519 memcpy(context
->sockaddr
, a
, len
);
2523 void __audit_ptrace(struct task_struct
*t
)
2525 struct audit_context
*context
= current
->audit_context
;
2527 context
->target_pid
= t
->pid
;
2528 context
->target_auid
= audit_get_loginuid(t
);
2529 context
->target_uid
= task_uid(t
);
2530 context
->target_sessionid
= audit_get_sessionid(t
);
2531 security_task_getsecid(t
, &context
->target_sid
);
2532 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2536 * audit_signal_info - record signal info for shutting down audit subsystem
2537 * @sig: signal value
2538 * @t: task being signaled
2540 * If the audit subsystem is being terminated, record the task (pid)
2541 * and uid that is doing that.
2543 int __audit_signal_info(int sig
, struct task_struct
*t
)
2545 struct audit_aux_data_pids
*axp
;
2546 struct task_struct
*tsk
= current
;
2547 struct audit_context
*ctx
= tsk
->audit_context
;
2548 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2550 if (audit_pid
&& t
->tgid
== audit_pid
) {
2551 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2552 audit_sig_pid
= tsk
->pid
;
2553 if (uid_valid(tsk
->loginuid
))
2554 audit_sig_uid
= tsk
->loginuid
;
2556 audit_sig_uid
= uid
;
2557 security_task_getsecid(tsk
, &audit_sig_sid
);
2559 if (!audit_signals
|| audit_dummy_context())
2563 /* optimize the common case by putting first signal recipient directly
2564 * in audit_context */
2565 if (!ctx
->target_pid
) {
2566 ctx
->target_pid
= t
->tgid
;
2567 ctx
->target_auid
= audit_get_loginuid(t
);
2568 ctx
->target_uid
= t_uid
;
2569 ctx
->target_sessionid
= audit_get_sessionid(t
);
2570 security_task_getsecid(t
, &ctx
->target_sid
);
2571 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2575 axp
= (void *)ctx
->aux_pids
;
2576 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2577 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2581 axp
->d
.type
= AUDIT_OBJ_PID
;
2582 axp
->d
.next
= ctx
->aux_pids
;
2583 ctx
->aux_pids
= (void *)axp
;
2585 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2587 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2588 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2589 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2590 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2591 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2592 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2599 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2600 * @bprm: pointer to the bprm being processed
2601 * @new: the proposed new credentials
2602 * @old: the old credentials
2604 * Simply check if the proc already has the caps given by the file and if not
2605 * store the priv escalation info for later auditing at the end of the syscall
2609 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2610 const struct cred
*new, const struct cred
*old
)
2612 struct audit_aux_data_bprm_fcaps
*ax
;
2613 struct audit_context
*context
= current
->audit_context
;
2614 struct cpu_vfs_cap_data vcaps
;
2615 struct dentry
*dentry
;
2617 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2621 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2622 ax
->d
.next
= context
->aux
;
2623 context
->aux
= (void *)ax
;
2625 dentry
= dget(bprm
->file
->f_dentry
);
2626 get_vfs_caps_from_disk(dentry
, &vcaps
);
2629 ax
->fcap
.permitted
= vcaps
.permitted
;
2630 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2631 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2632 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2634 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2635 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2636 ax
->old_pcap
.effective
= old
->cap_effective
;
2638 ax
->new_pcap
.permitted
= new->cap_permitted
;
2639 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2640 ax
->new_pcap
.effective
= new->cap_effective
;
2645 * __audit_log_capset - store information about the arguments to the capset syscall
2646 * @pid: target pid of the capset call
2647 * @new: the new credentials
2648 * @old: the old (current) credentials
2650 * Record the aguments userspace sent to sys_capset for later printing by the
2651 * audit system if applicable
2653 void __audit_log_capset(pid_t pid
,
2654 const struct cred
*new, const struct cred
*old
)
2656 struct audit_context
*context
= current
->audit_context
;
2657 context
->capset
.pid
= pid
;
2658 context
->capset
.cap
.effective
= new->cap_effective
;
2659 context
->capset
.cap
.inheritable
= new->cap_effective
;
2660 context
->capset
.cap
.permitted
= new->cap_permitted
;
2661 context
->type
= AUDIT_CAPSET
;
2664 void __audit_mmap_fd(int fd
, int flags
)
2666 struct audit_context
*context
= current
->audit_context
;
2667 context
->mmap
.fd
= fd
;
2668 context
->mmap
.flags
= flags
;
2669 context
->type
= AUDIT_MMAP
;
2672 static void audit_log_task(struct audit_buffer
*ab
)
2676 unsigned int sessionid
;
2678 auid
= audit_get_loginuid(current
);
2679 sessionid
= audit_get_sessionid(current
);
2680 current_uid_gid(&uid
, &gid
);
2682 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2683 from_kuid(&init_user_ns
, auid
),
2684 from_kuid(&init_user_ns
, uid
),
2685 from_kgid(&init_user_ns
, gid
),
2687 audit_log_task_context(ab
);
2688 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2689 audit_log_untrustedstring(ab
, current
->comm
);
2692 static void audit_log_abend(struct audit_buffer
*ab
, char *reason
, long signr
)
2695 audit_log_format(ab
, " reason=");
2696 audit_log_string(ab
, reason
);
2697 audit_log_format(ab
, " sig=%ld", signr
);
2700 * audit_core_dumps - record information about processes that end abnormally
2701 * @signr: signal value
2703 * If a process ends with a core dump, something fishy is going on and we
2704 * should record the event for investigation.
2706 void audit_core_dumps(long signr
)
2708 struct audit_buffer
*ab
;
2713 if (signr
== SIGQUIT
) /* don't care for those */
2716 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2719 audit_log_abend(ab
, "memory violation", signr
);
2723 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2725 struct audit_buffer
*ab
;
2727 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_SECCOMP
);
2731 audit_log_format(ab
, " sig=%ld", signr
);
2732 audit_log_format(ab
, " syscall=%ld", syscall
);
2733 audit_log_format(ab
, " compat=%d", is_compat_task());
2734 audit_log_format(ab
, " ip=0x%lx", KSTK_EIP(current
));
2735 audit_log_format(ab
, " code=0x%x", code
);
2739 struct list_head
*audit_killed_trees(void)
2741 struct audit_context
*ctx
= current
->audit_context
;
2742 if (likely(!ctx
|| !ctx
->in_syscall
))
2744 return &ctx
->killed_trees
;