4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
45 #include <asm/uaccess.h>
46 #include <asm/unistd.h>
47 #include <asm/div64.h>
48 #include <asm/timex.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/timer.h>
54 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
56 EXPORT_SYMBOL(jiffies_64
);
59 * per-CPU timer vector definitions:
61 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
62 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
63 #define TVN_SIZE (1 << TVN_BITS)
64 #define TVR_SIZE (1 << TVR_BITS)
65 #define TVN_MASK (TVN_SIZE - 1)
66 #define TVR_MASK (TVR_SIZE - 1)
67 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
70 struct list_head vec
[TVN_SIZE
];
74 struct list_head vec
[TVR_SIZE
];
79 struct timer_list
*running_timer
;
80 unsigned long timer_jiffies
;
81 unsigned long next_timer
;
82 unsigned long active_timers
;
88 } ____cacheline_aligned
;
90 struct tvec_base boot_tvec_bases
;
91 EXPORT_SYMBOL(boot_tvec_bases
);
92 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
94 /* Functions below help us manage 'deferrable' flag */
95 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
97 return ((unsigned int)(unsigned long)base
& TIMER_DEFERRABLE
);
100 static inline unsigned int tbase_get_irqsafe(struct tvec_base
*base
)
102 return ((unsigned int)(unsigned long)base
& TIMER_IRQSAFE
);
105 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
107 return ((struct tvec_base
*)((unsigned long)base
& ~TIMER_FLAG_MASK
));
111 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
113 unsigned long flags
= (unsigned long)timer
->base
& TIMER_FLAG_MASK
;
115 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) | flags
);
118 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
122 unsigned long original
= j
;
125 * We don't want all cpus firing their timers at once hitting the
126 * same lock or cachelines, so we skew each extra cpu with an extra
127 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
129 * The skew is done by adding 3*cpunr, then round, then subtract this
130 * extra offset again.
137 * If the target jiffie is just after a whole second (which can happen
138 * due to delays of the timer irq, long irq off times etc etc) then
139 * we should round down to the whole second, not up. Use 1/4th second
140 * as cutoff for this rounding as an extreme upper bound for this.
141 * But never round down if @force_up is set.
143 if (rem
< HZ
/4 && !force_up
) /* round down */
148 /* now that we have rounded, subtract the extra skew again */
151 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
157 * __round_jiffies - function to round jiffies to a full second
158 * @j: the time in (absolute) jiffies that should be rounded
159 * @cpu: the processor number on which the timeout will happen
161 * __round_jiffies() rounds an absolute time in the future (in jiffies)
162 * up or down to (approximately) full seconds. This is useful for timers
163 * for which the exact time they fire does not matter too much, as long as
164 * they fire approximately every X seconds.
166 * By rounding these timers to whole seconds, all such timers will fire
167 * at the same time, rather than at various times spread out. The goal
168 * of this is to have the CPU wake up less, which saves power.
170 * The exact rounding is skewed for each processor to avoid all
171 * processors firing at the exact same time, which could lead
172 * to lock contention or spurious cache line bouncing.
174 * The return value is the rounded version of the @j parameter.
176 unsigned long __round_jiffies(unsigned long j
, int cpu
)
178 return round_jiffies_common(j
, cpu
, false);
180 EXPORT_SYMBOL_GPL(__round_jiffies
);
183 * __round_jiffies_relative - function to round jiffies to a full second
184 * @j: the time in (relative) jiffies that should be rounded
185 * @cpu: the processor number on which the timeout will happen
187 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
188 * up or down to (approximately) full seconds. This is useful for timers
189 * for which the exact time they fire does not matter too much, as long as
190 * they fire approximately every X seconds.
192 * By rounding these timers to whole seconds, all such timers will fire
193 * at the same time, rather than at various times spread out. The goal
194 * of this is to have the CPU wake up less, which saves power.
196 * The exact rounding is skewed for each processor to avoid all
197 * processors firing at the exact same time, which could lead
198 * to lock contention or spurious cache line bouncing.
200 * The return value is the rounded version of the @j parameter.
202 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
204 unsigned long j0
= jiffies
;
206 /* Use j0 because jiffies might change while we run */
207 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
209 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
212 * round_jiffies - function to round jiffies to a full second
213 * @j: the time in (absolute) jiffies that should be rounded
215 * round_jiffies() rounds an absolute time in the future (in jiffies)
216 * up or down to (approximately) full seconds. This is useful for timers
217 * for which the exact time they fire does not matter too much, as long as
218 * they fire approximately every X seconds.
220 * By rounding these timers to whole seconds, all such timers will fire
221 * at the same time, rather than at various times spread out. The goal
222 * of this is to have the CPU wake up less, which saves power.
224 * The return value is the rounded version of the @j parameter.
226 unsigned long round_jiffies(unsigned long j
)
228 return round_jiffies_common(j
, raw_smp_processor_id(), false);
230 EXPORT_SYMBOL_GPL(round_jiffies
);
233 * round_jiffies_relative - function to round jiffies to a full second
234 * @j: the time in (relative) jiffies that should be rounded
236 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
237 * up or down to (approximately) full seconds. This is useful for timers
238 * for which the exact time they fire does not matter too much, as long as
239 * they fire approximately every X seconds.
241 * By rounding these timers to whole seconds, all such timers will fire
242 * at the same time, rather than at various times spread out. The goal
243 * of this is to have the CPU wake up less, which saves power.
245 * The return value is the rounded version of the @j parameter.
247 unsigned long round_jiffies_relative(unsigned long j
)
249 return __round_jiffies_relative(j
, raw_smp_processor_id());
251 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
254 * __round_jiffies_up - function to round jiffies up to a full second
255 * @j: the time in (absolute) jiffies that should be rounded
256 * @cpu: the processor number on which the timeout will happen
258 * This is the same as __round_jiffies() except that it will never
259 * round down. This is useful for timeouts for which the exact time
260 * of firing does not matter too much, as long as they don't fire too
263 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
265 return round_jiffies_common(j
, cpu
, true);
267 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
270 * __round_jiffies_up_relative - function to round jiffies up to a full second
271 * @j: the time in (relative) jiffies that should be rounded
272 * @cpu: the processor number on which the timeout will happen
274 * This is the same as __round_jiffies_relative() except that it will never
275 * round down. This is useful for timeouts for which the exact time
276 * of firing does not matter too much, as long as they don't fire too
279 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
281 unsigned long j0
= jiffies
;
283 /* Use j0 because jiffies might change while we run */
284 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
286 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
289 * round_jiffies_up - function to round jiffies up to a full second
290 * @j: the time in (absolute) jiffies that should be rounded
292 * This is the same as round_jiffies() except that it will never
293 * round down. This is useful for timeouts for which the exact time
294 * of firing does not matter too much, as long as they don't fire too
297 unsigned long round_jiffies_up(unsigned long j
)
299 return round_jiffies_common(j
, raw_smp_processor_id(), true);
301 EXPORT_SYMBOL_GPL(round_jiffies_up
);
304 * round_jiffies_up_relative - function to round jiffies up to a full second
305 * @j: the time in (relative) jiffies that should be rounded
307 * This is the same as round_jiffies_relative() except that it will never
308 * round down. This is useful for timeouts for which the exact time
309 * of firing does not matter too much, as long as they don't fire too
312 unsigned long round_jiffies_up_relative(unsigned long j
)
314 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
316 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
319 * set_timer_slack - set the allowed slack for a timer
320 * @timer: the timer to be modified
321 * @slack_hz: the amount of time (in jiffies) allowed for rounding
323 * Set the amount of time, in jiffies, that a certain timer has
324 * in terms of slack. By setting this value, the timer subsystem
325 * will schedule the actual timer somewhere between
326 * the time mod_timer() asks for, and that time plus the slack.
328 * By setting the slack to -1, a percentage of the delay is used
331 void set_timer_slack(struct timer_list
*timer
, int slack_hz
)
333 timer
->slack
= slack_hz
;
335 EXPORT_SYMBOL_GPL(set_timer_slack
);
338 __internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
340 unsigned long expires
= timer
->expires
;
341 unsigned long idx
= expires
- base
->timer_jiffies
;
342 struct list_head
*vec
;
344 if (idx
< TVR_SIZE
) {
345 int i
= expires
& TVR_MASK
;
346 vec
= base
->tv1
.vec
+ i
;
347 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
348 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
349 vec
= base
->tv2
.vec
+ i
;
350 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
351 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
352 vec
= base
->tv3
.vec
+ i
;
353 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
354 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
355 vec
= base
->tv4
.vec
+ i
;
356 } else if ((signed long) idx
< 0) {
358 * Can happen if you add a timer with expires == jiffies,
359 * or you set a timer to go off in the past
361 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
364 /* If the timeout is larger than MAX_TVAL (on 64-bit
365 * architectures or with CONFIG_BASE_SMALL=1) then we
366 * use the maximum timeout.
368 if (idx
> MAX_TVAL
) {
370 expires
= idx
+ base
->timer_jiffies
;
372 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
373 vec
= base
->tv5
.vec
+ i
;
378 list_add_tail(&timer
->entry
, vec
);
381 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
383 __internal_add_timer(base
, timer
);
385 * Update base->active_timers and base->next_timer
387 if (!tbase_get_deferrable(timer
->base
)) {
388 if (time_before(timer
->expires
, base
->next_timer
))
389 base
->next_timer
= timer
->expires
;
390 base
->active_timers
++;
394 #ifdef CONFIG_TIMER_STATS
395 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
397 if (timer
->start_site
)
400 timer
->start_site
= addr
;
401 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
402 timer
->start_pid
= current
->pid
;
405 static void timer_stats_account_timer(struct timer_list
*timer
)
407 unsigned int flag
= 0;
409 if (likely(!timer
->start_site
))
411 if (unlikely(tbase_get_deferrable(timer
->base
)))
412 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
414 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
415 timer
->function
, timer
->start_comm
, flag
);
419 static void timer_stats_account_timer(struct timer_list
*timer
) {}
422 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
424 static struct debug_obj_descr timer_debug_descr
;
426 static void *timer_debug_hint(void *addr
)
428 return ((struct timer_list
*) addr
)->function
;
432 * fixup_init is called when:
433 * - an active object is initialized
435 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
437 struct timer_list
*timer
= addr
;
440 case ODEBUG_STATE_ACTIVE
:
441 del_timer_sync(timer
);
442 debug_object_init(timer
, &timer_debug_descr
);
449 /* Stub timer callback for improperly used timers. */
450 static void stub_timer(unsigned long data
)
456 * fixup_activate is called when:
457 * - an active object is activated
458 * - an unknown object is activated (might be a statically initialized object)
460 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
462 struct timer_list
*timer
= addr
;
466 case ODEBUG_STATE_NOTAVAILABLE
:
468 * This is not really a fixup. The timer was
469 * statically initialized. We just make sure that it
470 * is tracked in the object tracker.
472 if (timer
->entry
.next
== NULL
&&
473 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
474 debug_object_init(timer
, &timer_debug_descr
);
475 debug_object_activate(timer
, &timer_debug_descr
);
478 setup_timer(timer
, stub_timer
, 0);
483 case ODEBUG_STATE_ACTIVE
:
492 * fixup_free is called when:
493 * - an active object is freed
495 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
497 struct timer_list
*timer
= addr
;
500 case ODEBUG_STATE_ACTIVE
:
501 del_timer_sync(timer
);
502 debug_object_free(timer
, &timer_debug_descr
);
510 * fixup_assert_init is called when:
511 * - an untracked/uninit-ed object is found
513 static int timer_fixup_assert_init(void *addr
, enum debug_obj_state state
)
515 struct timer_list
*timer
= addr
;
518 case ODEBUG_STATE_NOTAVAILABLE
:
519 if (timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
521 * This is not really a fixup. The timer was
522 * statically initialized. We just make sure that it
523 * is tracked in the object tracker.
525 debug_object_init(timer
, &timer_debug_descr
);
528 setup_timer(timer
, stub_timer
, 0);
536 static struct debug_obj_descr timer_debug_descr
= {
537 .name
= "timer_list",
538 .debug_hint
= timer_debug_hint
,
539 .fixup_init
= timer_fixup_init
,
540 .fixup_activate
= timer_fixup_activate
,
541 .fixup_free
= timer_fixup_free
,
542 .fixup_assert_init
= timer_fixup_assert_init
,
545 static inline void debug_timer_init(struct timer_list
*timer
)
547 debug_object_init(timer
, &timer_debug_descr
);
550 static inline void debug_timer_activate(struct timer_list
*timer
)
552 debug_object_activate(timer
, &timer_debug_descr
);
555 static inline void debug_timer_deactivate(struct timer_list
*timer
)
557 debug_object_deactivate(timer
, &timer_debug_descr
);
560 static inline void debug_timer_free(struct timer_list
*timer
)
562 debug_object_free(timer
, &timer_debug_descr
);
565 static inline void debug_timer_assert_init(struct timer_list
*timer
)
567 debug_object_assert_init(timer
, &timer_debug_descr
);
570 static void do_init_timer(struct timer_list
*timer
, unsigned int flags
,
571 const char *name
, struct lock_class_key
*key
);
573 void init_timer_on_stack_key(struct timer_list
*timer
, unsigned int flags
,
574 const char *name
, struct lock_class_key
*key
)
576 debug_object_init_on_stack(timer
, &timer_debug_descr
);
577 do_init_timer(timer
, flags
, name
, key
);
579 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
581 void destroy_timer_on_stack(struct timer_list
*timer
)
583 debug_object_free(timer
, &timer_debug_descr
);
585 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
588 static inline void debug_timer_init(struct timer_list
*timer
) { }
589 static inline void debug_timer_activate(struct timer_list
*timer
) { }
590 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
591 static inline void debug_timer_assert_init(struct timer_list
*timer
) { }
594 static inline void debug_init(struct timer_list
*timer
)
596 debug_timer_init(timer
);
597 trace_timer_init(timer
);
601 debug_activate(struct timer_list
*timer
, unsigned long expires
)
603 debug_timer_activate(timer
);
604 trace_timer_start(timer
, expires
);
607 static inline void debug_deactivate(struct timer_list
*timer
)
609 debug_timer_deactivate(timer
);
610 trace_timer_cancel(timer
);
613 static inline void debug_assert_init(struct timer_list
*timer
)
615 debug_timer_assert_init(timer
);
618 static void do_init_timer(struct timer_list
*timer
, unsigned int flags
,
619 const char *name
, struct lock_class_key
*key
)
621 struct tvec_base
*base
= __raw_get_cpu_var(tvec_bases
);
623 timer
->entry
.next
= NULL
;
624 timer
->base
= (void *)((unsigned long)base
| flags
);
626 #ifdef CONFIG_TIMER_STATS
627 timer
->start_site
= NULL
;
628 timer
->start_pid
= -1;
629 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
631 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
635 * init_timer_key - initialize a timer
636 * @timer: the timer to be initialized
637 * @flags: timer flags
638 * @name: name of the timer
639 * @key: lockdep class key of the fake lock used for tracking timer
640 * sync lock dependencies
642 * init_timer_key() must be done to a timer prior calling *any* of the
643 * other timer functions.
645 void init_timer_key(struct timer_list
*timer
, unsigned int flags
,
646 const char *name
, struct lock_class_key
*key
)
649 do_init_timer(timer
, flags
, name
, key
);
651 EXPORT_SYMBOL(init_timer_key
);
653 static inline void detach_timer(struct timer_list
*timer
, bool clear_pending
)
655 struct list_head
*entry
= &timer
->entry
;
657 debug_deactivate(timer
);
659 __list_del(entry
->prev
, entry
->next
);
662 entry
->prev
= LIST_POISON2
;
666 detach_expired_timer(struct timer_list
*timer
, struct tvec_base
*base
)
668 detach_timer(timer
, true);
669 if (!tbase_get_deferrable(timer
->base
))
670 base
->active_timers
--;
673 static int detach_if_pending(struct timer_list
*timer
, struct tvec_base
*base
,
676 if (!timer_pending(timer
))
679 detach_timer(timer
, clear_pending
);
680 if (!tbase_get_deferrable(timer
->base
)) {
681 base
->active_timers
--;
682 if (timer
->expires
== base
->next_timer
)
683 base
->next_timer
= base
->timer_jiffies
;
689 * We are using hashed locking: holding per_cpu(tvec_bases).lock
690 * means that all timers which are tied to this base via timer->base are
691 * locked, and the base itself is locked too.
693 * So __run_timers/migrate_timers can safely modify all timers which could
694 * be found on ->tvX lists.
696 * When the timer's base is locked, and the timer removed from list, it is
697 * possible to set timer->base = NULL and drop the lock: the timer remains
700 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
701 unsigned long *flags
)
702 __acquires(timer
->base
->lock
)
704 struct tvec_base
*base
;
707 struct tvec_base
*prelock_base
= timer
->base
;
708 base
= tbase_get_base(prelock_base
);
709 if (likely(base
!= NULL
)) {
710 spin_lock_irqsave(&base
->lock
, *flags
);
711 if (likely(prelock_base
== timer
->base
))
713 /* The timer has migrated to another CPU */
714 spin_unlock_irqrestore(&base
->lock
, *flags
);
721 __mod_timer(struct timer_list
*timer
, unsigned long expires
,
722 bool pending_only
, int pinned
)
724 struct tvec_base
*base
, *new_base
;
728 timer_stats_timer_set_start_info(timer
);
729 BUG_ON(!timer
->function
);
731 base
= lock_timer_base(timer
, &flags
);
733 ret
= detach_if_pending(timer
, base
, false);
734 if (!ret
&& pending_only
)
737 debug_activate(timer
, expires
);
739 cpu
= smp_processor_id();
741 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
742 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(cpu
))
743 cpu
= get_nohz_timer_target();
745 new_base
= per_cpu(tvec_bases
, cpu
);
747 if (base
!= new_base
) {
749 * We are trying to schedule the timer on the local CPU.
750 * However we can't change timer's base while it is running,
751 * otherwise del_timer_sync() can't detect that the timer's
752 * handler yet has not finished. This also guarantees that
753 * the timer is serialized wrt itself.
755 if (likely(base
->running_timer
!= timer
)) {
756 /* See the comment in lock_timer_base() */
757 timer_set_base(timer
, NULL
);
758 spin_unlock(&base
->lock
);
760 spin_lock(&base
->lock
);
761 timer_set_base(timer
, base
);
765 timer
->expires
= expires
;
766 internal_add_timer(base
, timer
);
769 spin_unlock_irqrestore(&base
->lock
, flags
);
775 * mod_timer_pending - modify a pending timer's timeout
776 * @timer: the pending timer to be modified
777 * @expires: new timeout in jiffies
779 * mod_timer_pending() is the same for pending timers as mod_timer(),
780 * but will not re-activate and modify already deleted timers.
782 * It is useful for unserialized use of timers.
784 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
786 return __mod_timer(timer
, expires
, true, TIMER_NOT_PINNED
);
788 EXPORT_SYMBOL(mod_timer_pending
);
791 * Decide where to put the timer while taking the slack into account
794 * 1) calculate the maximum (absolute) time
795 * 2) calculate the highest bit where the expires and new max are different
796 * 3) use this bit to make a mask
797 * 4) use the bitmask to round down the maximum time, so that all last
801 unsigned long apply_slack(struct timer_list
*timer
, unsigned long expires
)
803 unsigned long expires_limit
, mask
;
806 if (timer
->slack
>= 0) {
807 expires_limit
= expires
+ timer
->slack
;
809 long delta
= expires
- jiffies
;
814 expires_limit
= expires
+ delta
/ 256;
816 mask
= expires
^ expires_limit
;
820 bit
= find_last_bit(&mask
, BITS_PER_LONG
);
822 mask
= (1 << bit
) - 1;
824 expires_limit
= expires_limit
& ~(mask
);
826 return expires_limit
;
830 * mod_timer - modify a timer's timeout
831 * @timer: the timer to be modified
832 * @expires: new timeout in jiffies
834 * mod_timer() is a more efficient way to update the expire field of an
835 * active timer (if the timer is inactive it will be activated)
837 * mod_timer(timer, expires) is equivalent to:
839 * del_timer(timer); timer->expires = expires; add_timer(timer);
841 * Note that if there are multiple unserialized concurrent users of the
842 * same timer, then mod_timer() is the only safe way to modify the timeout,
843 * since add_timer() cannot modify an already running timer.
845 * The function returns whether it has modified a pending timer or not.
846 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
847 * active timer returns 1.)
849 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
851 expires
= apply_slack(timer
, expires
);
854 * This is a common optimization triggered by the
855 * networking code - if the timer is re-modified
856 * to be the same thing then just return:
858 if (timer_pending(timer
) && timer
->expires
== expires
)
861 return __mod_timer(timer
, expires
, false, TIMER_NOT_PINNED
);
863 EXPORT_SYMBOL(mod_timer
);
866 * mod_timer_pinned - modify a timer's timeout
867 * @timer: the timer to be modified
868 * @expires: new timeout in jiffies
870 * mod_timer_pinned() is a way to update the expire field of an
871 * active timer (if the timer is inactive it will be activated)
872 * and to ensure that the timer is scheduled on the current CPU.
874 * Note that this does not prevent the timer from being migrated
875 * when the current CPU goes offline. If this is a problem for
876 * you, use CPU-hotplug notifiers to handle it correctly, for
877 * example, cancelling the timer when the corresponding CPU goes
880 * mod_timer_pinned(timer, expires) is equivalent to:
882 * del_timer(timer); timer->expires = expires; add_timer(timer);
884 int mod_timer_pinned(struct timer_list
*timer
, unsigned long expires
)
886 if (timer
->expires
== expires
&& timer_pending(timer
))
889 return __mod_timer(timer
, expires
, false, TIMER_PINNED
);
891 EXPORT_SYMBOL(mod_timer_pinned
);
894 * add_timer - start a timer
895 * @timer: the timer to be added
897 * The kernel will do a ->function(->data) callback from the
898 * timer interrupt at the ->expires point in the future. The
899 * current time is 'jiffies'.
901 * The timer's ->expires, ->function (and if the handler uses it, ->data)
902 * fields must be set prior calling this function.
904 * Timers with an ->expires field in the past will be executed in the next
907 void add_timer(struct timer_list
*timer
)
909 BUG_ON(timer_pending(timer
));
910 mod_timer(timer
, timer
->expires
);
912 EXPORT_SYMBOL(add_timer
);
915 * add_timer_on - start a timer on a particular CPU
916 * @timer: the timer to be added
917 * @cpu: the CPU to start it on
919 * This is not very scalable on SMP. Double adds are not possible.
921 void add_timer_on(struct timer_list
*timer
, int cpu
)
923 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
926 timer_stats_timer_set_start_info(timer
);
927 BUG_ON(timer_pending(timer
) || !timer
->function
);
928 spin_lock_irqsave(&base
->lock
, flags
);
929 timer_set_base(timer
, base
);
930 debug_activate(timer
, timer
->expires
);
931 internal_add_timer(base
, timer
);
933 * Check whether the other CPU is idle and needs to be
934 * triggered to reevaluate the timer wheel when nohz is
935 * active. We are protected against the other CPU fiddling
936 * with the timer by holding the timer base lock. This also
937 * makes sure that a CPU on the way to idle can not evaluate
940 wake_up_idle_cpu(cpu
);
941 spin_unlock_irqrestore(&base
->lock
, flags
);
943 EXPORT_SYMBOL_GPL(add_timer_on
);
946 * del_timer - deactive a timer.
947 * @timer: the timer to be deactivated
949 * del_timer() deactivates a timer - this works on both active and inactive
952 * The function returns whether it has deactivated a pending timer or not.
953 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
954 * active timer returns 1.)
956 int del_timer(struct timer_list
*timer
)
958 struct tvec_base
*base
;
962 debug_assert_init(timer
);
964 timer_stats_timer_clear_start_info(timer
);
965 if (timer_pending(timer
)) {
966 base
= lock_timer_base(timer
, &flags
);
967 ret
= detach_if_pending(timer
, base
, true);
968 spin_unlock_irqrestore(&base
->lock
, flags
);
973 EXPORT_SYMBOL(del_timer
);
976 * try_to_del_timer_sync - Try to deactivate a timer
977 * @timer: timer do del
979 * This function tries to deactivate a timer. Upon successful (ret >= 0)
980 * exit the timer is not queued and the handler is not running on any CPU.
982 int try_to_del_timer_sync(struct timer_list
*timer
)
984 struct tvec_base
*base
;
988 debug_assert_init(timer
);
990 base
= lock_timer_base(timer
, &flags
);
992 if (base
->running_timer
!= timer
) {
993 timer_stats_timer_clear_start_info(timer
);
994 ret
= detach_if_pending(timer
, base
, true);
996 spin_unlock_irqrestore(&base
->lock
, flags
);
1000 EXPORT_SYMBOL(try_to_del_timer_sync
);
1004 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1005 * @timer: the timer to be deactivated
1007 * This function only differs from del_timer() on SMP: besides deactivating
1008 * the timer it also makes sure the handler has finished executing on other
1011 * Synchronization rules: Callers must prevent restarting of the timer,
1012 * otherwise this function is meaningless. It must not be called from
1013 * interrupt contexts unless the timer is an irqsafe one. The caller must
1014 * not hold locks which would prevent completion of the timer's
1015 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1016 * timer is not queued and the handler is not running on any CPU.
1018 * Note: For !irqsafe timers, you must not hold locks that are held in
1019 * interrupt context while calling this function. Even if the lock has
1020 * nothing to do with the timer in question. Here's why:
1026 * base->running_timer = mytimer;
1027 * spin_lock_irq(somelock);
1029 * spin_lock(somelock);
1030 * del_timer_sync(mytimer);
1031 * while (base->running_timer == mytimer);
1033 * Now del_timer_sync() will never return and never release somelock.
1034 * The interrupt on the other CPU is waiting to grab somelock but
1035 * it has interrupted the softirq that CPU0 is waiting to finish.
1037 * The function returns whether it has deactivated a pending timer or not.
1039 int del_timer_sync(struct timer_list
*timer
)
1041 #ifdef CONFIG_LOCKDEP
1042 unsigned long flags
;
1045 * If lockdep gives a backtrace here, please reference
1046 * the synchronization rules above.
1048 local_irq_save(flags
);
1049 lock_map_acquire(&timer
->lockdep_map
);
1050 lock_map_release(&timer
->lockdep_map
);
1051 local_irq_restore(flags
);
1054 * don't use it in hardirq context, because it
1055 * could lead to deadlock.
1057 WARN_ON(in_irq() && !tbase_get_irqsafe(timer
->base
));
1059 int ret
= try_to_del_timer_sync(timer
);
1065 EXPORT_SYMBOL(del_timer_sync
);
1068 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
1070 /* cascade all the timers from tv up one level */
1071 struct timer_list
*timer
, *tmp
;
1072 struct list_head tv_list
;
1074 list_replace_init(tv
->vec
+ index
, &tv_list
);
1077 * We are removing _all_ timers from the list, so we
1078 * don't have to detach them individually.
1080 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
1081 BUG_ON(tbase_get_base(timer
->base
) != base
);
1082 /* No accounting, while moving them */
1083 __internal_add_timer(base
, timer
);
1089 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1092 int preempt_count
= preempt_count();
1094 #ifdef CONFIG_LOCKDEP
1096 * It is permissible to free the timer from inside the
1097 * function that is called from it, this we need to take into
1098 * account for lockdep too. To avoid bogus "held lock freed"
1099 * warnings as well as problems when looking into
1100 * timer->lockdep_map, make a copy and use that here.
1102 struct lockdep_map lockdep_map
;
1104 lockdep_copy_map(&lockdep_map
, &timer
->lockdep_map
);
1107 * Couple the lock chain with the lock chain at
1108 * del_timer_sync() by acquiring the lock_map around the fn()
1109 * call here and in del_timer_sync().
1111 lock_map_acquire(&lockdep_map
);
1113 trace_timer_expire_entry(timer
);
1115 trace_timer_expire_exit(timer
);
1117 lock_map_release(&lockdep_map
);
1119 if (preempt_count
!= preempt_count()) {
1120 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1121 fn
, preempt_count
, preempt_count());
1123 * Restore the preempt count. That gives us a decent
1124 * chance to survive and extract information. If the
1125 * callback kept a lock held, bad luck, but not worse
1126 * than the BUG() we had.
1128 preempt_count() = preempt_count
;
1132 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1135 * __run_timers - run all expired timers (if any) on this CPU.
1136 * @base: the timer vector to be processed.
1138 * This function cascades all vectors and executes all expired timer
1141 static inline void __run_timers(struct tvec_base
*base
)
1143 struct timer_list
*timer
;
1145 spin_lock_irq(&base
->lock
);
1146 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
1147 struct list_head work_list
;
1148 struct list_head
*head
= &work_list
;
1149 int index
= base
->timer_jiffies
& TVR_MASK
;
1155 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
1156 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
1157 !cascade(base
, &base
->tv4
, INDEX(2)))
1158 cascade(base
, &base
->tv5
, INDEX(3));
1159 ++base
->timer_jiffies
;
1160 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
1161 while (!list_empty(head
)) {
1162 void (*fn
)(unsigned long);
1166 timer
= list_first_entry(head
, struct timer_list
,entry
);
1167 fn
= timer
->function
;
1169 irqsafe
= tbase_get_irqsafe(timer
->base
);
1171 timer_stats_account_timer(timer
);
1173 base
->running_timer
= timer
;
1174 detach_expired_timer(timer
, base
);
1177 spin_unlock(&base
->lock
);
1178 call_timer_fn(timer
, fn
, data
);
1179 spin_lock(&base
->lock
);
1181 spin_unlock_irq(&base
->lock
);
1182 call_timer_fn(timer
, fn
, data
);
1183 spin_lock_irq(&base
->lock
);
1187 base
->running_timer
= NULL
;
1188 spin_unlock_irq(&base
->lock
);
1193 * Find out when the next timer event is due to happen. This
1194 * is used on S/390 to stop all activity when a CPU is idle.
1195 * This function needs to be called with interrupts disabled.
1197 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
1199 unsigned long timer_jiffies
= base
->timer_jiffies
;
1200 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
1201 int index
, slot
, array
, found
= 0;
1202 struct timer_list
*nte
;
1203 struct tvec
*varray
[4];
1205 /* Look for timer events in tv1. */
1206 index
= slot
= timer_jiffies
& TVR_MASK
;
1208 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
1209 if (tbase_get_deferrable(nte
->base
))
1213 expires
= nte
->expires
;
1214 /* Look at the cascade bucket(s)? */
1215 if (!index
|| slot
< index
)
1219 slot
= (slot
+ 1) & TVR_MASK
;
1220 } while (slot
!= index
);
1223 /* Calculate the next cascade event */
1225 timer_jiffies
+= TVR_SIZE
- index
;
1226 timer_jiffies
>>= TVR_BITS
;
1228 /* Check tv2-tv5. */
1229 varray
[0] = &base
->tv2
;
1230 varray
[1] = &base
->tv3
;
1231 varray
[2] = &base
->tv4
;
1232 varray
[3] = &base
->tv5
;
1234 for (array
= 0; array
< 4; array
++) {
1235 struct tvec
*varp
= varray
[array
];
1237 index
= slot
= timer_jiffies
& TVN_MASK
;
1239 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1240 if (tbase_get_deferrable(nte
->base
))
1244 if (time_before(nte
->expires
, expires
))
1245 expires
= nte
->expires
;
1248 * Do we still search for the first timer or are
1249 * we looking up the cascade buckets ?
1252 /* Look at the cascade bucket(s)? */
1253 if (!index
|| slot
< index
)
1257 slot
= (slot
+ 1) & TVN_MASK
;
1258 } while (slot
!= index
);
1261 timer_jiffies
+= TVN_SIZE
- index
;
1262 timer_jiffies
>>= TVN_BITS
;
1268 * Check, if the next hrtimer event is before the next timer wheel
1271 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1272 unsigned long expires
)
1274 ktime_t hr_delta
= hrtimer_get_next_event();
1275 struct timespec tsdelta
;
1276 unsigned long delta
;
1278 if (hr_delta
.tv64
== KTIME_MAX
)
1282 * Expired timer available, let it expire in the next tick
1284 if (hr_delta
.tv64
<= 0)
1287 tsdelta
= ktime_to_timespec(hr_delta
);
1288 delta
= timespec_to_jiffies(&tsdelta
);
1291 * Limit the delta to the max value, which is checked in
1292 * tick_nohz_stop_sched_tick():
1294 if (delta
> NEXT_TIMER_MAX_DELTA
)
1295 delta
= NEXT_TIMER_MAX_DELTA
;
1298 * Take rounding errors in to account and make sure, that it
1299 * expires in the next tick. Otherwise we go into an endless
1300 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1306 if (time_before(now
, expires
))
1312 * get_next_timer_interrupt - return the jiffy of the next pending timer
1313 * @now: current time (in jiffies)
1315 unsigned long get_next_timer_interrupt(unsigned long now
)
1317 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1318 unsigned long expires
= now
+ NEXT_TIMER_MAX_DELTA
;
1321 * Pretend that there is no timer pending if the cpu is offline.
1322 * Possible pending timers will be migrated later to an active cpu.
1324 if (cpu_is_offline(smp_processor_id()))
1327 spin_lock(&base
->lock
);
1328 if (base
->active_timers
) {
1329 if (time_before_eq(base
->next_timer
, base
->timer_jiffies
))
1330 base
->next_timer
= __next_timer_interrupt(base
);
1331 expires
= base
->next_timer
;
1333 spin_unlock(&base
->lock
);
1335 if (time_before_eq(expires
, now
))
1338 return cmp_next_hrtimer_event(now
, expires
);
1343 * Called from the timer interrupt handler to charge one tick to the current
1344 * process. user_tick is 1 if the tick is user time, 0 for system.
1346 void update_process_times(int user_tick
)
1348 struct task_struct
*p
= current
;
1349 int cpu
= smp_processor_id();
1351 /* Note: this timer irq context must be accounted for as well. */
1352 account_process_tick(p
, user_tick
);
1354 rcu_check_callbacks(cpu
, user_tick
);
1355 #ifdef CONFIG_IRQ_WORK
1360 run_posix_cpu_timers(p
);
1364 * This function runs timers and the timer-tq in bottom half context.
1366 static void run_timer_softirq(struct softirq_action
*h
)
1368 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1370 hrtimer_run_pending();
1372 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1377 * Called by the local, per-CPU timer interrupt on SMP.
1379 void run_local_timers(void)
1381 hrtimer_run_queues();
1382 raise_softirq(TIMER_SOFTIRQ
);
1385 #ifdef __ARCH_WANT_SYS_ALARM
1388 * For backwards compatibility? This can be done in libc so Alpha
1389 * and all newer ports shouldn't need it.
1391 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1393 return alarm_setitimer(seconds
);
1399 * sys_getpid - return the thread group id of the current process
1401 * Note, despite the name, this returns the tgid not the pid. The tgid and
1402 * the pid are identical unless CLONE_THREAD was specified on clone() in
1403 * which case the tgid is the same in all threads of the same group.
1405 * This is SMP safe as current->tgid does not change.
1407 SYSCALL_DEFINE0(getpid
)
1409 return task_tgid_vnr(current
);
1413 * Accessing ->real_parent is not SMP-safe, it could
1414 * change from under us. However, we can use a stale
1415 * value of ->real_parent under rcu_read_lock(), see
1416 * release_task()->call_rcu(delayed_put_task_struct).
1418 SYSCALL_DEFINE0(getppid
)
1423 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
1429 SYSCALL_DEFINE0(getuid
)
1431 /* Only we change this so SMP safe */
1432 return from_kuid_munged(current_user_ns(), current_uid());
1435 SYSCALL_DEFINE0(geteuid
)
1437 /* Only we change this so SMP safe */
1438 return from_kuid_munged(current_user_ns(), current_euid());
1441 SYSCALL_DEFINE0(getgid
)
1443 /* Only we change this so SMP safe */
1444 return from_kgid_munged(current_user_ns(), current_gid());
1447 SYSCALL_DEFINE0(getegid
)
1449 /* Only we change this so SMP safe */
1450 return from_kgid_munged(current_user_ns(), current_egid());
1453 static void process_timeout(unsigned long __data
)
1455 wake_up_process((struct task_struct
*)__data
);
1459 * schedule_timeout - sleep until timeout
1460 * @timeout: timeout value in jiffies
1462 * Make the current task sleep until @timeout jiffies have
1463 * elapsed. The routine will return immediately unless
1464 * the current task state has been set (see set_current_state()).
1466 * You can set the task state as follows -
1468 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1469 * pass before the routine returns. The routine will return 0
1471 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1472 * delivered to the current task. In this case the remaining time
1473 * in jiffies will be returned, or 0 if the timer expired in time
1475 * The current task state is guaranteed to be TASK_RUNNING when this
1478 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1479 * the CPU away without a bound on the timeout. In this case the return
1480 * value will be %MAX_SCHEDULE_TIMEOUT.
1482 * In all cases the return value is guaranteed to be non-negative.
1484 signed long __sched
schedule_timeout(signed long timeout
)
1486 struct timer_list timer
;
1487 unsigned long expire
;
1491 case MAX_SCHEDULE_TIMEOUT
:
1493 * These two special cases are useful to be comfortable
1494 * in the caller. Nothing more. We could take
1495 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1496 * but I' d like to return a valid offset (>=0) to allow
1497 * the caller to do everything it want with the retval.
1503 * Another bit of PARANOID. Note that the retval will be
1504 * 0 since no piece of kernel is supposed to do a check
1505 * for a negative retval of schedule_timeout() (since it
1506 * should never happens anyway). You just have the printk()
1507 * that will tell you if something is gone wrong and where.
1510 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1511 "value %lx\n", timeout
);
1513 current
->state
= TASK_RUNNING
;
1518 expire
= timeout
+ jiffies
;
1520 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1521 __mod_timer(&timer
, expire
, false, TIMER_NOT_PINNED
);
1523 del_singleshot_timer_sync(&timer
);
1525 /* Remove the timer from the object tracker */
1526 destroy_timer_on_stack(&timer
);
1528 timeout
= expire
- jiffies
;
1531 return timeout
< 0 ? 0 : timeout
;
1533 EXPORT_SYMBOL(schedule_timeout
);
1536 * We can use __set_current_state() here because schedule_timeout() calls
1537 * schedule() unconditionally.
1539 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1541 __set_current_state(TASK_INTERRUPTIBLE
);
1542 return schedule_timeout(timeout
);
1544 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1546 signed long __sched
schedule_timeout_killable(signed long timeout
)
1548 __set_current_state(TASK_KILLABLE
);
1549 return schedule_timeout(timeout
);
1551 EXPORT_SYMBOL(schedule_timeout_killable
);
1553 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1555 __set_current_state(TASK_UNINTERRUPTIBLE
);
1556 return schedule_timeout(timeout
);
1558 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1560 /* Thread ID - the internal kernel "pid" */
1561 SYSCALL_DEFINE0(gettid
)
1563 return task_pid_vnr(current
);
1567 * do_sysinfo - fill in sysinfo struct
1568 * @info: pointer to buffer to fill
1570 int do_sysinfo(struct sysinfo
*info
)
1572 unsigned long mem_total
, sav_total
;
1573 unsigned int mem_unit
, bitcount
;
1576 memset(info
, 0, sizeof(struct sysinfo
));
1579 monotonic_to_bootbased(&tp
);
1580 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1582 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1584 info
->procs
= nr_threads
;
1590 * If the sum of all the available memory (i.e. ram + swap)
1591 * is less than can be stored in a 32 bit unsigned long then
1592 * we can be binary compatible with 2.2.x kernels. If not,
1593 * well, in that case 2.2.x was broken anyways...
1595 * -Erik Andersen <andersee@debian.org>
1598 mem_total
= info
->totalram
+ info
->totalswap
;
1599 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1602 mem_unit
= info
->mem_unit
;
1603 while (mem_unit
> 1) {
1606 sav_total
= mem_total
;
1608 if (mem_total
< sav_total
)
1613 * If mem_total did not overflow, multiply all memory values by
1614 * info->mem_unit and set it to 1. This leaves things compatible
1615 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1620 info
->totalram
<<= bitcount
;
1621 info
->freeram
<<= bitcount
;
1622 info
->sharedram
<<= bitcount
;
1623 info
->bufferram
<<= bitcount
;
1624 info
->totalswap
<<= bitcount
;
1625 info
->freeswap
<<= bitcount
;
1626 info
->totalhigh
<<= bitcount
;
1627 info
->freehigh
<<= bitcount
;
1633 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1639 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1645 static int __cpuinit
init_timers_cpu(int cpu
)
1648 struct tvec_base
*base
;
1649 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1651 if (!tvec_base_done
[cpu
]) {
1652 static char boot_done
;
1656 * The APs use this path later in boot
1658 base
= kmalloc_node(sizeof(*base
),
1659 GFP_KERNEL
| __GFP_ZERO
,
1664 /* Make sure that tvec_base is 2 byte aligned */
1665 if (tbase_get_deferrable(base
)) {
1670 per_cpu(tvec_bases
, cpu
) = base
;
1673 * This is for the boot CPU - we use compile-time
1674 * static initialisation because per-cpu memory isn't
1675 * ready yet and because the memory allocators are not
1676 * initialised either.
1679 base
= &boot_tvec_bases
;
1681 tvec_base_done
[cpu
] = 1;
1683 base
= per_cpu(tvec_bases
, cpu
);
1686 spin_lock_init(&base
->lock
);
1688 for (j
= 0; j
< TVN_SIZE
; j
++) {
1689 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1690 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1691 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1692 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1694 for (j
= 0; j
< TVR_SIZE
; j
++)
1695 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1697 base
->timer_jiffies
= jiffies
;
1698 base
->next_timer
= base
->timer_jiffies
;
1699 base
->active_timers
= 0;
1703 #ifdef CONFIG_HOTPLUG_CPU
1704 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1706 struct timer_list
*timer
;
1708 while (!list_empty(head
)) {
1709 timer
= list_first_entry(head
, struct timer_list
, entry
);
1710 /* We ignore the accounting on the dying cpu */
1711 detach_timer(timer
, false);
1712 timer_set_base(timer
, new_base
);
1713 internal_add_timer(new_base
, timer
);
1717 static void __cpuinit
migrate_timers(int cpu
)
1719 struct tvec_base
*old_base
;
1720 struct tvec_base
*new_base
;
1723 BUG_ON(cpu_online(cpu
));
1724 old_base
= per_cpu(tvec_bases
, cpu
);
1725 new_base
= get_cpu_var(tvec_bases
);
1727 * The caller is globally serialized and nobody else
1728 * takes two locks at once, deadlock is not possible.
1730 spin_lock_irq(&new_base
->lock
);
1731 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1733 BUG_ON(old_base
->running_timer
);
1735 for (i
= 0; i
< TVR_SIZE
; i
++)
1736 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1737 for (i
= 0; i
< TVN_SIZE
; i
++) {
1738 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1739 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1740 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1741 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1744 spin_unlock(&old_base
->lock
);
1745 spin_unlock_irq(&new_base
->lock
);
1746 put_cpu_var(tvec_bases
);
1748 #endif /* CONFIG_HOTPLUG_CPU */
1750 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1751 unsigned long action
, void *hcpu
)
1753 long cpu
= (long)hcpu
;
1757 case CPU_UP_PREPARE
:
1758 case CPU_UP_PREPARE_FROZEN
:
1759 err
= init_timers_cpu(cpu
);
1761 return notifier_from_errno(err
);
1763 #ifdef CONFIG_HOTPLUG_CPU
1765 case CPU_DEAD_FROZEN
:
1766 migrate_timers(cpu
);
1775 static struct notifier_block __cpuinitdata timers_nb
= {
1776 .notifier_call
= timer_cpu_notify
,
1780 void __init
init_timers(void)
1784 /* ensure there are enough low bits for flags in timer->base pointer */
1785 BUILD_BUG_ON(__alignof__(struct tvec_base
) & TIMER_FLAG_MASK
);
1787 err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1788 (void *)(long)smp_processor_id());
1791 BUG_ON(err
!= NOTIFY_OK
);
1792 register_cpu_notifier(&timers_nb
);
1793 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1797 * msleep - sleep safely even with waitqueue interruptions
1798 * @msecs: Time in milliseconds to sleep for
1800 void msleep(unsigned int msecs
)
1802 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1805 timeout
= schedule_timeout_uninterruptible(timeout
);
1808 EXPORT_SYMBOL(msleep
);
1811 * msleep_interruptible - sleep waiting for signals
1812 * @msecs: Time in milliseconds to sleep for
1814 unsigned long msleep_interruptible(unsigned int msecs
)
1816 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1818 while (timeout
&& !signal_pending(current
))
1819 timeout
= schedule_timeout_interruptible(timeout
);
1820 return jiffies_to_msecs(timeout
);
1823 EXPORT_SYMBOL(msleep_interruptible
);
1825 static int __sched
do_usleep_range(unsigned long min
, unsigned long max
)
1828 unsigned long delta
;
1830 kmin
= ktime_set(0, min
* NSEC_PER_USEC
);
1831 delta
= (max
- min
) * NSEC_PER_USEC
;
1832 return schedule_hrtimeout_range(&kmin
, delta
, HRTIMER_MODE_REL
);
1836 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1837 * @min: Minimum time in usecs to sleep
1838 * @max: Maximum time in usecs to sleep
1840 void usleep_range(unsigned long min
, unsigned long max
)
1842 __set_current_state(TASK_UNINTERRUPTIBLE
);
1843 do_usleep_range(min
, max
);
1845 EXPORT_SYMBOL(usleep_range
);