reiserfs: replace inode uid,gid,mode initialization with helper function
[linux-2.6.git] / fs / buffer.c
blob2914d9adfb5031416e5127c022762815c88f4ade
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
55 EXPORT_SYMBOL(init_buffer);
57 static int sync_buffer(void *word)
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
71 void __lock_buffer(struct buffer_head *bh)
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
76 EXPORT_SYMBOL(__lock_buffer);
78 void unlock_buffer(struct buffer_head *bh)
80 clear_bit_unlock(BH_Lock, &bh->b_state);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
84 EXPORT_SYMBOL(unlock_buffer);
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
91 void __wait_on_buffer(struct buffer_head * bh)
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
95 EXPORT_SYMBOL(__wait_on_buffer);
97 static void
98 __clear_page_buffers(struct page *page)
100 ClearPagePrivate(page);
101 set_page_private(page, 0);
102 page_cache_release(page);
106 static int quiet_error(struct buffer_head *bh)
108 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 return 0;
110 return 1;
114 static void buffer_io_error(struct buffer_head *bh)
116 char b[BDEVNAME_SIZE];
117 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 bdevname(bh->b_bdev, b),
119 (unsigned long long)bh->b_blocknr);
123 * End-of-IO handler helper function which does not touch the bh after
124 * unlocking it.
125 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126 * a race there is benign: unlock_buffer() only use the bh's address for
127 * hashing after unlocking the buffer, so it doesn't actually touch the bh
128 * itself.
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 /* This happens, due to failed READA attempts. */
136 clear_buffer_uptodate(bh);
138 unlock_buffer(bh);
142 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
143 * unlock the buffer. This is what ll_rw_block uses too.
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
147 __end_buffer_read_notouch(bh, uptodate);
148 put_bh(bh);
150 EXPORT_SYMBOL(end_buffer_read_sync);
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
154 char b[BDEVNAME_SIZE];
156 if (uptodate) {
157 set_buffer_uptodate(bh);
158 } else {
159 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
160 buffer_io_error(bh);
161 printk(KERN_WARNING "lost page write due to "
162 "I/O error on %s\n",
163 bdevname(bh->b_bdev, b));
165 set_buffer_write_io_error(bh);
166 clear_buffer_uptodate(bh);
168 unlock_buffer(bh);
169 put_bh(bh);
171 EXPORT_SYMBOL(end_buffer_write_sync);
174 * Various filesystems appear to want __find_get_block to be non-blocking.
175 * But it's the page lock which protects the buffers. To get around this,
176 * we get exclusion from try_to_free_buffers with the blockdev mapping's
177 * private_lock.
179 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180 * may be quite high. This code could TryLock the page, and if that
181 * succeeds, there is no need to take private_lock. (But if
182 * private_lock is contended then so is mapping->tree_lock).
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
187 struct inode *bd_inode = bdev->bd_inode;
188 struct address_space *bd_mapping = bd_inode->i_mapping;
189 struct buffer_head *ret = NULL;
190 pgoff_t index;
191 struct buffer_head *bh;
192 struct buffer_head *head;
193 struct page *page;
194 int all_mapped = 1;
196 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 page = find_get_page(bd_mapping, index);
198 if (!page)
199 goto out;
201 spin_lock(&bd_mapping->private_lock);
202 if (!page_has_buffers(page))
203 goto out_unlock;
204 head = page_buffers(page);
205 bh = head;
206 do {
207 if (!buffer_mapped(bh))
208 all_mapped = 0;
209 else if (bh->b_blocknr == block) {
210 ret = bh;
211 get_bh(bh);
212 goto out_unlock;
214 bh = bh->b_this_page;
215 } while (bh != head);
217 /* we might be here because some of the buffers on this page are
218 * not mapped. This is due to various races between
219 * file io on the block device and getblk. It gets dealt with
220 * elsewhere, don't buffer_error if we had some unmapped buffers
222 if (all_mapped) {
223 printk("__find_get_block_slow() failed. "
224 "block=%llu, b_blocknr=%llu\n",
225 (unsigned long long)block,
226 (unsigned long long)bh->b_blocknr);
227 printk("b_state=0x%08lx, b_size=%zu\n",
228 bh->b_state, bh->b_size);
229 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
231 out_unlock:
232 spin_unlock(&bd_mapping->private_lock);
233 page_cache_release(page);
234 out:
235 return ret;
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239 of fs corruption is going on. Trashing dirty data always imply losing
240 information that was supposed to be just stored on the physical layer
241 by the user.
243 Thus invalidate_buffers in general usage is not allwowed to trash
244 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245 be preserved. These buffers are simply skipped.
247 We also skip buffers which are still in use. For example this can
248 happen if a userspace program is reading the block device.
250 NOTE: In the case where the user removed a removable-media-disk even if
251 there's still dirty data not synced on disk (due a bug in the device driver
252 or due an error of the user), by not destroying the dirty buffers we could
253 generate corruption also on the next media inserted, thus a parameter is
254 necessary to handle this case in the most safe way possible (trying
255 to not corrupt also the new disk inserted with the data belonging to
256 the old now corrupted disk). Also for the ramdisk the natural thing
257 to do in order to release the ramdisk memory is to destroy dirty buffers.
259 These are two special cases. Normal usage imply the device driver
260 to issue a sync on the device (without waiting I/O completion) and
261 then an invalidate_buffers call that doesn't trash dirty buffers.
263 For handling cache coherency with the blkdev pagecache the 'update' case
264 is been introduced. It is needed to re-read from disk any pinned
265 buffer. NOTE: re-reading from disk is destructive so we can do it only
266 when we assume nobody is changing the buffercache under our I/O and when
267 we think the disk contains more recent information than the buffercache.
268 The update == 1 pass marks the buffers we need to update, the update == 2
269 pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
272 struct address_space *mapping = bdev->bd_inode->i_mapping;
274 if (mapping->nrpages == 0)
275 return;
277 invalidate_bh_lrus();
278 invalidate_mapping_pages(mapping, 0, -1);
280 EXPORT_SYMBOL(invalidate_bdev);
283 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285 static void free_more_memory(void)
287 struct zone *zone;
288 int nid;
290 wakeup_flusher_threads(1024);
291 yield();
293 for_each_online_node(nid) {
294 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
295 gfp_zone(GFP_NOFS), NULL,
296 &zone);
297 if (zone)
298 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
299 GFP_NOFS, NULL);
304 * I/O completion handler for block_read_full_page() - pages
305 * which come unlocked at the end of I/O.
307 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 unsigned long flags;
310 struct buffer_head *first;
311 struct buffer_head *tmp;
312 struct page *page;
313 int page_uptodate = 1;
315 BUG_ON(!buffer_async_read(bh));
317 page = bh->b_page;
318 if (uptodate) {
319 set_buffer_uptodate(bh);
320 } else {
321 clear_buffer_uptodate(bh);
322 if (!quiet_error(bh))
323 buffer_io_error(bh);
324 SetPageError(page);
328 * Be _very_ careful from here on. Bad things can happen if
329 * two buffer heads end IO at almost the same time and both
330 * decide that the page is now completely done.
332 first = page_buffers(page);
333 local_irq_save(flags);
334 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
335 clear_buffer_async_read(bh);
336 unlock_buffer(bh);
337 tmp = bh;
338 do {
339 if (!buffer_uptodate(tmp))
340 page_uptodate = 0;
341 if (buffer_async_read(tmp)) {
342 BUG_ON(!buffer_locked(tmp));
343 goto still_busy;
345 tmp = tmp->b_this_page;
346 } while (tmp != bh);
347 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
348 local_irq_restore(flags);
351 * If none of the buffers had errors and they are all
352 * uptodate then we can set the page uptodate.
354 if (page_uptodate && !PageError(page))
355 SetPageUptodate(page);
356 unlock_page(page);
357 return;
359 still_busy:
360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 local_irq_restore(flags);
362 return;
366 * Completion handler for block_write_full_page() - pages which are unlocked
367 * during I/O, and which have PageWriteback cleared upon I/O completion.
369 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 char b[BDEVNAME_SIZE];
372 unsigned long flags;
373 struct buffer_head *first;
374 struct buffer_head *tmp;
375 struct page *page;
377 BUG_ON(!buffer_async_write(bh));
379 page = bh->b_page;
380 if (uptodate) {
381 set_buffer_uptodate(bh);
382 } else {
383 if (!quiet_error(bh)) {
384 buffer_io_error(bh);
385 printk(KERN_WARNING "lost page write due to "
386 "I/O error on %s\n",
387 bdevname(bh->b_bdev, b));
389 set_bit(AS_EIO, &page->mapping->flags);
390 set_buffer_write_io_error(bh);
391 clear_buffer_uptodate(bh);
392 SetPageError(page);
395 first = page_buffers(page);
396 local_irq_save(flags);
397 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399 clear_buffer_async_write(bh);
400 unlock_buffer(bh);
401 tmp = bh->b_this_page;
402 while (tmp != bh) {
403 if (buffer_async_write(tmp)) {
404 BUG_ON(!buffer_locked(tmp));
405 goto still_busy;
407 tmp = tmp->b_this_page;
409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 local_irq_restore(flags);
411 end_page_writeback(page);
412 return;
414 still_busy:
415 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
416 local_irq_restore(flags);
417 return;
419 EXPORT_SYMBOL(end_buffer_async_write);
422 * If a page's buffers are under async readin (end_buffer_async_read
423 * completion) then there is a possibility that another thread of
424 * control could lock one of the buffers after it has completed
425 * but while some of the other buffers have not completed. This
426 * locked buffer would confuse end_buffer_async_read() into not unlocking
427 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
428 * that this buffer is not under async I/O.
430 * The page comes unlocked when it has no locked buffer_async buffers
431 * left.
433 * PageLocked prevents anyone starting new async I/O reads any of
434 * the buffers.
436 * PageWriteback is used to prevent simultaneous writeout of the same
437 * page.
439 * PageLocked prevents anyone from starting writeback of a page which is
440 * under read I/O (PageWriteback is only ever set against a locked page).
442 static void mark_buffer_async_read(struct buffer_head *bh)
444 bh->b_end_io = end_buffer_async_read;
445 set_buffer_async_read(bh);
448 static void mark_buffer_async_write_endio(struct buffer_head *bh,
449 bh_end_io_t *handler)
451 bh->b_end_io = handler;
452 set_buffer_async_write(bh);
455 void mark_buffer_async_write(struct buffer_head *bh)
457 mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 EXPORT_SYMBOL(mark_buffer_async_write);
463 * fs/buffer.c contains helper functions for buffer-backed address space's
464 * fsync functions. A common requirement for buffer-based filesystems is
465 * that certain data from the backing blockdev needs to be written out for
466 * a successful fsync(). For example, ext2 indirect blocks need to be
467 * written back and waited upon before fsync() returns.
469 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
470 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
471 * management of a list of dependent buffers at ->i_mapping->private_list.
473 * Locking is a little subtle: try_to_free_buffers() will remove buffers
474 * from their controlling inode's queue when they are being freed. But
475 * try_to_free_buffers() will be operating against the *blockdev* mapping
476 * at the time, not against the S_ISREG file which depends on those buffers.
477 * So the locking for private_list is via the private_lock in the address_space
478 * which backs the buffers. Which is different from the address_space
479 * against which the buffers are listed. So for a particular address_space,
480 * mapping->private_lock does *not* protect mapping->private_list! In fact,
481 * mapping->private_list will always be protected by the backing blockdev's
482 * ->private_lock.
484 * Which introduces a requirement: all buffers on an address_space's
485 * ->private_list must be from the same address_space: the blockdev's.
487 * address_spaces which do not place buffers at ->private_list via these
488 * utility functions are free to use private_lock and private_list for
489 * whatever they want. The only requirement is that list_empty(private_list)
490 * be true at clear_inode() time.
492 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
493 * filesystems should do that. invalidate_inode_buffers() should just go
494 * BUG_ON(!list_empty).
496 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
497 * take an address_space, not an inode. And it should be called
498 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
499 * queued up.
501 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
502 * list if it is already on a list. Because if the buffer is on a list,
503 * it *must* already be on the right one. If not, the filesystem is being
504 * silly. This will save a ton of locking. But first we have to ensure
505 * that buffers are taken *off* the old inode's list when they are freed
506 * (presumably in truncate). That requires careful auditing of all
507 * filesystems (do it inside bforget()). It could also be done by bringing
508 * b_inode back.
512 * The buffer's backing address_space's private_lock must be held
514 static void __remove_assoc_queue(struct buffer_head *bh)
516 list_del_init(&bh->b_assoc_buffers);
517 WARN_ON(!bh->b_assoc_map);
518 if (buffer_write_io_error(bh))
519 set_bit(AS_EIO, &bh->b_assoc_map->flags);
520 bh->b_assoc_map = NULL;
523 int inode_has_buffers(struct inode *inode)
525 return !list_empty(&inode->i_data.private_list);
529 * osync is designed to support O_SYNC io. It waits synchronously for
530 * all already-submitted IO to complete, but does not queue any new
531 * writes to the disk.
533 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
534 * you dirty the buffers, and then use osync_inode_buffers to wait for
535 * completion. Any other dirty buffers which are not yet queued for
536 * write will not be flushed to disk by the osync.
538 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 struct buffer_head *bh;
541 struct list_head *p;
542 int err = 0;
544 spin_lock(lock);
545 repeat:
546 list_for_each_prev(p, list) {
547 bh = BH_ENTRY(p);
548 if (buffer_locked(bh)) {
549 get_bh(bh);
550 spin_unlock(lock);
551 wait_on_buffer(bh);
552 if (!buffer_uptodate(bh))
553 err = -EIO;
554 brelse(bh);
555 spin_lock(lock);
556 goto repeat;
559 spin_unlock(lock);
560 return err;
563 static void do_thaw_one(struct super_block *sb, void *unused)
565 char b[BDEVNAME_SIZE];
566 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
567 printk(KERN_WARNING "Emergency Thaw on %s\n",
568 bdevname(sb->s_bdev, b));
571 static void do_thaw_all(struct work_struct *work)
573 iterate_supers(do_thaw_one, NULL);
574 kfree(work);
575 printk(KERN_WARNING "Emergency Thaw complete\n");
579 * emergency_thaw_all -- forcibly thaw every frozen filesystem
581 * Used for emergency unfreeze of all filesystems via SysRq
583 void emergency_thaw_all(void)
585 struct work_struct *work;
587 work = kmalloc(sizeof(*work), GFP_ATOMIC);
588 if (work) {
589 INIT_WORK(work, do_thaw_all);
590 schedule_work(work);
595 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
596 * @mapping: the mapping which wants those buffers written
598 * Starts I/O against the buffers at mapping->private_list, and waits upon
599 * that I/O.
601 * Basically, this is a convenience function for fsync().
602 * @mapping is a file or directory which needs those buffers to be written for
603 * a successful fsync().
605 int sync_mapping_buffers(struct address_space *mapping)
607 struct address_space *buffer_mapping = mapping->assoc_mapping;
609 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
610 return 0;
612 return fsync_buffers_list(&buffer_mapping->private_lock,
613 &mapping->private_list);
615 EXPORT_SYMBOL(sync_mapping_buffers);
618 * Called when we've recently written block `bblock', and it is known that
619 * `bblock' was for a buffer_boundary() buffer. This means that the block at
620 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
621 * dirty, schedule it for IO. So that indirects merge nicely with their data.
623 void write_boundary_block(struct block_device *bdev,
624 sector_t bblock, unsigned blocksize)
626 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
627 if (bh) {
628 if (buffer_dirty(bh))
629 ll_rw_block(WRITE, 1, &bh);
630 put_bh(bh);
634 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 struct address_space *mapping = inode->i_mapping;
637 struct address_space *buffer_mapping = bh->b_page->mapping;
639 mark_buffer_dirty(bh);
640 if (!mapping->assoc_mapping) {
641 mapping->assoc_mapping = buffer_mapping;
642 } else {
643 BUG_ON(mapping->assoc_mapping != buffer_mapping);
645 if (!bh->b_assoc_map) {
646 spin_lock(&buffer_mapping->private_lock);
647 list_move_tail(&bh->b_assoc_buffers,
648 &mapping->private_list);
649 bh->b_assoc_map = mapping;
650 spin_unlock(&buffer_mapping->private_lock);
653 EXPORT_SYMBOL(mark_buffer_dirty_inode);
656 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
657 * dirty.
659 * If warn is true, then emit a warning if the page is not uptodate and has
660 * not been truncated.
662 static void __set_page_dirty(struct page *page,
663 struct address_space *mapping, int warn)
665 spin_lock_irq(&mapping->tree_lock);
666 if (page->mapping) { /* Race with truncate? */
667 WARN_ON_ONCE(warn && !PageUptodate(page));
668 account_page_dirtied(page, mapping);
669 radix_tree_tag_set(&mapping->page_tree,
670 page_index(page), PAGECACHE_TAG_DIRTY);
672 spin_unlock_irq(&mapping->tree_lock);
673 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
677 * Add a page to the dirty page list.
679 * It is a sad fact of life that this function is called from several places
680 * deeply under spinlocking. It may not sleep.
682 * If the page has buffers, the uptodate buffers are set dirty, to preserve
683 * dirty-state coherency between the page and the buffers. It the page does
684 * not have buffers then when they are later attached they will all be set
685 * dirty.
687 * The buffers are dirtied before the page is dirtied. There's a small race
688 * window in which a writepage caller may see the page cleanness but not the
689 * buffer dirtiness. That's fine. If this code were to set the page dirty
690 * before the buffers, a concurrent writepage caller could clear the page dirty
691 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
692 * page on the dirty page list.
694 * We use private_lock to lock against try_to_free_buffers while using the
695 * page's buffer list. Also use this to protect against clean buffers being
696 * added to the page after it was set dirty.
698 * FIXME: may need to call ->reservepage here as well. That's rather up to the
699 * address_space though.
701 int __set_page_dirty_buffers(struct page *page)
703 int newly_dirty;
704 struct address_space *mapping = page_mapping(page);
706 if (unlikely(!mapping))
707 return !TestSetPageDirty(page);
709 spin_lock(&mapping->private_lock);
710 if (page_has_buffers(page)) {
711 struct buffer_head *head = page_buffers(page);
712 struct buffer_head *bh = head;
714 do {
715 set_buffer_dirty(bh);
716 bh = bh->b_this_page;
717 } while (bh != head);
719 newly_dirty = !TestSetPageDirty(page);
720 spin_unlock(&mapping->private_lock);
722 if (newly_dirty)
723 __set_page_dirty(page, mapping, 1);
724 return newly_dirty;
726 EXPORT_SYMBOL(__set_page_dirty_buffers);
729 * Write out and wait upon a list of buffers.
731 * We have conflicting pressures: we want to make sure that all
732 * initially dirty buffers get waited on, but that any subsequently
733 * dirtied buffers don't. After all, we don't want fsync to last
734 * forever if somebody is actively writing to the file.
736 * Do this in two main stages: first we copy dirty buffers to a
737 * temporary inode list, queueing the writes as we go. Then we clean
738 * up, waiting for those writes to complete.
740 * During this second stage, any subsequent updates to the file may end
741 * up refiling the buffer on the original inode's dirty list again, so
742 * there is a chance we will end up with a buffer queued for write but
743 * not yet completed on that list. So, as a final cleanup we go through
744 * the osync code to catch these locked, dirty buffers without requeuing
745 * any newly dirty buffers for write.
747 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 struct buffer_head *bh;
750 struct list_head tmp;
751 struct address_space *mapping, *prev_mapping = NULL;
752 int err = 0, err2;
754 INIT_LIST_HEAD(&tmp);
756 spin_lock(lock);
757 while (!list_empty(list)) {
758 bh = BH_ENTRY(list->next);
759 mapping = bh->b_assoc_map;
760 __remove_assoc_queue(bh);
761 /* Avoid race with mark_buffer_dirty_inode() which does
762 * a lockless check and we rely on seeing the dirty bit */
763 smp_mb();
764 if (buffer_dirty(bh) || buffer_locked(bh)) {
765 list_add(&bh->b_assoc_buffers, &tmp);
766 bh->b_assoc_map = mapping;
767 if (buffer_dirty(bh)) {
768 get_bh(bh);
769 spin_unlock(lock);
771 * Ensure any pending I/O completes so that
772 * ll_rw_block() actually writes the current
773 * contents - it is a noop if I/O is still in
774 * flight on potentially older contents.
776 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
779 * Kick off IO for the previous mapping. Note
780 * that we will not run the very last mapping,
781 * wait_on_buffer() will do that for us
782 * through sync_buffer().
784 if (prev_mapping && prev_mapping != mapping)
785 blk_run_address_space(prev_mapping);
786 prev_mapping = mapping;
788 brelse(bh);
789 spin_lock(lock);
794 while (!list_empty(&tmp)) {
795 bh = BH_ENTRY(tmp.prev);
796 get_bh(bh);
797 mapping = bh->b_assoc_map;
798 __remove_assoc_queue(bh);
799 /* Avoid race with mark_buffer_dirty_inode() which does
800 * a lockless check and we rely on seeing the dirty bit */
801 smp_mb();
802 if (buffer_dirty(bh)) {
803 list_add(&bh->b_assoc_buffers,
804 &mapping->private_list);
805 bh->b_assoc_map = mapping;
807 spin_unlock(lock);
808 wait_on_buffer(bh);
809 if (!buffer_uptodate(bh))
810 err = -EIO;
811 brelse(bh);
812 spin_lock(lock);
815 spin_unlock(lock);
816 err2 = osync_buffers_list(lock, list);
817 if (err)
818 return err;
819 else
820 return err2;
824 * Invalidate any and all dirty buffers on a given inode. We are
825 * probably unmounting the fs, but that doesn't mean we have already
826 * done a sync(). Just drop the buffers from the inode list.
828 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
829 * assumes that all the buffers are against the blockdev. Not true
830 * for reiserfs.
832 void invalidate_inode_buffers(struct inode *inode)
834 if (inode_has_buffers(inode)) {
835 struct address_space *mapping = &inode->i_data;
836 struct list_head *list = &mapping->private_list;
837 struct address_space *buffer_mapping = mapping->assoc_mapping;
839 spin_lock(&buffer_mapping->private_lock);
840 while (!list_empty(list))
841 __remove_assoc_queue(BH_ENTRY(list->next));
842 spin_unlock(&buffer_mapping->private_lock);
845 EXPORT_SYMBOL(invalidate_inode_buffers);
848 * Remove any clean buffers from the inode's buffer list. This is called
849 * when we're trying to free the inode itself. Those buffers can pin it.
851 * Returns true if all buffers were removed.
853 int remove_inode_buffers(struct inode *inode)
855 int ret = 1;
857 if (inode_has_buffers(inode)) {
858 struct address_space *mapping = &inode->i_data;
859 struct list_head *list = &mapping->private_list;
860 struct address_space *buffer_mapping = mapping->assoc_mapping;
862 spin_lock(&buffer_mapping->private_lock);
863 while (!list_empty(list)) {
864 struct buffer_head *bh = BH_ENTRY(list->next);
865 if (buffer_dirty(bh)) {
866 ret = 0;
867 break;
869 __remove_assoc_queue(bh);
871 spin_unlock(&buffer_mapping->private_lock);
873 return ret;
877 * Create the appropriate buffers when given a page for data area and
878 * the size of each buffer.. Use the bh->b_this_page linked list to
879 * follow the buffers created. Return NULL if unable to create more
880 * buffers.
882 * The retry flag is used to differentiate async IO (paging, swapping)
883 * which may not fail from ordinary buffer allocations.
885 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
886 int retry)
888 struct buffer_head *bh, *head;
889 long offset;
891 try_again:
892 head = NULL;
893 offset = PAGE_SIZE;
894 while ((offset -= size) >= 0) {
895 bh = alloc_buffer_head(GFP_NOFS);
896 if (!bh)
897 goto no_grow;
899 bh->b_bdev = NULL;
900 bh->b_this_page = head;
901 bh->b_blocknr = -1;
902 head = bh;
904 bh->b_state = 0;
905 atomic_set(&bh->b_count, 0);
906 bh->b_private = NULL;
907 bh->b_size = size;
909 /* Link the buffer to its page */
910 set_bh_page(bh, page, offset);
912 init_buffer(bh, NULL, NULL);
914 return head;
916 * In case anything failed, we just free everything we got.
918 no_grow:
919 if (head) {
920 do {
921 bh = head;
922 head = head->b_this_page;
923 free_buffer_head(bh);
924 } while (head);
928 * Return failure for non-async IO requests. Async IO requests
929 * are not allowed to fail, so we have to wait until buffer heads
930 * become available. But we don't want tasks sleeping with
931 * partially complete buffers, so all were released above.
933 if (!retry)
934 return NULL;
936 /* We're _really_ low on memory. Now we just
937 * wait for old buffer heads to become free due to
938 * finishing IO. Since this is an async request and
939 * the reserve list is empty, we're sure there are
940 * async buffer heads in use.
942 free_more_memory();
943 goto try_again;
945 EXPORT_SYMBOL_GPL(alloc_page_buffers);
947 static inline void
948 link_dev_buffers(struct page *page, struct buffer_head *head)
950 struct buffer_head *bh, *tail;
952 bh = head;
953 do {
954 tail = bh;
955 bh = bh->b_this_page;
956 } while (bh);
957 tail->b_this_page = head;
958 attach_page_buffers(page, head);
962 * Initialise the state of a blockdev page's buffers.
964 static void
965 init_page_buffers(struct page *page, struct block_device *bdev,
966 sector_t block, int size)
968 struct buffer_head *head = page_buffers(page);
969 struct buffer_head *bh = head;
970 int uptodate = PageUptodate(page);
972 do {
973 if (!buffer_mapped(bh)) {
974 init_buffer(bh, NULL, NULL);
975 bh->b_bdev = bdev;
976 bh->b_blocknr = block;
977 if (uptodate)
978 set_buffer_uptodate(bh);
979 set_buffer_mapped(bh);
981 block++;
982 bh = bh->b_this_page;
983 } while (bh != head);
987 * Create the page-cache page that contains the requested block.
989 * This is user purely for blockdev mappings.
991 static struct page *
992 grow_dev_page(struct block_device *bdev, sector_t block,
993 pgoff_t index, int size)
995 struct inode *inode = bdev->bd_inode;
996 struct page *page;
997 struct buffer_head *bh;
999 page = find_or_create_page(inode->i_mapping, index,
1000 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1001 if (!page)
1002 return NULL;
1004 BUG_ON(!PageLocked(page));
1006 if (page_has_buffers(page)) {
1007 bh = page_buffers(page);
1008 if (bh->b_size == size) {
1009 init_page_buffers(page, bdev, block, size);
1010 return page;
1012 if (!try_to_free_buffers(page))
1013 goto failed;
1017 * Allocate some buffers for this page
1019 bh = alloc_page_buffers(page, size, 0);
1020 if (!bh)
1021 goto failed;
1024 * Link the page to the buffers and initialise them. Take the
1025 * lock to be atomic wrt __find_get_block(), which does not
1026 * run under the page lock.
1028 spin_lock(&inode->i_mapping->private_lock);
1029 link_dev_buffers(page, bh);
1030 init_page_buffers(page, bdev, block, size);
1031 spin_unlock(&inode->i_mapping->private_lock);
1032 return page;
1034 failed:
1035 BUG();
1036 unlock_page(page);
1037 page_cache_release(page);
1038 return NULL;
1042 * Create buffers for the specified block device block's page. If
1043 * that page was dirty, the buffers are set dirty also.
1045 static int
1046 grow_buffers(struct block_device *bdev, sector_t block, int size)
1048 struct page *page;
1049 pgoff_t index;
1050 int sizebits;
1052 sizebits = -1;
1053 do {
1054 sizebits++;
1055 } while ((size << sizebits) < PAGE_SIZE);
1057 index = block >> sizebits;
1060 * Check for a block which wants to lie outside our maximum possible
1061 * pagecache index. (this comparison is done using sector_t types).
1063 if (unlikely(index != block >> sizebits)) {
1064 char b[BDEVNAME_SIZE];
1066 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1067 "device %s\n",
1068 __func__, (unsigned long long)block,
1069 bdevname(bdev, b));
1070 return -EIO;
1072 block = index << sizebits;
1073 /* Create a page with the proper size buffers.. */
1074 page = grow_dev_page(bdev, block, index, size);
1075 if (!page)
1076 return 0;
1077 unlock_page(page);
1078 page_cache_release(page);
1079 return 1;
1082 static struct buffer_head *
1083 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1085 /* Size must be multiple of hard sectorsize */
1086 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1087 (size < 512 || size > PAGE_SIZE))) {
1088 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1089 size);
1090 printk(KERN_ERR "logical block size: %d\n",
1091 bdev_logical_block_size(bdev));
1093 dump_stack();
1094 return NULL;
1097 for (;;) {
1098 struct buffer_head * bh;
1099 int ret;
1101 bh = __find_get_block(bdev, block, size);
1102 if (bh)
1103 return bh;
1105 ret = grow_buffers(bdev, block, size);
1106 if (ret < 0)
1107 return NULL;
1108 if (ret == 0)
1109 free_more_memory();
1114 * The relationship between dirty buffers and dirty pages:
1116 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117 * the page is tagged dirty in its radix tree.
1119 * At all times, the dirtiness of the buffers represents the dirtiness of
1120 * subsections of the page. If the page has buffers, the page dirty bit is
1121 * merely a hint about the true dirty state.
1123 * When a page is set dirty in its entirety, all its buffers are marked dirty
1124 * (if the page has buffers).
1126 * When a buffer is marked dirty, its page is dirtied, but the page's other
1127 * buffers are not.
1129 * Also. When blockdev buffers are explicitly read with bread(), they
1130 * individually become uptodate. But their backing page remains not
1131 * uptodate - even if all of its buffers are uptodate. A subsequent
1132 * block_read_full_page() against that page will discover all the uptodate
1133 * buffers, will set the page uptodate and will perform no I/O.
1137 * mark_buffer_dirty - mark a buffer_head as needing writeout
1138 * @bh: the buffer_head to mark dirty
1140 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141 * backing page dirty, then tag the page as dirty in its address_space's radix
1142 * tree and then attach the address_space's inode to its superblock's dirty
1143 * inode list.
1145 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1146 * mapping->tree_lock and the global inode_lock.
1148 void mark_buffer_dirty(struct buffer_head *bh)
1150 WARN_ON_ONCE(!buffer_uptodate(bh));
1153 * Very *carefully* optimize the it-is-already-dirty case.
1155 * Don't let the final "is it dirty" escape to before we
1156 * perhaps modified the buffer.
1158 if (buffer_dirty(bh)) {
1159 smp_mb();
1160 if (buffer_dirty(bh))
1161 return;
1164 if (!test_set_buffer_dirty(bh)) {
1165 struct page *page = bh->b_page;
1166 if (!TestSetPageDirty(page)) {
1167 struct address_space *mapping = page_mapping(page);
1168 if (mapping)
1169 __set_page_dirty(page, mapping, 0);
1173 EXPORT_SYMBOL(mark_buffer_dirty);
1176 * Decrement a buffer_head's reference count. If all buffers against a page
1177 * have zero reference count, are clean and unlocked, and if the page is clean
1178 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1179 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1180 * a page but it ends up not being freed, and buffers may later be reattached).
1182 void __brelse(struct buffer_head * buf)
1184 if (atomic_read(&buf->b_count)) {
1185 put_bh(buf);
1186 return;
1188 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1190 EXPORT_SYMBOL(__brelse);
1193 * bforget() is like brelse(), except it discards any
1194 * potentially dirty data.
1196 void __bforget(struct buffer_head *bh)
1198 clear_buffer_dirty(bh);
1199 if (bh->b_assoc_map) {
1200 struct address_space *buffer_mapping = bh->b_page->mapping;
1202 spin_lock(&buffer_mapping->private_lock);
1203 list_del_init(&bh->b_assoc_buffers);
1204 bh->b_assoc_map = NULL;
1205 spin_unlock(&buffer_mapping->private_lock);
1207 __brelse(bh);
1209 EXPORT_SYMBOL(__bforget);
1211 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1213 lock_buffer(bh);
1214 if (buffer_uptodate(bh)) {
1215 unlock_buffer(bh);
1216 return bh;
1217 } else {
1218 get_bh(bh);
1219 bh->b_end_io = end_buffer_read_sync;
1220 submit_bh(READ, bh);
1221 wait_on_buffer(bh);
1222 if (buffer_uptodate(bh))
1223 return bh;
1225 brelse(bh);
1226 return NULL;
1230 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1231 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1232 * refcount elevated by one when they're in an LRU. A buffer can only appear
1233 * once in a particular CPU's LRU. A single buffer can be present in multiple
1234 * CPU's LRUs at the same time.
1236 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1237 * sb_find_get_block().
1239 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1240 * a local interrupt disable for that.
1243 #define BH_LRU_SIZE 8
1245 struct bh_lru {
1246 struct buffer_head *bhs[BH_LRU_SIZE];
1249 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1251 #ifdef CONFIG_SMP
1252 #define bh_lru_lock() local_irq_disable()
1253 #define bh_lru_unlock() local_irq_enable()
1254 #else
1255 #define bh_lru_lock() preempt_disable()
1256 #define bh_lru_unlock() preempt_enable()
1257 #endif
1259 static inline void check_irqs_on(void)
1261 #ifdef irqs_disabled
1262 BUG_ON(irqs_disabled());
1263 #endif
1267 * The LRU management algorithm is dopey-but-simple. Sorry.
1269 static void bh_lru_install(struct buffer_head *bh)
1271 struct buffer_head *evictee = NULL;
1272 struct bh_lru *lru;
1274 check_irqs_on();
1275 bh_lru_lock();
1276 lru = &__get_cpu_var(bh_lrus);
1277 if (lru->bhs[0] != bh) {
1278 struct buffer_head *bhs[BH_LRU_SIZE];
1279 int in;
1280 int out = 0;
1282 get_bh(bh);
1283 bhs[out++] = bh;
1284 for (in = 0; in < BH_LRU_SIZE; in++) {
1285 struct buffer_head *bh2 = lru->bhs[in];
1287 if (bh2 == bh) {
1288 __brelse(bh2);
1289 } else {
1290 if (out >= BH_LRU_SIZE) {
1291 BUG_ON(evictee != NULL);
1292 evictee = bh2;
1293 } else {
1294 bhs[out++] = bh2;
1298 while (out < BH_LRU_SIZE)
1299 bhs[out++] = NULL;
1300 memcpy(lru->bhs, bhs, sizeof(bhs));
1302 bh_lru_unlock();
1304 if (evictee)
1305 __brelse(evictee);
1309 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1311 static struct buffer_head *
1312 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1314 struct buffer_head *ret = NULL;
1315 struct bh_lru *lru;
1316 unsigned int i;
1318 check_irqs_on();
1319 bh_lru_lock();
1320 lru = &__get_cpu_var(bh_lrus);
1321 for (i = 0; i < BH_LRU_SIZE; i++) {
1322 struct buffer_head *bh = lru->bhs[i];
1324 if (bh && bh->b_bdev == bdev &&
1325 bh->b_blocknr == block && bh->b_size == size) {
1326 if (i) {
1327 while (i) {
1328 lru->bhs[i] = lru->bhs[i - 1];
1329 i--;
1331 lru->bhs[0] = bh;
1333 get_bh(bh);
1334 ret = bh;
1335 break;
1338 bh_lru_unlock();
1339 return ret;
1343 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1344 * it in the LRU and mark it as accessed. If it is not present then return
1345 * NULL
1347 struct buffer_head *
1348 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1350 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1352 if (bh == NULL) {
1353 bh = __find_get_block_slow(bdev, block);
1354 if (bh)
1355 bh_lru_install(bh);
1357 if (bh)
1358 touch_buffer(bh);
1359 return bh;
1361 EXPORT_SYMBOL(__find_get_block);
1364 * __getblk will locate (and, if necessary, create) the buffer_head
1365 * which corresponds to the passed block_device, block and size. The
1366 * returned buffer has its reference count incremented.
1368 * __getblk() cannot fail - it just keeps trying. If you pass it an
1369 * illegal block number, __getblk() will happily return a buffer_head
1370 * which represents the non-existent block. Very weird.
1372 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1373 * attempt is failing. FIXME, perhaps?
1375 struct buffer_head *
1376 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1378 struct buffer_head *bh = __find_get_block(bdev, block, size);
1380 might_sleep();
1381 if (bh == NULL)
1382 bh = __getblk_slow(bdev, block, size);
1383 return bh;
1385 EXPORT_SYMBOL(__getblk);
1388 * Do async read-ahead on a buffer..
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 struct buffer_head *bh = __getblk(bdev, block, size);
1393 if (likely(bh)) {
1394 ll_rw_block(READA, 1, &bh);
1395 brelse(bh);
1398 EXPORT_SYMBOL(__breadahead);
1401 * __bread() - reads a specified block and returns the bh
1402 * @bdev: the block_device to read from
1403 * @block: number of block
1404 * @size: size (in bytes) to read
1406 * Reads a specified block, and returns buffer head that contains it.
1407 * It returns NULL if the block was unreadable.
1409 struct buffer_head *
1410 __bread(struct block_device *bdev, sector_t block, unsigned size)
1412 struct buffer_head *bh = __getblk(bdev, block, size);
1414 if (likely(bh) && !buffer_uptodate(bh))
1415 bh = __bread_slow(bh);
1416 return bh;
1418 EXPORT_SYMBOL(__bread);
1421 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1422 * This doesn't race because it runs in each cpu either in irq
1423 * or with preempt disabled.
1425 static void invalidate_bh_lru(void *arg)
1427 struct bh_lru *b = &get_cpu_var(bh_lrus);
1428 int i;
1430 for (i = 0; i < BH_LRU_SIZE; i++) {
1431 brelse(b->bhs[i]);
1432 b->bhs[i] = NULL;
1434 put_cpu_var(bh_lrus);
1437 void invalidate_bh_lrus(void)
1439 on_each_cpu(invalidate_bh_lru, NULL, 1);
1441 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1443 void set_bh_page(struct buffer_head *bh,
1444 struct page *page, unsigned long offset)
1446 bh->b_page = page;
1447 BUG_ON(offset >= PAGE_SIZE);
1448 if (PageHighMem(page))
1450 * This catches illegal uses and preserves the offset:
1452 bh->b_data = (char *)(0 + offset);
1453 else
1454 bh->b_data = page_address(page) + offset;
1456 EXPORT_SYMBOL(set_bh_page);
1459 * Called when truncating a buffer on a page completely.
1461 static void discard_buffer(struct buffer_head * bh)
1463 lock_buffer(bh);
1464 clear_buffer_dirty(bh);
1465 bh->b_bdev = NULL;
1466 clear_buffer_mapped(bh);
1467 clear_buffer_req(bh);
1468 clear_buffer_new(bh);
1469 clear_buffer_delay(bh);
1470 clear_buffer_unwritten(bh);
1471 unlock_buffer(bh);
1475 * block_invalidatepage - invalidate part of all of a buffer-backed page
1477 * @page: the page which is affected
1478 * @offset: the index of the truncation point
1480 * block_invalidatepage() is called when all or part of the page has become
1481 * invalidatedby a truncate operation.
1483 * block_invalidatepage() does not have to release all buffers, but it must
1484 * ensure that no dirty buffer is left outside @offset and that no I/O
1485 * is underway against any of the blocks which are outside the truncation
1486 * point. Because the caller is about to free (and possibly reuse) those
1487 * blocks on-disk.
1489 void block_invalidatepage(struct page *page, unsigned long offset)
1491 struct buffer_head *head, *bh, *next;
1492 unsigned int curr_off = 0;
1494 BUG_ON(!PageLocked(page));
1495 if (!page_has_buffers(page))
1496 goto out;
1498 head = page_buffers(page);
1499 bh = head;
1500 do {
1501 unsigned int next_off = curr_off + bh->b_size;
1502 next = bh->b_this_page;
1505 * is this block fully invalidated?
1507 if (offset <= curr_off)
1508 discard_buffer(bh);
1509 curr_off = next_off;
1510 bh = next;
1511 } while (bh != head);
1514 * We release buffers only if the entire page is being invalidated.
1515 * The get_block cached value has been unconditionally invalidated,
1516 * so real IO is not possible anymore.
1518 if (offset == 0)
1519 try_to_release_page(page, 0);
1520 out:
1521 return;
1523 EXPORT_SYMBOL(block_invalidatepage);
1526 * We attach and possibly dirty the buffers atomically wrt
1527 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1528 * is already excluded via the page lock.
1530 void create_empty_buffers(struct page *page,
1531 unsigned long blocksize, unsigned long b_state)
1533 struct buffer_head *bh, *head, *tail;
1535 head = alloc_page_buffers(page, blocksize, 1);
1536 bh = head;
1537 do {
1538 bh->b_state |= b_state;
1539 tail = bh;
1540 bh = bh->b_this_page;
1541 } while (bh);
1542 tail->b_this_page = head;
1544 spin_lock(&page->mapping->private_lock);
1545 if (PageUptodate(page) || PageDirty(page)) {
1546 bh = head;
1547 do {
1548 if (PageDirty(page))
1549 set_buffer_dirty(bh);
1550 if (PageUptodate(page))
1551 set_buffer_uptodate(bh);
1552 bh = bh->b_this_page;
1553 } while (bh != head);
1555 attach_page_buffers(page, head);
1556 spin_unlock(&page->mapping->private_lock);
1558 EXPORT_SYMBOL(create_empty_buffers);
1561 * We are taking a block for data and we don't want any output from any
1562 * buffer-cache aliases starting from return from that function and
1563 * until the moment when something will explicitly mark the buffer
1564 * dirty (hopefully that will not happen until we will free that block ;-)
1565 * We don't even need to mark it not-uptodate - nobody can expect
1566 * anything from a newly allocated buffer anyway. We used to used
1567 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1568 * don't want to mark the alias unmapped, for example - it would confuse
1569 * anyone who might pick it with bread() afterwards...
1571 * Also.. Note that bforget() doesn't lock the buffer. So there can
1572 * be writeout I/O going on against recently-freed buffers. We don't
1573 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1574 * only if we really need to. That happens here.
1576 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1578 struct buffer_head *old_bh;
1580 might_sleep();
1582 old_bh = __find_get_block_slow(bdev, block);
1583 if (old_bh) {
1584 clear_buffer_dirty(old_bh);
1585 wait_on_buffer(old_bh);
1586 clear_buffer_req(old_bh);
1587 __brelse(old_bh);
1590 EXPORT_SYMBOL(unmap_underlying_metadata);
1593 * NOTE! All mapped/uptodate combinations are valid:
1595 * Mapped Uptodate Meaning
1597 * No No "unknown" - must do get_block()
1598 * No Yes "hole" - zero-filled
1599 * Yes No "allocated" - allocated on disk, not read in
1600 * Yes Yes "valid" - allocated and up-to-date in memory.
1602 * "Dirty" is valid only with the last case (mapped+uptodate).
1606 * While block_write_full_page is writing back the dirty buffers under
1607 * the page lock, whoever dirtied the buffers may decide to clean them
1608 * again at any time. We handle that by only looking at the buffer
1609 * state inside lock_buffer().
1611 * If block_write_full_page() is called for regular writeback
1612 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1613 * locked buffer. This only can happen if someone has written the buffer
1614 * directly, with submit_bh(). At the address_space level PageWriteback
1615 * prevents this contention from occurring.
1617 * If block_write_full_page() is called with wbc->sync_mode ==
1618 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1619 * causes the writes to be flagged as synchronous writes, but the
1620 * block device queue will NOT be unplugged, since usually many pages
1621 * will be pushed to the out before the higher-level caller actually
1622 * waits for the writes to be completed. The various wait functions,
1623 * such as wait_on_writeback_range() will ultimately call sync_page()
1624 * which will ultimately call blk_run_backing_dev(), which will end up
1625 * unplugging the device queue.
1627 static int __block_write_full_page(struct inode *inode, struct page *page,
1628 get_block_t *get_block, struct writeback_control *wbc,
1629 bh_end_io_t *handler)
1631 int err;
1632 sector_t block;
1633 sector_t last_block;
1634 struct buffer_head *bh, *head;
1635 const unsigned blocksize = 1 << inode->i_blkbits;
1636 int nr_underway = 0;
1637 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1638 WRITE_SYNC_PLUG : WRITE);
1640 BUG_ON(!PageLocked(page));
1642 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1644 if (!page_has_buffers(page)) {
1645 create_empty_buffers(page, blocksize,
1646 (1 << BH_Dirty)|(1 << BH_Uptodate));
1650 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1651 * here, and the (potentially unmapped) buffers may become dirty at
1652 * any time. If a buffer becomes dirty here after we've inspected it
1653 * then we just miss that fact, and the page stays dirty.
1655 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1656 * handle that here by just cleaning them.
1659 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1660 head = page_buffers(page);
1661 bh = head;
1664 * Get all the dirty buffers mapped to disk addresses and
1665 * handle any aliases from the underlying blockdev's mapping.
1667 do {
1668 if (block > last_block) {
1670 * mapped buffers outside i_size will occur, because
1671 * this page can be outside i_size when there is a
1672 * truncate in progress.
1675 * The buffer was zeroed by block_write_full_page()
1677 clear_buffer_dirty(bh);
1678 set_buffer_uptodate(bh);
1679 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1680 buffer_dirty(bh)) {
1681 WARN_ON(bh->b_size != blocksize);
1682 err = get_block(inode, block, bh, 1);
1683 if (err)
1684 goto recover;
1685 clear_buffer_delay(bh);
1686 if (buffer_new(bh)) {
1687 /* blockdev mappings never come here */
1688 clear_buffer_new(bh);
1689 unmap_underlying_metadata(bh->b_bdev,
1690 bh->b_blocknr);
1693 bh = bh->b_this_page;
1694 block++;
1695 } while (bh != head);
1697 do {
1698 if (!buffer_mapped(bh))
1699 continue;
1701 * If it's a fully non-blocking write attempt and we cannot
1702 * lock the buffer then redirty the page. Note that this can
1703 * potentially cause a busy-wait loop from writeback threads
1704 * and kswapd activity, but those code paths have their own
1705 * higher-level throttling.
1707 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1708 lock_buffer(bh);
1709 } else if (!trylock_buffer(bh)) {
1710 redirty_page_for_writepage(wbc, page);
1711 continue;
1713 if (test_clear_buffer_dirty(bh)) {
1714 mark_buffer_async_write_endio(bh, handler);
1715 } else {
1716 unlock_buffer(bh);
1718 } while ((bh = bh->b_this_page) != head);
1721 * The page and its buffers are protected by PageWriteback(), so we can
1722 * drop the bh refcounts early.
1724 BUG_ON(PageWriteback(page));
1725 set_page_writeback(page);
1727 do {
1728 struct buffer_head *next = bh->b_this_page;
1729 if (buffer_async_write(bh)) {
1730 submit_bh(write_op, bh);
1731 nr_underway++;
1733 bh = next;
1734 } while (bh != head);
1735 unlock_page(page);
1737 err = 0;
1738 done:
1739 if (nr_underway == 0) {
1741 * The page was marked dirty, but the buffers were
1742 * clean. Someone wrote them back by hand with
1743 * ll_rw_block/submit_bh. A rare case.
1745 end_page_writeback(page);
1748 * The page and buffer_heads can be released at any time from
1749 * here on.
1752 return err;
1754 recover:
1756 * ENOSPC, or some other error. We may already have added some
1757 * blocks to the file, so we need to write these out to avoid
1758 * exposing stale data.
1759 * The page is currently locked and not marked for writeback
1761 bh = head;
1762 /* Recovery: lock and submit the mapped buffers */
1763 do {
1764 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1765 !buffer_delay(bh)) {
1766 lock_buffer(bh);
1767 mark_buffer_async_write_endio(bh, handler);
1768 } else {
1770 * The buffer may have been set dirty during
1771 * attachment to a dirty page.
1773 clear_buffer_dirty(bh);
1775 } while ((bh = bh->b_this_page) != head);
1776 SetPageError(page);
1777 BUG_ON(PageWriteback(page));
1778 mapping_set_error(page->mapping, err);
1779 set_page_writeback(page);
1780 do {
1781 struct buffer_head *next = bh->b_this_page;
1782 if (buffer_async_write(bh)) {
1783 clear_buffer_dirty(bh);
1784 submit_bh(write_op, bh);
1785 nr_underway++;
1787 bh = next;
1788 } while (bh != head);
1789 unlock_page(page);
1790 goto done;
1794 * If a page has any new buffers, zero them out here, and mark them uptodate
1795 * and dirty so they'll be written out (in order to prevent uninitialised
1796 * block data from leaking). And clear the new bit.
1798 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1800 unsigned int block_start, block_end;
1801 struct buffer_head *head, *bh;
1803 BUG_ON(!PageLocked(page));
1804 if (!page_has_buffers(page))
1805 return;
1807 bh = head = page_buffers(page);
1808 block_start = 0;
1809 do {
1810 block_end = block_start + bh->b_size;
1812 if (buffer_new(bh)) {
1813 if (block_end > from && block_start < to) {
1814 if (!PageUptodate(page)) {
1815 unsigned start, size;
1817 start = max(from, block_start);
1818 size = min(to, block_end) - start;
1820 zero_user(page, start, size);
1821 set_buffer_uptodate(bh);
1824 clear_buffer_new(bh);
1825 mark_buffer_dirty(bh);
1829 block_start = block_end;
1830 bh = bh->b_this_page;
1831 } while (bh != head);
1833 EXPORT_SYMBOL(page_zero_new_buffers);
1835 static int __block_prepare_write(struct inode *inode, struct page *page,
1836 unsigned from, unsigned to, get_block_t *get_block)
1838 unsigned block_start, block_end;
1839 sector_t block;
1840 int err = 0;
1841 unsigned blocksize, bbits;
1842 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1844 BUG_ON(!PageLocked(page));
1845 BUG_ON(from > PAGE_CACHE_SIZE);
1846 BUG_ON(to > PAGE_CACHE_SIZE);
1847 BUG_ON(from > to);
1849 blocksize = 1 << inode->i_blkbits;
1850 if (!page_has_buffers(page))
1851 create_empty_buffers(page, blocksize, 0);
1852 head = page_buffers(page);
1854 bbits = inode->i_blkbits;
1855 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1857 for(bh = head, block_start = 0; bh != head || !block_start;
1858 block++, block_start=block_end, bh = bh->b_this_page) {
1859 block_end = block_start + blocksize;
1860 if (block_end <= from || block_start >= to) {
1861 if (PageUptodate(page)) {
1862 if (!buffer_uptodate(bh))
1863 set_buffer_uptodate(bh);
1865 continue;
1867 if (buffer_new(bh))
1868 clear_buffer_new(bh);
1869 if (!buffer_mapped(bh)) {
1870 WARN_ON(bh->b_size != blocksize);
1871 err = get_block(inode, block, bh, 1);
1872 if (err)
1873 break;
1874 if (buffer_new(bh)) {
1875 unmap_underlying_metadata(bh->b_bdev,
1876 bh->b_blocknr);
1877 if (PageUptodate(page)) {
1878 clear_buffer_new(bh);
1879 set_buffer_uptodate(bh);
1880 mark_buffer_dirty(bh);
1881 continue;
1883 if (block_end > to || block_start < from)
1884 zero_user_segments(page,
1885 to, block_end,
1886 block_start, from);
1887 continue;
1890 if (PageUptodate(page)) {
1891 if (!buffer_uptodate(bh))
1892 set_buffer_uptodate(bh);
1893 continue;
1895 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1896 !buffer_unwritten(bh) &&
1897 (block_start < from || block_end > to)) {
1898 ll_rw_block(READ, 1, &bh);
1899 *wait_bh++=bh;
1903 * If we issued read requests - let them complete.
1905 while(wait_bh > wait) {
1906 wait_on_buffer(*--wait_bh);
1907 if (!buffer_uptodate(*wait_bh))
1908 err = -EIO;
1910 if (unlikely(err))
1911 page_zero_new_buffers(page, from, to);
1912 return err;
1915 static int __block_commit_write(struct inode *inode, struct page *page,
1916 unsigned from, unsigned to)
1918 unsigned block_start, block_end;
1919 int partial = 0;
1920 unsigned blocksize;
1921 struct buffer_head *bh, *head;
1923 blocksize = 1 << inode->i_blkbits;
1925 for(bh = head = page_buffers(page), block_start = 0;
1926 bh != head || !block_start;
1927 block_start=block_end, bh = bh->b_this_page) {
1928 block_end = block_start + blocksize;
1929 if (block_end <= from || block_start >= to) {
1930 if (!buffer_uptodate(bh))
1931 partial = 1;
1932 } else {
1933 set_buffer_uptodate(bh);
1934 mark_buffer_dirty(bh);
1936 clear_buffer_new(bh);
1940 * If this is a partial write which happened to make all buffers
1941 * uptodate then we can optimize away a bogus readpage() for
1942 * the next read(). Here we 'discover' whether the page went
1943 * uptodate as a result of this (potentially partial) write.
1945 if (!partial)
1946 SetPageUptodate(page);
1947 return 0;
1951 * block_write_begin takes care of the basic task of block allocation and
1952 * bringing partial write blocks uptodate first.
1954 * If *pagep is not NULL, then block_write_begin uses the locked page
1955 * at *pagep rather than allocating its own. In this case, the page will
1956 * not be unlocked or deallocated on failure.
1958 int block_write_begin(struct file *file, struct address_space *mapping,
1959 loff_t pos, unsigned len, unsigned flags,
1960 struct page **pagep, void **fsdata,
1961 get_block_t *get_block)
1963 struct inode *inode = mapping->host;
1964 int status = 0;
1965 struct page *page;
1966 pgoff_t index;
1967 unsigned start, end;
1968 int ownpage = 0;
1970 index = pos >> PAGE_CACHE_SHIFT;
1971 start = pos & (PAGE_CACHE_SIZE - 1);
1972 end = start + len;
1974 page = *pagep;
1975 if (page == NULL) {
1976 ownpage = 1;
1977 page = grab_cache_page_write_begin(mapping, index, flags);
1978 if (!page) {
1979 status = -ENOMEM;
1980 goto out;
1982 *pagep = page;
1983 } else
1984 BUG_ON(!PageLocked(page));
1986 status = __block_prepare_write(inode, page, start, end, get_block);
1987 if (unlikely(status)) {
1988 ClearPageUptodate(page);
1990 if (ownpage) {
1991 unlock_page(page);
1992 page_cache_release(page);
1993 *pagep = NULL;
1996 * prepare_write() may have instantiated a few blocks
1997 * outside i_size. Trim these off again. Don't need
1998 * i_size_read because we hold i_mutex.
2000 if (pos + len > inode->i_size)
2001 vmtruncate(inode, inode->i_size);
2005 out:
2006 return status;
2008 EXPORT_SYMBOL(block_write_begin);
2010 int block_write_end(struct file *file, struct address_space *mapping,
2011 loff_t pos, unsigned len, unsigned copied,
2012 struct page *page, void *fsdata)
2014 struct inode *inode = mapping->host;
2015 unsigned start;
2017 start = pos & (PAGE_CACHE_SIZE - 1);
2019 if (unlikely(copied < len)) {
2021 * The buffers that were written will now be uptodate, so we
2022 * don't have to worry about a readpage reading them and
2023 * overwriting a partial write. However if we have encountered
2024 * a short write and only partially written into a buffer, it
2025 * will not be marked uptodate, so a readpage might come in and
2026 * destroy our partial write.
2028 * Do the simplest thing, and just treat any short write to a
2029 * non uptodate page as a zero-length write, and force the
2030 * caller to redo the whole thing.
2032 if (!PageUptodate(page))
2033 copied = 0;
2035 page_zero_new_buffers(page, start+copied, start+len);
2037 flush_dcache_page(page);
2039 /* This could be a short (even 0-length) commit */
2040 __block_commit_write(inode, page, start, start+copied);
2042 return copied;
2044 EXPORT_SYMBOL(block_write_end);
2046 int generic_write_end(struct file *file, struct address_space *mapping,
2047 loff_t pos, unsigned len, unsigned copied,
2048 struct page *page, void *fsdata)
2050 struct inode *inode = mapping->host;
2051 int i_size_changed = 0;
2053 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2056 * No need to use i_size_read() here, the i_size
2057 * cannot change under us because we hold i_mutex.
2059 * But it's important to update i_size while still holding page lock:
2060 * page writeout could otherwise come in and zero beyond i_size.
2062 if (pos+copied > inode->i_size) {
2063 i_size_write(inode, pos+copied);
2064 i_size_changed = 1;
2067 unlock_page(page);
2068 page_cache_release(page);
2071 * Don't mark the inode dirty under page lock. First, it unnecessarily
2072 * makes the holding time of page lock longer. Second, it forces lock
2073 * ordering of page lock and transaction start for journaling
2074 * filesystems.
2076 if (i_size_changed)
2077 mark_inode_dirty(inode);
2079 return copied;
2081 EXPORT_SYMBOL(generic_write_end);
2084 * block_is_partially_uptodate checks whether buffers within a page are
2085 * uptodate or not.
2087 * Returns true if all buffers which correspond to a file portion
2088 * we want to read are uptodate.
2090 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2091 unsigned long from)
2093 struct inode *inode = page->mapping->host;
2094 unsigned block_start, block_end, blocksize;
2095 unsigned to;
2096 struct buffer_head *bh, *head;
2097 int ret = 1;
2099 if (!page_has_buffers(page))
2100 return 0;
2102 blocksize = 1 << inode->i_blkbits;
2103 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2104 to = from + to;
2105 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2106 return 0;
2108 head = page_buffers(page);
2109 bh = head;
2110 block_start = 0;
2111 do {
2112 block_end = block_start + blocksize;
2113 if (block_end > from && block_start < to) {
2114 if (!buffer_uptodate(bh)) {
2115 ret = 0;
2116 break;
2118 if (block_end >= to)
2119 break;
2121 block_start = block_end;
2122 bh = bh->b_this_page;
2123 } while (bh != head);
2125 return ret;
2127 EXPORT_SYMBOL(block_is_partially_uptodate);
2130 * Generic "read page" function for block devices that have the normal
2131 * get_block functionality. This is most of the block device filesystems.
2132 * Reads the page asynchronously --- the unlock_buffer() and
2133 * set/clear_buffer_uptodate() functions propagate buffer state into the
2134 * page struct once IO has completed.
2136 int block_read_full_page(struct page *page, get_block_t *get_block)
2138 struct inode *inode = page->mapping->host;
2139 sector_t iblock, lblock;
2140 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2141 unsigned int blocksize;
2142 int nr, i;
2143 int fully_mapped = 1;
2145 BUG_ON(!PageLocked(page));
2146 blocksize = 1 << inode->i_blkbits;
2147 if (!page_has_buffers(page))
2148 create_empty_buffers(page, blocksize, 0);
2149 head = page_buffers(page);
2151 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2152 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2153 bh = head;
2154 nr = 0;
2155 i = 0;
2157 do {
2158 if (buffer_uptodate(bh))
2159 continue;
2161 if (!buffer_mapped(bh)) {
2162 int err = 0;
2164 fully_mapped = 0;
2165 if (iblock < lblock) {
2166 WARN_ON(bh->b_size != blocksize);
2167 err = get_block(inode, iblock, bh, 0);
2168 if (err)
2169 SetPageError(page);
2171 if (!buffer_mapped(bh)) {
2172 zero_user(page, i * blocksize, blocksize);
2173 if (!err)
2174 set_buffer_uptodate(bh);
2175 continue;
2178 * get_block() might have updated the buffer
2179 * synchronously
2181 if (buffer_uptodate(bh))
2182 continue;
2184 arr[nr++] = bh;
2185 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2187 if (fully_mapped)
2188 SetPageMappedToDisk(page);
2190 if (!nr) {
2192 * All buffers are uptodate - we can set the page uptodate
2193 * as well. But not if get_block() returned an error.
2195 if (!PageError(page))
2196 SetPageUptodate(page);
2197 unlock_page(page);
2198 return 0;
2201 /* Stage two: lock the buffers */
2202 for (i = 0; i < nr; i++) {
2203 bh = arr[i];
2204 lock_buffer(bh);
2205 mark_buffer_async_read(bh);
2209 * Stage 3: start the IO. Check for uptodateness
2210 * inside the buffer lock in case another process reading
2211 * the underlying blockdev brought it uptodate (the sct fix).
2213 for (i = 0; i < nr; i++) {
2214 bh = arr[i];
2215 if (buffer_uptodate(bh))
2216 end_buffer_async_read(bh, 1);
2217 else
2218 submit_bh(READ, bh);
2220 return 0;
2222 EXPORT_SYMBOL(block_read_full_page);
2224 /* utility function for filesystems that need to do work on expanding
2225 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2226 * deal with the hole.
2228 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2230 struct address_space *mapping = inode->i_mapping;
2231 struct page *page;
2232 void *fsdata;
2233 int err;
2235 err = inode_newsize_ok(inode, size);
2236 if (err)
2237 goto out;
2239 err = pagecache_write_begin(NULL, mapping, size, 0,
2240 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2241 &page, &fsdata);
2242 if (err)
2243 goto out;
2245 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2246 BUG_ON(err > 0);
2248 out:
2249 return err;
2251 EXPORT_SYMBOL(generic_cont_expand_simple);
2253 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2254 loff_t pos, loff_t *bytes)
2256 struct inode *inode = mapping->host;
2257 unsigned blocksize = 1 << inode->i_blkbits;
2258 struct page *page;
2259 void *fsdata;
2260 pgoff_t index, curidx;
2261 loff_t curpos;
2262 unsigned zerofrom, offset, len;
2263 int err = 0;
2265 index = pos >> PAGE_CACHE_SHIFT;
2266 offset = pos & ~PAGE_CACHE_MASK;
2268 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2269 zerofrom = curpos & ~PAGE_CACHE_MASK;
2270 if (zerofrom & (blocksize-1)) {
2271 *bytes |= (blocksize-1);
2272 (*bytes)++;
2274 len = PAGE_CACHE_SIZE - zerofrom;
2276 err = pagecache_write_begin(file, mapping, curpos, len,
2277 AOP_FLAG_UNINTERRUPTIBLE,
2278 &page, &fsdata);
2279 if (err)
2280 goto out;
2281 zero_user(page, zerofrom, len);
2282 err = pagecache_write_end(file, mapping, curpos, len, len,
2283 page, fsdata);
2284 if (err < 0)
2285 goto out;
2286 BUG_ON(err != len);
2287 err = 0;
2289 balance_dirty_pages_ratelimited(mapping);
2292 /* page covers the boundary, find the boundary offset */
2293 if (index == curidx) {
2294 zerofrom = curpos & ~PAGE_CACHE_MASK;
2295 /* if we will expand the thing last block will be filled */
2296 if (offset <= zerofrom) {
2297 goto out;
2299 if (zerofrom & (blocksize-1)) {
2300 *bytes |= (blocksize-1);
2301 (*bytes)++;
2303 len = offset - zerofrom;
2305 err = pagecache_write_begin(file, mapping, curpos, len,
2306 AOP_FLAG_UNINTERRUPTIBLE,
2307 &page, &fsdata);
2308 if (err)
2309 goto out;
2310 zero_user(page, zerofrom, len);
2311 err = pagecache_write_end(file, mapping, curpos, len, len,
2312 page, fsdata);
2313 if (err < 0)
2314 goto out;
2315 BUG_ON(err != len);
2316 err = 0;
2318 out:
2319 return err;
2323 * For moronic filesystems that do not allow holes in file.
2324 * We may have to extend the file.
2326 int cont_write_begin(struct file *file, struct address_space *mapping,
2327 loff_t pos, unsigned len, unsigned flags,
2328 struct page **pagep, void **fsdata,
2329 get_block_t *get_block, loff_t *bytes)
2331 struct inode *inode = mapping->host;
2332 unsigned blocksize = 1 << inode->i_blkbits;
2333 unsigned zerofrom;
2334 int err;
2336 err = cont_expand_zero(file, mapping, pos, bytes);
2337 if (err)
2338 goto out;
2340 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2341 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2342 *bytes |= (blocksize-1);
2343 (*bytes)++;
2346 *pagep = NULL;
2347 err = block_write_begin(file, mapping, pos, len,
2348 flags, pagep, fsdata, get_block);
2349 out:
2350 return err;
2352 EXPORT_SYMBOL(cont_write_begin);
2354 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2355 get_block_t *get_block)
2357 struct inode *inode = page->mapping->host;
2358 int err = __block_prepare_write(inode, page, from, to, get_block);
2359 if (err)
2360 ClearPageUptodate(page);
2361 return err;
2363 EXPORT_SYMBOL(block_prepare_write);
2365 int block_commit_write(struct page *page, unsigned from, unsigned to)
2367 struct inode *inode = page->mapping->host;
2368 __block_commit_write(inode,page,from,to);
2369 return 0;
2371 EXPORT_SYMBOL(block_commit_write);
2374 * block_page_mkwrite() is not allowed to change the file size as it gets
2375 * called from a page fault handler when a page is first dirtied. Hence we must
2376 * be careful to check for EOF conditions here. We set the page up correctly
2377 * for a written page which means we get ENOSPC checking when writing into
2378 * holes and correct delalloc and unwritten extent mapping on filesystems that
2379 * support these features.
2381 * We are not allowed to take the i_mutex here so we have to play games to
2382 * protect against truncate races as the page could now be beyond EOF. Because
2383 * vmtruncate() writes the inode size before removing pages, once we have the
2384 * page lock we can determine safely if the page is beyond EOF. If it is not
2385 * beyond EOF, then the page is guaranteed safe against truncation until we
2386 * unlock the page.
2389 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2390 get_block_t get_block)
2392 struct page *page = vmf->page;
2393 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2394 unsigned long end;
2395 loff_t size;
2396 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2398 lock_page(page);
2399 size = i_size_read(inode);
2400 if ((page->mapping != inode->i_mapping) ||
2401 (page_offset(page) > size)) {
2402 /* page got truncated out from underneath us */
2403 unlock_page(page);
2404 goto out;
2407 /* page is wholly or partially inside EOF */
2408 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2409 end = size & ~PAGE_CACHE_MASK;
2410 else
2411 end = PAGE_CACHE_SIZE;
2413 ret = block_prepare_write(page, 0, end, get_block);
2414 if (!ret)
2415 ret = block_commit_write(page, 0, end);
2417 if (unlikely(ret)) {
2418 unlock_page(page);
2419 if (ret == -ENOMEM)
2420 ret = VM_FAULT_OOM;
2421 else /* -ENOSPC, -EIO, etc */
2422 ret = VM_FAULT_SIGBUS;
2423 } else
2424 ret = VM_FAULT_LOCKED;
2426 out:
2427 return ret;
2429 EXPORT_SYMBOL(block_page_mkwrite);
2432 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2433 * immediately, while under the page lock. So it needs a special end_io
2434 * handler which does not touch the bh after unlocking it.
2436 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2438 __end_buffer_read_notouch(bh, uptodate);
2442 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2443 * the page (converting it to circular linked list and taking care of page
2444 * dirty races).
2446 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2448 struct buffer_head *bh;
2450 BUG_ON(!PageLocked(page));
2452 spin_lock(&page->mapping->private_lock);
2453 bh = head;
2454 do {
2455 if (PageDirty(page))
2456 set_buffer_dirty(bh);
2457 if (!bh->b_this_page)
2458 bh->b_this_page = head;
2459 bh = bh->b_this_page;
2460 } while (bh != head);
2461 attach_page_buffers(page, head);
2462 spin_unlock(&page->mapping->private_lock);
2466 * On entry, the page is fully not uptodate.
2467 * On exit the page is fully uptodate in the areas outside (from,to)
2469 int nobh_write_begin(struct file *file, struct address_space *mapping,
2470 loff_t pos, unsigned len, unsigned flags,
2471 struct page **pagep, void **fsdata,
2472 get_block_t *get_block)
2474 struct inode *inode = mapping->host;
2475 const unsigned blkbits = inode->i_blkbits;
2476 const unsigned blocksize = 1 << blkbits;
2477 struct buffer_head *head, *bh;
2478 struct page *page;
2479 pgoff_t index;
2480 unsigned from, to;
2481 unsigned block_in_page;
2482 unsigned block_start, block_end;
2483 sector_t block_in_file;
2484 int nr_reads = 0;
2485 int ret = 0;
2486 int is_mapped_to_disk = 1;
2488 index = pos >> PAGE_CACHE_SHIFT;
2489 from = pos & (PAGE_CACHE_SIZE - 1);
2490 to = from + len;
2492 page = grab_cache_page_write_begin(mapping, index, flags);
2493 if (!page)
2494 return -ENOMEM;
2495 *pagep = page;
2496 *fsdata = NULL;
2498 if (page_has_buffers(page)) {
2499 unlock_page(page);
2500 page_cache_release(page);
2501 *pagep = NULL;
2502 return block_write_begin(file, mapping, pos, len, flags, pagep,
2503 fsdata, get_block);
2506 if (PageMappedToDisk(page))
2507 return 0;
2510 * Allocate buffers so that we can keep track of state, and potentially
2511 * attach them to the page if an error occurs. In the common case of
2512 * no error, they will just be freed again without ever being attached
2513 * to the page (which is all OK, because we're under the page lock).
2515 * Be careful: the buffer linked list is a NULL terminated one, rather
2516 * than the circular one we're used to.
2518 head = alloc_page_buffers(page, blocksize, 0);
2519 if (!head) {
2520 ret = -ENOMEM;
2521 goto out_release;
2524 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2527 * We loop across all blocks in the page, whether or not they are
2528 * part of the affected region. This is so we can discover if the
2529 * page is fully mapped-to-disk.
2531 for (block_start = 0, block_in_page = 0, bh = head;
2532 block_start < PAGE_CACHE_SIZE;
2533 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2534 int create;
2536 block_end = block_start + blocksize;
2537 bh->b_state = 0;
2538 create = 1;
2539 if (block_start >= to)
2540 create = 0;
2541 ret = get_block(inode, block_in_file + block_in_page,
2542 bh, create);
2543 if (ret)
2544 goto failed;
2545 if (!buffer_mapped(bh))
2546 is_mapped_to_disk = 0;
2547 if (buffer_new(bh))
2548 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2549 if (PageUptodate(page)) {
2550 set_buffer_uptodate(bh);
2551 continue;
2553 if (buffer_new(bh) || !buffer_mapped(bh)) {
2554 zero_user_segments(page, block_start, from,
2555 to, block_end);
2556 continue;
2558 if (buffer_uptodate(bh))
2559 continue; /* reiserfs does this */
2560 if (block_start < from || block_end > to) {
2561 lock_buffer(bh);
2562 bh->b_end_io = end_buffer_read_nobh;
2563 submit_bh(READ, bh);
2564 nr_reads++;
2568 if (nr_reads) {
2570 * The page is locked, so these buffers are protected from
2571 * any VM or truncate activity. Hence we don't need to care
2572 * for the buffer_head refcounts.
2574 for (bh = head; bh; bh = bh->b_this_page) {
2575 wait_on_buffer(bh);
2576 if (!buffer_uptodate(bh))
2577 ret = -EIO;
2579 if (ret)
2580 goto failed;
2583 if (is_mapped_to_disk)
2584 SetPageMappedToDisk(page);
2586 *fsdata = head; /* to be released by nobh_write_end */
2588 return 0;
2590 failed:
2591 BUG_ON(!ret);
2593 * Error recovery is a bit difficult. We need to zero out blocks that
2594 * were newly allocated, and dirty them to ensure they get written out.
2595 * Buffers need to be attached to the page at this point, otherwise
2596 * the handling of potential IO errors during writeout would be hard
2597 * (could try doing synchronous writeout, but what if that fails too?)
2599 attach_nobh_buffers(page, head);
2600 page_zero_new_buffers(page, from, to);
2602 out_release:
2603 unlock_page(page);
2604 page_cache_release(page);
2605 *pagep = NULL;
2607 if (pos + len > inode->i_size)
2608 vmtruncate(inode, inode->i_size);
2610 return ret;
2612 EXPORT_SYMBOL(nobh_write_begin);
2614 int nobh_write_end(struct file *file, struct address_space *mapping,
2615 loff_t pos, unsigned len, unsigned copied,
2616 struct page *page, void *fsdata)
2618 struct inode *inode = page->mapping->host;
2619 struct buffer_head *head = fsdata;
2620 struct buffer_head *bh;
2621 BUG_ON(fsdata != NULL && page_has_buffers(page));
2623 if (unlikely(copied < len) && head)
2624 attach_nobh_buffers(page, head);
2625 if (page_has_buffers(page))
2626 return generic_write_end(file, mapping, pos, len,
2627 copied, page, fsdata);
2629 SetPageUptodate(page);
2630 set_page_dirty(page);
2631 if (pos+copied > inode->i_size) {
2632 i_size_write(inode, pos+copied);
2633 mark_inode_dirty(inode);
2636 unlock_page(page);
2637 page_cache_release(page);
2639 while (head) {
2640 bh = head;
2641 head = head->b_this_page;
2642 free_buffer_head(bh);
2645 return copied;
2647 EXPORT_SYMBOL(nobh_write_end);
2650 * nobh_writepage() - based on block_full_write_page() except
2651 * that it tries to operate without attaching bufferheads to
2652 * the page.
2654 int nobh_writepage(struct page *page, get_block_t *get_block,
2655 struct writeback_control *wbc)
2657 struct inode * const inode = page->mapping->host;
2658 loff_t i_size = i_size_read(inode);
2659 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2660 unsigned offset;
2661 int ret;
2663 /* Is the page fully inside i_size? */
2664 if (page->index < end_index)
2665 goto out;
2667 /* Is the page fully outside i_size? (truncate in progress) */
2668 offset = i_size & (PAGE_CACHE_SIZE-1);
2669 if (page->index >= end_index+1 || !offset) {
2671 * The page may have dirty, unmapped buffers. For example,
2672 * they may have been added in ext3_writepage(). Make them
2673 * freeable here, so the page does not leak.
2675 #if 0
2676 /* Not really sure about this - do we need this ? */
2677 if (page->mapping->a_ops->invalidatepage)
2678 page->mapping->a_ops->invalidatepage(page, offset);
2679 #endif
2680 unlock_page(page);
2681 return 0; /* don't care */
2685 * The page straddles i_size. It must be zeroed out on each and every
2686 * writepage invocation because it may be mmapped. "A file is mapped
2687 * in multiples of the page size. For a file that is not a multiple of
2688 * the page size, the remaining memory is zeroed when mapped, and
2689 * writes to that region are not written out to the file."
2691 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2692 out:
2693 ret = mpage_writepage(page, get_block, wbc);
2694 if (ret == -EAGAIN)
2695 ret = __block_write_full_page(inode, page, get_block, wbc,
2696 end_buffer_async_write);
2697 return ret;
2699 EXPORT_SYMBOL(nobh_writepage);
2701 int nobh_truncate_page(struct address_space *mapping,
2702 loff_t from, get_block_t *get_block)
2704 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2705 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2706 unsigned blocksize;
2707 sector_t iblock;
2708 unsigned length, pos;
2709 struct inode *inode = mapping->host;
2710 struct page *page;
2711 struct buffer_head map_bh;
2712 int err;
2714 blocksize = 1 << inode->i_blkbits;
2715 length = offset & (blocksize - 1);
2717 /* Block boundary? Nothing to do */
2718 if (!length)
2719 return 0;
2721 length = blocksize - length;
2722 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2724 page = grab_cache_page(mapping, index);
2725 err = -ENOMEM;
2726 if (!page)
2727 goto out;
2729 if (page_has_buffers(page)) {
2730 has_buffers:
2731 unlock_page(page);
2732 page_cache_release(page);
2733 return block_truncate_page(mapping, from, get_block);
2736 /* Find the buffer that contains "offset" */
2737 pos = blocksize;
2738 while (offset >= pos) {
2739 iblock++;
2740 pos += blocksize;
2743 map_bh.b_size = blocksize;
2744 map_bh.b_state = 0;
2745 err = get_block(inode, iblock, &map_bh, 0);
2746 if (err)
2747 goto unlock;
2748 /* unmapped? It's a hole - nothing to do */
2749 if (!buffer_mapped(&map_bh))
2750 goto unlock;
2752 /* Ok, it's mapped. Make sure it's up-to-date */
2753 if (!PageUptodate(page)) {
2754 err = mapping->a_ops->readpage(NULL, page);
2755 if (err) {
2756 page_cache_release(page);
2757 goto out;
2759 lock_page(page);
2760 if (!PageUptodate(page)) {
2761 err = -EIO;
2762 goto unlock;
2764 if (page_has_buffers(page))
2765 goto has_buffers;
2767 zero_user(page, offset, length);
2768 set_page_dirty(page);
2769 err = 0;
2771 unlock:
2772 unlock_page(page);
2773 page_cache_release(page);
2774 out:
2775 return err;
2777 EXPORT_SYMBOL(nobh_truncate_page);
2779 int block_truncate_page(struct address_space *mapping,
2780 loff_t from, get_block_t *get_block)
2782 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2783 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2784 unsigned blocksize;
2785 sector_t iblock;
2786 unsigned length, pos;
2787 struct inode *inode = mapping->host;
2788 struct page *page;
2789 struct buffer_head *bh;
2790 int err;
2792 blocksize = 1 << inode->i_blkbits;
2793 length = offset & (blocksize - 1);
2795 /* Block boundary? Nothing to do */
2796 if (!length)
2797 return 0;
2799 length = blocksize - length;
2800 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2802 page = grab_cache_page(mapping, index);
2803 err = -ENOMEM;
2804 if (!page)
2805 goto out;
2807 if (!page_has_buffers(page))
2808 create_empty_buffers(page, blocksize, 0);
2810 /* Find the buffer that contains "offset" */
2811 bh = page_buffers(page);
2812 pos = blocksize;
2813 while (offset >= pos) {
2814 bh = bh->b_this_page;
2815 iblock++;
2816 pos += blocksize;
2819 err = 0;
2820 if (!buffer_mapped(bh)) {
2821 WARN_ON(bh->b_size != blocksize);
2822 err = get_block(inode, iblock, bh, 0);
2823 if (err)
2824 goto unlock;
2825 /* unmapped? It's a hole - nothing to do */
2826 if (!buffer_mapped(bh))
2827 goto unlock;
2830 /* Ok, it's mapped. Make sure it's up-to-date */
2831 if (PageUptodate(page))
2832 set_buffer_uptodate(bh);
2834 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2835 err = -EIO;
2836 ll_rw_block(READ, 1, &bh);
2837 wait_on_buffer(bh);
2838 /* Uhhuh. Read error. Complain and punt. */
2839 if (!buffer_uptodate(bh))
2840 goto unlock;
2843 zero_user(page, offset, length);
2844 mark_buffer_dirty(bh);
2845 err = 0;
2847 unlock:
2848 unlock_page(page);
2849 page_cache_release(page);
2850 out:
2851 return err;
2853 EXPORT_SYMBOL(block_truncate_page);
2856 * The generic ->writepage function for buffer-backed address_spaces
2857 * this form passes in the end_io handler used to finish the IO.
2859 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2860 struct writeback_control *wbc, bh_end_io_t *handler)
2862 struct inode * const inode = page->mapping->host;
2863 loff_t i_size = i_size_read(inode);
2864 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2865 unsigned offset;
2867 /* Is the page fully inside i_size? */
2868 if (page->index < end_index)
2869 return __block_write_full_page(inode, page, get_block, wbc,
2870 handler);
2872 /* Is the page fully outside i_size? (truncate in progress) */
2873 offset = i_size & (PAGE_CACHE_SIZE-1);
2874 if (page->index >= end_index+1 || !offset) {
2876 * The page may have dirty, unmapped buffers. For example,
2877 * they may have been added in ext3_writepage(). Make them
2878 * freeable here, so the page does not leak.
2880 do_invalidatepage(page, 0);
2881 unlock_page(page);
2882 return 0; /* don't care */
2886 * The page straddles i_size. It must be zeroed out on each and every
2887 * writepage invocation because it may be mmapped. "A file is mapped
2888 * in multiples of the page size. For a file that is not a multiple of
2889 * the page size, the remaining memory is zeroed when mapped, and
2890 * writes to that region are not written out to the file."
2892 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2893 return __block_write_full_page(inode, page, get_block, wbc, handler);
2895 EXPORT_SYMBOL(block_write_full_page_endio);
2898 * The generic ->writepage function for buffer-backed address_spaces
2900 int block_write_full_page(struct page *page, get_block_t *get_block,
2901 struct writeback_control *wbc)
2903 return block_write_full_page_endio(page, get_block, wbc,
2904 end_buffer_async_write);
2906 EXPORT_SYMBOL(block_write_full_page);
2908 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2909 get_block_t *get_block)
2911 struct buffer_head tmp;
2912 struct inode *inode = mapping->host;
2913 tmp.b_state = 0;
2914 tmp.b_blocknr = 0;
2915 tmp.b_size = 1 << inode->i_blkbits;
2916 get_block(inode, block, &tmp, 0);
2917 return tmp.b_blocknr;
2919 EXPORT_SYMBOL(generic_block_bmap);
2921 static void end_bio_bh_io_sync(struct bio *bio, int err)
2923 struct buffer_head *bh = bio->bi_private;
2925 if (err == -EOPNOTSUPP) {
2926 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2927 set_bit(BH_Eopnotsupp, &bh->b_state);
2930 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2931 set_bit(BH_Quiet, &bh->b_state);
2933 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2934 bio_put(bio);
2937 int submit_bh(int rw, struct buffer_head * bh)
2939 struct bio *bio;
2940 int ret = 0;
2942 BUG_ON(!buffer_locked(bh));
2943 BUG_ON(!buffer_mapped(bh));
2944 BUG_ON(!bh->b_end_io);
2945 BUG_ON(buffer_delay(bh));
2946 BUG_ON(buffer_unwritten(bh));
2949 * Mask in barrier bit for a write (could be either a WRITE or a
2950 * WRITE_SYNC
2952 if (buffer_ordered(bh) && (rw & WRITE))
2953 rw |= WRITE_BARRIER;
2956 * Only clear out a write error when rewriting
2958 if (test_set_buffer_req(bh) && (rw & WRITE))
2959 clear_buffer_write_io_error(bh);
2962 * from here on down, it's all bio -- do the initial mapping,
2963 * submit_bio -> generic_make_request may further map this bio around
2965 bio = bio_alloc(GFP_NOIO, 1);
2967 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2968 bio->bi_bdev = bh->b_bdev;
2969 bio->bi_io_vec[0].bv_page = bh->b_page;
2970 bio->bi_io_vec[0].bv_len = bh->b_size;
2971 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2973 bio->bi_vcnt = 1;
2974 bio->bi_idx = 0;
2975 bio->bi_size = bh->b_size;
2977 bio->bi_end_io = end_bio_bh_io_sync;
2978 bio->bi_private = bh;
2980 bio_get(bio);
2981 submit_bio(rw, bio);
2983 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2984 ret = -EOPNOTSUPP;
2986 bio_put(bio);
2987 return ret;
2989 EXPORT_SYMBOL(submit_bh);
2992 * ll_rw_block: low-level access to block devices (DEPRECATED)
2993 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2994 * @nr: number of &struct buffer_heads in the array
2995 * @bhs: array of pointers to &struct buffer_head
2997 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2998 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2999 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3000 * are sent to disk. The fourth %READA option is described in the documentation
3001 * for generic_make_request() which ll_rw_block() calls.
3003 * This function drops any buffer that it cannot get a lock on (with the
3004 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3005 * clean when doing a write request, and any buffer that appears to be
3006 * up-to-date when doing read request. Further it marks as clean buffers that
3007 * are processed for writing (the buffer cache won't assume that they are
3008 * actually clean until the buffer gets unlocked).
3010 * ll_rw_block sets b_end_io to simple completion handler that marks
3011 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3012 * any waiters.
3014 * All of the buffers must be for the same device, and must also be a
3015 * multiple of the current approved size for the device.
3017 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3019 int i;
3021 for (i = 0; i < nr; i++) {
3022 struct buffer_head *bh = bhs[i];
3024 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
3025 lock_buffer(bh);
3026 else if (!trylock_buffer(bh))
3027 continue;
3029 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
3030 rw == SWRITE_SYNC_PLUG) {
3031 if (test_clear_buffer_dirty(bh)) {
3032 bh->b_end_io = end_buffer_write_sync;
3033 get_bh(bh);
3034 if (rw == SWRITE_SYNC)
3035 submit_bh(WRITE_SYNC, bh);
3036 else
3037 submit_bh(WRITE, bh);
3038 continue;
3040 } else {
3041 if (!buffer_uptodate(bh)) {
3042 bh->b_end_io = end_buffer_read_sync;
3043 get_bh(bh);
3044 submit_bh(rw, bh);
3045 continue;
3048 unlock_buffer(bh);
3051 EXPORT_SYMBOL(ll_rw_block);
3054 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3055 * and then start new I/O and then wait upon it. The caller must have a ref on
3056 * the buffer_head.
3058 int sync_dirty_buffer(struct buffer_head *bh)
3060 int ret = 0;
3062 WARN_ON(atomic_read(&bh->b_count) < 1);
3063 lock_buffer(bh);
3064 if (test_clear_buffer_dirty(bh)) {
3065 get_bh(bh);
3066 bh->b_end_io = end_buffer_write_sync;
3067 ret = submit_bh(WRITE_SYNC, bh);
3068 wait_on_buffer(bh);
3069 if (buffer_eopnotsupp(bh)) {
3070 clear_buffer_eopnotsupp(bh);
3071 ret = -EOPNOTSUPP;
3073 if (!ret && !buffer_uptodate(bh))
3074 ret = -EIO;
3075 } else {
3076 unlock_buffer(bh);
3078 return ret;
3080 EXPORT_SYMBOL(sync_dirty_buffer);
3083 * try_to_free_buffers() checks if all the buffers on this particular page
3084 * are unused, and releases them if so.
3086 * Exclusion against try_to_free_buffers may be obtained by either
3087 * locking the page or by holding its mapping's private_lock.
3089 * If the page is dirty but all the buffers are clean then we need to
3090 * be sure to mark the page clean as well. This is because the page
3091 * may be against a block device, and a later reattachment of buffers
3092 * to a dirty page will set *all* buffers dirty. Which would corrupt
3093 * filesystem data on the same device.
3095 * The same applies to regular filesystem pages: if all the buffers are
3096 * clean then we set the page clean and proceed. To do that, we require
3097 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3098 * private_lock.
3100 * try_to_free_buffers() is non-blocking.
3102 static inline int buffer_busy(struct buffer_head *bh)
3104 return atomic_read(&bh->b_count) |
3105 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3108 static int
3109 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3111 struct buffer_head *head = page_buffers(page);
3112 struct buffer_head *bh;
3114 bh = head;
3115 do {
3116 if (buffer_write_io_error(bh) && page->mapping)
3117 set_bit(AS_EIO, &page->mapping->flags);
3118 if (buffer_busy(bh))
3119 goto failed;
3120 bh = bh->b_this_page;
3121 } while (bh != head);
3123 do {
3124 struct buffer_head *next = bh->b_this_page;
3126 if (bh->b_assoc_map)
3127 __remove_assoc_queue(bh);
3128 bh = next;
3129 } while (bh != head);
3130 *buffers_to_free = head;
3131 __clear_page_buffers(page);
3132 return 1;
3133 failed:
3134 return 0;
3137 int try_to_free_buffers(struct page *page)
3139 struct address_space * const mapping = page->mapping;
3140 struct buffer_head *buffers_to_free = NULL;
3141 int ret = 0;
3143 BUG_ON(!PageLocked(page));
3144 if (PageWriteback(page))
3145 return 0;
3147 if (mapping == NULL) { /* can this still happen? */
3148 ret = drop_buffers(page, &buffers_to_free);
3149 goto out;
3152 spin_lock(&mapping->private_lock);
3153 ret = drop_buffers(page, &buffers_to_free);
3156 * If the filesystem writes its buffers by hand (eg ext3)
3157 * then we can have clean buffers against a dirty page. We
3158 * clean the page here; otherwise the VM will never notice
3159 * that the filesystem did any IO at all.
3161 * Also, during truncate, discard_buffer will have marked all
3162 * the page's buffers clean. We discover that here and clean
3163 * the page also.
3165 * private_lock must be held over this entire operation in order
3166 * to synchronise against __set_page_dirty_buffers and prevent the
3167 * dirty bit from being lost.
3169 if (ret)
3170 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3171 spin_unlock(&mapping->private_lock);
3172 out:
3173 if (buffers_to_free) {
3174 struct buffer_head *bh = buffers_to_free;
3176 do {
3177 struct buffer_head *next = bh->b_this_page;
3178 free_buffer_head(bh);
3179 bh = next;
3180 } while (bh != buffers_to_free);
3182 return ret;
3184 EXPORT_SYMBOL(try_to_free_buffers);
3186 void block_sync_page(struct page *page)
3188 struct address_space *mapping;
3190 smp_mb();
3191 mapping = page_mapping(page);
3192 if (mapping)
3193 blk_run_backing_dev(mapping->backing_dev_info, page);
3195 EXPORT_SYMBOL(block_sync_page);
3198 * There are no bdflush tunables left. But distributions are
3199 * still running obsolete flush daemons, so we terminate them here.
3201 * Use of bdflush() is deprecated and will be removed in a future kernel.
3202 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3204 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3206 static int msg_count;
3208 if (!capable(CAP_SYS_ADMIN))
3209 return -EPERM;
3211 if (msg_count < 5) {
3212 msg_count++;
3213 printk(KERN_INFO
3214 "warning: process `%s' used the obsolete bdflush"
3215 " system call\n", current->comm);
3216 printk(KERN_INFO "Fix your initscripts?\n");
3219 if (func == 1)
3220 do_exit(0);
3221 return 0;
3225 * Buffer-head allocation
3227 static struct kmem_cache *bh_cachep;
3230 * Once the number of bh's in the machine exceeds this level, we start
3231 * stripping them in writeback.
3233 static int max_buffer_heads;
3235 int buffer_heads_over_limit;
3237 struct bh_accounting {
3238 int nr; /* Number of live bh's */
3239 int ratelimit; /* Limit cacheline bouncing */
3242 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3244 static void recalc_bh_state(void)
3246 int i;
3247 int tot = 0;
3249 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3250 return;
3251 __get_cpu_var(bh_accounting).ratelimit = 0;
3252 for_each_online_cpu(i)
3253 tot += per_cpu(bh_accounting, i).nr;
3254 buffer_heads_over_limit = (tot > max_buffer_heads);
3257 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3259 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3260 if (ret) {
3261 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3262 get_cpu_var(bh_accounting).nr++;
3263 recalc_bh_state();
3264 put_cpu_var(bh_accounting);
3266 return ret;
3268 EXPORT_SYMBOL(alloc_buffer_head);
3270 void free_buffer_head(struct buffer_head *bh)
3272 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3273 kmem_cache_free(bh_cachep, bh);
3274 get_cpu_var(bh_accounting).nr--;
3275 recalc_bh_state();
3276 put_cpu_var(bh_accounting);
3278 EXPORT_SYMBOL(free_buffer_head);
3280 static void buffer_exit_cpu(int cpu)
3282 int i;
3283 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3285 for (i = 0; i < BH_LRU_SIZE; i++) {
3286 brelse(b->bhs[i]);
3287 b->bhs[i] = NULL;
3289 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3290 per_cpu(bh_accounting, cpu).nr = 0;
3291 put_cpu_var(bh_accounting);
3294 static int buffer_cpu_notify(struct notifier_block *self,
3295 unsigned long action, void *hcpu)
3297 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3298 buffer_exit_cpu((unsigned long)hcpu);
3299 return NOTIFY_OK;
3303 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3304 * @bh: struct buffer_head
3306 * Return true if the buffer is up-to-date and false,
3307 * with the buffer locked, if not.
3309 int bh_uptodate_or_lock(struct buffer_head *bh)
3311 if (!buffer_uptodate(bh)) {
3312 lock_buffer(bh);
3313 if (!buffer_uptodate(bh))
3314 return 0;
3315 unlock_buffer(bh);
3317 return 1;
3319 EXPORT_SYMBOL(bh_uptodate_or_lock);
3322 * bh_submit_read - Submit a locked buffer for reading
3323 * @bh: struct buffer_head
3325 * Returns zero on success and -EIO on error.
3327 int bh_submit_read(struct buffer_head *bh)
3329 BUG_ON(!buffer_locked(bh));
3331 if (buffer_uptodate(bh)) {
3332 unlock_buffer(bh);
3333 return 0;
3336 get_bh(bh);
3337 bh->b_end_io = end_buffer_read_sync;
3338 submit_bh(READ, bh);
3339 wait_on_buffer(bh);
3340 if (buffer_uptodate(bh))
3341 return 0;
3342 return -EIO;
3344 EXPORT_SYMBOL(bh_submit_read);
3346 void __init buffer_init(void)
3348 int nrpages;
3350 bh_cachep = kmem_cache_create("buffer_head",
3351 sizeof(struct buffer_head), 0,
3352 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3353 SLAB_MEM_SPREAD),
3354 NULL);
3357 * Limit the bh occupancy to 10% of ZONE_NORMAL
3359 nrpages = (nr_free_buffer_pages() * 10) / 100;
3360 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3361 hotcpu_notifier(buffer_cpu_notify, 0);