2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
18 #define DM_MSG_PREFIX "thin"
23 #define ENDIO_HOOK_POOL_SIZE 1024
24 #define DEFERRED_SET_SIZE 64
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
30 * The block size of the device holding pool data must be
31 * between 64KB and 1GB.
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
37 * Device id is restricted to 24 bits.
39 #define MAX_DEV_ID ((1 << 24) - 1)
42 * How do we handle breaking sharing of data blocks?
43 * =================================================
45 * We use a standard copy-on-write btree to store the mappings for the
46 * devices (note I'm talking about copy-on-write of the metadata here, not
47 * the data). When you take an internal snapshot you clone the root node
48 * of the origin btree. After this there is no concept of an origin or a
49 * snapshot. They are just two device trees that happen to point to the
52 * When we get a write in we decide if it's to a shared data block using
53 * some timestamp magic. If it is, we have to break sharing.
55 * Let's say we write to a shared block in what was the origin. The
58 * i) plug io further to this physical block. (see bio_prison code).
60 * ii) quiesce any read io to that shared data block. Obviously
61 * including all devices that share this block. (see deferred_set code)
63 * iii) copy the data block to a newly allocate block. This step can be
64 * missed out if the io covers the block. (schedule_copy).
66 * iv) insert the new mapping into the origin's btree
67 * (process_prepared_mapping). This act of inserting breaks some
68 * sharing of btree nodes between the two devices. Breaking sharing only
69 * effects the btree of that specific device. Btrees for the other
70 * devices that share the block never change. The btree for the origin
71 * device as it was after the last commit is untouched, ie. we're using
72 * persistent data structures in the functional programming sense.
74 * v) unplug io to this physical block, including the io that triggered
75 * the breaking of sharing.
77 * Steps (ii) and (iii) occur in parallel.
79 * The metadata _doesn't_ need to be committed before the io continues. We
80 * get away with this because the io is always written to a _new_ block.
81 * If there's a crash, then:
83 * - The origin mapping will point to the old origin block (the shared
84 * one). This will contain the data as it was before the io that triggered
85 * the breaking of sharing came in.
87 * - The snap mapping still points to the old block. As it would after
90 * The downside of this scheme is the timestamp magic isn't perfect, and
91 * will continue to think that data block in the snapshot device is shared
92 * even after the write to the origin has broken sharing. I suspect data
93 * blocks will typically be shared by many different devices, so we're
94 * breaking sharing n + 1 times, rather than n, where n is the number of
95 * devices that reference this data block. At the moment I think the
96 * benefits far, far outweigh the disadvantages.
99 /*----------------------------------------------------------------*/
102 * Sometimes we can't deal with a bio straight away. We put them in prison
103 * where they can't cause any mischief. Bios are put in a cell identified
104 * by a key, multiple bios can be in the same cell. When the cell is
105 * subsequently unlocked the bios become available.
115 struct dm_bio_prison_cell
{
116 struct hlist_node list
;
117 struct bio_prison
*prison
;
120 struct bio_list bios
;
125 mempool_t
*cell_pool
;
129 struct hlist_head
*cells
;
132 static uint32_t calc_nr_buckets(unsigned nr_cells
)
137 nr_cells
= min(nr_cells
, 8192u);
145 static struct kmem_cache
*_cell_cache
;
148 * @nr_cells should be the number of cells you want in use _concurrently_.
149 * Don't confuse it with the number of distinct keys.
151 static struct bio_prison
*prison_create(unsigned nr_cells
)
154 uint32_t nr_buckets
= calc_nr_buckets(nr_cells
);
155 size_t len
= sizeof(struct bio_prison
) +
156 (sizeof(struct hlist_head
) * nr_buckets
);
157 struct bio_prison
*prison
= kmalloc(len
, GFP_KERNEL
);
162 spin_lock_init(&prison
->lock
);
163 prison
->cell_pool
= mempool_create_slab_pool(nr_cells
, _cell_cache
);
164 if (!prison
->cell_pool
) {
169 prison
->nr_buckets
= nr_buckets
;
170 prison
->hash_mask
= nr_buckets
- 1;
171 prison
->cells
= (struct hlist_head
*) (prison
+ 1);
172 for (i
= 0; i
< nr_buckets
; i
++)
173 INIT_HLIST_HEAD(prison
->cells
+ i
);
178 static void prison_destroy(struct bio_prison
*prison
)
180 mempool_destroy(prison
->cell_pool
);
184 static uint32_t hash_key(struct bio_prison
*prison
, struct cell_key
*key
)
186 const unsigned long BIG_PRIME
= 4294967291UL;
187 uint64_t hash
= key
->block
* BIG_PRIME
;
189 return (uint32_t) (hash
& prison
->hash_mask
);
192 static int keys_equal(struct cell_key
*lhs
, struct cell_key
*rhs
)
194 return (lhs
->virtual == rhs
->virtual) &&
195 (lhs
->dev
== rhs
->dev
) &&
196 (lhs
->block
== rhs
->block
);
199 static struct dm_bio_prison_cell
*__search_bucket(struct hlist_head
*bucket
,
200 struct cell_key
*key
)
202 struct dm_bio_prison_cell
*cell
;
203 struct hlist_node
*tmp
;
205 hlist_for_each_entry(cell
, tmp
, bucket
, list
)
206 if (keys_equal(&cell
->key
, key
))
213 * This may block if a new cell needs allocating. You must ensure that
214 * cells will be unlocked even if the calling thread is blocked.
216 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
218 static int bio_detain(struct bio_prison
*prison
, struct cell_key
*key
,
219 struct bio
*inmate
, struct dm_bio_prison_cell
**ref
)
223 uint32_t hash
= hash_key(prison
, key
);
224 struct dm_bio_prison_cell
*cell
, *cell2
;
226 BUG_ON(hash
> prison
->nr_buckets
);
228 spin_lock_irqsave(&prison
->lock
, flags
);
230 cell
= __search_bucket(prison
->cells
+ hash
, key
);
232 bio_list_add(&cell
->bios
, inmate
);
237 * Allocate a new cell
239 spin_unlock_irqrestore(&prison
->lock
, flags
);
240 cell2
= mempool_alloc(prison
->cell_pool
, GFP_NOIO
);
241 spin_lock_irqsave(&prison
->lock
, flags
);
244 * We've been unlocked, so we have to double check that
245 * nobody else has inserted this cell in the meantime.
247 cell
= __search_bucket(prison
->cells
+ hash
, key
);
249 mempool_free(cell2
, prison
->cell_pool
);
250 bio_list_add(&cell
->bios
, inmate
);
259 cell
->prison
= prison
;
260 memcpy(&cell
->key
, key
, sizeof(cell
->key
));
261 cell
->holder
= inmate
;
262 bio_list_init(&cell
->bios
);
263 hlist_add_head(&cell
->list
, prison
->cells
+ hash
);
268 spin_unlock_irqrestore(&prison
->lock
, flags
);
276 * @inmates must have been initialised prior to this call
278 static void __cell_release(struct dm_bio_prison_cell
*cell
, struct bio_list
*inmates
)
280 struct bio_prison
*prison
= cell
->prison
;
282 hlist_del(&cell
->list
);
285 bio_list_add(inmates
, cell
->holder
);
286 bio_list_merge(inmates
, &cell
->bios
);
289 mempool_free(cell
, prison
->cell_pool
);
292 static void cell_release(struct dm_bio_prison_cell
*cell
, struct bio_list
*bios
)
295 struct bio_prison
*prison
= cell
->prison
;
297 spin_lock_irqsave(&prison
->lock
, flags
);
298 __cell_release(cell
, bios
);
299 spin_unlock_irqrestore(&prison
->lock
, flags
);
303 * There are a couple of places where we put a bio into a cell briefly
304 * before taking it out again. In these situations we know that no other
305 * bio may be in the cell. This function releases the cell, and also does
308 static void __cell_release_singleton(struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
310 BUG_ON(cell
->holder
!= bio
);
311 BUG_ON(!bio_list_empty(&cell
->bios
));
313 __cell_release(cell
, NULL
);
316 static void cell_release_singleton(struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
319 struct bio_prison
*prison
= cell
->prison
;
321 spin_lock_irqsave(&prison
->lock
, flags
);
322 __cell_release_singleton(cell
, bio
);
323 spin_unlock_irqrestore(&prison
->lock
, flags
);
327 * Sometimes we don't want the holder, just the additional bios.
329 static void __cell_release_no_holder(struct dm_bio_prison_cell
*cell
,
330 struct bio_list
*inmates
)
332 struct bio_prison
*prison
= cell
->prison
;
334 hlist_del(&cell
->list
);
335 bio_list_merge(inmates
, &cell
->bios
);
337 mempool_free(cell
, prison
->cell_pool
);
340 static void cell_release_no_holder(struct dm_bio_prison_cell
*cell
,
341 struct bio_list
*inmates
)
344 struct bio_prison
*prison
= cell
->prison
;
346 spin_lock_irqsave(&prison
->lock
, flags
);
347 __cell_release_no_holder(cell
, inmates
);
348 spin_unlock_irqrestore(&prison
->lock
, flags
);
351 static void cell_error(struct dm_bio_prison_cell
*cell
)
353 struct bio_prison
*prison
= cell
->prison
;
354 struct bio_list bios
;
358 bio_list_init(&bios
);
360 spin_lock_irqsave(&prison
->lock
, flags
);
361 __cell_release(cell
, &bios
);
362 spin_unlock_irqrestore(&prison
->lock
, flags
);
364 while ((bio
= bio_list_pop(&bios
)))
368 /*----------------------------------------------------------------*/
371 * We use the deferred set to keep track of pending reads to shared blocks.
372 * We do this to ensure the new mapping caused by a write isn't performed
373 * until these prior reads have completed. Otherwise the insertion of the
374 * new mapping could free the old block that the read bios are mapped to.
378 struct deferred_entry
{
379 struct deferred_set
*ds
;
381 struct list_head work_items
;
384 struct deferred_set
{
386 unsigned current_entry
;
388 struct deferred_entry entries
[DEFERRED_SET_SIZE
];
391 static void ds_init(struct deferred_set
*ds
)
395 spin_lock_init(&ds
->lock
);
396 ds
->current_entry
= 0;
398 for (i
= 0; i
< DEFERRED_SET_SIZE
; i
++) {
399 ds
->entries
[i
].ds
= ds
;
400 ds
->entries
[i
].count
= 0;
401 INIT_LIST_HEAD(&ds
->entries
[i
].work_items
);
405 static struct deferred_entry
*ds_inc(struct deferred_set
*ds
)
408 struct deferred_entry
*entry
;
410 spin_lock_irqsave(&ds
->lock
, flags
);
411 entry
= ds
->entries
+ ds
->current_entry
;
413 spin_unlock_irqrestore(&ds
->lock
, flags
);
418 static unsigned ds_next(unsigned index
)
420 return (index
+ 1) % DEFERRED_SET_SIZE
;
423 static void __sweep(struct deferred_set
*ds
, struct list_head
*head
)
425 while ((ds
->sweeper
!= ds
->current_entry
) &&
426 !ds
->entries
[ds
->sweeper
].count
) {
427 list_splice_init(&ds
->entries
[ds
->sweeper
].work_items
, head
);
428 ds
->sweeper
= ds_next(ds
->sweeper
);
431 if ((ds
->sweeper
== ds
->current_entry
) && !ds
->entries
[ds
->sweeper
].count
)
432 list_splice_init(&ds
->entries
[ds
->sweeper
].work_items
, head
);
435 static void ds_dec(struct deferred_entry
*entry
, struct list_head
*head
)
439 spin_lock_irqsave(&entry
->ds
->lock
, flags
);
440 BUG_ON(!entry
->count
);
442 __sweep(entry
->ds
, head
);
443 spin_unlock_irqrestore(&entry
->ds
->lock
, flags
);
447 * Returns 1 if deferred or 0 if no pending items to delay job.
449 static int ds_add_work(struct deferred_set
*ds
, struct list_head
*work
)
455 spin_lock_irqsave(&ds
->lock
, flags
);
456 if ((ds
->sweeper
== ds
->current_entry
) &&
457 !ds
->entries
[ds
->current_entry
].count
)
460 list_add(work
, &ds
->entries
[ds
->current_entry
].work_items
);
461 next_entry
= ds_next(ds
->current_entry
);
462 if (!ds
->entries
[next_entry
].count
)
463 ds
->current_entry
= next_entry
;
465 spin_unlock_irqrestore(&ds
->lock
, flags
);
470 /*----------------------------------------------------------------*/
475 static void build_data_key(struct dm_thin_device
*td
,
476 dm_block_t b
, struct cell_key
*key
)
479 key
->dev
= dm_thin_dev_id(td
);
483 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
484 struct cell_key
*key
)
487 key
->dev
= dm_thin_dev_id(td
);
491 /*----------------------------------------------------------------*/
494 * A pool device ties together a metadata device and a data device. It
495 * also provides the interface for creating and destroying internal
498 struct dm_thin_new_mapping
;
501 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
504 PM_WRITE
, /* metadata may be changed */
505 PM_READ_ONLY
, /* metadata may not be changed */
506 PM_FAIL
, /* all I/O fails */
509 struct pool_features
{
512 bool zero_new_blocks
:1;
513 bool discard_enabled
:1;
514 bool discard_passdown
:1;
518 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
519 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
522 struct list_head list
;
523 struct dm_target
*ti
; /* Only set if a pool target is bound */
525 struct mapped_device
*pool_md
;
526 struct block_device
*md_dev
;
527 struct dm_pool_metadata
*pmd
;
529 dm_block_t low_water_blocks
;
530 uint32_t sectors_per_block
;
531 int sectors_per_block_shift
;
533 struct pool_features pf
;
534 unsigned low_water_triggered
:1; /* A dm event has been sent */
535 unsigned no_free_space
:1; /* A -ENOSPC warning has been issued */
537 struct bio_prison
*prison
;
538 struct dm_kcopyd_client
*copier
;
540 struct workqueue_struct
*wq
;
541 struct work_struct worker
;
542 struct delayed_work waker
;
544 unsigned long last_commit_jiffies
;
548 struct bio_list deferred_bios
;
549 struct bio_list deferred_flush_bios
;
550 struct list_head prepared_mappings
;
551 struct list_head prepared_discards
;
553 struct bio_list retry_on_resume_list
;
555 struct deferred_set shared_read_ds
;
556 struct deferred_set all_io_ds
;
558 struct dm_thin_new_mapping
*next_mapping
;
559 mempool_t
*mapping_pool
;
560 mempool_t
*endio_hook_pool
;
562 process_bio_fn process_bio
;
563 process_bio_fn process_discard
;
565 process_mapping_fn process_prepared_mapping
;
566 process_mapping_fn process_prepared_discard
;
569 static enum pool_mode
get_pool_mode(struct pool
*pool
);
570 static void set_pool_mode(struct pool
*pool
, enum pool_mode mode
);
573 * Target context for a pool.
576 struct dm_target
*ti
;
578 struct dm_dev
*data_dev
;
579 struct dm_dev
*metadata_dev
;
580 struct dm_target_callbacks callbacks
;
582 dm_block_t low_water_blocks
;
583 struct pool_features requested_pf
; /* Features requested during table load */
584 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
588 * Target context for a thin.
591 struct dm_dev
*pool_dev
;
592 struct dm_dev
*origin_dev
;
596 struct dm_thin_device
*td
;
599 /*----------------------------------------------------------------*/
602 * A global list of pools that uses a struct mapped_device as a key.
604 static struct dm_thin_pool_table
{
606 struct list_head pools
;
607 } dm_thin_pool_table
;
609 static void pool_table_init(void)
611 mutex_init(&dm_thin_pool_table
.mutex
);
612 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
615 static void __pool_table_insert(struct pool
*pool
)
617 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
618 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
621 static void __pool_table_remove(struct pool
*pool
)
623 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
624 list_del(&pool
->list
);
627 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
629 struct pool
*pool
= NULL
, *tmp
;
631 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
633 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
634 if (tmp
->pool_md
== md
) {
643 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
645 struct pool
*pool
= NULL
, *tmp
;
647 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
649 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
650 if (tmp
->md_dev
== md_dev
) {
659 /*----------------------------------------------------------------*/
661 struct dm_thin_endio_hook
{
663 struct deferred_entry
*shared_read_entry
;
664 struct deferred_entry
*all_io_entry
;
665 struct dm_thin_new_mapping
*overwrite_mapping
;
668 static void __requeue_bio_list(struct thin_c
*tc
, struct bio_list
*master
)
671 struct bio_list bios
;
673 bio_list_init(&bios
);
674 bio_list_merge(&bios
, master
);
675 bio_list_init(master
);
677 while ((bio
= bio_list_pop(&bios
))) {
678 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
681 bio_endio(bio
, DM_ENDIO_REQUEUE
);
683 bio_list_add(master
, bio
);
687 static void requeue_io(struct thin_c
*tc
)
689 struct pool
*pool
= tc
->pool
;
692 spin_lock_irqsave(&pool
->lock
, flags
);
693 __requeue_bio_list(tc
, &pool
->deferred_bios
);
694 __requeue_bio_list(tc
, &pool
->retry_on_resume_list
);
695 spin_unlock_irqrestore(&pool
->lock
, flags
);
699 * This section of code contains the logic for processing a thin device's IO.
700 * Much of the code depends on pool object resources (lists, workqueues, etc)
701 * but most is exclusively called from the thin target rather than the thin-pool
705 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
707 sector_t block_nr
= bio
->bi_sector
;
709 if (tc
->pool
->sectors_per_block_shift
< 0)
710 (void) sector_div(block_nr
, tc
->pool
->sectors_per_block
);
712 block_nr
>>= tc
->pool
->sectors_per_block_shift
;
717 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
719 struct pool
*pool
= tc
->pool
;
720 sector_t bi_sector
= bio
->bi_sector
;
722 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
723 if (tc
->pool
->sectors_per_block_shift
< 0)
724 bio
->bi_sector
= (block
* pool
->sectors_per_block
) +
725 sector_div(bi_sector
, pool
->sectors_per_block
);
727 bio
->bi_sector
= (block
<< pool
->sectors_per_block_shift
) |
728 (bi_sector
& (pool
->sectors_per_block
- 1));
731 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
733 bio
->bi_bdev
= tc
->origin_dev
->bdev
;
736 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
738 return (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) &&
739 dm_thin_changed_this_transaction(tc
->td
);
742 static void issue(struct thin_c
*tc
, struct bio
*bio
)
744 struct pool
*pool
= tc
->pool
;
747 if (!bio_triggers_commit(tc
, bio
)) {
748 generic_make_request(bio
);
753 * Complete bio with an error if earlier I/O caused changes to
754 * the metadata that can't be committed e.g, due to I/O errors
755 * on the metadata device.
757 if (dm_thin_aborted_changes(tc
->td
)) {
763 * Batch together any bios that trigger commits and then issue a
764 * single commit for them in process_deferred_bios().
766 spin_lock_irqsave(&pool
->lock
, flags
);
767 bio_list_add(&pool
->deferred_flush_bios
, bio
);
768 spin_unlock_irqrestore(&pool
->lock
, flags
);
771 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
773 remap_to_origin(tc
, bio
);
777 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
780 remap(tc
, bio
, block
);
785 * wake_worker() is used when new work is queued and when pool_resume is
786 * ready to continue deferred IO processing.
788 static void wake_worker(struct pool
*pool
)
790 queue_work(pool
->wq
, &pool
->worker
);
793 /*----------------------------------------------------------------*/
796 * Bio endio functions.
798 struct dm_thin_new_mapping
{
799 struct list_head list
;
803 unsigned pass_discard
:1;
806 dm_block_t virt_block
;
807 dm_block_t data_block
;
808 struct dm_bio_prison_cell
*cell
, *cell2
;
812 * If the bio covers the whole area of a block then we can avoid
813 * zeroing or copying. Instead this bio is hooked. The bio will
814 * still be in the cell, so care has to be taken to avoid issuing
818 bio_end_io_t
*saved_bi_end_io
;
821 static void __maybe_add_mapping(struct dm_thin_new_mapping
*m
)
823 struct pool
*pool
= m
->tc
->pool
;
825 if (m
->quiesced
&& m
->prepared
) {
826 list_add(&m
->list
, &pool
->prepared_mappings
);
831 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
834 struct dm_thin_new_mapping
*m
= context
;
835 struct pool
*pool
= m
->tc
->pool
;
837 m
->err
= read_err
|| write_err
? -EIO
: 0;
839 spin_lock_irqsave(&pool
->lock
, flags
);
841 __maybe_add_mapping(m
);
842 spin_unlock_irqrestore(&pool
->lock
, flags
);
845 static void overwrite_endio(struct bio
*bio
, int err
)
848 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
849 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
850 struct pool
*pool
= m
->tc
->pool
;
854 spin_lock_irqsave(&pool
->lock
, flags
);
856 __maybe_add_mapping(m
);
857 spin_unlock_irqrestore(&pool
->lock
, flags
);
860 /*----------------------------------------------------------------*/
867 * Prepared mapping jobs.
871 * This sends the bios in the cell back to the deferred_bios list.
873 static void cell_defer(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
,
874 dm_block_t data_block
)
876 struct pool
*pool
= tc
->pool
;
879 spin_lock_irqsave(&pool
->lock
, flags
);
880 cell_release(cell
, &pool
->deferred_bios
);
881 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
887 * Same as cell_defer above, except it omits one particular detainee,
888 * a write bio that covers the block and has already been processed.
890 static void cell_defer_except(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
892 struct bio_list bios
;
893 struct pool
*pool
= tc
->pool
;
896 bio_list_init(&bios
);
898 spin_lock_irqsave(&pool
->lock
, flags
);
899 cell_release_no_holder(cell
, &pool
->deferred_bios
);
900 spin_unlock_irqrestore(&pool
->lock
, flags
);
905 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
908 m
->bio
->bi_end_io
= m
->saved_bi_end_io
;
911 mempool_free(m
, m
->tc
->pool
->mapping_pool
);
913 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
915 struct thin_c
*tc
= m
->tc
;
921 bio
->bi_end_io
= m
->saved_bi_end_io
;
929 * Commit the prepared block into the mapping btree.
930 * Any I/O for this block arriving after this point will get
931 * remapped to it directly.
933 r
= dm_thin_insert_block(tc
->td
, m
->virt_block
, m
->data_block
);
935 DMERR("dm_thin_insert_block() failed");
941 * Release any bios held while the block was being provisioned.
942 * If we are processing a write bio that completely covers the block,
943 * we already processed it so can ignore it now when processing
944 * the bios in the cell.
947 cell_defer_except(tc
, m
->cell
);
950 cell_defer(tc
, m
->cell
, m
->data_block
);
954 mempool_free(m
, tc
->pool
->mapping_pool
);
957 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
959 struct thin_c
*tc
= m
->tc
;
961 bio_io_error(m
->bio
);
962 cell_defer_except(tc
, m
->cell
);
963 cell_defer_except(tc
, m
->cell2
);
964 mempool_free(m
, tc
->pool
->mapping_pool
);
967 static void process_prepared_discard_passdown(struct dm_thin_new_mapping
*m
)
969 struct thin_c
*tc
= m
->tc
;
972 remap_and_issue(tc
, m
->bio
, m
->data_block
);
974 bio_endio(m
->bio
, 0);
976 cell_defer_except(tc
, m
->cell
);
977 cell_defer_except(tc
, m
->cell2
);
978 mempool_free(m
, tc
->pool
->mapping_pool
);
981 static void process_prepared_discard(struct dm_thin_new_mapping
*m
)
984 struct thin_c
*tc
= m
->tc
;
986 r
= dm_thin_remove_block(tc
->td
, m
->virt_block
);
988 DMERR("dm_thin_remove_block() failed");
990 process_prepared_discard_passdown(m
);
993 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
994 process_mapping_fn
*fn
)
997 struct list_head maps
;
998 struct dm_thin_new_mapping
*m
, *tmp
;
1000 INIT_LIST_HEAD(&maps
);
1001 spin_lock_irqsave(&pool
->lock
, flags
);
1002 list_splice_init(head
, &maps
);
1003 spin_unlock_irqrestore(&pool
->lock
, flags
);
1005 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1010 * Deferred bio jobs.
1012 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1014 return bio
->bi_size
== (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1017 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1019 return (bio_data_dir(bio
) == WRITE
) &&
1020 io_overlaps_block(pool
, bio
);
1023 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1026 *save
= bio
->bi_end_io
;
1027 bio
->bi_end_io
= fn
;
1030 static int ensure_next_mapping(struct pool
*pool
)
1032 if (pool
->next_mapping
)
1035 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
1037 return pool
->next_mapping
? 0 : -ENOMEM
;
1040 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1042 struct dm_thin_new_mapping
*r
= pool
->next_mapping
;
1044 BUG_ON(!pool
->next_mapping
);
1046 pool
->next_mapping
= NULL
;
1051 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1052 struct dm_dev
*origin
, dm_block_t data_origin
,
1053 dm_block_t data_dest
,
1054 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1057 struct pool
*pool
= tc
->pool
;
1058 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1060 INIT_LIST_HEAD(&m
->list
);
1064 m
->virt_block
= virt_block
;
1065 m
->data_block
= data_dest
;
1070 if (!ds_add_work(&pool
->shared_read_ds
, &m
->list
))
1074 * IO to pool_dev remaps to the pool target's data_dev.
1076 * If the whole block of data is being overwritten, we can issue the
1077 * bio immediately. Otherwise we use kcopyd to clone the data first.
1079 if (io_overwrites_block(pool
, bio
)) {
1080 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
1082 h
->overwrite_mapping
= m
;
1084 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1085 remap_and_issue(tc
, bio
, data_dest
);
1087 struct dm_io_region from
, to
;
1089 from
.bdev
= origin
->bdev
;
1090 from
.sector
= data_origin
* pool
->sectors_per_block
;
1091 from
.count
= pool
->sectors_per_block
;
1093 to
.bdev
= tc
->pool_dev
->bdev
;
1094 to
.sector
= data_dest
* pool
->sectors_per_block
;
1095 to
.count
= pool
->sectors_per_block
;
1097 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1098 0, copy_complete
, m
);
1100 mempool_free(m
, pool
->mapping_pool
);
1101 DMERR("dm_kcopyd_copy() failed");
1107 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1108 dm_block_t data_origin
, dm_block_t data_dest
,
1109 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1111 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1112 data_origin
, data_dest
, cell
, bio
);
1115 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1116 dm_block_t data_dest
,
1117 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1119 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1120 virt_block
, data_dest
, cell
, bio
);
1123 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1124 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1127 struct pool
*pool
= tc
->pool
;
1128 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1130 INIT_LIST_HEAD(&m
->list
);
1134 m
->virt_block
= virt_block
;
1135 m
->data_block
= data_block
;
1141 * If the whole block of data is being overwritten or we are not
1142 * zeroing pre-existing data, we can issue the bio immediately.
1143 * Otherwise we use kcopyd to zero the data first.
1145 if (!pool
->pf
.zero_new_blocks
)
1146 process_prepared_mapping(m
);
1148 else if (io_overwrites_block(pool
, bio
)) {
1149 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
1151 h
->overwrite_mapping
= m
;
1153 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1154 remap_and_issue(tc
, bio
, data_block
);
1157 struct dm_io_region to
;
1159 to
.bdev
= tc
->pool_dev
->bdev
;
1160 to
.sector
= data_block
* pool
->sectors_per_block
;
1161 to
.count
= pool
->sectors_per_block
;
1163 r
= dm_kcopyd_zero(pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1165 mempool_free(m
, pool
->mapping_pool
);
1166 DMERR("dm_kcopyd_zero() failed");
1172 static int commit(struct pool
*pool
)
1176 r
= dm_pool_commit_metadata(pool
->pmd
);
1178 DMERR("commit failed, error = %d", r
);
1184 * A non-zero return indicates read_only or fail_io mode.
1185 * Many callers don't care about the return value.
1187 static int commit_or_fallback(struct pool
*pool
)
1191 if (get_pool_mode(pool
) != PM_WRITE
)
1196 set_pool_mode(pool
, PM_READ_ONLY
);
1201 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1204 dm_block_t free_blocks
;
1205 unsigned long flags
;
1206 struct pool
*pool
= tc
->pool
;
1208 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1212 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1213 DMWARN("%s: reached low water mark, sending event.",
1214 dm_device_name(pool
->pool_md
));
1215 spin_lock_irqsave(&pool
->lock
, flags
);
1216 pool
->low_water_triggered
= 1;
1217 spin_unlock_irqrestore(&pool
->lock
, flags
);
1218 dm_table_event(pool
->ti
->table
);
1222 if (pool
->no_free_space
)
1226 * Try to commit to see if that will free up some
1229 (void) commit_or_fallback(pool
);
1231 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1236 * If we still have no space we set a flag to avoid
1237 * doing all this checking and return -ENOSPC.
1240 DMWARN("%s: no free space available.",
1241 dm_device_name(pool
->pool_md
));
1242 spin_lock_irqsave(&pool
->lock
, flags
);
1243 pool
->no_free_space
= 1;
1244 spin_unlock_irqrestore(&pool
->lock
, flags
);
1250 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1258 * If we have run out of space, queue bios until the device is
1259 * resumed, presumably after having been reloaded with more space.
1261 static void retry_on_resume(struct bio
*bio
)
1263 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
1264 struct thin_c
*tc
= h
->tc
;
1265 struct pool
*pool
= tc
->pool
;
1266 unsigned long flags
;
1268 spin_lock_irqsave(&pool
->lock
, flags
);
1269 bio_list_add(&pool
->retry_on_resume_list
, bio
);
1270 spin_unlock_irqrestore(&pool
->lock
, flags
);
1273 static void no_space(struct dm_bio_prison_cell
*cell
)
1276 struct bio_list bios
;
1278 bio_list_init(&bios
);
1279 cell_release(cell
, &bios
);
1281 while ((bio
= bio_list_pop(&bios
)))
1282 retry_on_resume(bio
);
1285 static void process_discard(struct thin_c
*tc
, struct bio
*bio
)
1288 unsigned long flags
;
1289 struct pool
*pool
= tc
->pool
;
1290 struct dm_bio_prison_cell
*cell
, *cell2
;
1291 struct cell_key key
, key2
;
1292 dm_block_t block
= get_bio_block(tc
, bio
);
1293 struct dm_thin_lookup_result lookup_result
;
1294 struct dm_thin_new_mapping
*m
;
1296 build_virtual_key(tc
->td
, block
, &key
);
1297 if (bio_detain(tc
->pool
->prison
, &key
, bio
, &cell
))
1300 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1304 * Check nobody is fiddling with this pool block. This can
1305 * happen if someone's in the process of breaking sharing
1308 build_data_key(tc
->td
, lookup_result
.block
, &key2
);
1309 if (bio_detain(tc
->pool
->prison
, &key2
, bio
, &cell2
)) {
1310 cell_release_singleton(cell
, bio
);
1314 if (io_overlaps_block(pool
, bio
)) {
1316 * IO may still be going to the destination block. We must
1317 * quiesce before we can do the removal.
1319 m
= get_next_mapping(pool
);
1321 m
->pass_discard
= (!lookup_result
.shared
) && pool
->pf
.discard_passdown
;
1322 m
->virt_block
= block
;
1323 m
->data_block
= lookup_result
.block
;
1329 if (!ds_add_work(&pool
->all_io_ds
, &m
->list
)) {
1330 spin_lock_irqsave(&pool
->lock
, flags
);
1331 list_add(&m
->list
, &pool
->prepared_discards
);
1332 spin_unlock_irqrestore(&pool
->lock
, flags
);
1337 * The DM core makes sure that the discard doesn't span
1338 * a block boundary. So we submit the discard of a
1339 * partial block appropriately.
1341 cell_release_singleton(cell
, bio
);
1342 cell_release_singleton(cell2
, bio
);
1343 if ((!lookup_result
.shared
) && pool
->pf
.discard_passdown
)
1344 remap_and_issue(tc
, bio
, lookup_result
.block
);
1352 * It isn't provisioned, just forget it.
1354 cell_release_singleton(cell
, bio
);
1359 DMERR("discard: find block unexpectedly returned %d", r
);
1360 cell_release_singleton(cell
, bio
);
1366 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1367 struct cell_key
*key
,
1368 struct dm_thin_lookup_result
*lookup_result
,
1369 struct dm_bio_prison_cell
*cell
)
1372 dm_block_t data_block
;
1374 r
= alloc_data_block(tc
, &data_block
);
1377 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1378 data_block
, cell
, bio
);
1386 DMERR("%s: alloc_data_block() failed, error = %d", __func__
, r
);
1392 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1394 struct dm_thin_lookup_result
*lookup_result
)
1396 struct dm_bio_prison_cell
*cell
;
1397 struct pool
*pool
= tc
->pool
;
1398 struct cell_key key
;
1401 * If cell is already occupied, then sharing is already in the process
1402 * of being broken so we have nothing further to do here.
1404 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1405 if (bio_detain(pool
->prison
, &key
, bio
, &cell
))
1408 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_size
)
1409 break_sharing(tc
, bio
, block
, &key
, lookup_result
, cell
);
1411 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
1413 h
->shared_read_entry
= ds_inc(&pool
->shared_read_ds
);
1415 cell_release_singleton(cell
, bio
);
1416 remap_and_issue(tc
, bio
, lookup_result
->block
);
1420 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1421 struct dm_bio_prison_cell
*cell
)
1424 dm_block_t data_block
;
1427 * Remap empty bios (flushes) immediately, without provisioning.
1429 if (!bio
->bi_size
) {
1430 cell_release_singleton(cell
, bio
);
1431 remap_and_issue(tc
, bio
, 0);
1436 * Fill read bios with zeroes and complete them immediately.
1438 if (bio_data_dir(bio
) == READ
) {
1440 cell_release_singleton(cell
, bio
);
1445 r
= alloc_data_block(tc
, &data_block
);
1449 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1451 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1459 DMERR("%s: alloc_data_block() failed, error = %d", __func__
, r
);
1460 set_pool_mode(tc
->pool
, PM_READ_ONLY
);
1466 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1469 dm_block_t block
= get_bio_block(tc
, bio
);
1470 struct dm_bio_prison_cell
*cell
;
1471 struct cell_key key
;
1472 struct dm_thin_lookup_result lookup_result
;
1475 * If cell is already occupied, then the block is already
1476 * being provisioned so we have nothing further to do here.
1478 build_virtual_key(tc
->td
, block
, &key
);
1479 if (bio_detain(tc
->pool
->prison
, &key
, bio
, &cell
))
1482 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1486 * We can release this cell now. This thread is the only
1487 * one that puts bios into a cell, and we know there were
1488 * no preceding bios.
1491 * TODO: this will probably have to change when discard goes
1494 cell_release_singleton(cell
, bio
);
1496 if (lookup_result
.shared
)
1497 process_shared_bio(tc
, bio
, block
, &lookup_result
);
1499 remap_and_issue(tc
, bio
, lookup_result
.block
);
1503 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1504 cell_release_singleton(cell
, bio
);
1505 remap_to_origin_and_issue(tc
, bio
);
1507 provision_block(tc
, bio
, block
, cell
);
1511 DMERR("dm_thin_find_block() failed, error = %d", r
);
1512 cell_release_singleton(cell
, bio
);
1518 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
1521 int rw
= bio_data_dir(bio
);
1522 dm_block_t block
= get_bio_block(tc
, bio
);
1523 struct dm_thin_lookup_result lookup_result
;
1525 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1528 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_size
)
1531 remap_and_issue(tc
, bio
, lookup_result
.block
);
1540 if (tc
->origin_dev
) {
1541 remap_to_origin_and_issue(tc
, bio
);
1550 DMERR("dm_thin_find_block() failed, error = %d", r
);
1556 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
1561 static int need_commit_due_to_time(struct pool
*pool
)
1563 return jiffies
< pool
->last_commit_jiffies
||
1564 jiffies
> pool
->last_commit_jiffies
+ COMMIT_PERIOD
;
1567 static void process_deferred_bios(struct pool
*pool
)
1569 unsigned long flags
;
1571 struct bio_list bios
;
1573 bio_list_init(&bios
);
1575 spin_lock_irqsave(&pool
->lock
, flags
);
1576 bio_list_merge(&bios
, &pool
->deferred_bios
);
1577 bio_list_init(&pool
->deferred_bios
);
1578 spin_unlock_irqrestore(&pool
->lock
, flags
);
1580 while ((bio
= bio_list_pop(&bios
))) {
1581 struct dm_thin_endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
1582 struct thin_c
*tc
= h
->tc
;
1585 * If we've got no free new_mapping structs, and processing
1586 * this bio might require one, we pause until there are some
1587 * prepared mappings to process.
1589 if (ensure_next_mapping(pool
)) {
1590 spin_lock_irqsave(&pool
->lock
, flags
);
1591 bio_list_merge(&pool
->deferred_bios
, &bios
);
1592 spin_unlock_irqrestore(&pool
->lock
, flags
);
1597 if (bio
->bi_rw
& REQ_DISCARD
)
1598 pool
->process_discard(tc
, bio
);
1600 pool
->process_bio(tc
, bio
);
1604 * If there are any deferred flush bios, we must commit
1605 * the metadata before issuing them.
1607 bio_list_init(&bios
);
1608 spin_lock_irqsave(&pool
->lock
, flags
);
1609 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
1610 bio_list_init(&pool
->deferred_flush_bios
);
1611 spin_unlock_irqrestore(&pool
->lock
, flags
);
1613 if (bio_list_empty(&bios
) && !need_commit_due_to_time(pool
))
1616 if (commit_or_fallback(pool
)) {
1617 while ((bio
= bio_list_pop(&bios
)))
1621 pool
->last_commit_jiffies
= jiffies
;
1623 while ((bio
= bio_list_pop(&bios
)))
1624 generic_make_request(bio
);
1627 static void do_worker(struct work_struct
*ws
)
1629 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
1631 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
1632 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
1633 process_deferred_bios(pool
);
1637 * We want to commit periodically so that not too much
1638 * unwritten data builds up.
1640 static void do_waker(struct work_struct
*ws
)
1642 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
1644 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
1647 /*----------------------------------------------------------------*/
1649 static enum pool_mode
get_pool_mode(struct pool
*pool
)
1651 return pool
->pf
.mode
;
1654 static void set_pool_mode(struct pool
*pool
, enum pool_mode mode
)
1658 pool
->pf
.mode
= mode
;
1662 DMERR("switching pool to failure mode");
1663 pool
->process_bio
= process_bio_fail
;
1664 pool
->process_discard
= process_bio_fail
;
1665 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
1666 pool
->process_prepared_discard
= process_prepared_discard_fail
;
1670 DMERR("switching pool to read-only mode");
1671 r
= dm_pool_abort_metadata(pool
->pmd
);
1673 DMERR("aborting transaction failed");
1674 set_pool_mode(pool
, PM_FAIL
);
1676 dm_pool_metadata_read_only(pool
->pmd
);
1677 pool
->process_bio
= process_bio_read_only
;
1678 pool
->process_discard
= process_discard
;
1679 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
1680 pool
->process_prepared_discard
= process_prepared_discard_passdown
;
1685 pool
->process_bio
= process_bio
;
1686 pool
->process_discard
= process_discard
;
1687 pool
->process_prepared_mapping
= process_prepared_mapping
;
1688 pool
->process_prepared_discard
= process_prepared_discard
;
1693 /*----------------------------------------------------------------*/
1696 * Mapping functions.
1700 * Called only while mapping a thin bio to hand it over to the workqueue.
1702 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
1704 unsigned long flags
;
1705 struct pool
*pool
= tc
->pool
;
1707 spin_lock_irqsave(&pool
->lock
, flags
);
1708 bio_list_add(&pool
->deferred_bios
, bio
);
1709 spin_unlock_irqrestore(&pool
->lock
, flags
);
1714 static struct dm_thin_endio_hook
*thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
1716 struct pool
*pool
= tc
->pool
;
1717 struct dm_thin_endio_hook
*h
= mempool_alloc(pool
->endio_hook_pool
, GFP_NOIO
);
1720 h
->shared_read_entry
= NULL
;
1721 h
->all_io_entry
= bio
->bi_rw
& REQ_DISCARD
? NULL
: ds_inc(&pool
->all_io_ds
);
1722 h
->overwrite_mapping
= NULL
;
1728 * Non-blocking function called from the thin target's map function.
1730 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
,
1731 union map_info
*map_context
)
1734 struct thin_c
*tc
= ti
->private;
1735 dm_block_t block
= get_bio_block(tc
, bio
);
1736 struct dm_thin_device
*td
= tc
->td
;
1737 struct dm_thin_lookup_result result
;
1739 map_context
->ptr
= thin_hook_bio(tc
, bio
);
1741 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
1743 return DM_MAPIO_SUBMITTED
;
1746 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)) {
1747 thin_defer_bio(tc
, bio
);
1748 return DM_MAPIO_SUBMITTED
;
1751 r
= dm_thin_find_block(td
, block
, 0, &result
);
1754 * Note that we defer readahead too.
1758 if (unlikely(result
.shared
)) {
1760 * We have a race condition here between the
1761 * result.shared value returned by the lookup and
1762 * snapshot creation, which may cause new
1765 * To avoid this always quiesce the origin before
1766 * taking the snap. You want to do this anyway to
1767 * ensure a consistent application view
1770 * More distant ancestors are irrelevant. The
1771 * shared flag will be set in their case.
1773 thin_defer_bio(tc
, bio
);
1774 r
= DM_MAPIO_SUBMITTED
;
1776 remap(tc
, bio
, result
.block
);
1777 r
= DM_MAPIO_REMAPPED
;
1782 if (get_pool_mode(tc
->pool
) == PM_READ_ONLY
) {
1784 * This block isn't provisioned, and we have no way
1785 * of doing so. Just error it.
1788 r
= DM_MAPIO_SUBMITTED
;
1795 * In future, the failed dm_thin_find_block above could
1796 * provide the hint to load the metadata into cache.
1798 thin_defer_bio(tc
, bio
);
1799 r
= DM_MAPIO_SUBMITTED
;
1804 * Must always call bio_io_error on failure.
1805 * dm_thin_find_block can fail with -EINVAL if the
1806 * pool is switched to fail-io mode.
1809 r
= DM_MAPIO_SUBMITTED
;
1816 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
1819 unsigned long flags
;
1820 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
1822 spin_lock_irqsave(&pt
->pool
->lock
, flags
);
1823 r
= !bio_list_empty(&pt
->pool
->retry_on_resume_list
);
1824 spin_unlock_irqrestore(&pt
->pool
->lock
, flags
);
1827 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1828 r
= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1834 static void __requeue_bios(struct pool
*pool
)
1836 bio_list_merge(&pool
->deferred_bios
, &pool
->retry_on_resume_list
);
1837 bio_list_init(&pool
->retry_on_resume_list
);
1840 /*----------------------------------------------------------------
1841 * Binding of control targets to a pool object
1842 *--------------------------------------------------------------*/
1843 static bool data_dev_supports_discard(struct pool_c
*pt
)
1845 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1847 return q
&& blk_queue_discard(q
);
1851 * If discard_passdown was enabled verify that the data device
1852 * supports discards. Disable discard_passdown if not.
1854 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
1856 struct pool
*pool
= pt
->pool
;
1857 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
1858 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
1859 sector_t block_size
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
1860 const char *reason
= NULL
;
1861 char buf
[BDEVNAME_SIZE
];
1863 if (!pt
->adjusted_pf
.discard_passdown
)
1866 if (!data_dev_supports_discard(pt
))
1867 reason
= "discard unsupported";
1869 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
1870 reason
= "max discard sectors smaller than a block";
1872 else if (data_limits
->discard_granularity
> block_size
)
1873 reason
= "discard granularity larger than a block";
1875 else if (block_size
& (data_limits
->discard_granularity
- 1))
1876 reason
= "discard granularity not a factor of block size";
1879 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
1880 pt
->adjusted_pf
.discard_passdown
= false;
1884 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1886 struct pool_c
*pt
= ti
->private;
1889 * We want to make sure that degraded pools are never upgraded.
1891 enum pool_mode old_mode
= pool
->pf
.mode
;
1892 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
1894 if (old_mode
> new_mode
)
1895 new_mode
= old_mode
;
1898 pool
->low_water_blocks
= pt
->low_water_blocks
;
1899 pool
->pf
= pt
->adjusted_pf
;
1901 set_pool_mode(pool
, new_mode
);
1906 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1912 /*----------------------------------------------------------------
1914 *--------------------------------------------------------------*/
1915 /* Initialize pool features. */
1916 static void pool_features_init(struct pool_features
*pf
)
1918 pf
->mode
= PM_WRITE
;
1919 pf
->zero_new_blocks
= true;
1920 pf
->discard_enabled
= true;
1921 pf
->discard_passdown
= true;
1924 static void __pool_destroy(struct pool
*pool
)
1926 __pool_table_remove(pool
);
1928 if (dm_pool_metadata_close(pool
->pmd
) < 0)
1929 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1931 prison_destroy(pool
->prison
);
1932 dm_kcopyd_client_destroy(pool
->copier
);
1935 destroy_workqueue(pool
->wq
);
1937 if (pool
->next_mapping
)
1938 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
1939 mempool_destroy(pool
->mapping_pool
);
1940 mempool_destroy(pool
->endio_hook_pool
);
1944 static struct kmem_cache
*_new_mapping_cache
;
1945 static struct kmem_cache
*_endio_hook_cache
;
1947 static struct pool
*pool_create(struct mapped_device
*pool_md
,
1948 struct block_device
*metadata_dev
,
1949 unsigned long block_size
,
1950 int read_only
, char **error
)
1955 struct dm_pool_metadata
*pmd
;
1956 bool format_device
= read_only
? false : true;
1958 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
1960 *error
= "Error creating metadata object";
1961 return (struct pool
*)pmd
;
1964 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
1966 *error
= "Error allocating memory for pool";
1967 err_p
= ERR_PTR(-ENOMEM
);
1972 pool
->sectors_per_block
= block_size
;
1973 if (block_size
& (block_size
- 1))
1974 pool
->sectors_per_block_shift
= -1;
1976 pool
->sectors_per_block_shift
= __ffs(block_size
);
1977 pool
->low_water_blocks
= 0;
1978 pool_features_init(&pool
->pf
);
1979 pool
->prison
= prison_create(PRISON_CELLS
);
1980 if (!pool
->prison
) {
1981 *error
= "Error creating pool's bio prison";
1982 err_p
= ERR_PTR(-ENOMEM
);
1986 pool
->copier
= dm_kcopyd_client_create();
1987 if (IS_ERR(pool
->copier
)) {
1988 r
= PTR_ERR(pool
->copier
);
1989 *error
= "Error creating pool's kcopyd client";
1991 goto bad_kcopyd_client
;
1995 * Create singlethreaded workqueue that will service all devices
1996 * that use this metadata.
1998 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2000 *error
= "Error creating pool's workqueue";
2001 err_p
= ERR_PTR(-ENOMEM
);
2005 INIT_WORK(&pool
->worker
, do_worker
);
2006 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2007 spin_lock_init(&pool
->lock
);
2008 bio_list_init(&pool
->deferred_bios
);
2009 bio_list_init(&pool
->deferred_flush_bios
);
2010 INIT_LIST_HEAD(&pool
->prepared_mappings
);
2011 INIT_LIST_HEAD(&pool
->prepared_discards
);
2012 pool
->low_water_triggered
= 0;
2013 pool
->no_free_space
= 0;
2014 bio_list_init(&pool
->retry_on_resume_list
);
2015 ds_init(&pool
->shared_read_ds
);
2016 ds_init(&pool
->all_io_ds
);
2018 pool
->next_mapping
= NULL
;
2019 pool
->mapping_pool
= mempool_create_slab_pool(MAPPING_POOL_SIZE
,
2020 _new_mapping_cache
);
2021 if (!pool
->mapping_pool
) {
2022 *error
= "Error creating pool's mapping mempool";
2023 err_p
= ERR_PTR(-ENOMEM
);
2024 goto bad_mapping_pool
;
2027 pool
->endio_hook_pool
= mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE
,
2029 if (!pool
->endio_hook_pool
) {
2030 *error
= "Error creating pool's endio_hook mempool";
2031 err_p
= ERR_PTR(-ENOMEM
);
2032 goto bad_endio_hook_pool
;
2034 pool
->ref_count
= 1;
2035 pool
->last_commit_jiffies
= jiffies
;
2036 pool
->pool_md
= pool_md
;
2037 pool
->md_dev
= metadata_dev
;
2038 __pool_table_insert(pool
);
2042 bad_endio_hook_pool
:
2043 mempool_destroy(pool
->mapping_pool
);
2045 destroy_workqueue(pool
->wq
);
2047 dm_kcopyd_client_destroy(pool
->copier
);
2049 prison_destroy(pool
->prison
);
2053 if (dm_pool_metadata_close(pmd
))
2054 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2059 static void __pool_inc(struct pool
*pool
)
2061 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2065 static void __pool_dec(struct pool
*pool
)
2067 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2068 BUG_ON(!pool
->ref_count
);
2069 if (!--pool
->ref_count
)
2070 __pool_destroy(pool
);
2073 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
2074 struct block_device
*metadata_dev
,
2075 unsigned long block_size
, int read_only
,
2076 char **error
, int *created
)
2078 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
2081 if (pool
->pool_md
!= pool_md
) {
2082 *error
= "metadata device already in use by a pool";
2083 return ERR_PTR(-EBUSY
);
2088 pool
= __pool_table_lookup(pool_md
);
2090 if (pool
->md_dev
!= metadata_dev
) {
2091 *error
= "different pool cannot replace a pool";
2092 return ERR_PTR(-EINVAL
);
2097 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
2105 /*----------------------------------------------------------------
2106 * Pool target methods
2107 *--------------------------------------------------------------*/
2108 static void pool_dtr(struct dm_target
*ti
)
2110 struct pool_c
*pt
= ti
->private;
2112 mutex_lock(&dm_thin_pool_table
.mutex
);
2114 unbind_control_target(pt
->pool
, ti
);
2115 __pool_dec(pt
->pool
);
2116 dm_put_device(ti
, pt
->metadata_dev
);
2117 dm_put_device(ti
, pt
->data_dev
);
2120 mutex_unlock(&dm_thin_pool_table
.mutex
);
2123 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
2124 struct dm_target
*ti
)
2128 const char *arg_name
;
2130 static struct dm_arg _args
[] = {
2131 {0, 3, "Invalid number of pool feature arguments"},
2135 * No feature arguments supplied.
2140 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
2144 while (argc
&& !r
) {
2145 arg_name
= dm_shift_arg(as
);
2148 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
2149 pf
->zero_new_blocks
= false;
2151 else if (!strcasecmp(arg_name
, "ignore_discard"))
2152 pf
->discard_enabled
= false;
2154 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
2155 pf
->discard_passdown
= false;
2157 else if (!strcasecmp(arg_name
, "read_only"))
2158 pf
->mode
= PM_READ_ONLY
;
2161 ti
->error
= "Unrecognised pool feature requested";
2171 * thin-pool <metadata dev> <data dev>
2172 * <data block size (sectors)>
2173 * <low water mark (blocks)>
2174 * [<#feature args> [<arg>]*]
2176 * Optional feature arguments are:
2177 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2178 * ignore_discard: disable discard
2179 * no_discard_passdown: don't pass discards down to the data device
2181 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2183 int r
, pool_created
= 0;
2186 struct pool_features pf
;
2187 struct dm_arg_set as
;
2188 struct dm_dev
*data_dev
;
2189 unsigned long block_size
;
2190 dm_block_t low_water_blocks
;
2191 struct dm_dev
*metadata_dev
;
2192 sector_t metadata_dev_size
;
2193 char b
[BDEVNAME_SIZE
];
2196 * FIXME Remove validation from scope of lock.
2198 mutex_lock(&dm_thin_pool_table
.mutex
);
2201 ti
->error
= "Invalid argument count";
2208 r
= dm_get_device(ti
, argv
[0], FMODE_READ
| FMODE_WRITE
, &metadata_dev
);
2210 ti
->error
= "Error opening metadata block device";
2214 metadata_dev_size
= i_size_read(metadata_dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
2215 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
2216 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2217 bdevname(metadata_dev
->bdev
, b
), THIN_METADATA_MAX_SECTORS
);
2219 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
2221 ti
->error
= "Error getting data device";
2225 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
2226 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
2227 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
2228 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
2229 ti
->error
= "Invalid block size";
2234 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
2235 ti
->error
= "Invalid low water mark";
2241 * Set default pool features.
2243 pool_features_init(&pf
);
2245 dm_consume_args(&as
, 4);
2246 r
= parse_pool_features(&as
, &pf
, ti
);
2250 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
2256 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
2257 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
2264 * 'pool_created' reflects whether this is the first table load.
2265 * Top level discard support is not allowed to be changed after
2266 * initial load. This would require a pool reload to trigger thin
2269 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
2270 ti
->error
= "Discard support cannot be disabled once enabled";
2272 goto out_flags_changed
;
2276 * The block layer requires discard_granularity to be a power of 2.
2278 if (pf
.discard_enabled
&& !is_power_of_2(block_size
)) {
2279 ti
->error
= "Discard support must be disabled when the block size is not a power of 2";
2281 goto out_flags_changed
;
2286 pt
->metadata_dev
= metadata_dev
;
2287 pt
->data_dev
= data_dev
;
2288 pt
->low_water_blocks
= low_water_blocks
;
2289 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
2290 ti
->num_flush_requests
= 1;
2293 * Only need to enable discards if the pool should pass
2294 * them down to the data device. The thin device's discard
2295 * processing will cause mappings to be removed from the btree.
2297 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
2298 ti
->num_discard_requests
= 1;
2301 * Setting 'discards_supported' circumvents the normal
2302 * stacking of discard limits (this keeps the pool and
2303 * thin devices' discard limits consistent).
2305 ti
->discards_supported
= true;
2306 ti
->discard_zeroes_data_unsupported
= true;
2310 pt
->callbacks
.congested_fn
= pool_is_congested
;
2311 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
2313 mutex_unlock(&dm_thin_pool_table
.mutex
);
2322 dm_put_device(ti
, data_dev
);
2324 dm_put_device(ti
, metadata_dev
);
2326 mutex_unlock(&dm_thin_pool_table
.mutex
);
2331 static int pool_map(struct dm_target
*ti
, struct bio
*bio
,
2332 union map_info
*map_context
)
2335 struct pool_c
*pt
= ti
->private;
2336 struct pool
*pool
= pt
->pool
;
2337 unsigned long flags
;
2340 * As this is a singleton target, ti->begin is always zero.
2342 spin_lock_irqsave(&pool
->lock
, flags
);
2343 bio
->bi_bdev
= pt
->data_dev
->bdev
;
2344 r
= DM_MAPIO_REMAPPED
;
2345 spin_unlock_irqrestore(&pool
->lock
, flags
);
2351 * Retrieves the number of blocks of the data device from
2352 * the superblock and compares it to the actual device size,
2353 * thus resizing the data device in case it has grown.
2355 * This both copes with opening preallocated data devices in the ctr
2356 * being followed by a resume
2358 * calling the resume method individually after userspace has
2359 * grown the data device in reaction to a table event.
2361 static int pool_preresume(struct dm_target
*ti
)
2364 struct pool_c
*pt
= ti
->private;
2365 struct pool
*pool
= pt
->pool
;
2366 sector_t data_size
= ti
->len
;
2367 dm_block_t sb_data_size
;
2370 * Take control of the pool object.
2372 r
= bind_control_target(pool
, ti
);
2376 (void) sector_div(data_size
, pool
->sectors_per_block
);
2378 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
2380 DMERR("failed to retrieve data device size");
2384 if (data_size
< sb_data_size
) {
2385 DMERR("pool target too small, is %llu blocks (expected %llu)",
2386 (unsigned long long)data_size
, sb_data_size
);
2389 } else if (data_size
> sb_data_size
) {
2390 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
2392 DMERR("failed to resize data device");
2393 /* FIXME Stricter than necessary: Rollback transaction instead here */
2394 set_pool_mode(pool
, PM_READ_ONLY
);
2398 (void) commit_or_fallback(pool
);
2404 static void pool_resume(struct dm_target
*ti
)
2406 struct pool_c
*pt
= ti
->private;
2407 struct pool
*pool
= pt
->pool
;
2408 unsigned long flags
;
2410 spin_lock_irqsave(&pool
->lock
, flags
);
2411 pool
->low_water_triggered
= 0;
2412 pool
->no_free_space
= 0;
2413 __requeue_bios(pool
);
2414 spin_unlock_irqrestore(&pool
->lock
, flags
);
2416 do_waker(&pool
->waker
.work
);
2419 static void pool_postsuspend(struct dm_target
*ti
)
2421 struct pool_c
*pt
= ti
->private;
2422 struct pool
*pool
= pt
->pool
;
2424 cancel_delayed_work(&pool
->waker
);
2425 flush_workqueue(pool
->wq
);
2426 (void) commit_or_fallback(pool
);
2429 static int check_arg_count(unsigned argc
, unsigned args_required
)
2431 if (argc
!= args_required
) {
2432 DMWARN("Message received with %u arguments instead of %u.",
2433 argc
, args_required
);
2440 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
2442 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
2443 *dev_id
<= MAX_DEV_ID
)
2447 DMWARN("Message received with invalid device id: %s", arg
);
2452 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2457 r
= check_arg_count(argc
, 2);
2461 r
= read_dev_id(argv
[1], &dev_id
, 1);
2465 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
2467 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2475 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2478 dm_thin_id origin_dev_id
;
2481 r
= check_arg_count(argc
, 3);
2485 r
= read_dev_id(argv
[1], &dev_id
, 1);
2489 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
2493 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
2495 DMWARN("Creation of new snapshot %s of device %s failed.",
2503 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2508 r
= check_arg_count(argc
, 2);
2512 r
= read_dev_id(argv
[1], &dev_id
, 1);
2516 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
2518 DMWARN("Deletion of thin device %s failed.", argv
[1]);
2523 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2525 dm_thin_id old_id
, new_id
;
2528 r
= check_arg_count(argc
, 3);
2532 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
2533 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
2537 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
2538 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
2542 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
2544 DMWARN("Failed to change transaction id from %s to %s.",
2552 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2556 r
= check_arg_count(argc
, 1);
2560 (void) commit_or_fallback(pool
);
2562 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
2564 DMWARN("reserve_metadata_snap message failed.");
2569 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2573 r
= check_arg_count(argc
, 1);
2577 r
= dm_pool_release_metadata_snap(pool
->pmd
);
2579 DMWARN("release_metadata_snap message failed.");
2585 * Messages supported:
2586 * create_thin <dev_id>
2587 * create_snap <dev_id> <origin_id>
2589 * trim <dev_id> <new_size_in_sectors>
2590 * set_transaction_id <current_trans_id> <new_trans_id>
2591 * reserve_metadata_snap
2592 * release_metadata_snap
2594 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2597 struct pool_c
*pt
= ti
->private;
2598 struct pool
*pool
= pt
->pool
;
2600 if (!strcasecmp(argv
[0], "create_thin"))
2601 r
= process_create_thin_mesg(argc
, argv
, pool
);
2603 else if (!strcasecmp(argv
[0], "create_snap"))
2604 r
= process_create_snap_mesg(argc
, argv
, pool
);
2606 else if (!strcasecmp(argv
[0], "delete"))
2607 r
= process_delete_mesg(argc
, argv
, pool
);
2609 else if (!strcasecmp(argv
[0], "set_transaction_id"))
2610 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
2612 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
2613 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
2615 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
2616 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
2619 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
2622 (void) commit_or_fallback(pool
);
2627 static void emit_flags(struct pool_features
*pf
, char *result
,
2628 unsigned sz
, unsigned maxlen
)
2630 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
2631 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
);
2632 DMEMIT("%u ", count
);
2634 if (!pf
->zero_new_blocks
)
2635 DMEMIT("skip_block_zeroing ");
2637 if (!pf
->discard_enabled
)
2638 DMEMIT("ignore_discard ");
2640 if (!pf
->discard_passdown
)
2641 DMEMIT("no_discard_passdown ");
2643 if (pf
->mode
== PM_READ_ONLY
)
2644 DMEMIT("read_only ");
2649 * <transaction id> <used metadata sectors>/<total metadata sectors>
2650 * <used data sectors>/<total data sectors> <held metadata root>
2652 static int pool_status(struct dm_target
*ti
, status_type_t type
,
2653 unsigned status_flags
, char *result
, unsigned maxlen
)
2657 uint64_t transaction_id
;
2658 dm_block_t nr_free_blocks_data
;
2659 dm_block_t nr_free_blocks_metadata
;
2660 dm_block_t nr_blocks_data
;
2661 dm_block_t nr_blocks_metadata
;
2662 dm_block_t held_root
;
2663 char buf
[BDEVNAME_SIZE
];
2664 char buf2
[BDEVNAME_SIZE
];
2665 struct pool_c
*pt
= ti
->private;
2666 struct pool
*pool
= pt
->pool
;
2669 case STATUSTYPE_INFO
:
2670 if (get_pool_mode(pool
) == PM_FAIL
) {
2675 /* Commit to ensure statistics aren't out-of-date */
2676 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
2677 (void) commit_or_fallback(pool
);
2679 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
,
2684 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
,
2685 &nr_free_blocks_metadata
);
2689 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
2693 r
= dm_pool_get_free_block_count(pool
->pmd
,
2694 &nr_free_blocks_data
);
2698 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
2702 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
2706 DMEMIT("%llu %llu/%llu %llu/%llu ",
2707 (unsigned long long)transaction_id
,
2708 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
2709 (unsigned long long)nr_blocks_metadata
,
2710 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
2711 (unsigned long long)nr_blocks_data
);
2714 DMEMIT("%llu ", held_root
);
2718 if (pool
->pf
.mode
== PM_READ_ONLY
)
2723 if (pool
->pf
.discard_enabled
&& pool
->pf
.discard_passdown
)
2724 DMEMIT("discard_passdown");
2726 DMEMIT("no_discard_passdown");
2730 case STATUSTYPE_TABLE
:
2731 DMEMIT("%s %s %lu %llu ",
2732 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
2733 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
2734 (unsigned long)pool
->sectors_per_block
,
2735 (unsigned long long)pt
->low_water_blocks
);
2736 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
2743 static int pool_iterate_devices(struct dm_target
*ti
,
2744 iterate_devices_callout_fn fn
, void *data
)
2746 struct pool_c
*pt
= ti
->private;
2748 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
2751 static int pool_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
2752 struct bio_vec
*biovec
, int max_size
)
2754 struct pool_c
*pt
= ti
->private;
2755 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2757 if (!q
->merge_bvec_fn
)
2760 bvm
->bi_bdev
= pt
->data_dev
->bdev
;
2762 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
2765 static void set_discard_limits(struct pool_c
*pt
, struct queue_limits
*limits
)
2767 struct pool
*pool
= pt
->pool
;
2768 struct queue_limits
*data_limits
;
2770 limits
->max_discard_sectors
= pool
->sectors_per_block
;
2773 * discard_granularity is just a hint, and not enforced.
2775 if (pt
->adjusted_pf
.discard_passdown
) {
2776 data_limits
= &bdev_get_queue(pt
->data_dev
->bdev
)->limits
;
2777 limits
->discard_granularity
= data_limits
->discard_granularity
;
2779 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
2782 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2784 struct pool_c
*pt
= ti
->private;
2785 struct pool
*pool
= pt
->pool
;
2787 blk_limits_io_min(limits
, 0);
2788 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
2791 * pt->adjusted_pf is a staging area for the actual features to use.
2792 * They get transferred to the live pool in bind_control_target()
2793 * called from pool_preresume().
2795 if (!pt
->adjusted_pf
.discard_enabled
)
2798 disable_passdown_if_not_supported(pt
);
2800 set_discard_limits(pt
, limits
);
2803 static struct target_type pool_target
= {
2804 .name
= "thin-pool",
2805 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
2806 DM_TARGET_IMMUTABLE
,
2807 .version
= {1, 4, 0},
2808 .module
= THIS_MODULE
,
2812 .postsuspend
= pool_postsuspend
,
2813 .preresume
= pool_preresume
,
2814 .resume
= pool_resume
,
2815 .message
= pool_message
,
2816 .status
= pool_status
,
2817 .merge
= pool_merge
,
2818 .iterate_devices
= pool_iterate_devices
,
2819 .io_hints
= pool_io_hints
,
2822 /*----------------------------------------------------------------
2823 * Thin target methods
2824 *--------------------------------------------------------------*/
2825 static void thin_dtr(struct dm_target
*ti
)
2827 struct thin_c
*tc
= ti
->private;
2829 mutex_lock(&dm_thin_pool_table
.mutex
);
2831 __pool_dec(tc
->pool
);
2832 dm_pool_close_thin_device(tc
->td
);
2833 dm_put_device(ti
, tc
->pool_dev
);
2835 dm_put_device(ti
, tc
->origin_dev
);
2838 mutex_unlock(&dm_thin_pool_table
.mutex
);
2842 * Thin target parameters:
2844 * <pool_dev> <dev_id> [origin_dev]
2846 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2847 * dev_id: the internal device identifier
2848 * origin_dev: a device external to the pool that should act as the origin
2850 * If the pool device has discards disabled, they get disabled for the thin
2853 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2857 struct dm_dev
*pool_dev
, *origin_dev
;
2858 struct mapped_device
*pool_md
;
2860 mutex_lock(&dm_thin_pool_table
.mutex
);
2862 if (argc
!= 2 && argc
!= 3) {
2863 ti
->error
= "Invalid argument count";
2868 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
2870 ti
->error
= "Out of memory";
2876 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
2878 ti
->error
= "Error opening origin device";
2879 goto bad_origin_dev
;
2881 tc
->origin_dev
= origin_dev
;
2884 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
2886 ti
->error
= "Error opening pool device";
2889 tc
->pool_dev
= pool_dev
;
2891 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
2892 ti
->error
= "Invalid device id";
2897 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
2899 ti
->error
= "Couldn't get pool mapped device";
2904 tc
->pool
= __pool_table_lookup(pool_md
);
2906 ti
->error
= "Couldn't find pool object";
2908 goto bad_pool_lookup
;
2910 __pool_inc(tc
->pool
);
2912 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2913 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
2917 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
2919 ti
->error
= "Couldn't open thin internal device";
2923 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
2927 ti
->num_flush_requests
= 1;
2928 ti
->flush_supported
= true;
2930 /* In case the pool supports discards, pass them on. */
2931 if (tc
->pool
->pf
.discard_enabled
) {
2932 ti
->discards_supported
= true;
2933 ti
->num_discard_requests
= 1;
2934 ti
->discard_zeroes_data_unsupported
= true;
2935 /* Discard requests must be split on a block boundary */
2936 ti
->split_discard_requests
= true;
2941 mutex_unlock(&dm_thin_pool_table
.mutex
);
2946 __pool_dec(tc
->pool
);
2950 dm_put_device(ti
, tc
->pool_dev
);
2953 dm_put_device(ti
, tc
->origin_dev
);
2957 mutex_unlock(&dm_thin_pool_table
.mutex
);
2962 static int thin_map(struct dm_target
*ti
, struct bio
*bio
,
2963 union map_info
*map_context
)
2965 bio
->bi_sector
= dm_target_offset(ti
, bio
->bi_sector
);
2967 return thin_bio_map(ti
, bio
, map_context
);
2970 static int thin_endio(struct dm_target
*ti
,
2971 struct bio
*bio
, int err
,
2972 union map_info
*map_context
)
2974 unsigned long flags
;
2975 struct dm_thin_endio_hook
*h
= map_context
->ptr
;
2976 struct list_head work
;
2977 struct dm_thin_new_mapping
*m
, *tmp
;
2978 struct pool
*pool
= h
->tc
->pool
;
2980 if (h
->shared_read_entry
) {
2981 INIT_LIST_HEAD(&work
);
2982 ds_dec(h
->shared_read_entry
, &work
);
2984 spin_lock_irqsave(&pool
->lock
, flags
);
2985 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
2988 __maybe_add_mapping(m
);
2990 spin_unlock_irqrestore(&pool
->lock
, flags
);
2993 if (h
->all_io_entry
) {
2994 INIT_LIST_HEAD(&work
);
2995 ds_dec(h
->all_io_entry
, &work
);
2996 spin_lock_irqsave(&pool
->lock
, flags
);
2997 list_for_each_entry_safe(m
, tmp
, &work
, list
)
2998 list_add(&m
->list
, &pool
->prepared_discards
);
2999 spin_unlock_irqrestore(&pool
->lock
, flags
);
3002 mempool_free(h
, pool
->endio_hook_pool
);
3007 static void thin_postsuspend(struct dm_target
*ti
)
3009 if (dm_noflush_suspending(ti
))
3010 requeue_io((struct thin_c
*)ti
->private);
3014 * <nr mapped sectors> <highest mapped sector>
3016 static int thin_status(struct dm_target
*ti
, status_type_t type
,
3017 unsigned status_flags
, char *result
, unsigned maxlen
)
3021 dm_block_t mapped
, highest
;
3022 char buf
[BDEVNAME_SIZE
];
3023 struct thin_c
*tc
= ti
->private;
3025 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
3034 case STATUSTYPE_INFO
:
3035 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
3039 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
3043 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
3045 DMEMIT("%llu", ((highest
+ 1) *
3046 tc
->pool
->sectors_per_block
) - 1);
3051 case STATUSTYPE_TABLE
:
3053 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
3054 (unsigned long) tc
->dev_id
);
3056 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
3064 static int thin_iterate_devices(struct dm_target
*ti
,
3065 iterate_devices_callout_fn fn
, void *data
)
3068 struct thin_c
*tc
= ti
->private;
3069 struct pool
*pool
= tc
->pool
;
3072 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3073 * we follow a more convoluted path through to the pool's target.
3076 return 0; /* nothing is bound */
3078 blocks
= pool
->ti
->len
;
3079 (void) sector_div(blocks
, pool
->sectors_per_block
);
3081 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
3087 * A thin device always inherits its queue limits from its pool.
3089 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3091 struct thin_c
*tc
= ti
->private;
3093 *limits
= bdev_get_queue(tc
->pool_dev
->bdev
)->limits
;
3096 static struct target_type thin_target
= {
3098 .version
= {1, 4, 0},
3099 .module
= THIS_MODULE
,
3103 .end_io
= thin_endio
,
3104 .postsuspend
= thin_postsuspend
,
3105 .status
= thin_status
,
3106 .iterate_devices
= thin_iterate_devices
,
3107 .io_hints
= thin_io_hints
,
3110 /*----------------------------------------------------------------*/
3112 static int __init
dm_thin_init(void)
3118 r
= dm_register_target(&thin_target
);
3122 r
= dm_register_target(&pool_target
);
3124 goto bad_pool_target
;
3128 _cell_cache
= KMEM_CACHE(dm_bio_prison_cell
, 0);
3130 goto bad_cell_cache
;
3132 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
3133 if (!_new_mapping_cache
)
3134 goto bad_new_mapping_cache
;
3136 _endio_hook_cache
= KMEM_CACHE(dm_thin_endio_hook
, 0);
3137 if (!_endio_hook_cache
)
3138 goto bad_endio_hook_cache
;
3142 bad_endio_hook_cache
:
3143 kmem_cache_destroy(_new_mapping_cache
);
3144 bad_new_mapping_cache
:
3145 kmem_cache_destroy(_cell_cache
);
3147 dm_unregister_target(&pool_target
);
3149 dm_unregister_target(&thin_target
);
3154 static void dm_thin_exit(void)
3156 dm_unregister_target(&thin_target
);
3157 dm_unregister_target(&pool_target
);
3159 kmem_cache_destroy(_cell_cache
);
3160 kmem_cache_destroy(_new_mapping_cache
);
3161 kmem_cache_destroy(_endio_hook_cache
);
3164 module_init(dm_thin_init
);
3165 module_exit(dm_thin_exit
);
3167 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
3168 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3169 MODULE_LICENSE("GPL");