3 * Library for filesystems writers.
6 #include <linux/export.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h> /* sync_mapping_buffers */
17 #include <asm/uaccess.h>
21 static inline int simple_positive(struct dentry
*dentry
)
23 return dentry
->d_inode
&& !d_unhashed(dentry
);
26 int simple_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
29 struct inode
*inode
= dentry
->d_inode
;
30 generic_fillattr(inode
, stat
);
31 stat
->blocks
= inode
->i_mapping
->nrpages
<< (PAGE_CACHE_SHIFT
- 9);
35 int simple_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
37 buf
->f_type
= dentry
->d_sb
->s_magic
;
38 buf
->f_bsize
= PAGE_CACHE_SIZE
;
39 buf
->f_namelen
= NAME_MAX
;
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
47 static int simple_delete_dentry(const struct dentry
*dentry
)
53 * Lookup the data. This is trivial - if the dentry didn't already
54 * exist, we know it is negative. Set d_op to delete negative dentries.
56 struct dentry
*simple_lookup(struct inode
*dir
, struct dentry
*dentry
, unsigned int flags
)
58 static const struct dentry_operations simple_dentry_operations
= {
59 .d_delete
= simple_delete_dentry
,
62 if (dentry
->d_name
.len
> NAME_MAX
)
63 return ERR_PTR(-ENAMETOOLONG
);
64 if (!dentry
->d_sb
->s_d_op
)
65 d_set_d_op(dentry
, &simple_dentry_operations
);
70 int dcache_dir_open(struct inode
*inode
, struct file
*file
)
72 static struct qstr cursor_name
= QSTR_INIT(".", 1);
74 file
->private_data
= d_alloc(file
->f_path
.dentry
, &cursor_name
);
76 return file
->private_data
? 0 : -ENOMEM
;
79 int dcache_dir_close(struct inode
*inode
, struct file
*file
)
81 dput(file
->private_data
);
85 loff_t
dcache_dir_lseek(struct file
*file
, loff_t offset
, int whence
)
87 struct dentry
*dentry
= file
->f_path
.dentry
;
88 mutex_lock(&dentry
->d_inode
->i_mutex
);
91 offset
+= file
->f_pos
;
96 mutex_unlock(&dentry
->d_inode
->i_mutex
);
99 if (offset
!= file
->f_pos
) {
100 file
->f_pos
= offset
;
101 if (file
->f_pos
>= 2) {
103 struct dentry
*cursor
= file
->private_data
;
104 loff_t n
= file
->f_pos
- 2;
106 spin_lock(&dentry
->d_lock
);
107 /* d_lock not required for cursor */
108 list_del(&cursor
->d_u
.d_child
);
109 p
= dentry
->d_subdirs
.next
;
110 while (n
&& p
!= &dentry
->d_subdirs
) {
112 next
= list_entry(p
, struct dentry
, d_u
.d_child
);
113 spin_lock_nested(&next
->d_lock
, DENTRY_D_LOCK_NESTED
);
114 if (simple_positive(next
))
116 spin_unlock(&next
->d_lock
);
119 list_add_tail(&cursor
->d_u
.d_child
, p
);
120 spin_unlock(&dentry
->d_lock
);
123 mutex_unlock(&dentry
->d_inode
->i_mutex
);
127 /* Relationship between i_mode and the DT_xxx types */
128 static inline unsigned char dt_type(struct inode
*inode
)
130 return (inode
->i_mode
>> 12) & 15;
134 * Directory is locked and all positive dentries in it are safe, since
135 * for ramfs-type trees they can't go away without unlink() or rmdir(),
136 * both impossible due to the lock on directory.
139 int dcache_readdir(struct file
*file
, struct dir_context
*ctx
)
141 struct dentry
*dentry
= file
->f_path
.dentry
;
142 struct dentry
*cursor
= file
->private_data
;
143 struct list_head
*p
, *q
= &cursor
->d_u
.d_child
;
145 if (!dir_emit_dots(file
, ctx
))
147 spin_lock(&dentry
->d_lock
);
149 list_move(q
, &dentry
->d_subdirs
);
151 for (p
= q
->next
; p
!= &dentry
->d_subdirs
; p
= p
->next
) {
152 struct dentry
*next
= list_entry(p
, struct dentry
, d_u
.d_child
);
153 spin_lock_nested(&next
->d_lock
, DENTRY_D_LOCK_NESTED
);
154 if (!simple_positive(next
)) {
155 spin_unlock(&next
->d_lock
);
159 spin_unlock(&next
->d_lock
);
160 spin_unlock(&dentry
->d_lock
);
161 if (!dir_emit(ctx
, next
->d_name
.name
, next
->d_name
.len
,
162 next
->d_inode
->i_ino
, dt_type(next
->d_inode
)))
164 spin_lock(&dentry
->d_lock
);
165 spin_lock_nested(&next
->d_lock
, DENTRY_D_LOCK_NESTED
);
166 /* next is still alive */
168 spin_unlock(&next
->d_lock
);
172 spin_unlock(&dentry
->d_lock
);
176 ssize_t
generic_read_dir(struct file
*filp
, char __user
*buf
, size_t siz
, loff_t
*ppos
)
181 const struct file_operations simple_dir_operations
= {
182 .open
= dcache_dir_open
,
183 .release
= dcache_dir_close
,
184 .llseek
= dcache_dir_lseek
,
185 .read
= generic_read_dir
,
186 .iterate
= dcache_readdir
,
190 const struct inode_operations simple_dir_inode_operations
= {
191 .lookup
= simple_lookup
,
194 static const struct super_operations simple_super_operations
= {
195 .statfs
= simple_statfs
,
199 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
200 * will never be mountable)
202 struct dentry
*mount_pseudo(struct file_system_type
*fs_type
, char *name
,
203 const struct super_operations
*ops
,
204 const struct dentry_operations
*dops
, unsigned long magic
)
206 struct super_block
*s
;
207 struct dentry
*dentry
;
209 struct qstr d_name
= QSTR_INIT(name
, strlen(name
));
211 s
= sget(fs_type
, NULL
, set_anon_super
, MS_NOUSER
, NULL
);
215 s
->s_maxbytes
= MAX_LFS_FILESIZE
;
216 s
->s_blocksize
= PAGE_SIZE
;
217 s
->s_blocksize_bits
= PAGE_SHIFT
;
219 s
->s_op
= ops
? ops
: &simple_super_operations
;
225 * since this is the first inode, make it number 1. New inodes created
226 * after this must take care not to collide with it (by passing
227 * max_reserved of 1 to iunique).
230 root
->i_mode
= S_IFDIR
| S_IRUSR
| S_IWUSR
;
231 root
->i_atime
= root
->i_mtime
= root
->i_ctime
= CURRENT_TIME
;
232 dentry
= __d_alloc(s
, &d_name
);
237 d_instantiate(dentry
, root
);
240 s
->s_flags
|= MS_ACTIVE
;
241 return dget(s
->s_root
);
244 deactivate_locked_super(s
);
245 return ERR_PTR(-ENOMEM
);
248 int simple_open(struct inode
*inode
, struct file
*file
)
250 if (inode
->i_private
)
251 file
->private_data
= inode
->i_private
;
255 int simple_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
257 struct inode
*inode
= old_dentry
->d_inode
;
259 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
263 d_instantiate(dentry
, inode
);
267 int simple_empty(struct dentry
*dentry
)
269 struct dentry
*child
;
272 spin_lock(&dentry
->d_lock
);
273 list_for_each_entry(child
, &dentry
->d_subdirs
, d_u
.d_child
) {
274 spin_lock_nested(&child
->d_lock
, DENTRY_D_LOCK_NESTED
);
275 if (simple_positive(child
)) {
276 spin_unlock(&child
->d_lock
);
279 spin_unlock(&child
->d_lock
);
283 spin_unlock(&dentry
->d_lock
);
287 int simple_unlink(struct inode
*dir
, struct dentry
*dentry
)
289 struct inode
*inode
= dentry
->d_inode
;
291 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
297 int simple_rmdir(struct inode
*dir
, struct dentry
*dentry
)
299 if (!simple_empty(dentry
))
302 drop_nlink(dentry
->d_inode
);
303 simple_unlink(dir
, dentry
);
308 int simple_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
309 struct inode
*new_dir
, struct dentry
*new_dentry
)
311 struct inode
*inode
= old_dentry
->d_inode
;
312 int they_are_dirs
= S_ISDIR(old_dentry
->d_inode
->i_mode
);
314 if (!simple_empty(new_dentry
))
317 if (new_dentry
->d_inode
) {
318 simple_unlink(new_dir
, new_dentry
);
320 drop_nlink(new_dentry
->d_inode
);
323 } else if (they_are_dirs
) {
328 old_dir
->i_ctime
= old_dir
->i_mtime
= new_dir
->i_ctime
=
329 new_dir
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
335 * simple_setattr - setattr for simple filesystem
337 * @iattr: iattr structure
339 * Returns 0 on success, -error on failure.
341 * simple_setattr is a simple ->setattr implementation without a proper
342 * implementation of size changes.
344 * It can either be used for in-memory filesystems or special files
345 * on simple regular filesystems. Anything that needs to change on-disk
346 * or wire state on size changes needs its own setattr method.
348 int simple_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
350 struct inode
*inode
= dentry
->d_inode
;
353 error
= inode_change_ok(inode
, iattr
);
357 if (iattr
->ia_valid
& ATTR_SIZE
)
358 truncate_setsize(inode
, iattr
->ia_size
);
359 setattr_copy(inode
, iattr
);
360 mark_inode_dirty(inode
);
363 EXPORT_SYMBOL(simple_setattr
);
365 int simple_readpage(struct file
*file
, struct page
*page
)
367 clear_highpage(page
);
368 flush_dcache_page(page
);
369 SetPageUptodate(page
);
374 int simple_write_begin(struct file
*file
, struct address_space
*mapping
,
375 loff_t pos
, unsigned len
, unsigned flags
,
376 struct page
**pagep
, void **fsdata
)
381 index
= pos
>> PAGE_CACHE_SHIFT
;
383 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
389 if (!PageUptodate(page
) && (len
!= PAGE_CACHE_SIZE
)) {
390 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
392 zero_user_segments(page
, 0, from
, from
+ len
, PAGE_CACHE_SIZE
);
398 * simple_write_end - .write_end helper for non-block-device FSes
399 * @available: See .write_end of address_space_operations
408 * simple_write_end does the minimum needed for updating a page after writing is
409 * done. It has the same API signature as the .write_end of
410 * address_space_operations vector. So it can just be set onto .write_end for
411 * FSes that don't need any other processing. i_mutex is assumed to be held.
412 * Block based filesystems should use generic_write_end().
413 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
414 * is not called, so a filesystem that actually does store data in .write_inode
415 * should extend on what's done here with a call to mark_inode_dirty() in the
416 * case that i_size has changed.
418 int simple_write_end(struct file
*file
, struct address_space
*mapping
,
419 loff_t pos
, unsigned len
, unsigned copied
,
420 struct page
*page
, void *fsdata
)
422 struct inode
*inode
= page
->mapping
->host
;
423 loff_t last_pos
= pos
+ copied
;
425 /* zero the stale part of the page if we did a short copy */
427 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
429 zero_user(page
, from
+ copied
, len
- copied
);
432 if (!PageUptodate(page
))
433 SetPageUptodate(page
);
435 * No need to use i_size_read() here, the i_size
436 * cannot change under us because we hold the i_mutex.
438 if (last_pos
> inode
->i_size
)
439 i_size_write(inode
, last_pos
);
441 set_page_dirty(page
);
443 page_cache_release(page
);
449 * the inodes created here are not hashed. If you use iunique to generate
450 * unique inode values later for this filesystem, then you must take care
451 * to pass it an appropriate max_reserved value to avoid collisions.
453 int simple_fill_super(struct super_block
*s
, unsigned long magic
,
454 struct tree_descr
*files
)
458 struct dentry
*dentry
;
461 s
->s_blocksize
= PAGE_CACHE_SIZE
;
462 s
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
464 s
->s_op
= &simple_super_operations
;
467 inode
= new_inode(s
);
471 * because the root inode is 1, the files array must not contain an
475 inode
->i_mode
= S_IFDIR
| 0755;
476 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
477 inode
->i_op
= &simple_dir_inode_operations
;
478 inode
->i_fop
= &simple_dir_operations
;
480 root
= d_make_root(inode
);
483 for (i
= 0; !files
->name
|| files
->name
[0]; i
++, files
++) {
487 /* warn if it tries to conflict with the root inode */
488 if (unlikely(i
== 1))
489 printk(KERN_WARNING
"%s: %s passed in a files array"
490 "with an index of 1!\n", __func__
,
493 dentry
= d_alloc_name(root
, files
->name
);
496 inode
= new_inode(s
);
501 inode
->i_mode
= S_IFREG
| files
->mode
;
502 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
503 inode
->i_fop
= files
->ops
;
505 d_add(dentry
, inode
);
511 shrink_dcache_parent(root
);
516 static DEFINE_SPINLOCK(pin_fs_lock
);
518 int simple_pin_fs(struct file_system_type
*type
, struct vfsmount
**mount
, int *count
)
520 struct vfsmount
*mnt
= NULL
;
521 spin_lock(&pin_fs_lock
);
522 if (unlikely(!*mount
)) {
523 spin_unlock(&pin_fs_lock
);
524 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, NULL
);
527 spin_lock(&pin_fs_lock
);
533 spin_unlock(&pin_fs_lock
);
538 void simple_release_fs(struct vfsmount
**mount
, int *count
)
540 struct vfsmount
*mnt
;
541 spin_lock(&pin_fs_lock
);
545 spin_unlock(&pin_fs_lock
);
550 * simple_read_from_buffer - copy data from the buffer to user space
551 * @to: the user space buffer to read to
552 * @count: the maximum number of bytes to read
553 * @ppos: the current position in the buffer
554 * @from: the buffer to read from
555 * @available: the size of the buffer
557 * The simple_read_from_buffer() function reads up to @count bytes from the
558 * buffer @from at offset @ppos into the user space address starting at @to.
560 * On success, the number of bytes read is returned and the offset @ppos is
561 * advanced by this number, or negative value is returned on error.
563 ssize_t
simple_read_from_buffer(void __user
*to
, size_t count
, loff_t
*ppos
,
564 const void *from
, size_t available
)
571 if (pos
>= available
|| !count
)
573 if (count
> available
- pos
)
574 count
= available
- pos
;
575 ret
= copy_to_user(to
, from
+ pos
, count
);
584 * simple_write_to_buffer - copy data from user space to the buffer
585 * @to: the buffer to write to
586 * @available: the size of the buffer
587 * @ppos: the current position in the buffer
588 * @from: the user space buffer to read from
589 * @count: the maximum number of bytes to read
591 * The simple_write_to_buffer() function reads up to @count bytes from the user
592 * space address starting at @from into the buffer @to at offset @ppos.
594 * On success, the number of bytes written is returned and the offset @ppos is
595 * advanced by this number, or negative value is returned on error.
597 ssize_t
simple_write_to_buffer(void *to
, size_t available
, loff_t
*ppos
,
598 const void __user
*from
, size_t count
)
605 if (pos
>= available
|| !count
)
607 if (count
> available
- pos
)
608 count
= available
- pos
;
609 res
= copy_from_user(to
+ pos
, from
, count
);
618 * memory_read_from_buffer - copy data from the buffer
619 * @to: the kernel space buffer to read to
620 * @count: the maximum number of bytes to read
621 * @ppos: the current position in the buffer
622 * @from: the buffer to read from
623 * @available: the size of the buffer
625 * The memory_read_from_buffer() function reads up to @count bytes from the
626 * buffer @from at offset @ppos into the kernel space address starting at @to.
628 * On success, the number of bytes read is returned and the offset @ppos is
629 * advanced by this number, or negative value is returned on error.
631 ssize_t
memory_read_from_buffer(void *to
, size_t count
, loff_t
*ppos
,
632 const void *from
, size_t available
)
638 if (pos
>= available
)
640 if (count
> available
- pos
)
641 count
= available
- pos
;
642 memcpy(to
, from
+ pos
, count
);
649 * Transaction based IO.
650 * The file expects a single write which triggers the transaction, and then
651 * possibly a read which collects the result - which is stored in a
655 void simple_transaction_set(struct file
*file
, size_t n
)
657 struct simple_transaction_argresp
*ar
= file
->private_data
;
659 BUG_ON(n
> SIMPLE_TRANSACTION_LIMIT
);
662 * The barrier ensures that ar->size will really remain zero until
663 * ar->data is ready for reading.
669 char *simple_transaction_get(struct file
*file
, const char __user
*buf
, size_t size
)
671 struct simple_transaction_argresp
*ar
;
672 static DEFINE_SPINLOCK(simple_transaction_lock
);
674 if (size
> SIMPLE_TRANSACTION_LIMIT
- 1)
675 return ERR_PTR(-EFBIG
);
677 ar
= (struct simple_transaction_argresp
*)get_zeroed_page(GFP_KERNEL
);
679 return ERR_PTR(-ENOMEM
);
681 spin_lock(&simple_transaction_lock
);
683 /* only one write allowed per open */
684 if (file
->private_data
) {
685 spin_unlock(&simple_transaction_lock
);
686 free_page((unsigned long)ar
);
687 return ERR_PTR(-EBUSY
);
690 file
->private_data
= ar
;
692 spin_unlock(&simple_transaction_lock
);
694 if (copy_from_user(ar
->data
, buf
, size
))
695 return ERR_PTR(-EFAULT
);
700 ssize_t
simple_transaction_read(struct file
*file
, char __user
*buf
, size_t size
, loff_t
*pos
)
702 struct simple_transaction_argresp
*ar
= file
->private_data
;
706 return simple_read_from_buffer(buf
, size
, pos
, ar
->data
, ar
->size
);
709 int simple_transaction_release(struct inode
*inode
, struct file
*file
)
711 free_page((unsigned long)file
->private_data
);
715 /* Simple attribute files */
718 int (*get
)(void *, u64
*);
719 int (*set
)(void *, u64
);
720 char get_buf
[24]; /* enough to store a u64 and "\n\0" */
723 const char *fmt
; /* format for read operation */
724 struct mutex mutex
; /* protects access to these buffers */
727 /* simple_attr_open is called by an actual attribute open file operation
728 * to set the attribute specific access operations. */
729 int simple_attr_open(struct inode
*inode
, struct file
*file
,
730 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
733 struct simple_attr
*attr
;
735 attr
= kmalloc(sizeof(*attr
), GFP_KERNEL
);
741 attr
->data
= inode
->i_private
;
743 mutex_init(&attr
->mutex
);
745 file
->private_data
= attr
;
747 return nonseekable_open(inode
, file
);
750 int simple_attr_release(struct inode
*inode
, struct file
*file
)
752 kfree(file
->private_data
);
756 /* read from the buffer that is filled with the get function */
757 ssize_t
simple_attr_read(struct file
*file
, char __user
*buf
,
758 size_t len
, loff_t
*ppos
)
760 struct simple_attr
*attr
;
764 attr
= file
->private_data
;
769 ret
= mutex_lock_interruptible(&attr
->mutex
);
773 if (*ppos
) { /* continued read */
774 size
= strlen(attr
->get_buf
);
775 } else { /* first read */
777 ret
= attr
->get(attr
->data
, &val
);
781 size
= scnprintf(attr
->get_buf
, sizeof(attr
->get_buf
),
782 attr
->fmt
, (unsigned long long)val
);
785 ret
= simple_read_from_buffer(buf
, len
, ppos
, attr
->get_buf
, size
);
787 mutex_unlock(&attr
->mutex
);
791 /* interpret the buffer as a number to call the set function with */
792 ssize_t
simple_attr_write(struct file
*file
, const char __user
*buf
,
793 size_t len
, loff_t
*ppos
)
795 struct simple_attr
*attr
;
800 attr
= file
->private_data
;
804 ret
= mutex_lock_interruptible(&attr
->mutex
);
809 size
= min(sizeof(attr
->set_buf
) - 1, len
);
810 if (copy_from_user(attr
->set_buf
, buf
, size
))
813 attr
->set_buf
[size
] = '\0';
814 val
= simple_strtoll(attr
->set_buf
, NULL
, 0);
815 ret
= attr
->set(attr
->data
, val
);
817 ret
= len
; /* on success, claim we got the whole input */
819 mutex_unlock(&attr
->mutex
);
824 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
825 * @sb: filesystem to do the file handle conversion on
826 * @fid: file handle to convert
827 * @fh_len: length of the file handle in bytes
828 * @fh_type: type of file handle
829 * @get_inode: filesystem callback to retrieve inode
831 * This function decodes @fid as long as it has one of the well-known
832 * Linux filehandle types and calls @get_inode on it to retrieve the
833 * inode for the object specified in the file handle.
835 struct dentry
*generic_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
836 int fh_len
, int fh_type
, struct inode
*(*get_inode
)
837 (struct super_block
*sb
, u64 ino
, u32 gen
))
839 struct inode
*inode
= NULL
;
845 case FILEID_INO32_GEN
:
846 case FILEID_INO32_GEN_PARENT
:
847 inode
= get_inode(sb
, fid
->i32
.ino
, fid
->i32
.gen
);
851 return d_obtain_alias(inode
);
853 EXPORT_SYMBOL_GPL(generic_fh_to_dentry
);
856 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
857 * @sb: filesystem to do the file handle conversion on
858 * @fid: file handle to convert
859 * @fh_len: length of the file handle in bytes
860 * @fh_type: type of file handle
861 * @get_inode: filesystem callback to retrieve inode
863 * This function decodes @fid as long as it has one of the well-known
864 * Linux filehandle types and calls @get_inode on it to retrieve the
865 * inode for the _parent_ object specified in the file handle if it
866 * is specified in the file handle, or NULL otherwise.
868 struct dentry
*generic_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
869 int fh_len
, int fh_type
, struct inode
*(*get_inode
)
870 (struct super_block
*sb
, u64 ino
, u32 gen
))
872 struct inode
*inode
= NULL
;
878 case FILEID_INO32_GEN_PARENT
:
879 inode
= get_inode(sb
, fid
->i32
.parent_ino
,
880 (fh_len
> 3 ? fid
->i32
.parent_gen
: 0));
884 return d_obtain_alias(inode
);
886 EXPORT_SYMBOL_GPL(generic_fh_to_parent
);
889 * generic_file_fsync - generic fsync implementation for simple filesystems
890 * @file: file to synchronize
891 * @datasync: only synchronize essential metadata if true
893 * This is a generic implementation of the fsync method for simple
894 * filesystems which track all non-inode metadata in the buffers list
895 * hanging off the address_space structure.
897 int generic_file_fsync(struct file
*file
, loff_t start
, loff_t end
,
900 struct inode
*inode
= file
->f_mapping
->host
;
904 err
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
908 mutex_lock(&inode
->i_mutex
);
909 ret
= sync_mapping_buffers(inode
->i_mapping
);
910 if (!(inode
->i_state
& I_DIRTY
))
912 if (datasync
&& !(inode
->i_state
& I_DIRTY_DATASYNC
))
915 err
= sync_inode_metadata(inode
, 1);
919 mutex_unlock(&inode
->i_mutex
);
922 EXPORT_SYMBOL(generic_file_fsync
);
925 * generic_check_addressable - Check addressability of file system
926 * @blocksize_bits: log of file system block size
927 * @num_blocks: number of blocks in file system
929 * Determine whether a file system with @num_blocks blocks (and a
930 * block size of 2**@blocksize_bits) is addressable by the sector_t
931 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
933 int generic_check_addressable(unsigned blocksize_bits
, u64 num_blocks
)
935 u64 last_fs_block
= num_blocks
- 1;
937 last_fs_block
>> (PAGE_CACHE_SHIFT
- blocksize_bits
);
939 if (unlikely(num_blocks
== 0))
942 if ((blocksize_bits
< 9) || (blocksize_bits
> PAGE_CACHE_SHIFT
))
945 if ((last_fs_block
> (sector_t
)(~0ULL) >> (blocksize_bits
- 9)) ||
946 (last_fs_page
> (pgoff_t
)(~0ULL))) {
951 EXPORT_SYMBOL(generic_check_addressable
);
954 * No-op implementation of ->fsync for in-memory filesystems.
956 int noop_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
961 EXPORT_SYMBOL(dcache_dir_close
);
962 EXPORT_SYMBOL(dcache_dir_lseek
);
963 EXPORT_SYMBOL(dcache_dir_open
);
964 EXPORT_SYMBOL(dcache_readdir
);
965 EXPORT_SYMBOL(generic_read_dir
);
966 EXPORT_SYMBOL(mount_pseudo
);
967 EXPORT_SYMBOL(simple_write_begin
);
968 EXPORT_SYMBOL(simple_write_end
);
969 EXPORT_SYMBOL(simple_dir_inode_operations
);
970 EXPORT_SYMBOL(simple_dir_operations
);
971 EXPORT_SYMBOL(simple_empty
);
972 EXPORT_SYMBOL(simple_fill_super
);
973 EXPORT_SYMBOL(simple_getattr
);
974 EXPORT_SYMBOL(simple_open
);
975 EXPORT_SYMBOL(simple_link
);
976 EXPORT_SYMBOL(simple_lookup
);
977 EXPORT_SYMBOL(simple_pin_fs
);
978 EXPORT_SYMBOL(simple_readpage
);
979 EXPORT_SYMBOL(simple_release_fs
);
980 EXPORT_SYMBOL(simple_rename
);
981 EXPORT_SYMBOL(simple_rmdir
);
982 EXPORT_SYMBOL(simple_statfs
);
983 EXPORT_SYMBOL(noop_fsync
);
984 EXPORT_SYMBOL(simple_unlink
);
985 EXPORT_SYMBOL(simple_read_from_buffer
);
986 EXPORT_SYMBOL(simple_write_to_buffer
);
987 EXPORT_SYMBOL(memory_read_from_buffer
);
988 EXPORT_SYMBOL(simple_transaction_set
);
989 EXPORT_SYMBOL(simple_transaction_get
);
990 EXPORT_SYMBOL(simple_transaction_read
);
991 EXPORT_SYMBOL(simple_transaction_release
);
992 EXPORT_SYMBOL_GPL(simple_attr_open
);
993 EXPORT_SYMBOL_GPL(simple_attr_release
);
994 EXPORT_SYMBOL_GPL(simple_attr_read
);
995 EXPORT_SYMBOL_GPL(simple_attr_write
);