staging: octeon-usb: cvmx_usb_stage_t -> enum cvmx_usb_stage
[linux-2.6.git] / Documentation / pinctrl.txt
blob052e13af2d38d682e975e33e2dc3723c4307f327
1 PINCTRL (PIN CONTROL) subsystem
2 This document outlines the pin control subsystem in Linux
4 This subsystem deals with:
6 - Enumerating and naming controllable pins
8 - Multiplexing of pins, pads, fingers (etc) see below for details
10 - Configuration of pins, pads, fingers (etc), such as software-controlled
11   biasing and driving mode specific pins, such as pull-up/down, open drain,
12   load capacitance etc.
14 Top-level interface
15 ===================
17 Definition of PIN CONTROLLER:
19 - A pin controller is a piece of hardware, usually a set of registers, that
20   can control PINs. It may be able to multiplex, bias, set load capacitance,
21   set drive strength etc for individual pins or groups of pins.
23 Definition of PIN:
25 - PINS are equal to pads, fingers, balls or whatever packaging input or
26   output line you want to control and these are denoted by unsigned integers
27   in the range 0..maxpin. This numberspace is local to each PIN CONTROLLER, so
28   there may be several such number spaces in a system. This pin space may
29   be sparse - i.e. there may be gaps in the space with numbers where no
30   pin exists.
32 When a PIN CONTROLLER is instantiated, it will register a descriptor to the
33 pin control framework, and this descriptor contains an array of pin descriptors
34 describing the pins handled by this specific pin controller.
36 Here is an example of a PGA (Pin Grid Array) chip seen from underneath:
38         A   B   C   D   E   F   G   H
40    8    o   o   o   o   o   o   o   o
42    7    o   o   o   o   o   o   o   o
44    6    o   o   o   o   o   o   o   o
46    5    o   o   o   o   o   o   o   o
48    4    o   o   o   o   o   o   o   o
50    3    o   o   o   o   o   o   o   o
52    2    o   o   o   o   o   o   o   o
54    1    o   o   o   o   o   o   o   o
56 To register a pin controller and name all the pins on this package we can do
57 this in our driver:
59 #include <linux/pinctrl/pinctrl.h>
61 const struct pinctrl_pin_desc foo_pins[] = {
62       PINCTRL_PIN(0, "A8"),
63       PINCTRL_PIN(1, "B8"),
64       PINCTRL_PIN(2, "C8"),
65       ...
66       PINCTRL_PIN(61, "F1"),
67       PINCTRL_PIN(62, "G1"),
68       PINCTRL_PIN(63, "H1"),
71 static struct pinctrl_desc foo_desc = {
72         .name = "foo",
73         .pins = foo_pins,
74         .npins = ARRAY_SIZE(foo_pins),
75         .maxpin = 63,
76         .owner = THIS_MODULE,
79 int __init foo_probe(void)
81         struct pinctrl_dev *pctl;
83         pctl = pinctrl_register(&foo_desc, <PARENT>, NULL);
84         if (IS_ERR(pctl))
85                 pr_err("could not register foo pin driver\n");
88 To enable the pinctrl subsystem and the subgroups for PINMUX and PINCONF and
89 selected drivers, you need to select them from your machine's Kconfig entry,
90 since these are so tightly integrated with the machines they are used on.
91 See for example arch/arm/mach-u300/Kconfig for an example.
93 Pins usually have fancier names than this. You can find these in the dataheet
94 for your chip. Notice that the core pinctrl.h file provides a fancy macro
95 called PINCTRL_PIN() to create the struct entries. As you can see I enumerated
96 the pins from 0 in the upper left corner to 63 in the lower right corner.
97 This enumeration was arbitrarily chosen, in practice you need to think
98 through your numbering system so that it matches the layout of registers
99 and such things in your driver, or the code may become complicated. You must
100 also consider matching of offsets to the GPIO ranges that may be handled by
101 the pin controller.
103 For a padring with 467 pads, as opposed to actual pins, I used an enumeration
104 like this, walking around the edge of the chip, which seems to be industry
105 standard too (all these pads had names, too):
108      0 ..... 104
109    466        105
110      .        .
111      .        .
112    358        224
113     357 .... 225
116 Pin groups
117 ==========
119 Many controllers need to deal with groups of pins, so the pin controller
120 subsystem has a mechanism for enumerating groups of pins and retrieving the
121 actual enumerated pins that are part of a certain group.
123 For example, say that we have a group of pins dealing with an SPI interface
124 on { 0, 8, 16, 24 }, and a group of pins dealing with an I2C interface on pins
125 on { 24, 25 }.
127 These two groups are presented to the pin control subsystem by implementing
128 some generic pinctrl_ops like this:
130 #include <linux/pinctrl/pinctrl.h>
132 struct foo_group {
133         const char *name;
134         const unsigned int *pins;
135         const unsigned num_pins;
138 static const unsigned int spi0_pins[] = { 0, 8, 16, 24 };
139 static const unsigned int i2c0_pins[] = { 24, 25 };
141 static const struct foo_group foo_groups[] = {
142         {
143                 .name = "spi0_grp",
144                 .pins = spi0_pins,
145                 .num_pins = ARRAY_SIZE(spi0_pins),
146         },
147         {
148                 .name = "i2c0_grp",
149                 .pins = i2c0_pins,
150                 .num_pins = ARRAY_SIZE(i2c0_pins),
151         },
155 static int foo_get_groups_count(struct pinctrl_dev *pctldev)
157         return ARRAY_SIZE(foo_groups);
160 static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
161                                        unsigned selector)
163         return foo_groups[selector].name;
166 static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
167                                unsigned ** const pins,
168                                unsigned * const num_pins)
170         *pins = (unsigned *) foo_groups[selector].pins;
171         *num_pins = foo_groups[selector].num_pins;
172         return 0;
175 static struct pinctrl_ops foo_pctrl_ops = {
176         .get_groups_count = foo_get_groups_count,
177         .get_group_name = foo_get_group_name,
178         .get_group_pins = foo_get_group_pins,
182 static struct pinctrl_desc foo_desc = {
183        ...
184        .pctlops = &foo_pctrl_ops,
187 The pin control subsystem will call the .get_groups_count() function to
188 determine total number of legal selectors, then it will call the other functions
189 to retrieve the name and pins of the group. Maintaining the data structure of
190 the groups is up to the driver, this is just a simple example - in practice you
191 may need more entries in your group structure, for example specific register
192 ranges associated with each group and so on.
195 Pin configuration
196 =================
198 Pins can sometimes be software-configured in an various ways, mostly related
199 to their electronic properties when used as inputs or outputs. For example you
200 may be able to make an output pin high impedance, or "tristate" meaning it is
201 effectively disconnected. You may be able to connect an input pin to VDD or GND
202 using a certain resistor value - pull up and pull down - so that the pin has a
203 stable value when nothing is driving the rail it is connected to, or when it's
204 unconnected.
206 Pin configuration can be programmed by adding configuration entries into the
207 mapping table; see section "Board/machine configuration" below.
209 The format and meaning of the configuration parameter, PLATFORM_X_PULL_UP
210 above, is entirely defined by the pin controller driver.
212 The pin configuration driver implements callbacks for changing pin
213 configuration in the pin controller ops like this:
215 #include <linux/pinctrl/pinctrl.h>
216 #include <linux/pinctrl/pinconf.h>
217 #include "platform_x_pindefs.h"
219 static int foo_pin_config_get(struct pinctrl_dev *pctldev,
220                     unsigned offset,
221                     unsigned long *config)
223         struct my_conftype conf;
225         ... Find setting for pin @ offset ...
227         *config = (unsigned long) conf;
230 static int foo_pin_config_set(struct pinctrl_dev *pctldev,
231                     unsigned offset,
232                     unsigned long config)
234         struct my_conftype *conf = (struct my_conftype *) config;
236         switch (conf) {
237                 case PLATFORM_X_PULL_UP:
238                 ...
239                 }
240         }
243 static int foo_pin_config_group_get (struct pinctrl_dev *pctldev,
244                     unsigned selector,
245                     unsigned long *config)
247         ...
250 static int foo_pin_config_group_set (struct pinctrl_dev *pctldev,
251                     unsigned selector,
252                     unsigned long config)
254         ...
257 static struct pinconf_ops foo_pconf_ops = {
258         .pin_config_get = foo_pin_config_get,
259         .pin_config_set = foo_pin_config_set,
260         .pin_config_group_get = foo_pin_config_group_get,
261         .pin_config_group_set = foo_pin_config_group_set,
264 /* Pin config operations are handled by some pin controller */
265 static struct pinctrl_desc foo_desc = {
266         ...
267         .confops = &foo_pconf_ops,
270 Since some controllers have special logic for handling entire groups of pins
271 they can exploit the special whole-group pin control function. The
272 pin_config_group_set() callback is allowed to return the error code -EAGAIN,
273 for groups it does not want to handle, or if it just wants to do some
274 group-level handling and then fall through to iterate over all pins, in which
275 case each individual pin will be treated by separate pin_config_set() calls as
276 well.
279 Interaction with the GPIO subsystem
280 ===================================
282 The GPIO drivers may want to perform operations of various types on the same
283 physical pins that are also registered as pin controller pins.
285 First and foremost, the two subsystems can be used as completely orthogonal,
286 see the section named "pin control requests from drivers" and
287 "drivers needing both pin control and GPIOs" below for details. But in some
288 situations a cross-subsystem mapping between pins and GPIOs is needed.
290 Since the pin controller subsystem have its pinspace local to the pin
291 controller we need a mapping so that the pin control subsystem can figure out
292 which pin controller handles control of a certain GPIO pin. Since a single
293 pin controller may be muxing several GPIO ranges (typically SoCs that have
294 one set of pins but internally several GPIO silicon blocks, each modelled as
295 a struct gpio_chip) any number of GPIO ranges can be added to a pin controller
296 instance like this:
298 struct gpio_chip chip_a;
299 struct gpio_chip chip_b;
301 static struct pinctrl_gpio_range gpio_range_a = {
302         .name = "chip a",
303         .id = 0,
304         .base = 32,
305         .pin_base = 32,
306         .npins = 16,
307         .gc = &chip_a;
310 static struct pinctrl_gpio_range gpio_range_b = {
311         .name = "chip b",
312         .id = 0,
313         .base = 48,
314         .pin_base = 64,
315         .npins = 8,
316         .gc = &chip_b;
320         struct pinctrl_dev *pctl;
321         ...
322         pinctrl_add_gpio_range(pctl, &gpio_range_a);
323         pinctrl_add_gpio_range(pctl, &gpio_range_b);
326 So this complex system has one pin controller handling two different
327 GPIO chips. "chip a" has 16 pins and "chip b" has 8 pins. The "chip a" and
328 "chip b" have different .pin_base, which means a start pin number of the
329 GPIO range.
331 The GPIO range of "chip a" starts from the GPIO base of 32 and actual
332 pin range also starts from 32. However "chip b" has different starting
333 offset for the GPIO range and pin range. The GPIO range of "chip b" starts
334 from GPIO number 48, while the pin range of "chip b" starts from 64.
336 We can convert a gpio number to actual pin number using this "pin_base".
337 They are mapped in the global GPIO pin space at:
339 chip a:
340  - GPIO range : [32 .. 47]
341  - pin range  : [32 .. 47]
342 chip b:
343  - GPIO range : [48 .. 55]
344  - pin range  : [64 .. 71]
346 The above examples assume the mapping between the GPIOs and pins is
347 linear. If the mapping is sparse or haphazard, an array of arbitrary pin
348 numbers can be encoded in the range like this:
350 static const unsigned range_pins[] = { 14, 1, 22, 17, 10, 8, 6, 2 };
352 static struct pinctrl_gpio_range gpio_range = {
353         .name = "chip",
354         .id = 0,
355         .base = 32,
356         .pins = &range_pins,
357         .npins = ARRAY_SIZE(range_pins),
358         .gc = &chip;
361 In this case the pin_base property will be ignored.
363 When GPIO-specific functions in the pin control subsystem are called, these
364 ranges will be used to look up the appropriate pin controller by inspecting
365 and matching the pin to the pin ranges across all controllers. When a
366 pin controller handling the matching range is found, GPIO-specific functions
367 will be called on that specific pin controller.
369 For all functionalities dealing with pin biasing, pin muxing etc, the pin
370 controller subsystem will look up the corresponding pin number from the passed
371 in gpio number, and use the range's internals to retrive a pin number. After
372 that, the subsystem passes it on to the pin control driver, so the driver
373 will get an pin number into its handled number range. Further it is also passed
374 the range ID value, so that the pin controller knows which range it should
375 deal with.
377 Calling pinctrl_add_gpio_range from pinctrl driver is DEPRECATED. Please see
378 section 2.1 of Documentation/devicetree/bindings/gpio/gpio.txt on how to bind
379 pinctrl and gpio drivers.
382 PINMUX interfaces
383 =================
385 These calls use the pinmux_* naming prefix.  No other calls should use that
386 prefix.
389 What is pinmuxing?
390 ==================
392 PINMUX, also known as padmux, ballmux, alternate functions or mission modes
393 is a way for chip vendors producing some kind of electrical packages to use
394 a certain physical pin (ball, pad, finger, etc) for multiple mutually exclusive
395 functions, depending on the application. By "application" in this context
396 we usually mean a way of soldering or wiring the package into an electronic
397 system, even though the framework makes it possible to also change the function
398 at runtime.
400 Here is an example of a PGA (Pin Grid Array) chip seen from underneath:
402         A   B   C   D   E   F   G   H
403       +---+
404    8  | o | o   o   o   o   o   o   o
405       |   |
406    7  | o | o   o   o   o   o   o   o
407       |   |
408    6  | o | o   o   o   o   o   o   o
409       +---+---+
410    5  | o | o | o   o   o   o   o   o
411       +---+---+               +---+
412    4    o   o   o   o   o   o | o | o
413                               |   |
414    3    o   o   o   o   o   o | o | o
415                               |   |
416    2    o   o   o   o   o   o | o | o
417       +-------+-------+-------+---+---+
418    1  | o   o | o   o | o   o | o | o |
419       +-------+-------+-------+---+---+
421 This is not tetris. The game to think of is chess. Not all PGA/BGA packages
422 are chessboard-like, big ones have "holes" in some arrangement according to
423 different design patterns, but we're using this as a simple example. Of the
424 pins you see some will be taken by things like a few VCC and GND to feed power
425 to the chip, and quite a few will be taken by large ports like an external
426 memory interface. The remaining pins will often be subject to pin multiplexing.
428 The example 8x8 PGA package above will have pin numbers 0 thru 63 assigned to
429 its physical pins. It will name the pins { A1, A2, A3 ... H6, H7, H8 } using
430 pinctrl_register_pins() and a suitable data set as shown earlier.
432 In this 8x8 BGA package the pins { A8, A7, A6, A5 } can be used as an SPI port
433 (these are four pins: CLK, RXD, TXD, FRM). In that case, pin B5 can be used as
434 some general-purpose GPIO pin. However, in another setting, pins { A5, B5 } can
435 be used as an I2C port (these are just two pins: SCL, SDA). Needless to say,
436 we cannot use the SPI port and I2C port at the same time. However in the inside
437 of the package the silicon performing the SPI logic can alternatively be routed
438 out on pins { G4, G3, G2, G1 }.
440 On the botton row at { A1, B1, C1, D1, E1, F1, G1, H1 } we have something
441 special - it's an external MMC bus that can be 2, 4 or 8 bits wide, and it will
442 consume 2, 4 or 8 pins respectively, so either { A1, B1 } are taken or
443 { A1, B1, C1, D1 } or all of them. If we use all 8 bits, we cannot use the SPI
444 port on pins { G4, G3, G2, G1 } of course.
446 This way the silicon blocks present inside the chip can be multiplexed "muxed"
447 out on different pin ranges. Often contemporary SoC (systems on chip) will
448 contain several I2C, SPI, SDIO/MMC, etc silicon blocks that can be routed to
449 different pins by pinmux settings.
451 Since general-purpose I/O pins (GPIO) are typically always in shortage, it is
452 common to be able to use almost any pin as a GPIO pin if it is not currently
453 in use by some other I/O port.
456 Pinmux conventions
457 ==================
459 The purpose of the pinmux functionality in the pin controller subsystem is to
460 abstract and provide pinmux settings to the devices you choose to instantiate
461 in your machine configuration. It is inspired by the clk, GPIO and regulator
462 subsystems, so devices will request their mux setting, but it's also possible
463 to request a single pin for e.g. GPIO.
465 Definitions:
467 - FUNCTIONS can be switched in and out by a driver residing with the pin
468   control subsystem in the drivers/pinctrl/* directory of the kernel. The
469   pin control driver knows the possible functions. In the example above you can
470   identify three pinmux functions, one for spi, one for i2c and one for mmc.
472 - FUNCTIONS are assumed to be enumerable from zero in a one-dimensional array.
473   In this case the array could be something like: { spi0, i2c0, mmc0 }
474   for the three available functions.
476 - FUNCTIONS have PIN GROUPS as defined on the generic level - so a certain
477   function is *always* associated with a certain set of pin groups, could
478   be just a single one, but could also be many. In the example above the
479   function i2c is associated with the pins { A5, B5 }, enumerated as
480   { 24, 25 } in the controller pin space.
482   The Function spi is associated with pin groups { A8, A7, A6, A5 }
483   and { G4, G3, G2, G1 }, which are enumerated as { 0, 8, 16, 24 } and
484   { 38, 46, 54, 62 } respectively.
486   Group names must be unique per pin controller, no two groups on the same
487   controller may have the same name.
489 - The combination of a FUNCTION and a PIN GROUP determine a certain function
490   for a certain set of pins. The knowledge of the functions and pin groups
491   and their machine-specific particulars are kept inside the pinmux driver,
492   from the outside only the enumerators are known, and the driver core can:
494   - Request the name of a function with a certain selector (>= 0)
495   - A list of groups associated with a certain function
496   - Request that a certain group in that list to be activated for a certain
497     function
499   As already described above, pin groups are in turn self-descriptive, so
500   the core will retrieve the actual pin range in a certain group from the
501   driver.
503 - FUNCTIONS and GROUPS on a certain PIN CONTROLLER are MAPPED to a certain
504   device by the board file, device tree or similar machine setup configuration
505   mechanism, similar to how regulators are connected to devices, usually by
506   name. Defining a pin controller, function and group thus uniquely identify
507   the set of pins to be used by a certain device. (If only one possible group
508   of pins is available for the function, no group name need to be supplied -
509   the core will simply select the first and only group available.)
511   In the example case we can define that this particular machine shall
512   use device spi0 with pinmux function fspi0 group gspi0 and i2c0 on function
513   fi2c0 group gi2c0, on the primary pin controller, we get mappings
514   like these:
516   {
517     {"map-spi0", spi0, pinctrl0, fspi0, gspi0},
518     {"map-i2c0", i2c0, pinctrl0, fi2c0, gi2c0}
519   }
521   Every map must be assigned a state name, pin controller, device and
522   function. The group is not compulsory - if it is omitted the first group
523   presented by the driver as applicable for the function will be selected,
524   which is useful for simple cases.
526   It is possible to map several groups to the same combination of device,
527   pin controller and function. This is for cases where a certain function on
528   a certain pin controller may use different sets of pins in different
529   configurations.
531 - PINS for a certain FUNCTION using a certain PIN GROUP on a certain
532   PIN CONTROLLER are provided on a first-come first-serve basis, so if some
533   other device mux setting or GPIO pin request has already taken your physical
534   pin, you will be denied the use of it. To get (activate) a new setting, the
535   old one has to be put (deactivated) first.
537 Sometimes the documentation and hardware registers will be oriented around
538 pads (or "fingers") rather than pins - these are the soldering surfaces on the
539 silicon inside the package, and may or may not match the actual number of
540 pins/balls underneath the capsule. Pick some enumeration that makes sense to
541 you. Define enumerators only for the pins you can control if that makes sense.
543 Assumptions:
545 We assume that the number of possible function maps to pin groups is limited by
546 the hardware. I.e. we assume that there is no system where any function can be
547 mapped to any pin, like in a phone exchange. So the available pins groups for
548 a certain function will be limited to a few choices (say up to eight or so),
549 not hundreds or any amount of choices. This is the characteristic we have found
550 by inspecting available pinmux hardware, and a necessary assumption since we
551 expect pinmux drivers to present *all* possible function vs pin group mappings
552 to the subsystem.
555 Pinmux drivers
556 ==============
558 The pinmux core takes care of preventing conflicts on pins and calling
559 the pin controller driver to execute different settings.
561 It is the responsibility of the pinmux driver to impose further restrictions
562 (say for example infer electronic limitations due to load etc) to determine
563 whether or not the requested function can actually be allowed, and in case it
564 is possible to perform the requested mux setting, poke the hardware so that
565 this happens.
567 Pinmux drivers are required to supply a few callback functions, some are
568 optional. Usually the enable() and disable() functions are implemented,
569 writing values into some certain registers to activate a certain mux setting
570 for a certain pin.
572 A simple driver for the above example will work by setting bits 0, 1, 2, 3 or 4
573 into some register named MUX to select a certain function with a certain
574 group of pins would work something like this:
576 #include <linux/pinctrl/pinctrl.h>
577 #include <linux/pinctrl/pinmux.h>
579 struct foo_group {
580         const char *name;
581         const unsigned int *pins;
582         const unsigned num_pins;
585 static const unsigned spi0_0_pins[] = { 0, 8, 16, 24 };
586 static const unsigned spi0_1_pins[] = { 38, 46, 54, 62 };
587 static const unsigned i2c0_pins[] = { 24, 25 };
588 static const unsigned mmc0_1_pins[] = { 56, 57 };
589 static const unsigned mmc0_2_pins[] = { 58, 59 };
590 static const unsigned mmc0_3_pins[] = { 60, 61, 62, 63 };
592 static const struct foo_group foo_groups[] = {
593         {
594                 .name = "spi0_0_grp",
595                 .pins = spi0_0_pins,
596                 .num_pins = ARRAY_SIZE(spi0_0_pins),
597         },
598         {
599                 .name = "spi0_1_grp",
600                 .pins = spi0_1_pins,
601                 .num_pins = ARRAY_SIZE(spi0_1_pins),
602         },
603         {
604                 .name = "i2c0_grp",
605                 .pins = i2c0_pins,
606                 .num_pins = ARRAY_SIZE(i2c0_pins),
607         },
608         {
609                 .name = "mmc0_1_grp",
610                 .pins = mmc0_1_pins,
611                 .num_pins = ARRAY_SIZE(mmc0_1_pins),
612         },
613         {
614                 .name = "mmc0_2_grp",
615                 .pins = mmc0_2_pins,
616                 .num_pins = ARRAY_SIZE(mmc0_2_pins),
617         },
618         {
619                 .name = "mmc0_3_grp",
620                 .pins = mmc0_3_pins,
621                 .num_pins = ARRAY_SIZE(mmc0_3_pins),
622         },
626 static int foo_get_groups_count(struct pinctrl_dev *pctldev)
628         return ARRAY_SIZE(foo_groups);
631 static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
632                                        unsigned selector)
634         return foo_groups[selector].name;
637 static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
638                                unsigned ** const pins,
639                                unsigned * const num_pins)
641         *pins = (unsigned *) foo_groups[selector].pins;
642         *num_pins = foo_groups[selector].num_pins;
643         return 0;
646 static struct pinctrl_ops foo_pctrl_ops = {
647         .get_groups_count = foo_get_groups_count,
648         .get_group_name = foo_get_group_name,
649         .get_group_pins = foo_get_group_pins,
652 struct foo_pmx_func {
653         const char *name;
654         const char * const *groups;
655         const unsigned num_groups;
658 static const char * const spi0_groups[] = { "spi0_0_grp", "spi0_1_grp" };
659 static const char * const i2c0_groups[] = { "i2c0_grp" };
660 static const char * const mmc0_groups[] = { "mmc0_1_grp", "mmc0_2_grp",
661                                         "mmc0_3_grp" };
663 static const struct foo_pmx_func foo_functions[] = {
664         {
665                 .name = "spi0",
666                 .groups = spi0_groups,
667                 .num_groups = ARRAY_SIZE(spi0_groups),
668         },
669         {
670                 .name = "i2c0",
671                 .groups = i2c0_groups,
672                 .num_groups = ARRAY_SIZE(i2c0_groups),
673         },
674         {
675                 .name = "mmc0",
676                 .groups = mmc0_groups,
677                 .num_groups = ARRAY_SIZE(mmc0_groups),
678         },
681 int foo_get_functions_count(struct pinctrl_dev *pctldev)
683         return ARRAY_SIZE(foo_functions);
686 const char *foo_get_fname(struct pinctrl_dev *pctldev, unsigned selector)
688         return foo_functions[selector].name;
691 static int foo_get_groups(struct pinctrl_dev *pctldev, unsigned selector,
692                           const char * const **groups,
693                           unsigned * const num_groups)
695         *groups = foo_functions[selector].groups;
696         *num_groups = foo_functions[selector].num_groups;
697         return 0;
700 int foo_enable(struct pinctrl_dev *pctldev, unsigned selector,
701                 unsigned group)
703         u8 regbit = (1 << selector + group);
705         writeb((readb(MUX)|regbit), MUX)
706         return 0;
709 void foo_disable(struct pinctrl_dev *pctldev, unsigned selector,
710                 unsigned group)
712         u8 regbit = (1 << selector + group);
714         writeb((readb(MUX) & ~(regbit)), MUX)
715         return 0;
718 struct pinmux_ops foo_pmxops = {
719         .get_functions_count = foo_get_functions_count,
720         .get_function_name = foo_get_fname,
721         .get_function_groups = foo_get_groups,
722         .enable = foo_enable,
723         .disable = foo_disable,
726 /* Pinmux operations are handled by some pin controller */
727 static struct pinctrl_desc foo_desc = {
728         ...
729         .pctlops = &foo_pctrl_ops,
730         .pmxops = &foo_pmxops,
733 In the example activating muxing 0 and 1 at the same time setting bits
734 0 and 1, uses one pin in common so they would collide.
736 The beauty of the pinmux subsystem is that since it keeps track of all
737 pins and who is using them, it will already have denied an impossible
738 request like that, so the driver does not need to worry about such
739 things - when it gets a selector passed in, the pinmux subsystem makes
740 sure no other device or GPIO assignment is already using the selected
741 pins. Thus bits 0 and 1 in the control register will never be set at the
742 same time.
744 All the above functions are mandatory to implement for a pinmux driver.
747 Pin control interaction with the GPIO subsystem
748 ===============================================
750 Note that the following implies that the use case is to use a certain pin
751 from the Linux kernel using the API in <linux/gpio.h> with gpio_request()
752 and similar functions. There are cases where you may be using something
753 that your datasheet calls "GPIO mode" but actually is just an electrical
754 configuration for a certain device. See the section below named
755 "GPIO mode pitfalls" for more details on this scenario.
757 The public pinmux API contains two functions named pinctrl_request_gpio()
758 and pinctrl_free_gpio(). These two functions shall *ONLY* be called from
759 gpiolib-based drivers as part of their gpio_request() and
760 gpio_free() semantics. Likewise the pinctrl_gpio_direction_[input|output]
761 shall only be called from within respective gpio_direction_[input|output]
762 gpiolib implementation.
764 NOTE that platforms and individual drivers shall *NOT* request GPIO pins to be
765 controlled e.g. muxed in. Instead, implement a proper gpiolib driver and have
766 that driver request proper muxing and other control for its pins.
768 The function list could become long, especially if you can convert every
769 individual pin into a GPIO pin independent of any other pins, and then try
770 the approach to define every pin as a function.
772 In this case, the function array would become 64 entries for each GPIO
773 setting and then the device functions.
775 For this reason there are two functions a pin control driver can implement
776 to enable only GPIO on an individual pin: .gpio_request_enable() and
777 .gpio_disable_free().
779 This function will pass in the affected GPIO range identified by the pin
780 controller core, so you know which GPIO pins are being affected by the request
781 operation.
783 If your driver needs to have an indication from the framework of whether the
784 GPIO pin shall be used for input or output you can implement the
785 .gpio_set_direction() function. As described this shall be called from the
786 gpiolib driver and the affected GPIO range, pin offset and desired direction
787 will be passed along to this function.
789 Alternatively to using these special functions, it is fully allowed to use
790 named functions for each GPIO pin, the pinctrl_request_gpio() will attempt to
791 obtain the function "gpioN" where "N" is the global GPIO pin number if no
792 special GPIO-handler is registered.
795 GPIO mode pitfalls
796 ==================
798 Sometime the developer may be confused by a datasheet talking about a pin
799 being possible to set into "GPIO mode". It appears that what hardware
800 engineers mean with "GPIO mode" is not necessarily the use case that is
801 implied in the kernel interface <linux/gpio.h>: a pin that you grab from
802 kernel code and then either listen for input or drive high/low to
803 assert/deassert some external line.
805 Rather hardware engineers think that "GPIO mode" means that you can
806 software-control a few electrical properties of the pin that you would
807 not be able to control if the pin was in some other mode, such as muxed in
808 for a device.
810 Example: a pin is usually muxed in to be used as a UART TX line. But during
811 system sleep, we need to put this pin into "GPIO mode" and ground it.
813 If you make a 1-to-1 map to the GPIO subsystem for this pin, you may start
814 to think that you need to come up with something real complex, that the
815 pin shall be used for UART TX and GPIO at the same time, that you will grab
816 a pin control handle and set it to a certain state to enable UART TX to be
817 muxed in, then twist it over to GPIO mode and use gpio_direction_output()
818 to drive it low during sleep, then mux it over to UART TX again when you
819 wake up and maybe even gpio_request/gpio_free as part of this cycle. This
820 all gets very complicated.
822 The solution is to not think that what the datasheet calls "GPIO mode"
823 has to be handled by the <linux/gpio.h> interface. Instead view this as
824 a certain pin config setting. Look in e.g. <linux/pinctrl/pinconf-generic.h>
825 and you find this in the documentation:
827   PIN_CONFIG_OUTPUT: this will configure the pin in output, use argument
828      1 to indicate high level, argument 0 to indicate low level.
830 So it is perfectly possible to push a pin into "GPIO mode" and drive the
831 line low as part of the usual pin control map. So for example your UART
832 driver may look like this:
834 #include <linux/pinctrl/consumer.h>
836 struct pinctrl          *pinctrl;
837 struct pinctrl_state    *pins_default;
838 struct pinctrl_state    *pins_sleep;
840 pins_default = pinctrl_lookup_state(uap->pinctrl, PINCTRL_STATE_DEFAULT);
841 pins_sleep = pinctrl_lookup_state(uap->pinctrl, PINCTRL_STATE_SLEEP);
843 /* Normal mode */
844 retval = pinctrl_select_state(pinctrl, pins_default);
845 /* Sleep mode */
846 retval = pinctrl_select_state(pinctrl, pins_sleep);
848 And your machine configuration may look like this:
849 --------------------------------------------------
851 static unsigned long uart_default_mode[] = {
852     PIN_CONF_PACKED(PIN_CONFIG_DRIVE_PUSH_PULL, 0),
855 static unsigned long uart_sleep_mode[] = {
856     PIN_CONF_PACKED(PIN_CONFIG_OUTPUT, 0),
859 static struct pinctrl_map __initdata pinmap[] = {
860     PIN_MAP_MUX_GROUP("uart", PINCTRL_STATE_DEFAULT, "pinctrl-foo",
861                       "u0_group", "u0"),
862     PIN_MAP_CONFIGS_PIN("uart", PINCTRL_STATE_DEFAULT, "pinctrl-foo",
863                         "UART_TX_PIN", uart_default_mode),
864     PIN_MAP_MUX_GROUP("uart", PINCTRL_STATE_SLEEP, "pinctrl-foo",
865                       "u0_group", "gpio-mode"),
866     PIN_MAP_CONFIGS_PIN("uart", PINCTRL_STATE_SLEEP, "pinctrl-foo",
867                         "UART_TX_PIN", uart_sleep_mode),
870 foo_init(void) {
871     pinctrl_register_mappings(pinmap, ARRAY_SIZE(pinmap));
874 Here the pins we want to control are in the "u0_group" and there is some
875 function called "u0" that can be enabled on this group of pins, and then
876 everything is UART business as usual. But there is also some function
877 named "gpio-mode" that can be mapped onto the same pins to move them into
878 GPIO mode.
880 This will give the desired effect without any bogus interaction with the
881 GPIO subsystem. It is just an electrical configuration used by that device
882 when going to sleep, it might imply that the pin is set into something the
883 datasheet calls "GPIO mode" but that is not the point: it is still used
884 by that UART device to control the pins that pertain to that very UART
885 driver, putting them into modes needed by the UART. GPIO in the Linux
886 kernel sense are just some 1-bit line, and is a different use case.
888 How the registers are poked to attain the push/pull and output low
889 configuration and the muxing of the "u0" or "gpio-mode" group onto these
890 pins is a question for the driver.
892 Some datasheets will be more helpful and refer to the "GPIO mode" as
893 "low power mode" rather than anything to do with GPIO. This often means
894 the same thing electrically speaking, but in this latter case the
895 software engineers will usually quickly identify that this is some
896 specific muxing/configuration rather than anything related to the GPIO
897 API.
900 Board/machine configuration
901 ==================================
903 Boards and machines define how a certain complete running system is put
904 together, including how GPIOs and devices are muxed, how regulators are
905 constrained and how the clock tree looks. Of course pinmux settings are also
906 part of this.
908 A pin controller configuration for a machine looks pretty much like a simple
909 regulator configuration, so for the example array above we want to enable i2c
910 and spi on the second function mapping:
912 #include <linux/pinctrl/machine.h>
914 static const struct pinctrl_map mapping[] __initconst = {
915         {
916                 .dev_name = "foo-spi.0",
917                 .name = PINCTRL_STATE_DEFAULT,
918                 .type = PIN_MAP_TYPE_MUX_GROUP,
919                 .ctrl_dev_name = "pinctrl-foo",
920                 .data.mux.function = "spi0",
921         },
922         {
923                 .dev_name = "foo-i2c.0",
924                 .name = PINCTRL_STATE_DEFAULT,
925                 .type = PIN_MAP_TYPE_MUX_GROUP,
926                 .ctrl_dev_name = "pinctrl-foo",
927                 .data.mux.function = "i2c0",
928         },
929         {
930                 .dev_name = "foo-mmc.0",
931                 .name = PINCTRL_STATE_DEFAULT,
932                 .type = PIN_MAP_TYPE_MUX_GROUP,
933                 .ctrl_dev_name = "pinctrl-foo",
934                 .data.mux.function = "mmc0",
935         },
938 The dev_name here matches to the unique device name that can be used to look
939 up the device struct (just like with clockdev or regulators). The function name
940 must match a function provided by the pinmux driver handling this pin range.
942 As you can see we may have several pin controllers on the system and thus
943 we need to specify which one of them that contain the functions we wish
944 to map.
946 You register this pinmux mapping to the pinmux subsystem by simply:
948        ret = pinctrl_register_mappings(mapping, ARRAY_SIZE(mapping));
950 Since the above construct is pretty common there is a helper macro to make
951 it even more compact which assumes you want to use pinctrl-foo and position
952 0 for mapping, for example:
954 static struct pinctrl_map __initdata mapping[] = {
955         PIN_MAP_MUX_GROUP("foo-i2c.o", PINCTRL_STATE_DEFAULT, "pinctrl-foo", NULL, "i2c0"),
958 The mapping table may also contain pin configuration entries. It's common for
959 each pin/group to have a number of configuration entries that affect it, so
960 the table entries for configuration reference an array of config parameters
961 and values. An example using the convenience macros is shown below:
963 static unsigned long i2c_grp_configs[] = {
964         FOO_PIN_DRIVEN,
965         FOO_PIN_PULLUP,
968 static unsigned long i2c_pin_configs[] = {
969         FOO_OPEN_COLLECTOR,
970         FOO_SLEW_RATE_SLOW,
973 static struct pinctrl_map __initdata mapping[] = {
974         PIN_MAP_MUX_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0", "i2c0"),
975         PIN_MAP_CONFIGS_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0", i2c_grp_configs),
976         PIN_MAP_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0scl", i2c_pin_configs),
977         PIN_MAP_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0sda", i2c_pin_configs),
980 Finally, some devices expect the mapping table to contain certain specific
981 named states. When running on hardware that doesn't need any pin controller
982 configuration, the mapping table must still contain those named states, in
983 order to explicitly indicate that the states were provided and intended to
984 be empty. Table entry macro PIN_MAP_DUMMY_STATE serves the purpose of defining
985 a named state without causing any pin controller to be programmed:
987 static struct pinctrl_map __initdata mapping[] = {
988         PIN_MAP_DUMMY_STATE("foo-i2c.0", PINCTRL_STATE_DEFAULT),
992 Complex mappings
993 ================
995 As it is possible to map a function to different groups of pins an optional
996 .group can be specified like this:
1000         .dev_name = "foo-spi.0",
1001         .name = "spi0-pos-A",
1002         .type = PIN_MAP_TYPE_MUX_GROUP,
1003         .ctrl_dev_name = "pinctrl-foo",
1004         .function = "spi0",
1005         .group = "spi0_0_grp",
1008         .dev_name = "foo-spi.0",
1009         .name = "spi0-pos-B",
1010         .type = PIN_MAP_TYPE_MUX_GROUP,
1011         .ctrl_dev_name = "pinctrl-foo",
1012         .function = "spi0",
1013         .group = "spi0_1_grp",
1017 This example mapping is used to switch between two positions for spi0 at
1018 runtime, as described further below under the heading "Runtime pinmuxing".
1020 Further it is possible for one named state to affect the muxing of several
1021 groups of pins, say for example in the mmc0 example above, where you can
1022 additively expand the mmc0 bus from 2 to 4 to 8 pins. If we want to use all
1023 three groups for a total of 2+2+4 = 8 pins (for an 8-bit MMC bus as is the
1024 case), we define a mapping like this:
1028         .dev_name = "foo-mmc.0",
1029         .name = "2bit"
1030         .type = PIN_MAP_TYPE_MUX_GROUP,
1031         .ctrl_dev_name = "pinctrl-foo",
1032         .function = "mmc0",
1033         .group = "mmc0_1_grp",
1036         .dev_name = "foo-mmc.0",
1037         .name = "4bit"
1038         .type = PIN_MAP_TYPE_MUX_GROUP,
1039         .ctrl_dev_name = "pinctrl-foo",
1040         .function = "mmc0",
1041         .group = "mmc0_1_grp",
1044         .dev_name = "foo-mmc.0",
1045         .name = "4bit"
1046         .type = PIN_MAP_TYPE_MUX_GROUP,
1047         .ctrl_dev_name = "pinctrl-foo",
1048         .function = "mmc0",
1049         .group = "mmc0_2_grp",
1052         .dev_name = "foo-mmc.0",
1053         .name = "8bit"
1054         .type = PIN_MAP_TYPE_MUX_GROUP,
1055         .ctrl_dev_name = "pinctrl-foo",
1056         .function = "mmc0",
1057         .group = "mmc0_1_grp",
1060         .dev_name = "foo-mmc.0",
1061         .name = "8bit"
1062         .type = PIN_MAP_TYPE_MUX_GROUP,
1063         .ctrl_dev_name = "pinctrl-foo",
1064         .function = "mmc0",
1065         .group = "mmc0_2_grp",
1068         .dev_name = "foo-mmc.0",
1069         .name = "8bit"
1070         .type = PIN_MAP_TYPE_MUX_GROUP,
1071         .ctrl_dev_name = "pinctrl-foo",
1072         .function = "mmc0",
1073         .group = "mmc0_3_grp",
1077 The result of grabbing this mapping from the device with something like
1078 this (see next paragraph):
1080         p = devm_pinctrl_get(dev);
1081         s = pinctrl_lookup_state(p, "8bit");
1082         ret = pinctrl_select_state(p, s);
1084 or more simply:
1086         p = devm_pinctrl_get_select(dev, "8bit");
1088 Will be that you activate all the three bottom records in the mapping at
1089 once. Since they share the same name, pin controller device, function and
1090 device, and since we allow multiple groups to match to a single device, they
1091 all get selected, and they all get enabled and disable simultaneously by the
1092 pinmux core.
1095 Pin control requests from drivers
1096 =================================
1098 When a device driver is about to probe the device core will automatically
1099 attempt to issue pinctrl_get_select_default() on these devices.
1100 This way driver writers do not need to add any of the boilerplate code
1101 of the type found below. However when doing fine-grained state selection
1102 and not using the "default" state, you may have to do some device driver
1103 handling of the pinctrl handles and states.
1105 So if you just want to put the pins for a certain device into the default
1106 state and be done with it, there is nothing you need to do besides
1107 providing the proper mapping table. The device core will take care of
1108 the rest.
1110 Generally it is discouraged to let individual drivers get and enable pin
1111 control. So if possible, handle the pin control in platform code or some other
1112 place where you have access to all the affected struct device * pointers. In
1113 some cases where a driver needs to e.g. switch between different mux mappings
1114 at runtime this is not possible.
1116 A typical case is if a driver needs to switch bias of pins from normal
1117 operation and going to sleep, moving from the PINCTRL_STATE_DEFAULT to
1118 PINCTRL_STATE_SLEEP at runtime, re-biasing or even re-muxing pins to save
1119 current in sleep mode.
1121 A driver may request a certain control state to be activated, usually just the
1122 default state like this:
1124 #include <linux/pinctrl/consumer.h>
1126 struct foo_state {
1127        struct pinctrl *p;
1128        struct pinctrl_state *s;
1129        ...
1132 foo_probe()
1134         /* Allocate a state holder named "foo" etc */
1135         struct foo_state *foo = ...;
1137         foo->p = devm_pinctrl_get(&device);
1138         if (IS_ERR(foo->p)) {
1139                 /* FIXME: clean up "foo" here */
1140                 return PTR_ERR(foo->p);
1141         }
1143         foo->s = pinctrl_lookup_state(foo->p, PINCTRL_STATE_DEFAULT);
1144         if (IS_ERR(foo->s)) {
1145                 /* FIXME: clean up "foo" here */
1146                 return PTR_ERR(s);
1147         }
1149         ret = pinctrl_select_state(foo->s);
1150         if (ret < 0) {
1151                 /* FIXME: clean up "foo" here */
1152                 return ret;
1153         }
1156 This get/lookup/select/put sequence can just as well be handled by bus drivers
1157 if you don't want each and every driver to handle it and you know the
1158 arrangement on your bus.
1160 The semantics of the pinctrl APIs are:
1162 - pinctrl_get() is called in process context to obtain a handle to all pinctrl
1163   information for a given client device. It will allocate a struct from the
1164   kernel memory to hold the pinmux state. All mapping table parsing or similar
1165   slow operations take place within this API.
1167 - devm_pinctrl_get() is a variant of pinctrl_get() that causes pinctrl_put()
1168   to be called automatically on the retrieved pointer when the associated
1169   device is removed. It is recommended to use this function over plain
1170   pinctrl_get().
1172 - pinctrl_lookup_state() is called in process context to obtain a handle to a
1173   specific state for a the client device. This operation may be slow too.
1175 - pinctrl_select_state() programs pin controller hardware according to the
1176   definition of the state as given by the mapping table. In theory this is a
1177   fast-path operation, since it only involved blasting some register settings
1178   into hardware. However, note that some pin controllers may have their
1179   registers on a slow/IRQ-based bus, so client devices should not assume they
1180   can call pinctrl_select_state() from non-blocking contexts.
1182 - pinctrl_put() frees all information associated with a pinctrl handle.
1184 - devm_pinctrl_put() is a variant of pinctrl_put() that may be used to
1185   explicitly destroy a pinctrl object returned by devm_pinctrl_get().
1186   However, use of this function will be rare, due to the automatic cleanup
1187   that will occur even without calling it.
1189   pinctrl_get() must be paired with a plain pinctrl_put().
1190   pinctrl_get() may not be paired with devm_pinctrl_put().
1191   devm_pinctrl_get() can optionally be paired with devm_pinctrl_put().
1192   devm_pinctrl_get() may not be paired with plain pinctrl_put().
1194 Usually the pin control core handled the get/put pair and call out to the
1195 device drivers bookkeeping operations, like checking available functions and
1196 the associated pins, whereas the enable/disable pass on to the pin controller
1197 driver which takes care of activating and/or deactivating the mux setting by
1198 quickly poking some registers.
1200 The pins are allocated for your device when you issue the devm_pinctrl_get()
1201 call, after this you should be able to see this in the debugfs listing of all
1202 pins.
1204 NOTE: the pinctrl system will return -EPROBE_DEFER if it cannot find the
1205 requested pinctrl handles, for example if the pinctrl driver has not yet
1206 registered. Thus make sure that the error path in your driver gracefully
1207 cleans up and is ready to retry the probing later in the startup process.
1210 Drivers needing both pin control and GPIOs
1211 ==========================================
1213 Again, it is discouraged to let drivers lookup and select pin control states
1214 themselves, but again sometimes this is unavoidable.
1216 So say that your driver is fetching its resources like this:
1218 #include <linux/pinctrl/consumer.h>
1219 #include <linux/gpio.h>
1221 struct pinctrl *pinctrl;
1222 int gpio;
1224 pinctrl = devm_pinctrl_get_select_default(&dev);
1225 gpio = devm_gpio_request(&dev, 14, "foo");
1227 Here we first request a certain pin state and then request GPIO 14 to be
1228 used. If you're using the subsystems orthogonally like this, you should
1229 nominally always get your pinctrl handle and select the desired pinctrl
1230 state BEFORE requesting the GPIO. This is a semantic convention to avoid
1231 situations that can be electrically unpleasant, you will certainly want to
1232 mux in and bias pins in a certain way before the GPIO subsystems starts to
1233 deal with them.
1235 The above can be hidden: using the device core, the pinctrl core may be
1236 setting up the config and muxing for the pins right before the device is
1237 probing, nevertheless orthogonal to the GPIO subsystem.
1239 But there are also situations where it makes sense for the GPIO subsystem
1240 to communicate directly with the pinctrl subsystem, using the latter as a
1241 back-end. This is when the GPIO driver may call out to the functions
1242 described in the section "Pin control interaction with the GPIO subsystem"
1243 above. This only involves per-pin multiplexing, and will be completely
1244 hidden behind the gpio_*() function namespace. In this case, the driver
1245 need not interact with the pin control subsystem at all.
1247 If a pin control driver and a GPIO driver is dealing with the same pins
1248 and the use cases involve multiplexing, you MUST implement the pin controller
1249 as a back-end for the GPIO driver like this, unless your hardware design
1250 is such that the GPIO controller can override the pin controller's
1251 multiplexing state through hardware without the need to interact with the
1252 pin control system.
1255 System pin control hogging
1256 ==========================
1258 Pin control map entries can be hogged by the core when the pin controller
1259 is registered. This means that the core will attempt to call pinctrl_get(),
1260 lookup_state() and select_state() on it immediately after the pin control
1261 device has been registered.
1263 This occurs for mapping table entries where the client device name is equal
1264 to the pin controller device name, and the state name is PINCTRL_STATE_DEFAULT.
1267         .dev_name = "pinctrl-foo",
1268         .name = PINCTRL_STATE_DEFAULT,
1269         .type = PIN_MAP_TYPE_MUX_GROUP,
1270         .ctrl_dev_name = "pinctrl-foo",
1271         .function = "power_func",
1274 Since it may be common to request the core to hog a few always-applicable
1275 mux settings on the primary pin controller, there is a convenience macro for
1276 this:
1278 PIN_MAP_MUX_GROUP_HOG_DEFAULT("pinctrl-foo", NULL /* group */, "power_func")
1280 This gives the exact same result as the above construction.
1283 Runtime pinmuxing
1284 =================
1286 It is possible to mux a certain function in and out at runtime, say to move
1287 an SPI port from one set of pins to another set of pins. Say for example for
1288 spi0 in the example above, we expose two different groups of pins for the same
1289 function, but with different named in the mapping as described under
1290 "Advanced mapping" above. So that for an SPI device, we have two states named
1291 "pos-A" and "pos-B".
1293 This snippet first muxes the function in the pins defined by group A, enables
1294 it, disables and releases it, and muxes it in on the pins defined by group B:
1296 #include <linux/pinctrl/consumer.h>
1298 struct pinctrl *p;
1299 struct pinctrl_state *s1, *s2;
1301 foo_probe()
1303         /* Setup */
1304         p = devm_pinctrl_get(&device);
1305         if (IS_ERR(p))
1306                 ...
1308         s1 = pinctrl_lookup_state(foo->p, "pos-A");
1309         if (IS_ERR(s1))
1310                 ...
1312         s2 = pinctrl_lookup_state(foo->p, "pos-B");
1313         if (IS_ERR(s2))
1314                 ...
1317 foo_switch()
1319         /* Enable on position A */
1320         ret = pinctrl_select_state(s1);
1321         if (ret < 0)
1322             ...
1324         ...
1326         /* Enable on position B */
1327         ret = pinctrl_select_state(s2);
1328         if (ret < 0)
1329             ...
1331         ...
1334 The above has to be done from process context. The reservation of the pins
1335 will be done when the state is activated, so in effect one specific pin
1336 can be used by different functions at different times on a running system.