2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
37 #include <trace/events/kmem.h>
43 * 1. slab_mutex (Global Mutex)
45 * 3. slab_lock(page) (Only on some arches and for debugging)
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
94 * Overloading of page flags that are otherwise used for LRU management.
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache
*s
)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 * Issues still to be resolved:
129 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 * - Variable sizing of the per node arrays
134 /* Enable to test recovery from slab corruption on boot */
135 #undef SLUB_RESILIENCY_TEST
137 /* Enable to log cmpxchg failures */
138 #undef SLUB_DEBUG_CMPXCHG
141 * Mininum number of partial slabs. These will be left on the partial
142 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 #define MIN_PARTIAL 5
147 * Maximum number of desirable partial slabs.
148 * The existence of more partial slabs makes kmem_cache_shrink
149 * sort the partial list by the number of objects in the.
151 #define MAX_PARTIAL 10
153 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
154 SLAB_POISON | SLAB_STORE_USER)
157 * Debugging flags that require metadata to be stored in the slab. These get
158 * disabled when slub_debug=O is used and a cache's min order increases with
161 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
164 * Set of flags that will prevent slab merging
166 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
167 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
170 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
171 SLAB_CACHE_DMA | SLAB_NOTRACK)
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
182 static struct notifier_block slab_notifier
;
186 * Tracking user of a slab.
188 #define TRACK_ADDRS_COUNT 16
190 unsigned long addr
; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
194 int cpu
; /* Was running on cpu */
195 int pid
; /* Pid context */
196 unsigned long when
; /* When did the operation occur */
199 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
202 static int sysfs_slab_add(struct kmem_cache
*);
203 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
204 static void sysfs_slab_remove(struct kmem_cache
*);
205 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
207 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
210 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
212 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
215 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
217 #ifdef CONFIG_SLUB_STATS
218 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
222 /********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
226 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
228 return s
->node
[node
];
231 /* Verify that a pointer has an address that is valid within a slab page */
232 static inline int check_valid_pointer(struct kmem_cache
*s
,
233 struct page
*page
, const void *object
)
240 base
= page_address(page
);
241 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
242 (object
- base
) % s
->size
) {
249 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
251 return *(void **)(object
+ s
->offset
);
254 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
256 prefetch(object
+ s
->offset
);
259 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
263 #ifdef CONFIG_DEBUG_PAGEALLOC
264 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
266 p
= get_freepointer(s
, object
);
271 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
273 *(void **)(object
+ s
->offset
) = fp
;
276 /* Loop over all objects in a slab */
277 #define for_each_object(__p, __s, __addr, __objects) \
278 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
284 return (p
- addr
) / s
->size
;
287 static inline size_t slab_ksize(const struct kmem_cache
*s
)
289 #ifdef CONFIG_SLUB_DEBUG
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
294 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
295 return s
->object_size
;
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
303 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
306 * Else we can use all the padding etc for the allocation
311 static inline int order_objects(int order
, unsigned long size
, int reserved
)
313 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
316 static inline struct kmem_cache_order_objects
oo_make(int order
,
317 unsigned long size
, int reserved
)
319 struct kmem_cache_order_objects x
= {
320 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
326 static inline int oo_order(struct kmem_cache_order_objects x
)
328 return x
.x
>> OO_SHIFT
;
331 static inline int oo_objects(struct kmem_cache_order_objects x
)
333 return x
.x
& OO_MASK
;
337 * Per slab locking using the pagelock
339 static __always_inline
void slab_lock(struct page
*page
)
341 bit_spin_lock(PG_locked
, &page
->flags
);
344 static __always_inline
void slab_unlock(struct page
*page
)
346 __bit_spin_unlock(PG_locked
, &page
->flags
);
349 /* Interrupts must be disabled (for the fallback code to work right) */
350 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
351 void *freelist_old
, unsigned long counters_old
,
352 void *freelist_new
, unsigned long counters_new
,
355 VM_BUG_ON(!irqs_disabled());
356 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
358 if (s
->flags
& __CMPXCHG_DOUBLE
) {
359 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
360 freelist_old
, counters_old
,
361 freelist_new
, counters_new
))
367 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
368 page
->freelist
= freelist_new
;
369 page
->counters
= counters_new
;
377 stat(s
, CMPXCHG_DOUBLE_FAIL
);
379 #ifdef SLUB_DEBUG_CMPXCHG
380 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
386 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
387 void *freelist_old
, unsigned long counters_old
,
388 void *freelist_new
, unsigned long counters_new
,
391 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
392 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
393 if (s
->flags
& __CMPXCHG_DOUBLE
) {
394 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
395 freelist_old
, counters_old
,
396 freelist_new
, counters_new
))
403 local_irq_save(flags
);
405 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
406 page
->freelist
= freelist_new
;
407 page
->counters
= counters_new
;
409 local_irq_restore(flags
);
413 local_irq_restore(flags
);
417 stat(s
, CMPXCHG_DOUBLE_FAIL
);
419 #ifdef SLUB_DEBUG_CMPXCHG
420 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
426 #ifdef CONFIG_SLUB_DEBUG
428 * Determine a map of object in use on a page.
430 * Node listlock must be held to guarantee that the page does
431 * not vanish from under us.
433 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
436 void *addr
= page_address(page
);
438 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
439 set_bit(slab_index(p
, s
, addr
), map
);
445 #ifdef CONFIG_SLUB_DEBUG_ON
446 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
448 static int slub_debug
;
451 static char *slub_debug_slabs
;
452 static int disable_higher_order_debug
;
457 static void print_section(char *text
, u8
*addr
, unsigned int length
)
459 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
463 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
464 enum track_item alloc
)
469 p
= object
+ s
->offset
+ sizeof(void *);
471 p
= object
+ s
->inuse
;
476 static void set_track(struct kmem_cache
*s
, void *object
,
477 enum track_item alloc
, unsigned long addr
)
479 struct track
*p
= get_track(s
, object
, alloc
);
482 #ifdef CONFIG_STACKTRACE
483 struct stack_trace trace
;
486 trace
.nr_entries
= 0;
487 trace
.max_entries
= TRACK_ADDRS_COUNT
;
488 trace
.entries
= p
->addrs
;
490 save_stack_trace(&trace
);
492 /* See rant in lockdep.c */
493 if (trace
.nr_entries
!= 0 &&
494 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
497 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
501 p
->cpu
= smp_processor_id();
502 p
->pid
= current
->pid
;
505 memset(p
, 0, sizeof(struct track
));
508 static void init_tracking(struct kmem_cache
*s
, void *object
)
510 if (!(s
->flags
& SLAB_STORE_USER
))
513 set_track(s
, object
, TRACK_FREE
, 0UL);
514 set_track(s
, object
, TRACK_ALLOC
, 0UL);
517 static void print_track(const char *s
, struct track
*t
)
522 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
523 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
524 #ifdef CONFIG_STACKTRACE
527 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
529 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
536 static void print_tracking(struct kmem_cache
*s
, void *object
)
538 if (!(s
->flags
& SLAB_STORE_USER
))
541 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
542 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
545 static void print_page_info(struct page
*page
)
547 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
548 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
552 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
558 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
560 printk(KERN_ERR
"========================================"
561 "=====================================\n");
562 printk(KERN_ERR
"BUG %s (%s): %s\n", s
->name
, print_tainted(), buf
);
563 printk(KERN_ERR
"----------------------------------------"
564 "-------------------------------------\n\n");
566 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
569 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
575 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
577 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
580 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
582 unsigned int off
; /* Offset of last byte */
583 u8
*addr
= page_address(page
);
585 print_tracking(s
, p
);
587 print_page_info(page
);
589 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
590 p
, p
- addr
, get_freepointer(s
, p
));
593 print_section("Bytes b4 ", p
- 16, 16);
595 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
597 if (s
->flags
& SLAB_RED_ZONE
)
598 print_section("Redzone ", p
+ s
->object_size
,
599 s
->inuse
- s
->object_size
);
602 off
= s
->offset
+ sizeof(void *);
606 if (s
->flags
& SLAB_STORE_USER
)
607 off
+= 2 * sizeof(struct track
);
610 /* Beginning of the filler is the free pointer */
611 print_section("Padding ", p
+ off
, s
->size
- off
);
616 static void object_err(struct kmem_cache
*s
, struct page
*page
,
617 u8
*object
, char *reason
)
619 slab_bug(s
, "%s", reason
);
620 print_trailer(s
, page
, object
);
623 static void slab_err(struct kmem_cache
*s
, struct page
*page
, const char *fmt
, ...)
629 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
631 slab_bug(s
, "%s", buf
);
632 print_page_info(page
);
636 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
640 if (s
->flags
& __OBJECT_POISON
) {
641 memset(p
, POISON_FREE
, s
->object_size
- 1);
642 p
[s
->object_size
- 1] = POISON_END
;
645 if (s
->flags
& SLAB_RED_ZONE
)
646 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
649 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
650 void *from
, void *to
)
652 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
653 memset(from
, data
, to
- from
);
656 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
657 u8
*object
, char *what
,
658 u8
*start
, unsigned int value
, unsigned int bytes
)
663 fault
= memchr_inv(start
, value
, bytes
);
668 while (end
> fault
&& end
[-1] == value
)
671 slab_bug(s
, "%s overwritten", what
);
672 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
673 fault
, end
- 1, fault
[0], value
);
674 print_trailer(s
, page
, object
);
676 restore_bytes(s
, what
, value
, fault
, end
);
684 * Bytes of the object to be managed.
685 * If the freepointer may overlay the object then the free
686 * pointer is the first word of the object.
688 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
691 * object + s->object_size
692 * Padding to reach word boundary. This is also used for Redzoning.
693 * Padding is extended by another word if Redzoning is enabled and
694 * object_size == inuse.
696 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
697 * 0xcc (RED_ACTIVE) for objects in use.
700 * Meta data starts here.
702 * A. Free pointer (if we cannot overwrite object on free)
703 * B. Tracking data for SLAB_STORE_USER
704 * C. Padding to reach required alignment boundary or at mininum
705 * one word if debugging is on to be able to detect writes
706 * before the word boundary.
708 * Padding is done using 0x5a (POISON_INUSE)
711 * Nothing is used beyond s->size.
713 * If slabcaches are merged then the object_size and inuse boundaries are mostly
714 * ignored. And therefore no slab options that rely on these boundaries
715 * may be used with merged slabcaches.
718 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
720 unsigned long off
= s
->inuse
; /* The end of info */
723 /* Freepointer is placed after the object. */
724 off
+= sizeof(void *);
726 if (s
->flags
& SLAB_STORE_USER
)
727 /* We also have user information there */
728 off
+= 2 * sizeof(struct track
);
733 return check_bytes_and_report(s
, page
, p
, "Object padding",
734 p
+ off
, POISON_INUSE
, s
->size
- off
);
737 /* Check the pad bytes at the end of a slab page */
738 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
746 if (!(s
->flags
& SLAB_POISON
))
749 start
= page_address(page
);
750 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
751 end
= start
+ length
;
752 remainder
= length
% s
->size
;
756 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
759 while (end
> fault
&& end
[-1] == POISON_INUSE
)
762 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
763 print_section("Padding ", end
- remainder
, remainder
);
765 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
769 static int check_object(struct kmem_cache
*s
, struct page
*page
,
770 void *object
, u8 val
)
773 u8
*endobject
= object
+ s
->object_size
;
775 if (s
->flags
& SLAB_RED_ZONE
) {
776 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
777 endobject
, val
, s
->inuse
- s
->object_size
))
780 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
781 check_bytes_and_report(s
, page
, p
, "Alignment padding",
782 endobject
, POISON_INUSE
, s
->inuse
- s
->object_size
);
786 if (s
->flags
& SLAB_POISON
) {
787 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
788 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
789 POISON_FREE
, s
->object_size
- 1) ||
790 !check_bytes_and_report(s
, page
, p
, "Poison",
791 p
+ s
->object_size
- 1, POISON_END
, 1)))
794 * check_pad_bytes cleans up on its own.
796 check_pad_bytes(s
, page
, p
);
799 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
801 * Object and freepointer overlap. Cannot check
802 * freepointer while object is allocated.
806 /* Check free pointer validity */
807 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
808 object_err(s
, page
, p
, "Freepointer corrupt");
810 * No choice but to zap it and thus lose the remainder
811 * of the free objects in this slab. May cause
812 * another error because the object count is now wrong.
814 set_freepointer(s
, p
, NULL
);
820 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
824 VM_BUG_ON(!irqs_disabled());
826 if (!PageSlab(page
)) {
827 slab_err(s
, page
, "Not a valid slab page");
831 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
832 if (page
->objects
> maxobj
) {
833 slab_err(s
, page
, "objects %u > max %u",
834 s
->name
, page
->objects
, maxobj
);
837 if (page
->inuse
> page
->objects
) {
838 slab_err(s
, page
, "inuse %u > max %u",
839 s
->name
, page
->inuse
, page
->objects
);
842 /* Slab_pad_check fixes things up after itself */
843 slab_pad_check(s
, page
);
848 * Determine if a certain object on a page is on the freelist. Must hold the
849 * slab lock to guarantee that the chains are in a consistent state.
851 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
856 unsigned long max_objects
;
859 while (fp
&& nr
<= page
->objects
) {
862 if (!check_valid_pointer(s
, page
, fp
)) {
864 object_err(s
, page
, object
,
865 "Freechain corrupt");
866 set_freepointer(s
, object
, NULL
);
869 slab_err(s
, page
, "Freepointer corrupt");
870 page
->freelist
= NULL
;
871 page
->inuse
= page
->objects
;
872 slab_fix(s
, "Freelist cleared");
878 fp
= get_freepointer(s
, object
);
882 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
883 if (max_objects
> MAX_OBJS_PER_PAGE
)
884 max_objects
= MAX_OBJS_PER_PAGE
;
886 if (page
->objects
!= max_objects
) {
887 slab_err(s
, page
, "Wrong number of objects. Found %d but "
888 "should be %d", page
->objects
, max_objects
);
889 page
->objects
= max_objects
;
890 slab_fix(s
, "Number of objects adjusted.");
892 if (page
->inuse
!= page
->objects
- nr
) {
893 slab_err(s
, page
, "Wrong object count. Counter is %d but "
894 "counted were %d", page
->inuse
, page
->objects
- nr
);
895 page
->inuse
= page
->objects
- nr
;
896 slab_fix(s
, "Object count adjusted.");
898 return search
== NULL
;
901 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
904 if (s
->flags
& SLAB_TRACE
) {
905 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
907 alloc
? "alloc" : "free",
912 print_section("Object ", (void *)object
, s
->object_size
);
919 * Hooks for other subsystems that check memory allocations. In a typical
920 * production configuration these hooks all should produce no code at all.
922 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
924 flags
&= gfp_allowed_mask
;
925 lockdep_trace_alloc(flags
);
926 might_sleep_if(flags
& __GFP_WAIT
);
928 return should_failslab(s
->object_size
, flags
, s
->flags
);
931 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
933 flags
&= gfp_allowed_mask
;
934 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
935 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
, flags
);
938 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
940 kmemleak_free_recursive(x
, s
->flags
);
943 * Trouble is that we may no longer disable interupts in the fast path
944 * So in order to make the debug calls that expect irqs to be
945 * disabled we need to disable interrupts temporarily.
947 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
951 local_irq_save(flags
);
952 kmemcheck_slab_free(s
, x
, s
->object_size
);
953 debug_check_no_locks_freed(x
, s
->object_size
);
954 local_irq_restore(flags
);
957 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
958 debug_check_no_obj_freed(x
, s
->object_size
);
962 * Tracking of fully allocated slabs for debugging purposes.
964 * list_lock must be held.
966 static void add_full(struct kmem_cache
*s
,
967 struct kmem_cache_node
*n
, struct page
*page
)
969 if (!(s
->flags
& SLAB_STORE_USER
))
972 list_add(&page
->lru
, &n
->full
);
976 * list_lock must be held.
978 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
980 if (!(s
->flags
& SLAB_STORE_USER
))
983 list_del(&page
->lru
);
986 /* Tracking of the number of slabs for debugging purposes */
987 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
989 struct kmem_cache_node
*n
= get_node(s
, node
);
991 return atomic_long_read(&n
->nr_slabs
);
994 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
996 return atomic_long_read(&n
->nr_slabs
);
999 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1001 struct kmem_cache_node
*n
= get_node(s
, node
);
1004 * May be called early in order to allocate a slab for the
1005 * kmem_cache_node structure. Solve the chicken-egg
1006 * dilemma by deferring the increment of the count during
1007 * bootstrap (see early_kmem_cache_node_alloc).
1010 atomic_long_inc(&n
->nr_slabs
);
1011 atomic_long_add(objects
, &n
->total_objects
);
1014 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1016 struct kmem_cache_node
*n
= get_node(s
, node
);
1018 atomic_long_dec(&n
->nr_slabs
);
1019 atomic_long_sub(objects
, &n
->total_objects
);
1022 /* Object debug checks for alloc/free paths */
1023 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1026 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1029 init_object(s
, object
, SLUB_RED_INACTIVE
);
1030 init_tracking(s
, object
);
1033 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1034 void *object
, unsigned long addr
)
1036 if (!check_slab(s
, page
))
1039 if (!check_valid_pointer(s
, page
, object
)) {
1040 object_err(s
, page
, object
, "Freelist Pointer check fails");
1044 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1047 /* Success perform special debug activities for allocs */
1048 if (s
->flags
& SLAB_STORE_USER
)
1049 set_track(s
, object
, TRACK_ALLOC
, addr
);
1050 trace(s
, page
, object
, 1);
1051 init_object(s
, object
, SLUB_RED_ACTIVE
);
1055 if (PageSlab(page
)) {
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
1059 * as used avoids touching the remaining objects.
1061 slab_fix(s
, "Marking all objects used");
1062 page
->inuse
= page
->objects
;
1063 page
->freelist
= NULL
;
1068 static noinline
struct kmem_cache_node
*free_debug_processing(
1069 struct kmem_cache
*s
, struct page
*page
, void *object
,
1070 unsigned long addr
, unsigned long *flags
)
1072 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1074 spin_lock_irqsave(&n
->list_lock
, *flags
);
1077 if (!check_slab(s
, page
))
1080 if (!check_valid_pointer(s
, page
, object
)) {
1081 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1085 if (on_freelist(s
, page
, object
)) {
1086 object_err(s
, page
, object
, "Object already free");
1090 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1093 if (unlikely(s
!= page
->slab_cache
)) {
1094 if (!PageSlab(page
)) {
1095 slab_err(s
, page
, "Attempt to free object(0x%p) "
1096 "outside of slab", object
);
1097 } else if (!page
->slab_cache
) {
1099 "SLUB <none>: no slab for object 0x%p.\n",
1103 object_err(s
, page
, object
,
1104 "page slab pointer corrupt.");
1108 if (s
->flags
& SLAB_STORE_USER
)
1109 set_track(s
, object
, TRACK_FREE
, addr
);
1110 trace(s
, page
, object
, 0);
1111 init_object(s
, object
, SLUB_RED_INACTIVE
);
1115 * Keep node_lock to preserve integrity
1116 * until the object is actually freed
1122 spin_unlock_irqrestore(&n
->list_lock
, *flags
);
1123 slab_fix(s
, "Object at 0x%p not freed", object
);
1127 static int __init
setup_slub_debug(char *str
)
1129 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1130 if (*str
++ != '=' || !*str
)
1132 * No options specified. Switch on full debugging.
1138 * No options but restriction on slabs. This means full
1139 * debugging for slabs matching a pattern.
1143 if (tolower(*str
) == 'o') {
1145 * Avoid enabling debugging on caches if its minimum order
1146 * would increase as a result.
1148 disable_higher_order_debug
= 1;
1155 * Switch off all debugging measures.
1160 * Determine which debug features should be switched on
1162 for (; *str
&& *str
!= ','; str
++) {
1163 switch (tolower(*str
)) {
1165 slub_debug
|= SLAB_DEBUG_FREE
;
1168 slub_debug
|= SLAB_RED_ZONE
;
1171 slub_debug
|= SLAB_POISON
;
1174 slub_debug
|= SLAB_STORE_USER
;
1177 slub_debug
|= SLAB_TRACE
;
1180 slub_debug
|= SLAB_FAILSLAB
;
1183 printk(KERN_ERR
"slub_debug option '%c' "
1184 "unknown. skipped\n", *str
);
1190 slub_debug_slabs
= str
+ 1;
1195 __setup("slub_debug", setup_slub_debug
);
1197 static unsigned long kmem_cache_flags(unsigned long object_size
,
1198 unsigned long flags
, const char *name
,
1199 void (*ctor
)(void *))
1202 * Enable debugging if selected on the kernel commandline.
1204 if (slub_debug
&& (!slub_debug_slabs
||
1205 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1206 flags
|= slub_debug
;
1211 static inline void setup_object_debug(struct kmem_cache
*s
,
1212 struct page
*page
, void *object
) {}
1214 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1215 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1217 static inline struct kmem_cache_node
*free_debug_processing(
1218 struct kmem_cache
*s
, struct page
*page
, void *object
,
1219 unsigned long addr
, unsigned long *flags
) { return NULL
; }
1221 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1223 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1224 void *object
, u8 val
) { return 1; }
1225 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1226 struct page
*page
) {}
1227 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
1228 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
1229 unsigned long flags
, const char *name
,
1230 void (*ctor
)(void *))
1234 #define slub_debug 0
1236 #define disable_higher_order_debug 0
1238 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1240 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1242 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1244 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1247 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1250 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1253 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1255 #endif /* CONFIG_SLUB_DEBUG */
1258 * Slab allocation and freeing
1260 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1261 struct kmem_cache_order_objects oo
)
1263 int order
= oo_order(oo
);
1265 flags
|= __GFP_NOTRACK
;
1267 if (node
== NUMA_NO_NODE
)
1268 return alloc_pages(flags
, order
);
1270 return alloc_pages_exact_node(node
, flags
, order
);
1273 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1276 struct kmem_cache_order_objects oo
= s
->oo
;
1279 flags
&= gfp_allowed_mask
;
1281 if (flags
& __GFP_WAIT
)
1284 flags
|= s
->allocflags
;
1287 * Let the initial higher-order allocation fail under memory pressure
1288 * so we fall-back to the minimum order allocation.
1290 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1292 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1293 if (unlikely(!page
)) {
1296 * Allocation may have failed due to fragmentation.
1297 * Try a lower order alloc if possible
1299 page
= alloc_slab_page(flags
, node
, oo
);
1302 stat(s
, ORDER_FALLBACK
);
1305 if (kmemcheck_enabled
&& page
1306 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1307 int pages
= 1 << oo_order(oo
);
1309 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1312 * Objects from caches that have a constructor don't get
1313 * cleared when they're allocated, so we need to do it here.
1316 kmemcheck_mark_uninitialized_pages(page
, pages
);
1318 kmemcheck_mark_unallocated_pages(page
, pages
);
1321 if (flags
& __GFP_WAIT
)
1322 local_irq_disable();
1326 page
->objects
= oo_objects(oo
);
1327 mod_zone_page_state(page_zone(page
),
1328 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1329 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1335 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1338 setup_object_debug(s
, page
, object
);
1339 if (unlikely(s
->ctor
))
1343 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1351 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1353 page
= allocate_slab(s
,
1354 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1358 order
= compound_order(page
);
1359 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1360 memcg_bind_pages(s
, order
);
1361 page
->slab_cache
= s
;
1362 __SetPageSlab(page
);
1363 if (page
->pfmemalloc
)
1364 SetPageSlabPfmemalloc(page
);
1366 start
= page_address(page
);
1368 if (unlikely(s
->flags
& SLAB_POISON
))
1369 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1372 for_each_object(p
, s
, start
, page
->objects
) {
1373 setup_object(s
, page
, last
);
1374 set_freepointer(s
, last
, p
);
1377 setup_object(s
, page
, last
);
1378 set_freepointer(s
, last
, NULL
);
1380 page
->freelist
= start
;
1381 page
->inuse
= page
->objects
;
1387 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1389 int order
= compound_order(page
);
1390 int pages
= 1 << order
;
1392 if (kmem_cache_debug(s
)) {
1395 slab_pad_check(s
, page
);
1396 for_each_object(p
, s
, page_address(page
),
1398 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1401 kmemcheck_free_shadow(page
, compound_order(page
));
1403 mod_zone_page_state(page_zone(page
),
1404 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1405 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1408 __ClearPageSlabPfmemalloc(page
);
1409 __ClearPageSlab(page
);
1411 memcg_release_pages(s
, order
);
1412 page_mapcount_reset(page
);
1413 if (current
->reclaim_state
)
1414 current
->reclaim_state
->reclaimed_slab
+= pages
;
1415 __free_memcg_kmem_pages(page
, order
);
1418 #define need_reserve_slab_rcu \
1419 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1421 static void rcu_free_slab(struct rcu_head
*h
)
1425 if (need_reserve_slab_rcu
)
1426 page
= virt_to_head_page(h
);
1428 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1430 __free_slab(page
->slab_cache
, page
);
1433 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1435 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1436 struct rcu_head
*head
;
1438 if (need_reserve_slab_rcu
) {
1439 int order
= compound_order(page
);
1440 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1442 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1443 head
= page_address(page
) + offset
;
1446 * RCU free overloads the RCU head over the LRU
1448 head
= (void *)&page
->lru
;
1451 call_rcu(head
, rcu_free_slab
);
1453 __free_slab(s
, page
);
1456 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1458 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1463 * Management of partially allocated slabs.
1465 * list_lock must be held.
1467 static inline void add_partial(struct kmem_cache_node
*n
,
1468 struct page
*page
, int tail
)
1471 if (tail
== DEACTIVATE_TO_TAIL
)
1472 list_add_tail(&page
->lru
, &n
->partial
);
1474 list_add(&page
->lru
, &n
->partial
);
1478 * list_lock must be held.
1480 static inline void remove_partial(struct kmem_cache_node
*n
,
1483 list_del(&page
->lru
);
1488 * Remove slab from the partial list, freeze it and
1489 * return the pointer to the freelist.
1491 * Returns a list of objects or NULL if it fails.
1493 * Must hold list_lock since we modify the partial list.
1495 static inline void *acquire_slab(struct kmem_cache
*s
,
1496 struct kmem_cache_node
*n
, struct page
*page
,
1497 int mode
, int *objects
)
1500 unsigned long counters
;
1504 * Zap the freelist and set the frozen bit.
1505 * The old freelist is the list of objects for the
1506 * per cpu allocation list.
1508 freelist
= page
->freelist
;
1509 counters
= page
->counters
;
1510 new.counters
= counters
;
1511 *objects
= new.objects
- new.inuse
;
1513 new.inuse
= page
->objects
;
1514 new.freelist
= NULL
;
1516 new.freelist
= freelist
;
1519 VM_BUG_ON(new.frozen
);
1522 if (!__cmpxchg_double_slab(s
, page
,
1524 new.freelist
, new.counters
,
1528 remove_partial(n
, page
);
1533 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1534 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1537 * Try to allocate a partial slab from a specific node.
1539 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1540 struct kmem_cache_cpu
*c
, gfp_t flags
)
1542 struct page
*page
, *page2
;
1543 void *object
= NULL
;
1548 * Racy check. If we mistakenly see no partial slabs then we
1549 * just allocate an empty slab. If we mistakenly try to get a
1550 * partial slab and there is none available then get_partials()
1553 if (!n
|| !n
->nr_partial
)
1556 spin_lock(&n
->list_lock
);
1557 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1560 if (!pfmemalloc_match(page
, flags
))
1563 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1567 available
+= objects
;
1570 stat(s
, ALLOC_FROM_PARTIAL
);
1573 put_cpu_partial(s
, page
, 0);
1574 stat(s
, CPU_PARTIAL_NODE
);
1576 if (kmem_cache_debug(s
) || available
> s
->cpu_partial
/ 2)
1580 spin_unlock(&n
->list_lock
);
1585 * Get a page from somewhere. Search in increasing NUMA distances.
1587 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1588 struct kmem_cache_cpu
*c
)
1591 struct zonelist
*zonelist
;
1594 enum zone_type high_zoneidx
= gfp_zone(flags
);
1596 unsigned int cpuset_mems_cookie
;
1599 * The defrag ratio allows a configuration of the tradeoffs between
1600 * inter node defragmentation and node local allocations. A lower
1601 * defrag_ratio increases the tendency to do local allocations
1602 * instead of attempting to obtain partial slabs from other nodes.
1604 * If the defrag_ratio is set to 0 then kmalloc() always
1605 * returns node local objects. If the ratio is higher then kmalloc()
1606 * may return off node objects because partial slabs are obtained
1607 * from other nodes and filled up.
1609 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1610 * defrag_ratio = 1000) then every (well almost) allocation will
1611 * first attempt to defrag slab caches on other nodes. This means
1612 * scanning over all nodes to look for partial slabs which may be
1613 * expensive if we do it every time we are trying to find a slab
1614 * with available objects.
1616 if (!s
->remote_node_defrag_ratio
||
1617 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1621 cpuset_mems_cookie
= get_mems_allowed();
1622 zonelist
= node_zonelist(slab_node(), flags
);
1623 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1624 struct kmem_cache_node
*n
;
1626 n
= get_node(s
, zone_to_nid(zone
));
1628 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1629 n
->nr_partial
> s
->min_partial
) {
1630 object
= get_partial_node(s
, n
, c
, flags
);
1633 * Return the object even if
1634 * put_mems_allowed indicated that
1635 * the cpuset mems_allowed was
1636 * updated in parallel. It's a
1637 * harmless race between the alloc
1638 * and the cpuset update.
1640 put_mems_allowed(cpuset_mems_cookie
);
1645 } while (!put_mems_allowed(cpuset_mems_cookie
));
1651 * Get a partial page, lock it and return it.
1653 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1654 struct kmem_cache_cpu
*c
)
1657 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1659 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1660 if (object
|| node
!= NUMA_NO_NODE
)
1663 return get_any_partial(s
, flags
, c
);
1666 #ifdef CONFIG_PREEMPT
1668 * Calculate the next globally unique transaction for disambiguiation
1669 * during cmpxchg. The transactions start with the cpu number and are then
1670 * incremented by CONFIG_NR_CPUS.
1672 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1675 * No preemption supported therefore also no need to check for
1681 static inline unsigned long next_tid(unsigned long tid
)
1683 return tid
+ TID_STEP
;
1686 static inline unsigned int tid_to_cpu(unsigned long tid
)
1688 return tid
% TID_STEP
;
1691 static inline unsigned long tid_to_event(unsigned long tid
)
1693 return tid
/ TID_STEP
;
1696 static inline unsigned int init_tid(int cpu
)
1701 static inline void note_cmpxchg_failure(const char *n
,
1702 const struct kmem_cache
*s
, unsigned long tid
)
1704 #ifdef SLUB_DEBUG_CMPXCHG
1705 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1707 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1709 #ifdef CONFIG_PREEMPT
1710 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1711 printk("due to cpu change %d -> %d\n",
1712 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1715 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1716 printk("due to cpu running other code. Event %ld->%ld\n",
1717 tid_to_event(tid
), tid_to_event(actual_tid
));
1719 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1720 actual_tid
, tid
, next_tid(tid
));
1722 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1725 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1729 for_each_possible_cpu(cpu
)
1730 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1734 * Remove the cpu slab
1736 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
, void *freelist
)
1738 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1739 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1741 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1743 int tail
= DEACTIVATE_TO_HEAD
;
1747 if (page
->freelist
) {
1748 stat(s
, DEACTIVATE_REMOTE_FREES
);
1749 tail
= DEACTIVATE_TO_TAIL
;
1753 * Stage one: Free all available per cpu objects back
1754 * to the page freelist while it is still frozen. Leave the
1757 * There is no need to take the list->lock because the page
1760 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1762 unsigned long counters
;
1765 prior
= page
->freelist
;
1766 counters
= page
->counters
;
1767 set_freepointer(s
, freelist
, prior
);
1768 new.counters
= counters
;
1770 VM_BUG_ON(!new.frozen
);
1772 } while (!__cmpxchg_double_slab(s
, page
,
1774 freelist
, new.counters
,
1775 "drain percpu freelist"));
1777 freelist
= nextfree
;
1781 * Stage two: Ensure that the page is unfrozen while the
1782 * list presence reflects the actual number of objects
1785 * We setup the list membership and then perform a cmpxchg
1786 * with the count. If there is a mismatch then the page
1787 * is not unfrozen but the page is on the wrong list.
1789 * Then we restart the process which may have to remove
1790 * the page from the list that we just put it on again
1791 * because the number of objects in the slab may have
1796 old
.freelist
= page
->freelist
;
1797 old
.counters
= page
->counters
;
1798 VM_BUG_ON(!old
.frozen
);
1800 /* Determine target state of the slab */
1801 new.counters
= old
.counters
;
1804 set_freepointer(s
, freelist
, old
.freelist
);
1805 new.freelist
= freelist
;
1807 new.freelist
= old
.freelist
;
1811 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1813 else if (new.freelist
) {
1818 * Taking the spinlock removes the possiblity
1819 * that acquire_slab() will see a slab page that
1822 spin_lock(&n
->list_lock
);
1826 if (kmem_cache_debug(s
) && !lock
) {
1829 * This also ensures that the scanning of full
1830 * slabs from diagnostic functions will not see
1833 spin_lock(&n
->list_lock
);
1841 remove_partial(n
, page
);
1843 else if (l
== M_FULL
)
1845 remove_full(s
, page
);
1847 if (m
== M_PARTIAL
) {
1849 add_partial(n
, page
, tail
);
1852 } else if (m
== M_FULL
) {
1854 stat(s
, DEACTIVATE_FULL
);
1855 add_full(s
, n
, page
);
1861 if (!__cmpxchg_double_slab(s
, page
,
1862 old
.freelist
, old
.counters
,
1863 new.freelist
, new.counters
,
1868 spin_unlock(&n
->list_lock
);
1871 stat(s
, DEACTIVATE_EMPTY
);
1872 discard_slab(s
, page
);
1878 * Unfreeze all the cpu partial slabs.
1880 * This function must be called with interrupts disabled
1881 * for the cpu using c (or some other guarantee must be there
1882 * to guarantee no concurrent accesses).
1884 static void unfreeze_partials(struct kmem_cache
*s
,
1885 struct kmem_cache_cpu
*c
)
1887 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
1888 struct page
*page
, *discard_page
= NULL
;
1890 while ((page
= c
->partial
)) {
1894 c
->partial
= page
->next
;
1896 n2
= get_node(s
, page_to_nid(page
));
1899 spin_unlock(&n
->list_lock
);
1902 spin_lock(&n
->list_lock
);
1907 old
.freelist
= page
->freelist
;
1908 old
.counters
= page
->counters
;
1909 VM_BUG_ON(!old
.frozen
);
1911 new.counters
= old
.counters
;
1912 new.freelist
= old
.freelist
;
1916 } while (!__cmpxchg_double_slab(s
, page
,
1917 old
.freelist
, old
.counters
,
1918 new.freelist
, new.counters
,
1919 "unfreezing slab"));
1921 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
)) {
1922 page
->next
= discard_page
;
1923 discard_page
= page
;
1925 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
1926 stat(s
, FREE_ADD_PARTIAL
);
1931 spin_unlock(&n
->list_lock
);
1933 while (discard_page
) {
1934 page
= discard_page
;
1935 discard_page
= discard_page
->next
;
1937 stat(s
, DEACTIVATE_EMPTY
);
1938 discard_slab(s
, page
);
1944 * Put a page that was just frozen (in __slab_free) into a partial page
1945 * slot if available. This is done without interrupts disabled and without
1946 * preemption disabled. The cmpxchg is racy and may put the partial page
1947 * onto a random cpus partial slot.
1949 * If we did not find a slot then simply move all the partials to the
1950 * per node partial list.
1952 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
1954 struct page
*oldpage
;
1961 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
1964 pobjects
= oldpage
->pobjects
;
1965 pages
= oldpage
->pages
;
1966 if (drain
&& pobjects
> s
->cpu_partial
) {
1967 unsigned long flags
;
1969 * partial array is full. Move the existing
1970 * set to the per node partial list.
1972 local_irq_save(flags
);
1973 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
1974 local_irq_restore(flags
);
1978 stat(s
, CPU_PARTIAL_DRAIN
);
1983 pobjects
+= page
->objects
- page
->inuse
;
1985 page
->pages
= pages
;
1986 page
->pobjects
= pobjects
;
1987 page
->next
= oldpage
;
1989 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
) != oldpage
);
1992 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1994 stat(s
, CPUSLAB_FLUSH
);
1995 deactivate_slab(s
, c
->page
, c
->freelist
);
1997 c
->tid
= next_tid(c
->tid
);
2005 * Called from IPI handler with interrupts disabled.
2007 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2009 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2015 unfreeze_partials(s
, c
);
2019 static void flush_cpu_slab(void *d
)
2021 struct kmem_cache
*s
= d
;
2023 __flush_cpu_slab(s
, smp_processor_id());
2026 static bool has_cpu_slab(int cpu
, void *info
)
2028 struct kmem_cache
*s
= info
;
2029 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2031 return c
->page
|| c
->partial
;
2034 static void flush_all(struct kmem_cache
*s
)
2036 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2040 * Check if the objects in a per cpu structure fit numa
2041 * locality expectations.
2043 static inline int node_match(struct page
*page
, int node
)
2046 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2052 static int count_free(struct page
*page
)
2054 return page
->objects
- page
->inuse
;
2057 static unsigned long count_partial(struct kmem_cache_node
*n
,
2058 int (*get_count
)(struct page
*))
2060 unsigned long flags
;
2061 unsigned long x
= 0;
2064 spin_lock_irqsave(&n
->list_lock
, flags
);
2065 list_for_each_entry(page
, &n
->partial
, lru
)
2066 x
+= get_count(page
);
2067 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2071 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2073 #ifdef CONFIG_SLUB_DEBUG
2074 return atomic_long_read(&n
->total_objects
);
2080 static noinline
void
2081 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2086 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2088 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2089 "default order: %d, min order: %d\n", s
->name
, s
->object_size
,
2090 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2092 if (oo_order(s
->min
) > get_order(s
->object_size
))
2093 printk(KERN_WARNING
" %s debugging increased min order, use "
2094 "slub_debug=O to disable.\n", s
->name
);
2096 for_each_online_node(node
) {
2097 struct kmem_cache_node
*n
= get_node(s
, node
);
2098 unsigned long nr_slabs
;
2099 unsigned long nr_objs
;
2100 unsigned long nr_free
;
2105 nr_free
= count_partial(n
, count_free
);
2106 nr_slabs
= node_nr_slabs(n
);
2107 nr_objs
= node_nr_objs(n
);
2110 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2111 node
, nr_slabs
, nr_objs
, nr_free
);
2115 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2116 int node
, struct kmem_cache_cpu
**pc
)
2119 struct kmem_cache_cpu
*c
= *pc
;
2122 freelist
= get_partial(s
, flags
, node
, c
);
2127 page
= new_slab(s
, flags
, node
);
2129 c
= __this_cpu_ptr(s
->cpu_slab
);
2134 * No other reference to the page yet so we can
2135 * muck around with it freely without cmpxchg
2137 freelist
= page
->freelist
;
2138 page
->freelist
= NULL
;
2140 stat(s
, ALLOC_SLAB
);
2149 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2151 if (unlikely(PageSlabPfmemalloc(page
)))
2152 return gfp_pfmemalloc_allowed(gfpflags
);
2158 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2159 * or deactivate the page.
2161 * The page is still frozen if the return value is not NULL.
2163 * If this function returns NULL then the page has been unfrozen.
2165 * This function must be called with interrupt disabled.
2167 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2170 unsigned long counters
;
2174 freelist
= page
->freelist
;
2175 counters
= page
->counters
;
2177 new.counters
= counters
;
2178 VM_BUG_ON(!new.frozen
);
2180 new.inuse
= page
->objects
;
2181 new.frozen
= freelist
!= NULL
;
2183 } while (!__cmpxchg_double_slab(s
, page
,
2192 * Slow path. The lockless freelist is empty or we need to perform
2195 * Processing is still very fast if new objects have been freed to the
2196 * regular freelist. In that case we simply take over the regular freelist
2197 * as the lockless freelist and zap the regular freelist.
2199 * If that is not working then we fall back to the partial lists. We take the
2200 * first element of the freelist as the object to allocate now and move the
2201 * rest of the freelist to the lockless freelist.
2203 * And if we were unable to get a new slab from the partial slab lists then
2204 * we need to allocate a new slab. This is the slowest path since it involves
2205 * a call to the page allocator and the setup of a new slab.
2207 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2208 unsigned long addr
, struct kmem_cache_cpu
*c
)
2212 unsigned long flags
;
2214 local_irq_save(flags
);
2215 #ifdef CONFIG_PREEMPT
2217 * We may have been preempted and rescheduled on a different
2218 * cpu before disabling interrupts. Need to reload cpu area
2221 c
= this_cpu_ptr(s
->cpu_slab
);
2229 if (unlikely(!node_match(page
, node
))) {
2230 stat(s
, ALLOC_NODE_MISMATCH
);
2231 deactivate_slab(s
, page
, c
->freelist
);
2238 * By rights, we should be searching for a slab page that was
2239 * PFMEMALLOC but right now, we are losing the pfmemalloc
2240 * information when the page leaves the per-cpu allocator
2242 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2243 deactivate_slab(s
, page
, c
->freelist
);
2249 /* must check again c->freelist in case of cpu migration or IRQ */
2250 freelist
= c
->freelist
;
2254 stat(s
, ALLOC_SLOWPATH
);
2256 freelist
= get_freelist(s
, page
);
2260 stat(s
, DEACTIVATE_BYPASS
);
2264 stat(s
, ALLOC_REFILL
);
2268 * freelist is pointing to the list of objects to be used.
2269 * page is pointing to the page from which the objects are obtained.
2270 * That page must be frozen for per cpu allocations to work.
2272 VM_BUG_ON(!c
->page
->frozen
);
2273 c
->freelist
= get_freepointer(s
, freelist
);
2274 c
->tid
= next_tid(c
->tid
);
2275 local_irq_restore(flags
);
2281 page
= c
->page
= c
->partial
;
2282 c
->partial
= page
->next
;
2283 stat(s
, CPU_PARTIAL_ALLOC
);
2288 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2290 if (unlikely(!freelist
)) {
2291 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2292 slab_out_of_memory(s
, gfpflags
, node
);
2294 local_irq_restore(flags
);
2299 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2302 /* Only entered in the debug case */
2303 if (kmem_cache_debug(s
) && !alloc_debug_processing(s
, page
, freelist
, addr
))
2304 goto new_slab
; /* Slab failed checks. Next slab needed */
2306 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2309 local_irq_restore(flags
);
2314 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2315 * have the fastpath folded into their functions. So no function call
2316 * overhead for requests that can be satisfied on the fastpath.
2318 * The fastpath works by first checking if the lockless freelist can be used.
2319 * If not then __slab_alloc is called for slow processing.
2321 * Otherwise we can simply pick the next object from the lockless free list.
2323 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2324 gfp_t gfpflags
, int node
, unsigned long addr
)
2327 struct kmem_cache_cpu
*c
;
2331 if (slab_pre_alloc_hook(s
, gfpflags
))
2334 s
= memcg_kmem_get_cache(s
, gfpflags
);
2337 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2338 * enabled. We may switch back and forth between cpus while
2339 * reading from one cpu area. That does not matter as long
2340 * as we end up on the original cpu again when doing the cmpxchg.
2342 * Preemption is disabled for the retrieval of the tid because that
2343 * must occur from the current processor. We cannot allow rescheduling
2344 * on a different processor between the determination of the pointer
2345 * and the retrieval of the tid.
2348 c
= __this_cpu_ptr(s
->cpu_slab
);
2351 * The transaction ids are globally unique per cpu and per operation on
2352 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2353 * occurs on the right processor and that there was no operation on the
2354 * linked list in between.
2359 object
= c
->freelist
;
2361 if (unlikely(!object
|| !node_match(page
, node
)))
2362 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2365 void *next_object
= get_freepointer_safe(s
, object
);
2368 * The cmpxchg will only match if there was no additional
2369 * operation and if we are on the right processor.
2371 * The cmpxchg does the following atomically (without lock semantics!)
2372 * 1. Relocate first pointer to the current per cpu area.
2373 * 2. Verify that tid and freelist have not been changed
2374 * 3. If they were not changed replace tid and freelist
2376 * Since this is without lock semantics the protection is only against
2377 * code executing on this cpu *not* from access by other cpus.
2379 if (unlikely(!this_cpu_cmpxchg_double(
2380 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2382 next_object
, next_tid(tid
)))) {
2384 note_cmpxchg_failure("slab_alloc", s
, tid
);
2387 prefetch_freepointer(s
, next_object
);
2388 stat(s
, ALLOC_FASTPATH
);
2391 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2392 memset(object
, 0, s
->object_size
);
2394 slab_post_alloc_hook(s
, gfpflags
, object
);
2399 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2400 gfp_t gfpflags
, unsigned long addr
)
2402 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2405 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2407 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2409 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
, s
->size
, gfpflags
);
2413 EXPORT_SYMBOL(kmem_cache_alloc
);
2415 #ifdef CONFIG_TRACING
2416 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2418 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2419 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2422 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2424 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2426 void *ret
= kmalloc_order(size
, flags
, order
);
2427 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2430 EXPORT_SYMBOL(kmalloc_order_trace
);
2434 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2436 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2438 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2439 s
->object_size
, s
->size
, gfpflags
, node
);
2443 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2445 #ifdef CONFIG_TRACING
2446 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2448 int node
, size_t size
)
2450 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2452 trace_kmalloc_node(_RET_IP_
, ret
,
2453 size
, s
->size
, gfpflags
, node
);
2456 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2461 * Slow patch handling. This may still be called frequently since objects
2462 * have a longer lifetime than the cpu slabs in most processing loads.
2464 * So we still attempt to reduce cache line usage. Just take the slab
2465 * lock and free the item. If there is no additional partial page
2466 * handling required then we can return immediately.
2468 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2469 void *x
, unsigned long addr
)
2472 void **object
= (void *)x
;
2475 unsigned long counters
;
2476 struct kmem_cache_node
*n
= NULL
;
2477 unsigned long uninitialized_var(flags
);
2479 stat(s
, FREE_SLOWPATH
);
2481 if (kmem_cache_debug(s
) &&
2482 !(n
= free_debug_processing(s
, page
, x
, addr
, &flags
)))
2487 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2490 prior
= page
->freelist
;
2491 counters
= page
->counters
;
2492 set_freepointer(s
, object
, prior
);
2493 new.counters
= counters
;
2494 was_frozen
= new.frozen
;
2496 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2498 if (!kmem_cache_debug(s
) && !prior
)
2501 * Slab was on no list before and will be partially empty
2502 * We can defer the list move and instead freeze it.
2506 else { /* Needs to be taken off a list */
2508 n
= get_node(s
, page_to_nid(page
));
2510 * Speculatively acquire the list_lock.
2511 * If the cmpxchg does not succeed then we may
2512 * drop the list_lock without any processing.
2514 * Otherwise the list_lock will synchronize with
2515 * other processors updating the list of slabs.
2517 spin_lock_irqsave(&n
->list_lock
, flags
);
2522 } while (!cmpxchg_double_slab(s
, page
,
2524 object
, new.counters
,
2530 * If we just froze the page then put it onto the
2531 * per cpu partial list.
2533 if (new.frozen
&& !was_frozen
) {
2534 put_cpu_partial(s
, page
, 1);
2535 stat(s
, CPU_PARTIAL_FREE
);
2538 * The list lock was not taken therefore no list
2539 * activity can be necessary.
2542 stat(s
, FREE_FROZEN
);
2546 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
))
2550 * Objects left in the slab. If it was not on the partial list before
2553 if (kmem_cache_debug(s
) && unlikely(!prior
)) {
2554 remove_full(s
, page
);
2555 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2556 stat(s
, FREE_ADD_PARTIAL
);
2558 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2564 * Slab on the partial list.
2566 remove_partial(n
, page
);
2567 stat(s
, FREE_REMOVE_PARTIAL
);
2569 /* Slab must be on the full list */
2570 remove_full(s
, page
);
2572 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2574 discard_slab(s
, page
);
2578 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2579 * can perform fastpath freeing without additional function calls.
2581 * The fastpath is only possible if we are freeing to the current cpu slab
2582 * of this processor. This typically the case if we have just allocated
2585 * If fastpath is not possible then fall back to __slab_free where we deal
2586 * with all sorts of special processing.
2588 static __always_inline
void slab_free(struct kmem_cache
*s
,
2589 struct page
*page
, void *x
, unsigned long addr
)
2591 void **object
= (void *)x
;
2592 struct kmem_cache_cpu
*c
;
2595 slab_free_hook(s
, x
);
2599 * Determine the currently cpus per cpu slab.
2600 * The cpu may change afterward. However that does not matter since
2601 * data is retrieved via this pointer. If we are on the same cpu
2602 * during the cmpxchg then the free will succedd.
2605 c
= __this_cpu_ptr(s
->cpu_slab
);
2610 if (likely(page
== c
->page
)) {
2611 set_freepointer(s
, object
, c
->freelist
);
2613 if (unlikely(!this_cpu_cmpxchg_double(
2614 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2616 object
, next_tid(tid
)))) {
2618 note_cmpxchg_failure("slab_free", s
, tid
);
2621 stat(s
, FREE_FASTPATH
);
2623 __slab_free(s
, page
, x
, addr
);
2627 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2629 s
= cache_from_obj(s
, x
);
2632 slab_free(s
, virt_to_head_page(x
), x
, _RET_IP_
);
2633 trace_kmem_cache_free(_RET_IP_
, x
);
2635 EXPORT_SYMBOL(kmem_cache_free
);
2638 * Object placement in a slab is made very easy because we always start at
2639 * offset 0. If we tune the size of the object to the alignment then we can
2640 * get the required alignment by putting one properly sized object after
2643 * Notice that the allocation order determines the sizes of the per cpu
2644 * caches. Each processor has always one slab available for allocations.
2645 * Increasing the allocation order reduces the number of times that slabs
2646 * must be moved on and off the partial lists and is therefore a factor in
2651 * Mininum / Maximum order of slab pages. This influences locking overhead
2652 * and slab fragmentation. A higher order reduces the number of partial slabs
2653 * and increases the number of allocations possible without having to
2654 * take the list_lock.
2656 static int slub_min_order
;
2657 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2658 static int slub_min_objects
;
2661 * Merge control. If this is set then no merging of slab caches will occur.
2662 * (Could be removed. This was introduced to pacify the merge skeptics.)
2664 static int slub_nomerge
;
2667 * Calculate the order of allocation given an slab object size.
2669 * The order of allocation has significant impact on performance and other
2670 * system components. Generally order 0 allocations should be preferred since
2671 * order 0 does not cause fragmentation in the page allocator. Larger objects
2672 * be problematic to put into order 0 slabs because there may be too much
2673 * unused space left. We go to a higher order if more than 1/16th of the slab
2676 * In order to reach satisfactory performance we must ensure that a minimum
2677 * number of objects is in one slab. Otherwise we may generate too much
2678 * activity on the partial lists which requires taking the list_lock. This is
2679 * less a concern for large slabs though which are rarely used.
2681 * slub_max_order specifies the order where we begin to stop considering the
2682 * number of objects in a slab as critical. If we reach slub_max_order then
2683 * we try to keep the page order as low as possible. So we accept more waste
2684 * of space in favor of a small page order.
2686 * Higher order allocations also allow the placement of more objects in a
2687 * slab and thereby reduce object handling overhead. If the user has
2688 * requested a higher mininum order then we start with that one instead of
2689 * the smallest order which will fit the object.
2691 static inline int slab_order(int size
, int min_objects
,
2692 int max_order
, int fract_leftover
, int reserved
)
2696 int min_order
= slub_min_order
;
2698 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2699 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2701 for (order
= max(min_order
,
2702 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2703 order
<= max_order
; order
++) {
2705 unsigned long slab_size
= PAGE_SIZE
<< order
;
2707 if (slab_size
< min_objects
* size
+ reserved
)
2710 rem
= (slab_size
- reserved
) % size
;
2712 if (rem
<= slab_size
/ fract_leftover
)
2720 static inline int calculate_order(int size
, int reserved
)
2728 * Attempt to find best configuration for a slab. This
2729 * works by first attempting to generate a layout with
2730 * the best configuration and backing off gradually.
2732 * First we reduce the acceptable waste in a slab. Then
2733 * we reduce the minimum objects required in a slab.
2735 min_objects
= slub_min_objects
;
2737 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2738 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2739 min_objects
= min(min_objects
, max_objects
);
2741 while (min_objects
> 1) {
2743 while (fraction
>= 4) {
2744 order
= slab_order(size
, min_objects
,
2745 slub_max_order
, fraction
, reserved
);
2746 if (order
<= slub_max_order
)
2754 * We were unable to place multiple objects in a slab. Now
2755 * lets see if we can place a single object there.
2757 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2758 if (order
<= slub_max_order
)
2762 * Doh this slab cannot be placed using slub_max_order.
2764 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2765 if (order
< MAX_ORDER
)
2771 init_kmem_cache_node(struct kmem_cache_node
*n
)
2774 spin_lock_init(&n
->list_lock
);
2775 INIT_LIST_HEAD(&n
->partial
);
2776 #ifdef CONFIG_SLUB_DEBUG
2777 atomic_long_set(&n
->nr_slabs
, 0);
2778 atomic_long_set(&n
->total_objects
, 0);
2779 INIT_LIST_HEAD(&n
->full
);
2783 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2785 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2786 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
2789 * Must align to double word boundary for the double cmpxchg
2790 * instructions to work; see __pcpu_double_call_return_bool().
2792 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2793 2 * sizeof(void *));
2798 init_kmem_cache_cpus(s
);
2803 static struct kmem_cache
*kmem_cache_node
;
2806 * No kmalloc_node yet so do it by hand. We know that this is the first
2807 * slab on the node for this slabcache. There are no concurrent accesses
2810 * Note that this function only works on the kmalloc_node_cache
2811 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2812 * memory on a fresh node that has no slab structures yet.
2814 static void early_kmem_cache_node_alloc(int node
)
2817 struct kmem_cache_node
*n
;
2819 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2821 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2824 if (page_to_nid(page
) != node
) {
2825 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2827 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2828 "in order to be able to continue\n");
2833 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2836 kmem_cache_node
->node
[node
] = n
;
2837 #ifdef CONFIG_SLUB_DEBUG
2838 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2839 init_tracking(kmem_cache_node
, n
);
2841 init_kmem_cache_node(n
);
2842 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2844 add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2847 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2851 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2852 struct kmem_cache_node
*n
= s
->node
[node
];
2855 kmem_cache_free(kmem_cache_node
, n
);
2857 s
->node
[node
] = NULL
;
2861 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2865 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2866 struct kmem_cache_node
*n
;
2868 if (slab_state
== DOWN
) {
2869 early_kmem_cache_node_alloc(node
);
2872 n
= kmem_cache_alloc_node(kmem_cache_node
,
2876 free_kmem_cache_nodes(s
);
2881 init_kmem_cache_node(n
);
2886 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2888 if (min
< MIN_PARTIAL
)
2890 else if (min
> MAX_PARTIAL
)
2892 s
->min_partial
= min
;
2896 * calculate_sizes() determines the order and the distribution of data within
2899 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2901 unsigned long flags
= s
->flags
;
2902 unsigned long size
= s
->object_size
;
2906 * Round up object size to the next word boundary. We can only
2907 * place the free pointer at word boundaries and this determines
2908 * the possible location of the free pointer.
2910 size
= ALIGN(size
, sizeof(void *));
2912 #ifdef CONFIG_SLUB_DEBUG
2914 * Determine if we can poison the object itself. If the user of
2915 * the slab may touch the object after free or before allocation
2916 * then we should never poison the object itself.
2918 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2920 s
->flags
|= __OBJECT_POISON
;
2922 s
->flags
&= ~__OBJECT_POISON
;
2926 * If we are Redzoning then check if there is some space between the
2927 * end of the object and the free pointer. If not then add an
2928 * additional word to have some bytes to store Redzone information.
2930 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
2931 size
+= sizeof(void *);
2935 * With that we have determined the number of bytes in actual use
2936 * by the object. This is the potential offset to the free pointer.
2940 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2943 * Relocate free pointer after the object if it is not
2944 * permitted to overwrite the first word of the object on
2947 * This is the case if we do RCU, have a constructor or
2948 * destructor or are poisoning the objects.
2951 size
+= sizeof(void *);
2954 #ifdef CONFIG_SLUB_DEBUG
2955 if (flags
& SLAB_STORE_USER
)
2957 * Need to store information about allocs and frees after
2960 size
+= 2 * sizeof(struct track
);
2962 if (flags
& SLAB_RED_ZONE
)
2964 * Add some empty padding so that we can catch
2965 * overwrites from earlier objects rather than let
2966 * tracking information or the free pointer be
2967 * corrupted if a user writes before the start
2970 size
+= sizeof(void *);
2974 * SLUB stores one object immediately after another beginning from
2975 * offset 0. In order to align the objects we have to simply size
2976 * each object to conform to the alignment.
2978 size
= ALIGN(size
, s
->align
);
2980 if (forced_order
>= 0)
2981 order
= forced_order
;
2983 order
= calculate_order(size
, s
->reserved
);
2990 s
->allocflags
|= __GFP_COMP
;
2992 if (s
->flags
& SLAB_CACHE_DMA
)
2993 s
->allocflags
|= GFP_DMA
;
2995 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2996 s
->allocflags
|= __GFP_RECLAIMABLE
;
2999 * Determine the number of objects per slab
3001 s
->oo
= oo_make(order
, size
, s
->reserved
);
3002 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3003 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3006 return !!oo_objects(s
->oo
);
3009 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3011 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3014 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3015 s
->reserved
= sizeof(struct rcu_head
);
3017 if (!calculate_sizes(s
, -1))
3019 if (disable_higher_order_debug
) {
3021 * Disable debugging flags that store metadata if the min slab
3024 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3025 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3027 if (!calculate_sizes(s
, -1))
3032 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3033 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3034 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3035 /* Enable fast mode */
3036 s
->flags
|= __CMPXCHG_DOUBLE
;
3040 * The larger the object size is, the more pages we want on the partial
3041 * list to avoid pounding the page allocator excessively.
3043 set_min_partial(s
, ilog2(s
->size
) / 2);
3046 * cpu_partial determined the maximum number of objects kept in the
3047 * per cpu partial lists of a processor.
3049 * Per cpu partial lists mainly contain slabs that just have one
3050 * object freed. If they are used for allocation then they can be
3051 * filled up again with minimal effort. The slab will never hit the
3052 * per node partial lists and therefore no locking will be required.
3054 * This setting also determines
3056 * A) The number of objects from per cpu partial slabs dumped to the
3057 * per node list when we reach the limit.
3058 * B) The number of objects in cpu partial slabs to extract from the
3059 * per node list when we run out of per cpu objects. We only fetch 50%
3060 * to keep some capacity around for frees.
3062 if (kmem_cache_debug(s
))
3064 else if (s
->size
>= PAGE_SIZE
)
3066 else if (s
->size
>= 1024)
3068 else if (s
->size
>= 256)
3069 s
->cpu_partial
= 13;
3071 s
->cpu_partial
= 30;
3074 s
->remote_node_defrag_ratio
= 1000;
3076 if (!init_kmem_cache_nodes(s
))
3079 if (alloc_kmem_cache_cpus(s
))
3082 free_kmem_cache_nodes(s
);
3084 if (flags
& SLAB_PANIC
)
3085 panic("Cannot create slab %s size=%lu realsize=%u "
3086 "order=%u offset=%u flags=%lx\n",
3087 s
->name
, (unsigned long)s
->size
, s
->size
, oo_order(s
->oo
),
3092 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3095 #ifdef CONFIG_SLUB_DEBUG
3096 void *addr
= page_address(page
);
3098 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3099 sizeof(long), GFP_ATOMIC
);
3102 slab_err(s
, page
, text
, s
->name
);
3105 get_map(s
, page
, map
);
3106 for_each_object(p
, s
, addr
, page
->objects
) {
3108 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3109 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
3111 print_tracking(s
, p
);
3120 * Attempt to free all partial slabs on a node.
3121 * This is called from kmem_cache_close(). We must be the last thread
3122 * using the cache and therefore we do not need to lock anymore.
3124 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3126 struct page
*page
, *h
;
3128 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3130 remove_partial(n
, page
);
3131 discard_slab(s
, page
);
3133 list_slab_objects(s
, page
,
3134 "Objects remaining in %s on kmem_cache_close()");
3140 * Release all resources used by a slab cache.
3142 static inline int kmem_cache_close(struct kmem_cache
*s
)
3147 /* Attempt to free all objects */
3148 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3149 struct kmem_cache_node
*n
= get_node(s
, node
);
3152 if (n
->nr_partial
|| slabs_node(s
, node
))
3155 free_percpu(s
->cpu_slab
);
3156 free_kmem_cache_nodes(s
);
3160 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3162 int rc
= kmem_cache_close(s
);
3166 * We do the same lock strategy around sysfs_slab_add, see
3167 * __kmem_cache_create. Because this is pretty much the last
3168 * operation we do and the lock will be released shortly after
3169 * that in slab_common.c, we could just move sysfs_slab_remove
3170 * to a later point in common code. We should do that when we
3171 * have a common sysfs framework for all allocators.
3173 mutex_unlock(&slab_mutex
);
3174 sysfs_slab_remove(s
);
3175 mutex_lock(&slab_mutex
);
3181 /********************************************************************
3183 *******************************************************************/
3185 static int __init
setup_slub_min_order(char *str
)
3187 get_option(&str
, &slub_min_order
);
3192 __setup("slub_min_order=", setup_slub_min_order
);
3194 static int __init
setup_slub_max_order(char *str
)
3196 get_option(&str
, &slub_max_order
);
3197 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3202 __setup("slub_max_order=", setup_slub_max_order
);
3204 static int __init
setup_slub_min_objects(char *str
)
3206 get_option(&str
, &slub_min_objects
);
3211 __setup("slub_min_objects=", setup_slub_min_objects
);
3213 static int __init
setup_slub_nomerge(char *str
)
3219 __setup("slub_nomerge", setup_slub_nomerge
);
3221 void *__kmalloc(size_t size
, gfp_t flags
)
3223 struct kmem_cache
*s
;
3226 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3227 return kmalloc_large(size
, flags
);
3229 s
= kmalloc_slab(size
, flags
);
3231 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3234 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3236 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3240 EXPORT_SYMBOL(__kmalloc
);
3243 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3248 flags
|= __GFP_COMP
| __GFP_NOTRACK
| __GFP_KMEMCG
;
3249 page
= alloc_pages_node(node
, flags
, get_order(size
));
3251 ptr
= page_address(page
);
3253 kmemleak_alloc(ptr
, size
, 1, flags
);
3257 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3259 struct kmem_cache
*s
;
3262 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3263 ret
= kmalloc_large_node(size
, flags
, node
);
3265 trace_kmalloc_node(_RET_IP_
, ret
,
3266 size
, PAGE_SIZE
<< get_order(size
),
3272 s
= kmalloc_slab(size
, flags
);
3274 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3277 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3279 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3283 EXPORT_SYMBOL(__kmalloc_node
);
3286 size_t ksize(const void *object
)
3290 if (unlikely(object
== ZERO_SIZE_PTR
))
3293 page
= virt_to_head_page(object
);
3295 if (unlikely(!PageSlab(page
))) {
3296 WARN_ON(!PageCompound(page
));
3297 return PAGE_SIZE
<< compound_order(page
);
3300 return slab_ksize(page
->slab_cache
);
3302 EXPORT_SYMBOL(ksize
);
3304 #ifdef CONFIG_SLUB_DEBUG
3305 bool verify_mem_not_deleted(const void *x
)
3308 void *object
= (void *)x
;
3309 unsigned long flags
;
3312 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3315 local_irq_save(flags
);
3317 page
= virt_to_head_page(x
);
3318 if (unlikely(!PageSlab(page
))) {
3319 /* maybe it was from stack? */
3325 if (on_freelist(page
->slab_cache
, page
, object
)) {
3326 object_err(page
->slab_cache
, page
, object
, "Object is on free-list");
3334 local_irq_restore(flags
);
3337 EXPORT_SYMBOL(verify_mem_not_deleted
);
3340 void kfree(const void *x
)
3343 void *object
= (void *)x
;
3345 trace_kfree(_RET_IP_
, x
);
3347 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3350 page
= virt_to_head_page(x
);
3351 if (unlikely(!PageSlab(page
))) {
3352 BUG_ON(!PageCompound(page
));
3354 __free_memcg_kmem_pages(page
, compound_order(page
));
3357 slab_free(page
->slab_cache
, page
, object
, _RET_IP_
);
3359 EXPORT_SYMBOL(kfree
);
3362 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3363 * the remaining slabs by the number of items in use. The slabs with the
3364 * most items in use come first. New allocations will then fill those up
3365 * and thus they can be removed from the partial lists.
3367 * The slabs with the least items are placed last. This results in them
3368 * being allocated from last increasing the chance that the last objects
3369 * are freed in them.
3371 int kmem_cache_shrink(struct kmem_cache
*s
)
3375 struct kmem_cache_node
*n
;
3378 int objects
= oo_objects(s
->max
);
3379 struct list_head
*slabs_by_inuse
=
3380 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3381 unsigned long flags
;
3383 if (!slabs_by_inuse
)
3387 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3388 n
= get_node(s
, node
);
3393 for (i
= 0; i
< objects
; i
++)
3394 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3396 spin_lock_irqsave(&n
->list_lock
, flags
);
3399 * Build lists indexed by the items in use in each slab.
3401 * Note that concurrent frees may occur while we hold the
3402 * list_lock. page->inuse here is the upper limit.
3404 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3405 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3411 * Rebuild the partial list with the slabs filled up most
3412 * first and the least used slabs at the end.
3414 for (i
= objects
- 1; i
> 0; i
--)
3415 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3417 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3419 /* Release empty slabs */
3420 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3421 discard_slab(s
, page
);
3424 kfree(slabs_by_inuse
);
3427 EXPORT_SYMBOL(kmem_cache_shrink
);
3429 static int slab_mem_going_offline_callback(void *arg
)
3431 struct kmem_cache
*s
;
3433 mutex_lock(&slab_mutex
);
3434 list_for_each_entry(s
, &slab_caches
, list
)
3435 kmem_cache_shrink(s
);
3436 mutex_unlock(&slab_mutex
);
3441 static void slab_mem_offline_callback(void *arg
)
3443 struct kmem_cache_node
*n
;
3444 struct kmem_cache
*s
;
3445 struct memory_notify
*marg
= arg
;
3448 offline_node
= marg
->status_change_nid_normal
;
3451 * If the node still has available memory. we need kmem_cache_node
3454 if (offline_node
< 0)
3457 mutex_lock(&slab_mutex
);
3458 list_for_each_entry(s
, &slab_caches
, list
) {
3459 n
= get_node(s
, offline_node
);
3462 * if n->nr_slabs > 0, slabs still exist on the node
3463 * that is going down. We were unable to free them,
3464 * and offline_pages() function shouldn't call this
3465 * callback. So, we must fail.
3467 BUG_ON(slabs_node(s
, offline_node
));
3469 s
->node
[offline_node
] = NULL
;
3470 kmem_cache_free(kmem_cache_node
, n
);
3473 mutex_unlock(&slab_mutex
);
3476 static int slab_mem_going_online_callback(void *arg
)
3478 struct kmem_cache_node
*n
;
3479 struct kmem_cache
*s
;
3480 struct memory_notify
*marg
= arg
;
3481 int nid
= marg
->status_change_nid_normal
;
3485 * If the node's memory is already available, then kmem_cache_node is
3486 * already created. Nothing to do.
3492 * We are bringing a node online. No memory is available yet. We must
3493 * allocate a kmem_cache_node structure in order to bring the node
3496 mutex_lock(&slab_mutex
);
3497 list_for_each_entry(s
, &slab_caches
, list
) {
3499 * XXX: kmem_cache_alloc_node will fallback to other nodes
3500 * since memory is not yet available from the node that
3503 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3508 init_kmem_cache_node(n
);
3512 mutex_unlock(&slab_mutex
);
3516 static int slab_memory_callback(struct notifier_block
*self
,
3517 unsigned long action
, void *arg
)
3522 case MEM_GOING_ONLINE
:
3523 ret
= slab_mem_going_online_callback(arg
);
3525 case MEM_GOING_OFFLINE
:
3526 ret
= slab_mem_going_offline_callback(arg
);
3529 case MEM_CANCEL_ONLINE
:
3530 slab_mem_offline_callback(arg
);
3533 case MEM_CANCEL_OFFLINE
:
3537 ret
= notifier_from_errno(ret
);
3543 static struct notifier_block slab_memory_callback_nb
= {
3544 .notifier_call
= slab_memory_callback
,
3545 .priority
= SLAB_CALLBACK_PRI
,
3548 /********************************************************************
3549 * Basic setup of slabs
3550 *******************************************************************/
3553 * Used for early kmem_cache structures that were allocated using
3554 * the page allocator. Allocate them properly then fix up the pointers
3555 * that may be pointing to the wrong kmem_cache structure.
3558 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
3561 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3563 memcpy(s
, static_cache
, kmem_cache
->object_size
);
3566 * This runs very early, and only the boot processor is supposed to be
3567 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3570 __flush_cpu_slab(s
, smp_processor_id());
3571 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3572 struct kmem_cache_node
*n
= get_node(s
, node
);
3576 list_for_each_entry(p
, &n
->partial
, lru
)
3579 #ifdef CONFIG_SLUB_DEBUG
3580 list_for_each_entry(p
, &n
->full
, lru
)
3585 list_add(&s
->list
, &slab_caches
);
3589 void __init
kmem_cache_init(void)
3591 static __initdata
struct kmem_cache boot_kmem_cache
,
3592 boot_kmem_cache_node
;
3594 if (debug_guardpage_minorder())
3597 kmem_cache_node
= &boot_kmem_cache_node
;
3598 kmem_cache
= &boot_kmem_cache
;
3600 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
3601 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
3603 register_hotmemory_notifier(&slab_memory_callback_nb
);
3605 /* Able to allocate the per node structures */
3606 slab_state
= PARTIAL
;
3608 create_boot_cache(kmem_cache
, "kmem_cache",
3609 offsetof(struct kmem_cache
, node
) +
3610 nr_node_ids
* sizeof(struct kmem_cache_node
*),
3611 SLAB_HWCACHE_ALIGN
);
3613 kmem_cache
= bootstrap(&boot_kmem_cache
);
3616 * Allocate kmem_cache_node properly from the kmem_cache slab.
3617 * kmem_cache_node is separately allocated so no need to
3618 * update any list pointers.
3620 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
3622 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3623 create_kmalloc_caches(0);
3626 register_cpu_notifier(&slab_notifier
);
3630 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3631 " CPUs=%d, Nodes=%d\n",
3633 slub_min_order
, slub_max_order
, slub_min_objects
,
3634 nr_cpu_ids
, nr_node_ids
);
3637 void __init
kmem_cache_init_late(void)
3642 * Find a mergeable slab cache
3644 static int slab_unmergeable(struct kmem_cache
*s
)
3646 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3653 * We may have set a slab to be unmergeable during bootstrap.
3655 if (s
->refcount
< 0)
3661 static struct kmem_cache
*find_mergeable(struct mem_cgroup
*memcg
, size_t size
,
3662 size_t align
, unsigned long flags
, const char *name
,
3663 void (*ctor
)(void *))
3665 struct kmem_cache
*s
;
3667 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3673 size
= ALIGN(size
, sizeof(void *));
3674 align
= calculate_alignment(flags
, align
, size
);
3675 size
= ALIGN(size
, align
);
3676 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3678 list_for_each_entry(s
, &slab_caches
, list
) {
3679 if (slab_unmergeable(s
))
3685 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3688 * Check if alignment is compatible.
3689 * Courtesy of Adrian Drzewiecki
3691 if ((s
->size
& ~(align
- 1)) != s
->size
)
3694 if (s
->size
- size
>= sizeof(void *))
3697 if (!cache_match_memcg(s
, memcg
))
3706 __kmem_cache_alias(struct mem_cgroup
*memcg
, const char *name
, size_t size
,
3707 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3709 struct kmem_cache
*s
;
3711 s
= find_mergeable(memcg
, size
, align
, flags
, name
, ctor
);
3715 * Adjust the object sizes so that we clear
3716 * the complete object on kzalloc.
3718 s
->object_size
= max(s
->object_size
, (int)size
);
3719 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3721 if (sysfs_slab_alias(s
, name
)) {
3730 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
3734 err
= kmem_cache_open(s
, flags
);
3738 /* Mutex is not taken during early boot */
3739 if (slab_state
<= UP
)
3742 memcg_propagate_slab_attrs(s
);
3743 mutex_unlock(&slab_mutex
);
3744 err
= sysfs_slab_add(s
);
3745 mutex_lock(&slab_mutex
);
3748 kmem_cache_close(s
);
3755 * Use the cpu notifier to insure that the cpu slabs are flushed when
3758 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3759 unsigned long action
, void *hcpu
)
3761 long cpu
= (long)hcpu
;
3762 struct kmem_cache
*s
;
3763 unsigned long flags
;
3766 case CPU_UP_CANCELED
:
3767 case CPU_UP_CANCELED_FROZEN
:
3769 case CPU_DEAD_FROZEN
:
3770 mutex_lock(&slab_mutex
);
3771 list_for_each_entry(s
, &slab_caches
, list
) {
3772 local_irq_save(flags
);
3773 __flush_cpu_slab(s
, cpu
);
3774 local_irq_restore(flags
);
3776 mutex_unlock(&slab_mutex
);
3784 static struct notifier_block __cpuinitdata slab_notifier
= {
3785 .notifier_call
= slab_cpuup_callback
3790 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3792 struct kmem_cache
*s
;
3795 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3796 return kmalloc_large(size
, gfpflags
);
3798 s
= kmalloc_slab(size
, gfpflags
);
3800 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3803 ret
= slab_alloc(s
, gfpflags
, caller
);
3805 /* Honor the call site pointer we received. */
3806 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3812 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3813 int node
, unsigned long caller
)
3815 struct kmem_cache
*s
;
3818 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3819 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3821 trace_kmalloc_node(caller
, ret
,
3822 size
, PAGE_SIZE
<< get_order(size
),
3828 s
= kmalloc_slab(size
, gfpflags
);
3830 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3833 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
3835 /* Honor the call site pointer we received. */
3836 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3843 static int count_inuse(struct page
*page
)
3848 static int count_total(struct page
*page
)
3850 return page
->objects
;
3854 #ifdef CONFIG_SLUB_DEBUG
3855 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3859 void *addr
= page_address(page
);
3861 if (!check_slab(s
, page
) ||
3862 !on_freelist(s
, page
, NULL
))
3865 /* Now we know that a valid freelist exists */
3866 bitmap_zero(map
, page
->objects
);
3868 get_map(s
, page
, map
);
3869 for_each_object(p
, s
, addr
, page
->objects
) {
3870 if (test_bit(slab_index(p
, s
, addr
), map
))
3871 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3875 for_each_object(p
, s
, addr
, page
->objects
)
3876 if (!test_bit(slab_index(p
, s
, addr
), map
))
3877 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3882 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3886 validate_slab(s
, page
, map
);
3890 static int validate_slab_node(struct kmem_cache
*s
,
3891 struct kmem_cache_node
*n
, unsigned long *map
)
3893 unsigned long count
= 0;
3895 unsigned long flags
;
3897 spin_lock_irqsave(&n
->list_lock
, flags
);
3899 list_for_each_entry(page
, &n
->partial
, lru
) {
3900 validate_slab_slab(s
, page
, map
);
3903 if (count
!= n
->nr_partial
)
3904 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3905 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3907 if (!(s
->flags
& SLAB_STORE_USER
))
3910 list_for_each_entry(page
, &n
->full
, lru
) {
3911 validate_slab_slab(s
, page
, map
);
3914 if (count
!= atomic_long_read(&n
->nr_slabs
))
3915 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3916 "counter=%ld\n", s
->name
, count
,
3917 atomic_long_read(&n
->nr_slabs
));
3920 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3924 static long validate_slab_cache(struct kmem_cache
*s
)
3927 unsigned long count
= 0;
3928 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3929 sizeof(unsigned long), GFP_KERNEL
);
3935 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3936 struct kmem_cache_node
*n
= get_node(s
, node
);
3938 count
+= validate_slab_node(s
, n
, map
);
3944 * Generate lists of code addresses where slabcache objects are allocated
3949 unsigned long count
;
3956 DECLARE_BITMAP(cpus
, NR_CPUS
);
3962 unsigned long count
;
3963 struct location
*loc
;
3966 static void free_loc_track(struct loc_track
*t
)
3969 free_pages((unsigned long)t
->loc
,
3970 get_order(sizeof(struct location
) * t
->max
));
3973 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3978 order
= get_order(sizeof(struct location
) * max
);
3980 l
= (void *)__get_free_pages(flags
, order
);
3985 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3993 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3994 const struct track
*track
)
3996 long start
, end
, pos
;
3998 unsigned long caddr
;
3999 unsigned long age
= jiffies
- track
->when
;
4005 pos
= start
+ (end
- start
+ 1) / 2;
4008 * There is nothing at "end". If we end up there
4009 * we need to add something to before end.
4014 caddr
= t
->loc
[pos
].addr
;
4015 if (track
->addr
== caddr
) {
4021 if (age
< l
->min_time
)
4023 if (age
> l
->max_time
)
4026 if (track
->pid
< l
->min_pid
)
4027 l
->min_pid
= track
->pid
;
4028 if (track
->pid
> l
->max_pid
)
4029 l
->max_pid
= track
->pid
;
4031 cpumask_set_cpu(track
->cpu
,
4032 to_cpumask(l
->cpus
));
4034 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4038 if (track
->addr
< caddr
)
4045 * Not found. Insert new tracking element.
4047 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4053 (t
->count
- pos
) * sizeof(struct location
));
4056 l
->addr
= track
->addr
;
4060 l
->min_pid
= track
->pid
;
4061 l
->max_pid
= track
->pid
;
4062 cpumask_clear(to_cpumask(l
->cpus
));
4063 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4064 nodes_clear(l
->nodes
);
4065 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4069 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4070 struct page
*page
, enum track_item alloc
,
4073 void *addr
= page_address(page
);
4076 bitmap_zero(map
, page
->objects
);
4077 get_map(s
, page
, map
);
4079 for_each_object(p
, s
, addr
, page
->objects
)
4080 if (!test_bit(slab_index(p
, s
, addr
), map
))
4081 add_location(t
, s
, get_track(s
, p
, alloc
));
4084 static int list_locations(struct kmem_cache
*s
, char *buf
,
4085 enum track_item alloc
)
4089 struct loc_track t
= { 0, 0, NULL
};
4091 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4092 sizeof(unsigned long), GFP_KERNEL
);
4094 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4097 return sprintf(buf
, "Out of memory\n");
4099 /* Push back cpu slabs */
4102 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4103 struct kmem_cache_node
*n
= get_node(s
, node
);
4104 unsigned long flags
;
4107 if (!atomic_long_read(&n
->nr_slabs
))
4110 spin_lock_irqsave(&n
->list_lock
, flags
);
4111 list_for_each_entry(page
, &n
->partial
, lru
)
4112 process_slab(&t
, s
, page
, alloc
, map
);
4113 list_for_each_entry(page
, &n
->full
, lru
)
4114 process_slab(&t
, s
, page
, alloc
, map
);
4115 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4118 for (i
= 0; i
< t
.count
; i
++) {
4119 struct location
*l
= &t
.loc
[i
];
4121 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4123 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4126 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4128 len
+= sprintf(buf
+ len
, "<not-available>");
4130 if (l
->sum_time
!= l
->min_time
) {
4131 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4133 (long)div_u64(l
->sum_time
, l
->count
),
4136 len
+= sprintf(buf
+ len
, " age=%ld",
4139 if (l
->min_pid
!= l
->max_pid
)
4140 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4141 l
->min_pid
, l
->max_pid
);
4143 len
+= sprintf(buf
+ len
, " pid=%ld",
4146 if (num_online_cpus() > 1 &&
4147 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4148 len
< PAGE_SIZE
- 60) {
4149 len
+= sprintf(buf
+ len
, " cpus=");
4150 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4151 to_cpumask(l
->cpus
));
4154 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4155 len
< PAGE_SIZE
- 60) {
4156 len
+= sprintf(buf
+ len
, " nodes=");
4157 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4161 len
+= sprintf(buf
+ len
, "\n");
4167 len
+= sprintf(buf
, "No data\n");
4172 #ifdef SLUB_RESILIENCY_TEST
4173 static void resiliency_test(void)
4177 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4179 printk(KERN_ERR
"SLUB resiliency testing\n");
4180 printk(KERN_ERR
"-----------------------\n");
4181 printk(KERN_ERR
"A. Corruption after allocation\n");
4183 p
= kzalloc(16, GFP_KERNEL
);
4185 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4186 " 0x12->0x%p\n\n", p
+ 16);
4188 validate_slab_cache(kmalloc_caches
[4]);
4190 /* Hmmm... The next two are dangerous */
4191 p
= kzalloc(32, GFP_KERNEL
);
4192 p
[32 + sizeof(void *)] = 0x34;
4193 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4194 " 0x34 -> -0x%p\n", p
);
4196 "If allocated object is overwritten then not detectable\n\n");
4198 validate_slab_cache(kmalloc_caches
[5]);
4199 p
= kzalloc(64, GFP_KERNEL
);
4200 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4202 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4205 "If allocated object is overwritten then not detectable\n\n");
4206 validate_slab_cache(kmalloc_caches
[6]);
4208 printk(KERN_ERR
"\nB. Corruption after free\n");
4209 p
= kzalloc(128, GFP_KERNEL
);
4212 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4213 validate_slab_cache(kmalloc_caches
[7]);
4215 p
= kzalloc(256, GFP_KERNEL
);
4218 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4220 validate_slab_cache(kmalloc_caches
[8]);
4222 p
= kzalloc(512, GFP_KERNEL
);
4225 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4226 validate_slab_cache(kmalloc_caches
[9]);
4230 static void resiliency_test(void) {};
4235 enum slab_stat_type
{
4236 SL_ALL
, /* All slabs */
4237 SL_PARTIAL
, /* Only partially allocated slabs */
4238 SL_CPU
, /* Only slabs used for cpu caches */
4239 SL_OBJECTS
, /* Determine allocated objects not slabs */
4240 SL_TOTAL
/* Determine object capacity not slabs */
4243 #define SO_ALL (1 << SL_ALL)
4244 #define SO_PARTIAL (1 << SL_PARTIAL)
4245 #define SO_CPU (1 << SL_CPU)
4246 #define SO_OBJECTS (1 << SL_OBJECTS)
4247 #define SO_TOTAL (1 << SL_TOTAL)
4249 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4250 char *buf
, unsigned long flags
)
4252 unsigned long total
= 0;
4255 unsigned long *nodes
;
4256 unsigned long *per_cpu
;
4258 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4261 per_cpu
= nodes
+ nr_node_ids
;
4263 if (flags
& SO_CPU
) {
4266 for_each_possible_cpu(cpu
) {
4267 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4271 page
= ACCESS_ONCE(c
->page
);
4275 node
= page_to_nid(page
);
4276 if (flags
& SO_TOTAL
)
4278 else if (flags
& SO_OBJECTS
)
4286 page
= ACCESS_ONCE(c
->partial
);
4297 lock_memory_hotplug();
4298 #ifdef CONFIG_SLUB_DEBUG
4299 if (flags
& SO_ALL
) {
4300 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4301 struct kmem_cache_node
*n
= get_node(s
, node
);
4303 if (flags
& SO_TOTAL
)
4304 x
= atomic_long_read(&n
->total_objects
);
4305 else if (flags
& SO_OBJECTS
)
4306 x
= atomic_long_read(&n
->total_objects
) -
4307 count_partial(n
, count_free
);
4310 x
= atomic_long_read(&n
->nr_slabs
);
4317 if (flags
& SO_PARTIAL
) {
4318 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4319 struct kmem_cache_node
*n
= get_node(s
, node
);
4321 if (flags
& SO_TOTAL
)
4322 x
= count_partial(n
, count_total
);
4323 else if (flags
& SO_OBJECTS
)
4324 x
= count_partial(n
, count_inuse
);
4331 x
= sprintf(buf
, "%lu", total
);
4333 for_each_node_state(node
, N_NORMAL_MEMORY
)
4335 x
+= sprintf(buf
+ x
, " N%d=%lu",
4338 unlock_memory_hotplug();
4340 return x
+ sprintf(buf
+ x
, "\n");
4343 #ifdef CONFIG_SLUB_DEBUG
4344 static int any_slab_objects(struct kmem_cache
*s
)
4348 for_each_online_node(node
) {
4349 struct kmem_cache_node
*n
= get_node(s
, node
);
4354 if (atomic_long_read(&n
->total_objects
))
4361 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4362 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4364 struct slab_attribute
{
4365 struct attribute attr
;
4366 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4367 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4370 #define SLAB_ATTR_RO(_name) \
4371 static struct slab_attribute _name##_attr = \
4372 __ATTR(_name, 0400, _name##_show, NULL)
4374 #define SLAB_ATTR(_name) \
4375 static struct slab_attribute _name##_attr = \
4376 __ATTR(_name, 0600, _name##_show, _name##_store)
4378 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4380 return sprintf(buf
, "%d\n", s
->size
);
4382 SLAB_ATTR_RO(slab_size
);
4384 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4386 return sprintf(buf
, "%d\n", s
->align
);
4388 SLAB_ATTR_RO(align
);
4390 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4392 return sprintf(buf
, "%d\n", s
->object_size
);
4394 SLAB_ATTR_RO(object_size
);
4396 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4398 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4400 SLAB_ATTR_RO(objs_per_slab
);
4402 static ssize_t
order_store(struct kmem_cache
*s
,
4403 const char *buf
, size_t length
)
4405 unsigned long order
;
4408 err
= strict_strtoul(buf
, 10, &order
);
4412 if (order
> slub_max_order
|| order
< slub_min_order
)
4415 calculate_sizes(s
, order
);
4419 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4421 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4425 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4427 return sprintf(buf
, "%lu\n", s
->min_partial
);
4430 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4436 err
= strict_strtoul(buf
, 10, &min
);
4440 set_min_partial(s
, min
);
4443 SLAB_ATTR(min_partial
);
4445 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4447 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4450 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4453 unsigned long objects
;
4456 err
= strict_strtoul(buf
, 10, &objects
);
4459 if (objects
&& kmem_cache_debug(s
))
4462 s
->cpu_partial
= objects
;
4466 SLAB_ATTR(cpu_partial
);
4468 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4472 return sprintf(buf
, "%pS\n", s
->ctor
);
4476 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4478 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4480 SLAB_ATTR_RO(aliases
);
4482 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4484 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4486 SLAB_ATTR_RO(partial
);
4488 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4490 return show_slab_objects(s
, buf
, SO_CPU
);
4492 SLAB_ATTR_RO(cpu_slabs
);
4494 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4496 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4498 SLAB_ATTR_RO(objects
);
4500 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4502 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4504 SLAB_ATTR_RO(objects_partial
);
4506 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4513 for_each_online_cpu(cpu
) {
4514 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4517 pages
+= page
->pages
;
4518 objects
+= page
->pobjects
;
4522 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4525 for_each_online_cpu(cpu
) {
4526 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4528 if (page
&& len
< PAGE_SIZE
- 20)
4529 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4530 page
->pobjects
, page
->pages
);
4533 return len
+ sprintf(buf
+ len
, "\n");
4535 SLAB_ATTR_RO(slabs_cpu_partial
);
4537 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4539 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4542 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4543 const char *buf
, size_t length
)
4545 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4547 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4550 SLAB_ATTR(reclaim_account
);
4552 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4554 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4556 SLAB_ATTR_RO(hwcache_align
);
4558 #ifdef CONFIG_ZONE_DMA
4559 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4561 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4563 SLAB_ATTR_RO(cache_dma
);
4566 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4568 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4570 SLAB_ATTR_RO(destroy_by_rcu
);
4572 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4574 return sprintf(buf
, "%d\n", s
->reserved
);
4576 SLAB_ATTR_RO(reserved
);
4578 #ifdef CONFIG_SLUB_DEBUG
4579 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4581 return show_slab_objects(s
, buf
, SO_ALL
);
4583 SLAB_ATTR_RO(slabs
);
4585 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4587 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4589 SLAB_ATTR_RO(total_objects
);
4591 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4593 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4596 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4597 const char *buf
, size_t length
)
4599 s
->flags
&= ~SLAB_DEBUG_FREE
;
4600 if (buf
[0] == '1') {
4601 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4602 s
->flags
|= SLAB_DEBUG_FREE
;
4606 SLAB_ATTR(sanity_checks
);
4608 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4610 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4613 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4616 s
->flags
&= ~SLAB_TRACE
;
4617 if (buf
[0] == '1') {
4618 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4619 s
->flags
|= SLAB_TRACE
;
4625 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4627 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4630 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4631 const char *buf
, size_t length
)
4633 if (any_slab_objects(s
))
4636 s
->flags
&= ~SLAB_RED_ZONE
;
4637 if (buf
[0] == '1') {
4638 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4639 s
->flags
|= SLAB_RED_ZONE
;
4641 calculate_sizes(s
, -1);
4644 SLAB_ATTR(red_zone
);
4646 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4648 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4651 static ssize_t
poison_store(struct kmem_cache
*s
,
4652 const char *buf
, size_t length
)
4654 if (any_slab_objects(s
))
4657 s
->flags
&= ~SLAB_POISON
;
4658 if (buf
[0] == '1') {
4659 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4660 s
->flags
|= SLAB_POISON
;
4662 calculate_sizes(s
, -1);
4667 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4669 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4672 static ssize_t
store_user_store(struct kmem_cache
*s
,
4673 const char *buf
, size_t length
)
4675 if (any_slab_objects(s
))
4678 s
->flags
&= ~SLAB_STORE_USER
;
4679 if (buf
[0] == '1') {
4680 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4681 s
->flags
|= SLAB_STORE_USER
;
4683 calculate_sizes(s
, -1);
4686 SLAB_ATTR(store_user
);
4688 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4693 static ssize_t
validate_store(struct kmem_cache
*s
,
4694 const char *buf
, size_t length
)
4698 if (buf
[0] == '1') {
4699 ret
= validate_slab_cache(s
);
4705 SLAB_ATTR(validate
);
4707 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4709 if (!(s
->flags
& SLAB_STORE_USER
))
4711 return list_locations(s
, buf
, TRACK_ALLOC
);
4713 SLAB_ATTR_RO(alloc_calls
);
4715 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4717 if (!(s
->flags
& SLAB_STORE_USER
))
4719 return list_locations(s
, buf
, TRACK_FREE
);
4721 SLAB_ATTR_RO(free_calls
);
4722 #endif /* CONFIG_SLUB_DEBUG */
4724 #ifdef CONFIG_FAILSLAB
4725 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4727 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4730 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4733 s
->flags
&= ~SLAB_FAILSLAB
;
4735 s
->flags
|= SLAB_FAILSLAB
;
4738 SLAB_ATTR(failslab
);
4741 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4746 static ssize_t
shrink_store(struct kmem_cache
*s
,
4747 const char *buf
, size_t length
)
4749 if (buf
[0] == '1') {
4750 int rc
= kmem_cache_shrink(s
);
4761 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4763 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4766 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4767 const char *buf
, size_t length
)
4769 unsigned long ratio
;
4772 err
= strict_strtoul(buf
, 10, &ratio
);
4777 s
->remote_node_defrag_ratio
= ratio
* 10;
4781 SLAB_ATTR(remote_node_defrag_ratio
);
4784 #ifdef CONFIG_SLUB_STATS
4785 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4787 unsigned long sum
= 0;
4790 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4795 for_each_online_cpu(cpu
) {
4796 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4802 len
= sprintf(buf
, "%lu", sum
);
4805 for_each_online_cpu(cpu
) {
4806 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4807 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4811 return len
+ sprintf(buf
+ len
, "\n");
4814 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4818 for_each_online_cpu(cpu
)
4819 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4822 #define STAT_ATTR(si, text) \
4823 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4825 return show_stat(s, buf, si); \
4827 static ssize_t text##_store(struct kmem_cache *s, \
4828 const char *buf, size_t length) \
4830 if (buf[0] != '0') \
4832 clear_stat(s, si); \
4837 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4838 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4839 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4840 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4841 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4842 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4843 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4844 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4845 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4846 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4847 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
4848 STAT_ATTR(FREE_SLAB
, free_slab
);
4849 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4850 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4851 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4852 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4853 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4854 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4855 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
4856 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4857 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
4858 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
4859 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
4860 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
4861 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
4862 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
4865 static struct attribute
*slab_attrs
[] = {
4866 &slab_size_attr
.attr
,
4867 &object_size_attr
.attr
,
4868 &objs_per_slab_attr
.attr
,
4870 &min_partial_attr
.attr
,
4871 &cpu_partial_attr
.attr
,
4873 &objects_partial_attr
.attr
,
4875 &cpu_slabs_attr
.attr
,
4879 &hwcache_align_attr
.attr
,
4880 &reclaim_account_attr
.attr
,
4881 &destroy_by_rcu_attr
.attr
,
4883 &reserved_attr
.attr
,
4884 &slabs_cpu_partial_attr
.attr
,
4885 #ifdef CONFIG_SLUB_DEBUG
4886 &total_objects_attr
.attr
,
4888 &sanity_checks_attr
.attr
,
4890 &red_zone_attr
.attr
,
4892 &store_user_attr
.attr
,
4893 &validate_attr
.attr
,
4894 &alloc_calls_attr
.attr
,
4895 &free_calls_attr
.attr
,
4897 #ifdef CONFIG_ZONE_DMA
4898 &cache_dma_attr
.attr
,
4901 &remote_node_defrag_ratio_attr
.attr
,
4903 #ifdef CONFIG_SLUB_STATS
4904 &alloc_fastpath_attr
.attr
,
4905 &alloc_slowpath_attr
.attr
,
4906 &free_fastpath_attr
.attr
,
4907 &free_slowpath_attr
.attr
,
4908 &free_frozen_attr
.attr
,
4909 &free_add_partial_attr
.attr
,
4910 &free_remove_partial_attr
.attr
,
4911 &alloc_from_partial_attr
.attr
,
4912 &alloc_slab_attr
.attr
,
4913 &alloc_refill_attr
.attr
,
4914 &alloc_node_mismatch_attr
.attr
,
4915 &free_slab_attr
.attr
,
4916 &cpuslab_flush_attr
.attr
,
4917 &deactivate_full_attr
.attr
,
4918 &deactivate_empty_attr
.attr
,
4919 &deactivate_to_head_attr
.attr
,
4920 &deactivate_to_tail_attr
.attr
,
4921 &deactivate_remote_frees_attr
.attr
,
4922 &deactivate_bypass_attr
.attr
,
4923 &order_fallback_attr
.attr
,
4924 &cmpxchg_double_fail_attr
.attr
,
4925 &cmpxchg_double_cpu_fail_attr
.attr
,
4926 &cpu_partial_alloc_attr
.attr
,
4927 &cpu_partial_free_attr
.attr
,
4928 &cpu_partial_node_attr
.attr
,
4929 &cpu_partial_drain_attr
.attr
,
4931 #ifdef CONFIG_FAILSLAB
4932 &failslab_attr
.attr
,
4938 static struct attribute_group slab_attr_group
= {
4939 .attrs
= slab_attrs
,
4942 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4943 struct attribute
*attr
,
4946 struct slab_attribute
*attribute
;
4947 struct kmem_cache
*s
;
4950 attribute
= to_slab_attr(attr
);
4953 if (!attribute
->show
)
4956 err
= attribute
->show(s
, buf
);
4961 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4962 struct attribute
*attr
,
4963 const char *buf
, size_t len
)
4965 struct slab_attribute
*attribute
;
4966 struct kmem_cache
*s
;
4969 attribute
= to_slab_attr(attr
);
4972 if (!attribute
->store
)
4975 err
= attribute
->store(s
, buf
, len
);
4976 #ifdef CONFIG_MEMCG_KMEM
4977 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
4980 mutex_lock(&slab_mutex
);
4981 if (s
->max_attr_size
< len
)
4982 s
->max_attr_size
= len
;
4985 * This is a best effort propagation, so this function's return
4986 * value will be determined by the parent cache only. This is
4987 * basically because not all attributes will have a well
4988 * defined semantics for rollbacks - most of the actions will
4989 * have permanent effects.
4991 * Returning the error value of any of the children that fail
4992 * is not 100 % defined, in the sense that users seeing the
4993 * error code won't be able to know anything about the state of
4996 * Only returning the error code for the parent cache at least
4997 * has well defined semantics. The cache being written to
4998 * directly either failed or succeeded, in which case we loop
4999 * through the descendants with best-effort propagation.
5001 for_each_memcg_cache_index(i
) {
5002 struct kmem_cache
*c
= cache_from_memcg(s
, i
);
5004 attribute
->store(c
, buf
, len
);
5006 mutex_unlock(&slab_mutex
);
5012 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5014 #ifdef CONFIG_MEMCG_KMEM
5016 char *buffer
= NULL
;
5018 if (!is_root_cache(s
))
5022 * This mean this cache had no attribute written. Therefore, no point
5023 * in copying default values around
5025 if (!s
->max_attr_size
)
5028 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5031 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5033 if (!attr
|| !attr
->store
|| !attr
->show
)
5037 * It is really bad that we have to allocate here, so we will
5038 * do it only as a fallback. If we actually allocate, though,
5039 * we can just use the allocated buffer until the end.
5041 * Most of the slub attributes will tend to be very small in
5042 * size, but sysfs allows buffers up to a page, so they can
5043 * theoretically happen.
5047 else if (s
->max_attr_size
< ARRAY_SIZE(mbuf
))
5050 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5051 if (WARN_ON(!buffer
))
5056 attr
->show(s
->memcg_params
->root_cache
, buf
);
5057 attr
->store(s
, buf
, strlen(buf
));
5061 free_page((unsigned long)buffer
);
5065 static const struct sysfs_ops slab_sysfs_ops
= {
5066 .show
= slab_attr_show
,
5067 .store
= slab_attr_store
,
5070 static struct kobj_type slab_ktype
= {
5071 .sysfs_ops
= &slab_sysfs_ops
,
5074 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5076 struct kobj_type
*ktype
= get_ktype(kobj
);
5078 if (ktype
== &slab_ktype
)
5083 static const struct kset_uevent_ops slab_uevent_ops
= {
5084 .filter
= uevent_filter
,
5087 static struct kset
*slab_kset
;
5089 #define ID_STR_LENGTH 64
5091 /* Create a unique string id for a slab cache:
5093 * Format :[flags-]size
5095 static char *create_unique_id(struct kmem_cache
*s
)
5097 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5104 * First flags affecting slabcache operations. We will only
5105 * get here for aliasable slabs so we do not need to support
5106 * too many flags. The flags here must cover all flags that
5107 * are matched during merging to guarantee that the id is
5110 if (s
->flags
& SLAB_CACHE_DMA
)
5112 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5114 if (s
->flags
& SLAB_DEBUG_FREE
)
5116 if (!(s
->flags
& SLAB_NOTRACK
))
5120 p
+= sprintf(p
, "%07d", s
->size
);
5122 #ifdef CONFIG_MEMCG_KMEM
5123 if (!is_root_cache(s
))
5124 p
+= sprintf(p
, "-%08d", memcg_cache_id(s
->memcg_params
->memcg
));
5127 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5131 static int sysfs_slab_add(struct kmem_cache
*s
)
5135 int unmergeable
= slab_unmergeable(s
);
5139 * Slabcache can never be merged so we can use the name proper.
5140 * This is typically the case for debug situations. In that
5141 * case we can catch duplicate names easily.
5143 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5147 * Create a unique name for the slab as a target
5150 name
= create_unique_id(s
);
5153 s
->kobj
.kset
= slab_kset
;
5154 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
5156 kobject_put(&s
->kobj
);
5160 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5162 kobject_del(&s
->kobj
);
5163 kobject_put(&s
->kobj
);
5166 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5168 /* Setup first alias */
5169 sysfs_slab_alias(s
, s
->name
);
5175 static void sysfs_slab_remove(struct kmem_cache
*s
)
5177 if (slab_state
< FULL
)
5179 * Sysfs has not been setup yet so no need to remove the
5184 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5185 kobject_del(&s
->kobj
);
5186 kobject_put(&s
->kobj
);
5190 * Need to buffer aliases during bootup until sysfs becomes
5191 * available lest we lose that information.
5193 struct saved_alias
{
5194 struct kmem_cache
*s
;
5196 struct saved_alias
*next
;
5199 static struct saved_alias
*alias_list
;
5201 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5203 struct saved_alias
*al
;
5205 if (slab_state
== FULL
) {
5207 * If we have a leftover link then remove it.
5209 sysfs_remove_link(&slab_kset
->kobj
, name
);
5210 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5213 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5219 al
->next
= alias_list
;
5224 static int __init
slab_sysfs_init(void)
5226 struct kmem_cache
*s
;
5229 mutex_lock(&slab_mutex
);
5231 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5233 mutex_unlock(&slab_mutex
);
5234 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5240 list_for_each_entry(s
, &slab_caches
, list
) {
5241 err
= sysfs_slab_add(s
);
5243 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5244 " to sysfs\n", s
->name
);
5247 while (alias_list
) {
5248 struct saved_alias
*al
= alias_list
;
5250 alias_list
= alias_list
->next
;
5251 err
= sysfs_slab_alias(al
->s
, al
->name
);
5253 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5254 " %s to sysfs\n", al
->name
);
5258 mutex_unlock(&slab_mutex
);
5263 __initcall(slab_sysfs_init
);
5264 #endif /* CONFIG_SYSFS */
5267 * The /proc/slabinfo ABI
5269 #ifdef CONFIG_SLABINFO
5270 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5272 unsigned long nr_partials
= 0;
5273 unsigned long nr_slabs
= 0;
5274 unsigned long nr_objs
= 0;
5275 unsigned long nr_free
= 0;
5278 for_each_online_node(node
) {
5279 struct kmem_cache_node
*n
= get_node(s
, node
);
5284 nr_partials
+= n
->nr_partial
;
5285 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
5286 nr_objs
+= atomic_long_read(&n
->total_objects
);
5287 nr_free
+= count_partial(n
, count_free
);
5290 sinfo
->active_objs
= nr_objs
- nr_free
;
5291 sinfo
->num_objs
= nr_objs
;
5292 sinfo
->active_slabs
= nr_slabs
;
5293 sinfo
->num_slabs
= nr_slabs
;
5294 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5295 sinfo
->cache_order
= oo_order(s
->oo
);
5298 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5302 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5303 size_t count
, loff_t
*ppos
)
5307 #endif /* CONFIG_SLABINFO */