ext4: ignore last group w/o enough space when resizing instead of BUG'ing
[linux-2.6.git] / fs / dcache.c
blob8086636bf796ab328219d4a898608af1be2fdb2b
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
138 #endif
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
146 #include <asm/word-at-a-time.h>
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
158 unsigned long a,b,mask;
160 for (;;) {
161 a = *(unsigned long *)cs;
162 b = load_unaligned_zeropad(ct);
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
177 #else
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
191 #endif
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
195 const unsigned char *cs;
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
217 static void __d_free(struct rcu_head *head)
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
228 * no locks, please.
230 static void d_free(struct dentry *dentry)
232 BUG_ON(dentry->d_count);
233 this_cpu_dec(nr_dentry);
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 __d_free(&dentry->d_u.d_rcu);
240 else
241 call_rcu(&dentry->d_u.d_rcu, __d_free);
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
263 static void dentry_iput(struct dentry * dentry)
264 __releases(dentry->d_lock)
265 __releases(dentry->d_inode->i_lock)
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 hlist_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&inode->i_lock);
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
288 static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
290 __releases(dentry->d_inode->i_lock)
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 hlist_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
297 spin_unlock(&inode->i_lock);
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
309 static void dentry_lru_add(struct dentry *dentry)
311 if (list_empty(&dentry->d_lru)) {
312 spin_lock(&dcache_lru_lock);
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
315 dentry_stat.nr_unused++;
316 spin_unlock(&dcache_lru_lock);
320 static void __dentry_lru_del(struct dentry *dentry)
322 list_del_init(&dentry->d_lru);
323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
329 * Remove a dentry with references from the LRU.
331 static void dentry_lru_del(struct dentry *dentry)
333 if (!list_empty(&dentry->d_lru)) {
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
345 static void dentry_lru_prune(struct dentry *dentry)
347 if (!list_empty(&dentry->d_lru)) {
348 if (dentry->d_flags & DCACHE_OP_PRUNE)
349 dentry->d_op->d_prune(dentry);
351 spin_lock(&dcache_lru_lock);
352 __dentry_lru_del(dentry);
353 spin_unlock(&dcache_lru_lock);
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
359 spin_lock(&dcache_lru_lock);
360 if (list_empty(&dentry->d_lru)) {
361 list_add_tail(&dentry->d_lru, list);
362 dentry->d_sb->s_nr_dentry_unused++;
363 dentry_stat.nr_unused++;
364 } else {
365 list_move_tail(&dentry->d_lru, list);
367 spin_unlock(&dcache_lru_lock);
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
373 * @parent: parent dentry
375 * The dentry must already be unhashed and removed from the LRU.
377 * If this is the root of the dentry tree, return NULL.
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380 * d_kill.
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 __releases(dentry->d_lock)
384 __releases(parent->d_lock)
385 __releases(dentry->d_inode->i_lock)
387 list_del(&dentry->d_u.d_child);
389 * Inform try_to_ascend() that we are no longer attached to the
390 * dentry tree
392 dentry->d_flags |= DCACHE_DISCONNECTED;
393 if (parent)
394 spin_unlock(&parent->d_lock);
395 dentry_iput(dentry);
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
400 d_free(dentry);
401 return parent;
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
407 * appropriate.
409 static void __d_shrink(struct dentry *dentry)
411 if (!d_unhashed(dentry)) {
412 struct hlist_bl_head *b;
413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 b = &dentry->d_sb->s_anon;
415 else
416 b = d_hash(dentry->d_parent, dentry->d_name.hash);
418 hlist_bl_lock(b);
419 __hlist_bl_del(&dentry->d_hash);
420 dentry->d_hash.pprev = NULL;
421 hlist_bl_unlock(b);
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
438 * __d_drop requires dentry->d_lock.
440 void __d_drop(struct dentry *dentry)
442 if (!d_unhashed(dentry)) {
443 __d_shrink(dentry);
444 dentry_rcuwalk_barrier(dentry);
447 EXPORT_SYMBOL(__d_drop);
449 void d_drop(struct dentry *dentry)
451 spin_lock(&dentry->d_lock);
452 __d_drop(dentry);
453 spin_unlock(&dentry->d_lock);
455 EXPORT_SYMBOL(d_drop);
458 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
459 * @dentry: dentry to drop
461 * This is called when we do a lookup on a placeholder dentry that needed to be
462 * looked up. The dentry should have been hashed in order for it to be found by
463 * the lookup code, but now needs to be unhashed while we do the actual lookup
464 * and clear the DCACHE_NEED_LOOKUP flag.
466 void d_clear_need_lookup(struct dentry *dentry)
468 spin_lock(&dentry->d_lock);
469 __d_drop(dentry);
470 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
471 spin_unlock(&dentry->d_lock);
473 EXPORT_SYMBOL(d_clear_need_lookup);
476 * Finish off a dentry we've decided to kill.
477 * dentry->d_lock must be held, returns with it unlocked.
478 * If ref is non-zero, then decrement the refcount too.
479 * Returns dentry requiring refcount drop, or NULL if we're done.
481 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
482 __releases(dentry->d_lock)
484 struct inode *inode;
485 struct dentry *parent;
487 inode = dentry->d_inode;
488 if (inode && !spin_trylock(&inode->i_lock)) {
489 relock:
490 spin_unlock(&dentry->d_lock);
491 cpu_relax();
492 return dentry; /* try again with same dentry */
494 if (IS_ROOT(dentry))
495 parent = NULL;
496 else
497 parent = dentry->d_parent;
498 if (parent && !spin_trylock(&parent->d_lock)) {
499 if (inode)
500 spin_unlock(&inode->i_lock);
501 goto relock;
504 if (ref)
505 dentry->d_count--;
507 * if dentry was on the d_lru list delete it from there.
508 * inform the fs via d_prune that this dentry is about to be
509 * unhashed and destroyed.
511 dentry_lru_prune(dentry);
512 /* if it was on the hash then remove it */
513 __d_drop(dentry);
514 return d_kill(dentry, parent);
518 * This is dput
520 * This is complicated by the fact that we do not want to put
521 * dentries that are no longer on any hash chain on the unused
522 * list: we'd much rather just get rid of them immediately.
524 * However, that implies that we have to traverse the dentry
525 * tree upwards to the parents which might _also_ now be
526 * scheduled for deletion (it may have been only waiting for
527 * its last child to go away).
529 * This tail recursion is done by hand as we don't want to depend
530 * on the compiler to always get this right (gcc generally doesn't).
531 * Real recursion would eat up our stack space.
535 * dput - release a dentry
536 * @dentry: dentry to release
538 * Release a dentry. This will drop the usage count and if appropriate
539 * call the dentry unlink method as well as removing it from the queues and
540 * releasing its resources. If the parent dentries were scheduled for release
541 * they too may now get deleted.
543 void dput(struct dentry *dentry)
545 if (!dentry)
546 return;
548 repeat:
549 if (dentry->d_count == 1)
550 might_sleep();
551 spin_lock(&dentry->d_lock);
552 BUG_ON(!dentry->d_count);
553 if (dentry->d_count > 1) {
554 dentry->d_count--;
555 spin_unlock(&dentry->d_lock);
556 return;
559 if (dentry->d_flags & DCACHE_OP_DELETE) {
560 if (dentry->d_op->d_delete(dentry))
561 goto kill_it;
564 /* Unreachable? Get rid of it */
565 if (d_unhashed(dentry))
566 goto kill_it;
569 * If this dentry needs lookup, don't set the referenced flag so that it
570 * is more likely to be cleaned up by the dcache shrinker in case of
571 * memory pressure.
573 if (!d_need_lookup(dentry))
574 dentry->d_flags |= DCACHE_REFERENCED;
575 dentry_lru_add(dentry);
577 dentry->d_count--;
578 spin_unlock(&dentry->d_lock);
579 return;
581 kill_it:
582 dentry = dentry_kill(dentry, 1);
583 if (dentry)
584 goto repeat;
586 EXPORT_SYMBOL(dput);
589 * d_invalidate - invalidate a dentry
590 * @dentry: dentry to invalidate
592 * Try to invalidate the dentry if it turns out to be
593 * possible. If there are other dentries that can be
594 * reached through this one we can't delete it and we
595 * return -EBUSY. On success we return 0.
597 * no dcache lock.
600 int d_invalidate(struct dentry * dentry)
603 * If it's already been dropped, return OK.
605 spin_lock(&dentry->d_lock);
606 if (d_unhashed(dentry)) {
607 spin_unlock(&dentry->d_lock);
608 return 0;
611 * Check whether to do a partial shrink_dcache
612 * to get rid of unused child entries.
614 if (!list_empty(&dentry->d_subdirs)) {
615 spin_unlock(&dentry->d_lock);
616 shrink_dcache_parent(dentry);
617 spin_lock(&dentry->d_lock);
621 * Somebody else still using it?
623 * If it's a directory, we can't drop it
624 * for fear of somebody re-populating it
625 * with children (even though dropping it
626 * would make it unreachable from the root,
627 * we might still populate it if it was a
628 * working directory or similar).
629 * We also need to leave mountpoints alone,
630 * directory or not.
632 if (dentry->d_count > 1 && dentry->d_inode) {
633 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
634 spin_unlock(&dentry->d_lock);
635 return -EBUSY;
639 __d_drop(dentry);
640 spin_unlock(&dentry->d_lock);
641 return 0;
643 EXPORT_SYMBOL(d_invalidate);
645 /* This must be called with d_lock held */
646 static inline void __dget_dlock(struct dentry *dentry)
648 dentry->d_count++;
651 static inline void __dget(struct dentry *dentry)
653 spin_lock(&dentry->d_lock);
654 __dget_dlock(dentry);
655 spin_unlock(&dentry->d_lock);
658 struct dentry *dget_parent(struct dentry *dentry)
660 struct dentry *ret;
662 repeat:
664 * Don't need rcu_dereference because we re-check it was correct under
665 * the lock.
667 rcu_read_lock();
668 ret = dentry->d_parent;
669 spin_lock(&ret->d_lock);
670 if (unlikely(ret != dentry->d_parent)) {
671 spin_unlock(&ret->d_lock);
672 rcu_read_unlock();
673 goto repeat;
675 rcu_read_unlock();
676 BUG_ON(!ret->d_count);
677 ret->d_count++;
678 spin_unlock(&ret->d_lock);
679 return ret;
681 EXPORT_SYMBOL(dget_parent);
684 * d_find_alias - grab a hashed alias of inode
685 * @inode: inode in question
686 * @want_discon: flag, used by d_splice_alias, to request
687 * that only a DISCONNECTED alias be returned.
689 * If inode has a hashed alias, or is a directory and has any alias,
690 * acquire the reference to alias and return it. Otherwise return NULL.
691 * Notice that if inode is a directory there can be only one alias and
692 * it can be unhashed only if it has no children, or if it is the root
693 * of a filesystem.
695 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
696 * any other hashed alias over that one unless @want_discon is set,
697 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
699 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
701 struct dentry *alias, *discon_alias;
702 struct hlist_node *p;
704 again:
705 discon_alias = NULL;
706 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
707 spin_lock(&alias->d_lock);
708 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
709 if (IS_ROOT(alias) &&
710 (alias->d_flags & DCACHE_DISCONNECTED)) {
711 discon_alias = alias;
712 } else if (!want_discon) {
713 __dget_dlock(alias);
714 spin_unlock(&alias->d_lock);
715 return alias;
718 spin_unlock(&alias->d_lock);
720 if (discon_alias) {
721 alias = discon_alias;
722 spin_lock(&alias->d_lock);
723 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
724 if (IS_ROOT(alias) &&
725 (alias->d_flags & DCACHE_DISCONNECTED)) {
726 __dget_dlock(alias);
727 spin_unlock(&alias->d_lock);
728 return alias;
731 spin_unlock(&alias->d_lock);
732 goto again;
734 return NULL;
737 struct dentry *d_find_alias(struct inode *inode)
739 struct dentry *de = NULL;
741 if (!hlist_empty(&inode->i_dentry)) {
742 spin_lock(&inode->i_lock);
743 de = __d_find_alias(inode, 0);
744 spin_unlock(&inode->i_lock);
746 return de;
748 EXPORT_SYMBOL(d_find_alias);
751 * Try to kill dentries associated with this inode.
752 * WARNING: you must own a reference to inode.
754 void d_prune_aliases(struct inode *inode)
756 struct dentry *dentry;
757 struct hlist_node *p;
758 restart:
759 spin_lock(&inode->i_lock);
760 hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
761 spin_lock(&dentry->d_lock);
762 if (!dentry->d_count) {
763 __dget_dlock(dentry);
764 __d_drop(dentry);
765 spin_unlock(&dentry->d_lock);
766 spin_unlock(&inode->i_lock);
767 dput(dentry);
768 goto restart;
770 spin_unlock(&dentry->d_lock);
772 spin_unlock(&inode->i_lock);
774 EXPORT_SYMBOL(d_prune_aliases);
777 * Try to throw away a dentry - free the inode, dput the parent.
778 * Requires dentry->d_lock is held, and dentry->d_count == 0.
779 * Releases dentry->d_lock.
781 * This may fail if locks cannot be acquired no problem, just try again.
783 static void try_prune_one_dentry(struct dentry *dentry)
784 __releases(dentry->d_lock)
786 struct dentry *parent;
788 parent = dentry_kill(dentry, 0);
790 * If dentry_kill returns NULL, we have nothing more to do.
791 * if it returns the same dentry, trylocks failed. In either
792 * case, just loop again.
794 * Otherwise, we need to prune ancestors too. This is necessary
795 * to prevent quadratic behavior of shrink_dcache_parent(), but
796 * is also expected to be beneficial in reducing dentry cache
797 * fragmentation.
799 if (!parent)
800 return;
801 if (parent == dentry)
802 return;
804 /* Prune ancestors. */
805 dentry = parent;
806 while (dentry) {
807 spin_lock(&dentry->d_lock);
808 if (dentry->d_count > 1) {
809 dentry->d_count--;
810 spin_unlock(&dentry->d_lock);
811 return;
813 dentry = dentry_kill(dentry, 1);
817 static void shrink_dentry_list(struct list_head *list)
819 struct dentry *dentry;
821 rcu_read_lock();
822 for (;;) {
823 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
824 if (&dentry->d_lru == list)
825 break; /* empty */
826 spin_lock(&dentry->d_lock);
827 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
828 spin_unlock(&dentry->d_lock);
829 continue;
833 * We found an inuse dentry which was not removed from
834 * the LRU because of laziness during lookup. Do not free
835 * it - just keep it off the LRU list.
837 if (dentry->d_count) {
838 dentry_lru_del(dentry);
839 spin_unlock(&dentry->d_lock);
840 continue;
843 rcu_read_unlock();
845 try_prune_one_dentry(dentry);
847 rcu_read_lock();
849 rcu_read_unlock();
853 * prune_dcache_sb - shrink the dcache
854 * @sb: superblock
855 * @count: number of entries to try to free
857 * Attempt to shrink the superblock dcache LRU by @count entries. This is
858 * done when we need more memory an called from the superblock shrinker
859 * function.
861 * This function may fail to free any resources if all the dentries are in
862 * use.
864 void prune_dcache_sb(struct super_block *sb, int count)
866 struct dentry *dentry;
867 LIST_HEAD(referenced);
868 LIST_HEAD(tmp);
870 relock:
871 spin_lock(&dcache_lru_lock);
872 while (!list_empty(&sb->s_dentry_lru)) {
873 dentry = list_entry(sb->s_dentry_lru.prev,
874 struct dentry, d_lru);
875 BUG_ON(dentry->d_sb != sb);
877 if (!spin_trylock(&dentry->d_lock)) {
878 spin_unlock(&dcache_lru_lock);
879 cpu_relax();
880 goto relock;
883 if (dentry->d_flags & DCACHE_REFERENCED) {
884 dentry->d_flags &= ~DCACHE_REFERENCED;
885 list_move(&dentry->d_lru, &referenced);
886 spin_unlock(&dentry->d_lock);
887 } else {
888 list_move_tail(&dentry->d_lru, &tmp);
889 dentry->d_flags |= DCACHE_SHRINK_LIST;
890 spin_unlock(&dentry->d_lock);
891 if (!--count)
892 break;
894 cond_resched_lock(&dcache_lru_lock);
896 if (!list_empty(&referenced))
897 list_splice(&referenced, &sb->s_dentry_lru);
898 spin_unlock(&dcache_lru_lock);
900 shrink_dentry_list(&tmp);
904 * shrink_dcache_sb - shrink dcache for a superblock
905 * @sb: superblock
907 * Shrink the dcache for the specified super block. This is used to free
908 * the dcache before unmounting a file system.
910 void shrink_dcache_sb(struct super_block *sb)
912 LIST_HEAD(tmp);
914 spin_lock(&dcache_lru_lock);
915 while (!list_empty(&sb->s_dentry_lru)) {
916 list_splice_init(&sb->s_dentry_lru, &tmp);
917 spin_unlock(&dcache_lru_lock);
918 shrink_dentry_list(&tmp);
919 spin_lock(&dcache_lru_lock);
921 spin_unlock(&dcache_lru_lock);
923 EXPORT_SYMBOL(shrink_dcache_sb);
926 * destroy a single subtree of dentries for unmount
927 * - see the comments on shrink_dcache_for_umount() for a description of the
928 * locking
930 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
932 struct dentry *parent;
934 BUG_ON(!IS_ROOT(dentry));
936 for (;;) {
937 /* descend to the first leaf in the current subtree */
938 while (!list_empty(&dentry->d_subdirs))
939 dentry = list_entry(dentry->d_subdirs.next,
940 struct dentry, d_u.d_child);
942 /* consume the dentries from this leaf up through its parents
943 * until we find one with children or run out altogether */
944 do {
945 struct inode *inode;
948 * remove the dentry from the lru, and inform
949 * the fs that this dentry is about to be
950 * unhashed and destroyed.
952 dentry_lru_prune(dentry);
953 __d_shrink(dentry);
955 if (dentry->d_count != 0) {
956 printk(KERN_ERR
957 "BUG: Dentry %p{i=%lx,n=%s}"
958 " still in use (%d)"
959 " [unmount of %s %s]\n",
960 dentry,
961 dentry->d_inode ?
962 dentry->d_inode->i_ino : 0UL,
963 dentry->d_name.name,
964 dentry->d_count,
965 dentry->d_sb->s_type->name,
966 dentry->d_sb->s_id);
967 BUG();
970 if (IS_ROOT(dentry)) {
971 parent = NULL;
972 list_del(&dentry->d_u.d_child);
973 } else {
974 parent = dentry->d_parent;
975 parent->d_count--;
976 list_del(&dentry->d_u.d_child);
979 inode = dentry->d_inode;
980 if (inode) {
981 dentry->d_inode = NULL;
982 hlist_del_init(&dentry->d_alias);
983 if (dentry->d_op && dentry->d_op->d_iput)
984 dentry->d_op->d_iput(dentry, inode);
985 else
986 iput(inode);
989 d_free(dentry);
991 /* finished when we fall off the top of the tree,
992 * otherwise we ascend to the parent and move to the
993 * next sibling if there is one */
994 if (!parent)
995 return;
996 dentry = parent;
997 } while (list_empty(&dentry->d_subdirs));
999 dentry = list_entry(dentry->d_subdirs.next,
1000 struct dentry, d_u.d_child);
1005 * destroy the dentries attached to a superblock on unmounting
1006 * - we don't need to use dentry->d_lock because:
1007 * - the superblock is detached from all mountings and open files, so the
1008 * dentry trees will not be rearranged by the VFS
1009 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1010 * any dentries belonging to this superblock that it comes across
1011 * - the filesystem itself is no longer permitted to rearrange the dentries
1012 * in this superblock
1014 void shrink_dcache_for_umount(struct super_block *sb)
1016 struct dentry *dentry;
1018 if (down_read_trylock(&sb->s_umount))
1019 BUG();
1021 dentry = sb->s_root;
1022 sb->s_root = NULL;
1023 dentry->d_count--;
1024 shrink_dcache_for_umount_subtree(dentry);
1026 while (!hlist_bl_empty(&sb->s_anon)) {
1027 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1028 shrink_dcache_for_umount_subtree(dentry);
1033 * This tries to ascend one level of parenthood, but
1034 * we can race with renaming, so we need to re-check
1035 * the parenthood after dropping the lock and check
1036 * that the sequence number still matches.
1038 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1040 struct dentry *new = old->d_parent;
1042 rcu_read_lock();
1043 spin_unlock(&old->d_lock);
1044 spin_lock(&new->d_lock);
1047 * might go back up the wrong parent if we have had a rename
1048 * or deletion
1050 if (new != old->d_parent ||
1051 (old->d_flags & DCACHE_DISCONNECTED) ||
1052 (!locked && read_seqretry(&rename_lock, seq))) {
1053 spin_unlock(&new->d_lock);
1054 new = NULL;
1056 rcu_read_unlock();
1057 return new;
1062 * Search for at least 1 mount point in the dentry's subdirs.
1063 * We descend to the next level whenever the d_subdirs
1064 * list is non-empty and continue searching.
1068 * have_submounts - check for mounts over a dentry
1069 * @parent: dentry to check.
1071 * Return true if the parent or its subdirectories contain
1072 * a mount point
1074 int have_submounts(struct dentry *parent)
1076 struct dentry *this_parent;
1077 struct list_head *next;
1078 unsigned seq;
1079 int locked = 0;
1081 seq = read_seqbegin(&rename_lock);
1082 again:
1083 this_parent = parent;
1085 if (d_mountpoint(parent))
1086 goto positive;
1087 spin_lock(&this_parent->d_lock);
1088 repeat:
1089 next = this_parent->d_subdirs.next;
1090 resume:
1091 while (next != &this_parent->d_subdirs) {
1092 struct list_head *tmp = next;
1093 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1094 next = tmp->next;
1096 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1097 /* Have we found a mount point ? */
1098 if (d_mountpoint(dentry)) {
1099 spin_unlock(&dentry->d_lock);
1100 spin_unlock(&this_parent->d_lock);
1101 goto positive;
1103 if (!list_empty(&dentry->d_subdirs)) {
1104 spin_unlock(&this_parent->d_lock);
1105 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1106 this_parent = dentry;
1107 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1108 goto repeat;
1110 spin_unlock(&dentry->d_lock);
1113 * All done at this level ... ascend and resume the search.
1115 if (this_parent != parent) {
1116 struct dentry *child = this_parent;
1117 this_parent = try_to_ascend(this_parent, locked, seq);
1118 if (!this_parent)
1119 goto rename_retry;
1120 next = child->d_u.d_child.next;
1121 goto resume;
1123 spin_unlock(&this_parent->d_lock);
1124 if (!locked && read_seqretry(&rename_lock, seq))
1125 goto rename_retry;
1126 if (locked)
1127 write_sequnlock(&rename_lock);
1128 return 0; /* No mount points found in tree */
1129 positive:
1130 if (!locked && read_seqretry(&rename_lock, seq))
1131 goto rename_retry;
1132 if (locked)
1133 write_sequnlock(&rename_lock);
1134 return 1;
1136 rename_retry:
1137 locked = 1;
1138 write_seqlock(&rename_lock);
1139 goto again;
1141 EXPORT_SYMBOL(have_submounts);
1144 * Search the dentry child list for the specified parent,
1145 * and move any unused dentries to the end of the unused
1146 * list for prune_dcache(). We descend to the next level
1147 * whenever the d_subdirs list is non-empty and continue
1148 * searching.
1150 * It returns zero iff there are no unused children,
1151 * otherwise it returns the number of children moved to
1152 * the end of the unused list. This may not be the total
1153 * number of unused children, because select_parent can
1154 * drop the lock and return early due to latency
1155 * constraints.
1157 static int select_parent(struct dentry *parent, struct list_head *dispose)
1159 struct dentry *this_parent;
1160 struct list_head *next;
1161 unsigned seq;
1162 int found = 0;
1163 int locked = 0;
1165 seq = read_seqbegin(&rename_lock);
1166 again:
1167 this_parent = parent;
1168 spin_lock(&this_parent->d_lock);
1169 repeat:
1170 next = this_parent->d_subdirs.next;
1171 resume:
1172 while (next != &this_parent->d_subdirs) {
1173 struct list_head *tmp = next;
1174 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1175 next = tmp->next;
1177 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1180 * move only zero ref count dentries to the dispose list.
1182 * Those which are presently on the shrink list, being processed
1183 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1184 * loop in shrink_dcache_parent() might not make any progress
1185 * and loop forever.
1187 if (dentry->d_count) {
1188 dentry_lru_del(dentry);
1189 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1190 dentry_lru_move_list(dentry, dispose);
1191 dentry->d_flags |= DCACHE_SHRINK_LIST;
1192 found++;
1195 * We can return to the caller if we have found some (this
1196 * ensures forward progress). We'll be coming back to find
1197 * the rest.
1199 if (found && need_resched()) {
1200 spin_unlock(&dentry->d_lock);
1201 goto out;
1205 * Descend a level if the d_subdirs list is non-empty.
1207 if (!list_empty(&dentry->d_subdirs)) {
1208 spin_unlock(&this_parent->d_lock);
1209 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1210 this_parent = dentry;
1211 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1212 goto repeat;
1215 spin_unlock(&dentry->d_lock);
1218 * All done at this level ... ascend and resume the search.
1220 if (this_parent != parent) {
1221 struct dentry *child = this_parent;
1222 this_parent = try_to_ascend(this_parent, locked, seq);
1223 if (!this_parent)
1224 goto rename_retry;
1225 next = child->d_u.d_child.next;
1226 goto resume;
1228 out:
1229 spin_unlock(&this_parent->d_lock);
1230 if (!locked && read_seqretry(&rename_lock, seq))
1231 goto rename_retry;
1232 if (locked)
1233 write_sequnlock(&rename_lock);
1234 return found;
1236 rename_retry:
1237 if (found)
1238 return found;
1239 locked = 1;
1240 write_seqlock(&rename_lock);
1241 goto again;
1245 * shrink_dcache_parent - prune dcache
1246 * @parent: parent of entries to prune
1248 * Prune the dcache to remove unused children of the parent dentry.
1250 void shrink_dcache_parent(struct dentry * parent)
1252 LIST_HEAD(dispose);
1253 int found;
1255 while ((found = select_parent(parent, &dispose)) != 0)
1256 shrink_dentry_list(&dispose);
1258 EXPORT_SYMBOL(shrink_dcache_parent);
1261 * __d_alloc - allocate a dcache entry
1262 * @sb: filesystem it will belong to
1263 * @name: qstr of the name
1265 * Allocates a dentry. It returns %NULL if there is insufficient memory
1266 * available. On a success the dentry is returned. The name passed in is
1267 * copied and the copy passed in may be reused after this call.
1270 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1272 struct dentry *dentry;
1273 char *dname;
1275 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1276 if (!dentry)
1277 return NULL;
1280 * We guarantee that the inline name is always NUL-terminated.
1281 * This way the memcpy() done by the name switching in rename
1282 * will still always have a NUL at the end, even if we might
1283 * be overwriting an internal NUL character
1285 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1286 if (name->len > DNAME_INLINE_LEN-1) {
1287 dname = kmalloc(name->len + 1, GFP_KERNEL);
1288 if (!dname) {
1289 kmem_cache_free(dentry_cache, dentry);
1290 return NULL;
1292 } else {
1293 dname = dentry->d_iname;
1296 dentry->d_name.len = name->len;
1297 dentry->d_name.hash = name->hash;
1298 memcpy(dname, name->name, name->len);
1299 dname[name->len] = 0;
1301 /* Make sure we always see the terminating NUL character */
1302 smp_wmb();
1303 dentry->d_name.name = dname;
1305 dentry->d_count = 1;
1306 dentry->d_flags = 0;
1307 spin_lock_init(&dentry->d_lock);
1308 seqcount_init(&dentry->d_seq);
1309 dentry->d_inode = NULL;
1310 dentry->d_parent = dentry;
1311 dentry->d_sb = sb;
1312 dentry->d_op = NULL;
1313 dentry->d_fsdata = NULL;
1314 INIT_HLIST_BL_NODE(&dentry->d_hash);
1315 INIT_LIST_HEAD(&dentry->d_lru);
1316 INIT_LIST_HEAD(&dentry->d_subdirs);
1317 INIT_HLIST_NODE(&dentry->d_alias);
1318 INIT_LIST_HEAD(&dentry->d_u.d_child);
1319 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1321 this_cpu_inc(nr_dentry);
1323 return dentry;
1327 * d_alloc - allocate a dcache entry
1328 * @parent: parent of entry to allocate
1329 * @name: qstr of the name
1331 * Allocates a dentry. It returns %NULL if there is insufficient memory
1332 * available. On a success the dentry is returned. The name passed in is
1333 * copied and the copy passed in may be reused after this call.
1335 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1337 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1338 if (!dentry)
1339 return NULL;
1341 spin_lock(&parent->d_lock);
1343 * don't need child lock because it is not subject
1344 * to concurrency here
1346 __dget_dlock(parent);
1347 dentry->d_parent = parent;
1348 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1349 spin_unlock(&parent->d_lock);
1351 return dentry;
1353 EXPORT_SYMBOL(d_alloc);
1355 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1357 struct dentry *dentry = __d_alloc(sb, name);
1358 if (dentry)
1359 dentry->d_flags |= DCACHE_DISCONNECTED;
1360 return dentry;
1362 EXPORT_SYMBOL(d_alloc_pseudo);
1364 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1366 struct qstr q;
1368 q.name = name;
1369 q.len = strlen(name);
1370 q.hash = full_name_hash(q.name, q.len);
1371 return d_alloc(parent, &q);
1373 EXPORT_SYMBOL(d_alloc_name);
1375 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1377 WARN_ON_ONCE(dentry->d_op);
1378 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1379 DCACHE_OP_COMPARE |
1380 DCACHE_OP_REVALIDATE |
1381 DCACHE_OP_DELETE ));
1382 dentry->d_op = op;
1383 if (!op)
1384 return;
1385 if (op->d_hash)
1386 dentry->d_flags |= DCACHE_OP_HASH;
1387 if (op->d_compare)
1388 dentry->d_flags |= DCACHE_OP_COMPARE;
1389 if (op->d_revalidate)
1390 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1391 if (op->d_delete)
1392 dentry->d_flags |= DCACHE_OP_DELETE;
1393 if (op->d_prune)
1394 dentry->d_flags |= DCACHE_OP_PRUNE;
1397 EXPORT_SYMBOL(d_set_d_op);
1399 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1401 spin_lock(&dentry->d_lock);
1402 if (inode) {
1403 if (unlikely(IS_AUTOMOUNT(inode)))
1404 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1405 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1407 dentry->d_inode = inode;
1408 dentry_rcuwalk_barrier(dentry);
1409 spin_unlock(&dentry->d_lock);
1410 fsnotify_d_instantiate(dentry, inode);
1414 * d_instantiate - fill in inode information for a dentry
1415 * @entry: dentry to complete
1416 * @inode: inode to attach to this dentry
1418 * Fill in inode information in the entry.
1420 * This turns negative dentries into productive full members
1421 * of society.
1423 * NOTE! This assumes that the inode count has been incremented
1424 * (or otherwise set) by the caller to indicate that it is now
1425 * in use by the dcache.
1428 void d_instantiate(struct dentry *entry, struct inode * inode)
1430 BUG_ON(!hlist_unhashed(&entry->d_alias));
1431 if (inode)
1432 spin_lock(&inode->i_lock);
1433 __d_instantiate(entry, inode);
1434 if (inode)
1435 spin_unlock(&inode->i_lock);
1436 security_d_instantiate(entry, inode);
1438 EXPORT_SYMBOL(d_instantiate);
1441 * d_instantiate_unique - instantiate a non-aliased dentry
1442 * @entry: dentry to instantiate
1443 * @inode: inode to attach to this dentry
1445 * Fill in inode information in the entry. On success, it returns NULL.
1446 * If an unhashed alias of "entry" already exists, then we return the
1447 * aliased dentry instead and drop one reference to inode.
1449 * Note that in order to avoid conflicts with rename() etc, the caller
1450 * had better be holding the parent directory semaphore.
1452 * This also assumes that the inode count has been incremented
1453 * (or otherwise set) by the caller to indicate that it is now
1454 * in use by the dcache.
1456 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1457 struct inode *inode)
1459 struct dentry *alias;
1460 int len = entry->d_name.len;
1461 const char *name = entry->d_name.name;
1462 unsigned int hash = entry->d_name.hash;
1463 struct hlist_node *p;
1465 if (!inode) {
1466 __d_instantiate(entry, NULL);
1467 return NULL;
1470 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
1472 * Don't need alias->d_lock here, because aliases with
1473 * d_parent == entry->d_parent are not subject to name or
1474 * parent changes, because the parent inode i_mutex is held.
1476 if (alias->d_name.hash != hash)
1477 continue;
1478 if (alias->d_parent != entry->d_parent)
1479 continue;
1480 if (alias->d_name.len != len)
1481 continue;
1482 if (dentry_cmp(alias, name, len))
1483 continue;
1484 __dget(alias);
1485 return alias;
1488 __d_instantiate(entry, inode);
1489 return NULL;
1492 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1494 struct dentry *result;
1496 BUG_ON(!hlist_unhashed(&entry->d_alias));
1498 if (inode)
1499 spin_lock(&inode->i_lock);
1500 result = __d_instantiate_unique(entry, inode);
1501 if (inode)
1502 spin_unlock(&inode->i_lock);
1504 if (!result) {
1505 security_d_instantiate(entry, inode);
1506 return NULL;
1509 BUG_ON(!d_unhashed(result));
1510 iput(inode);
1511 return result;
1514 EXPORT_SYMBOL(d_instantiate_unique);
1516 struct dentry *d_make_root(struct inode *root_inode)
1518 struct dentry *res = NULL;
1520 if (root_inode) {
1521 static const struct qstr name = QSTR_INIT("/", 1);
1523 res = __d_alloc(root_inode->i_sb, &name);
1524 if (res)
1525 d_instantiate(res, root_inode);
1526 else
1527 iput(root_inode);
1529 return res;
1531 EXPORT_SYMBOL(d_make_root);
1533 static struct dentry * __d_find_any_alias(struct inode *inode)
1535 struct dentry *alias;
1537 if (hlist_empty(&inode->i_dentry))
1538 return NULL;
1539 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1540 __dget(alias);
1541 return alias;
1545 * d_find_any_alias - find any alias for a given inode
1546 * @inode: inode to find an alias for
1548 * If any aliases exist for the given inode, take and return a
1549 * reference for one of them. If no aliases exist, return %NULL.
1551 struct dentry *d_find_any_alias(struct inode *inode)
1553 struct dentry *de;
1555 spin_lock(&inode->i_lock);
1556 de = __d_find_any_alias(inode);
1557 spin_unlock(&inode->i_lock);
1558 return de;
1560 EXPORT_SYMBOL(d_find_any_alias);
1563 * d_obtain_alias - find or allocate a dentry for a given inode
1564 * @inode: inode to allocate the dentry for
1566 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1567 * similar open by handle operations. The returned dentry may be anonymous,
1568 * or may have a full name (if the inode was already in the cache).
1570 * When called on a directory inode, we must ensure that the inode only ever
1571 * has one dentry. If a dentry is found, that is returned instead of
1572 * allocating a new one.
1574 * On successful return, the reference to the inode has been transferred
1575 * to the dentry. In case of an error the reference on the inode is released.
1576 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1577 * be passed in and will be the error will be propagate to the return value,
1578 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1580 struct dentry *d_obtain_alias(struct inode *inode)
1582 static const struct qstr anonstring = { .name = "" };
1583 struct dentry *tmp;
1584 struct dentry *res;
1586 if (!inode)
1587 return ERR_PTR(-ESTALE);
1588 if (IS_ERR(inode))
1589 return ERR_CAST(inode);
1591 res = d_find_any_alias(inode);
1592 if (res)
1593 goto out_iput;
1595 tmp = __d_alloc(inode->i_sb, &anonstring);
1596 if (!tmp) {
1597 res = ERR_PTR(-ENOMEM);
1598 goto out_iput;
1601 spin_lock(&inode->i_lock);
1602 res = __d_find_any_alias(inode);
1603 if (res) {
1604 spin_unlock(&inode->i_lock);
1605 dput(tmp);
1606 goto out_iput;
1609 /* attach a disconnected dentry */
1610 spin_lock(&tmp->d_lock);
1611 tmp->d_inode = inode;
1612 tmp->d_flags |= DCACHE_DISCONNECTED;
1613 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1614 hlist_bl_lock(&tmp->d_sb->s_anon);
1615 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1616 hlist_bl_unlock(&tmp->d_sb->s_anon);
1617 spin_unlock(&tmp->d_lock);
1618 spin_unlock(&inode->i_lock);
1619 security_d_instantiate(tmp, inode);
1621 return tmp;
1623 out_iput:
1624 if (res && !IS_ERR(res))
1625 security_d_instantiate(res, inode);
1626 iput(inode);
1627 return res;
1629 EXPORT_SYMBOL(d_obtain_alias);
1632 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1633 * @inode: the inode which may have a disconnected dentry
1634 * @dentry: a negative dentry which we want to point to the inode.
1636 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1637 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1638 * and return it, else simply d_add the inode to the dentry and return NULL.
1640 * This is needed in the lookup routine of any filesystem that is exportable
1641 * (via knfsd) so that we can build dcache paths to directories effectively.
1643 * If a dentry was found and moved, then it is returned. Otherwise NULL
1644 * is returned. This matches the expected return value of ->lookup.
1647 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1649 struct dentry *new = NULL;
1651 if (IS_ERR(inode))
1652 return ERR_CAST(inode);
1654 if (inode && S_ISDIR(inode->i_mode)) {
1655 spin_lock(&inode->i_lock);
1656 new = __d_find_alias(inode, 1);
1657 if (new) {
1658 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1659 spin_unlock(&inode->i_lock);
1660 security_d_instantiate(new, inode);
1661 d_move(new, dentry);
1662 iput(inode);
1663 } else {
1664 /* already taking inode->i_lock, so d_add() by hand */
1665 __d_instantiate(dentry, inode);
1666 spin_unlock(&inode->i_lock);
1667 security_d_instantiate(dentry, inode);
1668 d_rehash(dentry);
1670 } else
1671 d_add(dentry, inode);
1672 return new;
1674 EXPORT_SYMBOL(d_splice_alias);
1677 * d_add_ci - lookup or allocate new dentry with case-exact name
1678 * @inode: the inode case-insensitive lookup has found
1679 * @dentry: the negative dentry that was passed to the parent's lookup func
1680 * @name: the case-exact name to be associated with the returned dentry
1682 * This is to avoid filling the dcache with case-insensitive names to the
1683 * same inode, only the actual correct case is stored in the dcache for
1684 * case-insensitive filesystems.
1686 * For a case-insensitive lookup match and if the the case-exact dentry
1687 * already exists in in the dcache, use it and return it.
1689 * If no entry exists with the exact case name, allocate new dentry with
1690 * the exact case, and return the spliced entry.
1692 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1693 struct qstr *name)
1695 int error;
1696 struct dentry *found;
1697 struct dentry *new;
1700 * First check if a dentry matching the name already exists,
1701 * if not go ahead and create it now.
1703 found = d_hash_and_lookup(dentry->d_parent, name);
1704 if (!found) {
1705 new = d_alloc(dentry->d_parent, name);
1706 if (!new) {
1707 error = -ENOMEM;
1708 goto err_out;
1711 found = d_splice_alias(inode, new);
1712 if (found) {
1713 dput(new);
1714 return found;
1716 return new;
1720 * If a matching dentry exists, and it's not negative use it.
1722 * Decrement the reference count to balance the iget() done
1723 * earlier on.
1725 if (found->d_inode) {
1726 if (unlikely(found->d_inode != inode)) {
1727 /* This can't happen because bad inodes are unhashed. */
1728 BUG_ON(!is_bad_inode(inode));
1729 BUG_ON(!is_bad_inode(found->d_inode));
1731 iput(inode);
1732 return found;
1736 * We are going to instantiate this dentry, unhash it and clear the
1737 * lookup flag so we can do that.
1739 if (unlikely(d_need_lookup(found)))
1740 d_clear_need_lookup(found);
1743 * Negative dentry: instantiate it unless the inode is a directory and
1744 * already has a dentry.
1746 new = d_splice_alias(inode, found);
1747 if (new) {
1748 dput(found);
1749 found = new;
1751 return found;
1753 err_out:
1754 iput(inode);
1755 return ERR_PTR(error);
1757 EXPORT_SYMBOL(d_add_ci);
1760 * Do the slow-case of the dentry name compare.
1762 * Unlike the dentry_cmp() function, we need to atomically
1763 * load the name, length and inode information, so that the
1764 * filesystem can rely on them, and can use the 'name' and
1765 * 'len' information without worrying about walking off the
1766 * end of memory etc.
1768 * Thus the read_seqcount_retry() and the "duplicate" info
1769 * in arguments (the low-level filesystem should not look
1770 * at the dentry inode or name contents directly, since
1771 * rename can change them while we're in RCU mode).
1773 enum slow_d_compare {
1774 D_COMP_OK,
1775 D_COMP_NOMATCH,
1776 D_COMP_SEQRETRY,
1779 static noinline enum slow_d_compare slow_dentry_cmp(
1780 const struct dentry *parent,
1781 struct inode *inode,
1782 struct dentry *dentry,
1783 unsigned int seq,
1784 const struct qstr *name)
1786 int tlen = dentry->d_name.len;
1787 const char *tname = dentry->d_name.name;
1788 struct inode *i = dentry->d_inode;
1790 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1791 cpu_relax();
1792 return D_COMP_SEQRETRY;
1794 if (parent->d_op->d_compare(parent, inode,
1795 dentry, i,
1796 tlen, tname, name))
1797 return D_COMP_NOMATCH;
1798 return D_COMP_OK;
1802 * __d_lookup_rcu - search for a dentry (racy, store-free)
1803 * @parent: parent dentry
1804 * @name: qstr of name we wish to find
1805 * @seqp: returns d_seq value at the point where the dentry was found
1806 * @inode: returns dentry->d_inode when the inode was found valid.
1807 * Returns: dentry, or NULL
1809 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1810 * resolution (store-free path walking) design described in
1811 * Documentation/filesystems/path-lookup.txt.
1813 * This is not to be used outside core vfs.
1815 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1816 * held, and rcu_read_lock held. The returned dentry must not be stored into
1817 * without taking d_lock and checking d_seq sequence count against @seq
1818 * returned here.
1820 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1821 * function.
1823 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1824 * the returned dentry, so long as its parent's seqlock is checked after the
1825 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1826 * is formed, giving integrity down the path walk.
1828 * NOTE! The caller *has* to check the resulting dentry against the sequence
1829 * number we've returned before using any of the resulting dentry state!
1831 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1832 const struct qstr *name,
1833 unsigned *seqp, struct inode *inode)
1835 u64 hashlen = name->hash_len;
1836 const unsigned char *str = name->name;
1837 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1838 struct hlist_bl_node *node;
1839 struct dentry *dentry;
1842 * Note: There is significant duplication with __d_lookup_rcu which is
1843 * required to prevent single threaded performance regressions
1844 * especially on architectures where smp_rmb (in seqcounts) are costly.
1845 * Keep the two functions in sync.
1849 * The hash list is protected using RCU.
1851 * Carefully use d_seq when comparing a candidate dentry, to avoid
1852 * races with d_move().
1854 * It is possible that concurrent renames can mess up our list
1855 * walk here and result in missing our dentry, resulting in the
1856 * false-negative result. d_lookup() protects against concurrent
1857 * renames using rename_lock seqlock.
1859 * See Documentation/filesystems/path-lookup.txt for more details.
1861 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1862 unsigned seq;
1864 seqretry:
1866 * The dentry sequence count protects us from concurrent
1867 * renames, and thus protects inode, parent and name fields.
1869 * The caller must perform a seqcount check in order
1870 * to do anything useful with the returned dentry,
1871 * including using the 'd_inode' pointer.
1873 * NOTE! We do a "raw" seqcount_begin here. That means that
1874 * we don't wait for the sequence count to stabilize if it
1875 * is in the middle of a sequence change. If we do the slow
1876 * dentry compare, we will do seqretries until it is stable,
1877 * and if we end up with a successful lookup, we actually
1878 * want to exit RCU lookup anyway.
1880 seq = raw_seqcount_begin(&dentry->d_seq);
1881 if (dentry->d_parent != parent)
1882 continue;
1883 if (d_unhashed(dentry))
1884 continue;
1885 *seqp = seq;
1887 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1888 if (dentry->d_name.hash != hashlen_hash(hashlen))
1889 continue;
1890 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1891 case D_COMP_OK:
1892 return dentry;
1893 case D_COMP_NOMATCH:
1894 continue;
1895 default:
1896 goto seqretry;
1900 if (dentry->d_name.hash_len != hashlen)
1901 continue;
1902 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1903 return dentry;
1905 return NULL;
1909 * d_lookup - search for a dentry
1910 * @parent: parent dentry
1911 * @name: qstr of name we wish to find
1912 * Returns: dentry, or NULL
1914 * d_lookup searches the children of the parent dentry for the name in
1915 * question. If the dentry is found its reference count is incremented and the
1916 * dentry is returned. The caller must use dput to free the entry when it has
1917 * finished using it. %NULL is returned if the dentry does not exist.
1919 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1921 struct dentry *dentry;
1922 unsigned seq;
1924 do {
1925 seq = read_seqbegin(&rename_lock);
1926 dentry = __d_lookup(parent, name);
1927 if (dentry)
1928 break;
1929 } while (read_seqretry(&rename_lock, seq));
1930 return dentry;
1932 EXPORT_SYMBOL(d_lookup);
1935 * __d_lookup - search for a dentry (racy)
1936 * @parent: parent dentry
1937 * @name: qstr of name we wish to find
1938 * Returns: dentry, or NULL
1940 * __d_lookup is like d_lookup, however it may (rarely) return a
1941 * false-negative result due to unrelated rename activity.
1943 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1944 * however it must be used carefully, eg. with a following d_lookup in
1945 * the case of failure.
1947 * __d_lookup callers must be commented.
1949 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1951 unsigned int len = name->len;
1952 unsigned int hash = name->hash;
1953 const unsigned char *str = name->name;
1954 struct hlist_bl_head *b = d_hash(parent, hash);
1955 struct hlist_bl_node *node;
1956 struct dentry *found = NULL;
1957 struct dentry *dentry;
1960 * Note: There is significant duplication with __d_lookup_rcu which is
1961 * required to prevent single threaded performance regressions
1962 * especially on architectures where smp_rmb (in seqcounts) are costly.
1963 * Keep the two functions in sync.
1967 * The hash list is protected using RCU.
1969 * Take d_lock when comparing a candidate dentry, to avoid races
1970 * with d_move().
1972 * It is possible that concurrent renames can mess up our list
1973 * walk here and result in missing our dentry, resulting in the
1974 * false-negative result. d_lookup() protects against concurrent
1975 * renames using rename_lock seqlock.
1977 * See Documentation/filesystems/path-lookup.txt for more details.
1979 rcu_read_lock();
1981 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1983 if (dentry->d_name.hash != hash)
1984 continue;
1986 spin_lock(&dentry->d_lock);
1987 if (dentry->d_parent != parent)
1988 goto next;
1989 if (d_unhashed(dentry))
1990 goto next;
1993 * It is safe to compare names since d_move() cannot
1994 * change the qstr (protected by d_lock).
1996 if (parent->d_flags & DCACHE_OP_COMPARE) {
1997 int tlen = dentry->d_name.len;
1998 const char *tname = dentry->d_name.name;
1999 if (parent->d_op->d_compare(parent, parent->d_inode,
2000 dentry, dentry->d_inode,
2001 tlen, tname, name))
2002 goto next;
2003 } else {
2004 if (dentry->d_name.len != len)
2005 goto next;
2006 if (dentry_cmp(dentry, str, len))
2007 goto next;
2010 dentry->d_count++;
2011 found = dentry;
2012 spin_unlock(&dentry->d_lock);
2013 break;
2014 next:
2015 spin_unlock(&dentry->d_lock);
2017 rcu_read_unlock();
2019 return found;
2023 * d_hash_and_lookup - hash the qstr then search for a dentry
2024 * @dir: Directory to search in
2025 * @name: qstr of name we wish to find
2027 * On hash failure or on lookup failure NULL is returned.
2029 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2031 struct dentry *dentry = NULL;
2034 * Check for a fs-specific hash function. Note that we must
2035 * calculate the standard hash first, as the d_op->d_hash()
2036 * routine may choose to leave the hash value unchanged.
2038 name->hash = full_name_hash(name->name, name->len);
2039 if (dir->d_flags & DCACHE_OP_HASH) {
2040 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
2041 goto out;
2043 dentry = d_lookup(dir, name);
2044 out:
2045 return dentry;
2049 * d_validate - verify dentry provided from insecure source (deprecated)
2050 * @dentry: The dentry alleged to be valid child of @dparent
2051 * @dparent: The parent dentry (known to be valid)
2053 * An insecure source has sent us a dentry, here we verify it and dget() it.
2054 * This is used by ncpfs in its readdir implementation.
2055 * Zero is returned in the dentry is invalid.
2057 * This function is slow for big directories, and deprecated, do not use it.
2059 int d_validate(struct dentry *dentry, struct dentry *dparent)
2061 struct dentry *child;
2063 spin_lock(&dparent->d_lock);
2064 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2065 if (dentry == child) {
2066 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2067 __dget_dlock(dentry);
2068 spin_unlock(&dentry->d_lock);
2069 spin_unlock(&dparent->d_lock);
2070 return 1;
2073 spin_unlock(&dparent->d_lock);
2075 return 0;
2077 EXPORT_SYMBOL(d_validate);
2080 * When a file is deleted, we have two options:
2081 * - turn this dentry into a negative dentry
2082 * - unhash this dentry and free it.
2084 * Usually, we want to just turn this into
2085 * a negative dentry, but if anybody else is
2086 * currently using the dentry or the inode
2087 * we can't do that and we fall back on removing
2088 * it from the hash queues and waiting for
2089 * it to be deleted later when it has no users
2093 * d_delete - delete a dentry
2094 * @dentry: The dentry to delete
2096 * Turn the dentry into a negative dentry if possible, otherwise
2097 * remove it from the hash queues so it can be deleted later
2100 void d_delete(struct dentry * dentry)
2102 struct inode *inode;
2103 int isdir = 0;
2105 * Are we the only user?
2107 again:
2108 spin_lock(&dentry->d_lock);
2109 inode = dentry->d_inode;
2110 isdir = S_ISDIR(inode->i_mode);
2111 if (dentry->d_count == 1) {
2112 if (inode && !spin_trylock(&inode->i_lock)) {
2113 spin_unlock(&dentry->d_lock);
2114 cpu_relax();
2115 goto again;
2117 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2118 dentry_unlink_inode(dentry);
2119 fsnotify_nameremove(dentry, isdir);
2120 return;
2123 if (!d_unhashed(dentry))
2124 __d_drop(dentry);
2126 spin_unlock(&dentry->d_lock);
2128 fsnotify_nameremove(dentry, isdir);
2130 EXPORT_SYMBOL(d_delete);
2132 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2134 BUG_ON(!d_unhashed(entry));
2135 hlist_bl_lock(b);
2136 entry->d_flags |= DCACHE_RCUACCESS;
2137 hlist_bl_add_head_rcu(&entry->d_hash, b);
2138 hlist_bl_unlock(b);
2141 static void _d_rehash(struct dentry * entry)
2143 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2147 * d_rehash - add an entry back to the hash
2148 * @entry: dentry to add to the hash
2150 * Adds a dentry to the hash according to its name.
2153 void d_rehash(struct dentry * entry)
2155 spin_lock(&entry->d_lock);
2156 _d_rehash(entry);
2157 spin_unlock(&entry->d_lock);
2159 EXPORT_SYMBOL(d_rehash);
2162 * dentry_update_name_case - update case insensitive dentry with a new name
2163 * @dentry: dentry to be updated
2164 * @name: new name
2166 * Update a case insensitive dentry with new case of name.
2168 * dentry must have been returned by d_lookup with name @name. Old and new
2169 * name lengths must match (ie. no d_compare which allows mismatched name
2170 * lengths).
2172 * Parent inode i_mutex must be held over d_lookup and into this call (to
2173 * keep renames and concurrent inserts, and readdir(2) away).
2175 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2177 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2178 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2180 spin_lock(&dentry->d_lock);
2181 write_seqcount_begin(&dentry->d_seq);
2182 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2183 write_seqcount_end(&dentry->d_seq);
2184 spin_unlock(&dentry->d_lock);
2186 EXPORT_SYMBOL(dentry_update_name_case);
2188 static void switch_names(struct dentry *dentry, struct dentry *target)
2190 if (dname_external(target)) {
2191 if (dname_external(dentry)) {
2193 * Both external: swap the pointers
2195 swap(target->d_name.name, dentry->d_name.name);
2196 } else {
2198 * dentry:internal, target:external. Steal target's
2199 * storage and make target internal.
2201 memcpy(target->d_iname, dentry->d_name.name,
2202 dentry->d_name.len + 1);
2203 dentry->d_name.name = target->d_name.name;
2204 target->d_name.name = target->d_iname;
2206 } else {
2207 if (dname_external(dentry)) {
2209 * dentry:external, target:internal. Give dentry's
2210 * storage to target and make dentry internal
2212 memcpy(dentry->d_iname, target->d_name.name,
2213 target->d_name.len + 1);
2214 target->d_name.name = dentry->d_name.name;
2215 dentry->d_name.name = dentry->d_iname;
2216 } else {
2218 * Both are internal. Just copy target to dentry
2220 memcpy(dentry->d_iname, target->d_name.name,
2221 target->d_name.len + 1);
2222 dentry->d_name.len = target->d_name.len;
2223 return;
2226 swap(dentry->d_name.len, target->d_name.len);
2229 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2232 * XXXX: do we really need to take target->d_lock?
2234 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2235 spin_lock(&target->d_parent->d_lock);
2236 else {
2237 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2238 spin_lock(&dentry->d_parent->d_lock);
2239 spin_lock_nested(&target->d_parent->d_lock,
2240 DENTRY_D_LOCK_NESTED);
2241 } else {
2242 spin_lock(&target->d_parent->d_lock);
2243 spin_lock_nested(&dentry->d_parent->d_lock,
2244 DENTRY_D_LOCK_NESTED);
2247 if (target < dentry) {
2248 spin_lock_nested(&target->d_lock, 2);
2249 spin_lock_nested(&dentry->d_lock, 3);
2250 } else {
2251 spin_lock_nested(&dentry->d_lock, 2);
2252 spin_lock_nested(&target->d_lock, 3);
2256 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2257 struct dentry *target)
2259 if (target->d_parent != dentry->d_parent)
2260 spin_unlock(&dentry->d_parent->d_lock);
2261 if (target->d_parent != target)
2262 spin_unlock(&target->d_parent->d_lock);
2266 * When switching names, the actual string doesn't strictly have to
2267 * be preserved in the target - because we're dropping the target
2268 * anyway. As such, we can just do a simple memcpy() to copy over
2269 * the new name before we switch.
2271 * Note that we have to be a lot more careful about getting the hash
2272 * switched - we have to switch the hash value properly even if it
2273 * then no longer matches the actual (corrupted) string of the target.
2274 * The hash value has to match the hash queue that the dentry is on..
2277 * __d_move - move a dentry
2278 * @dentry: entry to move
2279 * @target: new dentry
2281 * Update the dcache to reflect the move of a file name. Negative
2282 * dcache entries should not be moved in this way. Caller must hold
2283 * rename_lock, the i_mutex of the source and target directories,
2284 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2286 static void __d_move(struct dentry * dentry, struct dentry * target)
2288 if (!dentry->d_inode)
2289 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2291 BUG_ON(d_ancestor(dentry, target));
2292 BUG_ON(d_ancestor(target, dentry));
2294 dentry_lock_for_move(dentry, target);
2296 write_seqcount_begin(&dentry->d_seq);
2297 write_seqcount_begin(&target->d_seq);
2299 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2302 * Move the dentry to the target hash queue. Don't bother checking
2303 * for the same hash queue because of how unlikely it is.
2305 __d_drop(dentry);
2306 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2308 /* Unhash the target: dput() will then get rid of it */
2309 __d_drop(target);
2311 list_del(&dentry->d_u.d_child);
2312 list_del(&target->d_u.d_child);
2314 /* Switch the names.. */
2315 switch_names(dentry, target);
2316 swap(dentry->d_name.hash, target->d_name.hash);
2318 /* ... and switch the parents */
2319 if (IS_ROOT(dentry)) {
2320 dentry->d_parent = target->d_parent;
2321 target->d_parent = target;
2322 INIT_LIST_HEAD(&target->d_u.d_child);
2323 } else {
2324 swap(dentry->d_parent, target->d_parent);
2326 /* And add them back to the (new) parent lists */
2327 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2330 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2332 write_seqcount_end(&target->d_seq);
2333 write_seqcount_end(&dentry->d_seq);
2335 dentry_unlock_parents_for_move(dentry, target);
2336 spin_unlock(&target->d_lock);
2337 fsnotify_d_move(dentry);
2338 spin_unlock(&dentry->d_lock);
2342 * d_move - move a dentry
2343 * @dentry: entry to move
2344 * @target: new dentry
2346 * Update the dcache to reflect the move of a file name. Negative
2347 * dcache entries should not be moved in this way. See the locking
2348 * requirements for __d_move.
2350 void d_move(struct dentry *dentry, struct dentry *target)
2352 write_seqlock(&rename_lock);
2353 __d_move(dentry, target);
2354 write_sequnlock(&rename_lock);
2356 EXPORT_SYMBOL(d_move);
2359 * d_ancestor - search for an ancestor
2360 * @p1: ancestor dentry
2361 * @p2: child dentry
2363 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2364 * an ancestor of p2, else NULL.
2366 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2368 struct dentry *p;
2370 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2371 if (p->d_parent == p1)
2372 return p;
2374 return NULL;
2378 * This helper attempts to cope with remotely renamed directories
2380 * It assumes that the caller is already holding
2381 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2383 * Note: If ever the locking in lock_rename() changes, then please
2384 * remember to update this too...
2386 static struct dentry *__d_unalias(struct inode *inode,
2387 struct dentry *dentry, struct dentry *alias)
2389 struct mutex *m1 = NULL, *m2 = NULL;
2390 struct dentry *ret = ERR_PTR(-EBUSY);
2392 /* If alias and dentry share a parent, then no extra locks required */
2393 if (alias->d_parent == dentry->d_parent)
2394 goto out_unalias;
2396 /* See lock_rename() */
2397 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2398 goto out_err;
2399 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2400 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2401 goto out_err;
2402 m2 = &alias->d_parent->d_inode->i_mutex;
2403 out_unalias:
2404 if (likely(!d_mountpoint(alias))) {
2405 __d_move(alias, dentry);
2406 ret = alias;
2408 out_err:
2409 spin_unlock(&inode->i_lock);
2410 if (m2)
2411 mutex_unlock(m2);
2412 if (m1)
2413 mutex_unlock(m1);
2414 return ret;
2418 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2419 * named dentry in place of the dentry to be replaced.
2420 * returns with anon->d_lock held!
2422 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2424 struct dentry *dparent, *aparent;
2426 dentry_lock_for_move(anon, dentry);
2428 write_seqcount_begin(&dentry->d_seq);
2429 write_seqcount_begin(&anon->d_seq);
2431 dparent = dentry->d_parent;
2432 aparent = anon->d_parent;
2434 switch_names(dentry, anon);
2435 swap(dentry->d_name.hash, anon->d_name.hash);
2437 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2438 list_del(&dentry->d_u.d_child);
2439 if (!IS_ROOT(dentry))
2440 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2441 else
2442 INIT_LIST_HEAD(&dentry->d_u.d_child);
2444 anon->d_parent = (dparent == dentry) ? anon : dparent;
2445 list_del(&anon->d_u.d_child);
2446 if (!IS_ROOT(anon))
2447 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2448 else
2449 INIT_LIST_HEAD(&anon->d_u.d_child);
2451 write_seqcount_end(&dentry->d_seq);
2452 write_seqcount_end(&anon->d_seq);
2454 dentry_unlock_parents_for_move(anon, dentry);
2455 spin_unlock(&dentry->d_lock);
2457 /* anon->d_lock still locked, returns locked */
2458 anon->d_flags &= ~DCACHE_DISCONNECTED;
2462 * d_materialise_unique - introduce an inode into the tree
2463 * @dentry: candidate dentry
2464 * @inode: inode to bind to the dentry, to which aliases may be attached
2466 * Introduces an dentry into the tree, substituting an extant disconnected
2467 * root directory alias in its place if there is one. Caller must hold the
2468 * i_mutex of the parent directory.
2470 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2472 struct dentry *actual;
2474 BUG_ON(!d_unhashed(dentry));
2476 if (!inode) {
2477 actual = dentry;
2478 __d_instantiate(dentry, NULL);
2479 d_rehash(actual);
2480 goto out_nolock;
2483 spin_lock(&inode->i_lock);
2485 if (S_ISDIR(inode->i_mode)) {
2486 struct dentry *alias;
2488 /* Does an aliased dentry already exist? */
2489 alias = __d_find_alias(inode, 0);
2490 if (alias) {
2491 actual = alias;
2492 write_seqlock(&rename_lock);
2494 if (d_ancestor(alias, dentry)) {
2495 /* Check for loops */
2496 actual = ERR_PTR(-ELOOP);
2497 spin_unlock(&inode->i_lock);
2498 } else if (IS_ROOT(alias)) {
2499 /* Is this an anonymous mountpoint that we
2500 * could splice into our tree? */
2501 __d_materialise_dentry(dentry, alias);
2502 write_sequnlock(&rename_lock);
2503 __d_drop(alias);
2504 goto found;
2505 } else {
2506 /* Nope, but we must(!) avoid directory
2507 * aliasing. This drops inode->i_lock */
2508 actual = __d_unalias(inode, dentry, alias);
2510 write_sequnlock(&rename_lock);
2511 if (IS_ERR(actual)) {
2512 if (PTR_ERR(actual) == -ELOOP)
2513 pr_warn_ratelimited(
2514 "VFS: Lookup of '%s' in %s %s"
2515 " would have caused loop\n",
2516 dentry->d_name.name,
2517 inode->i_sb->s_type->name,
2518 inode->i_sb->s_id);
2519 dput(alias);
2521 goto out_nolock;
2525 /* Add a unique reference */
2526 actual = __d_instantiate_unique(dentry, inode);
2527 if (!actual)
2528 actual = dentry;
2529 else
2530 BUG_ON(!d_unhashed(actual));
2532 spin_lock(&actual->d_lock);
2533 found:
2534 _d_rehash(actual);
2535 spin_unlock(&actual->d_lock);
2536 spin_unlock(&inode->i_lock);
2537 out_nolock:
2538 if (actual == dentry) {
2539 security_d_instantiate(dentry, inode);
2540 return NULL;
2543 iput(inode);
2544 return actual;
2546 EXPORT_SYMBOL_GPL(d_materialise_unique);
2548 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2550 *buflen -= namelen;
2551 if (*buflen < 0)
2552 return -ENAMETOOLONG;
2553 *buffer -= namelen;
2554 memcpy(*buffer, str, namelen);
2555 return 0;
2558 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2560 return prepend(buffer, buflen, name->name, name->len);
2564 * prepend_path - Prepend path string to a buffer
2565 * @path: the dentry/vfsmount to report
2566 * @root: root vfsmnt/dentry
2567 * @buffer: pointer to the end of the buffer
2568 * @buflen: pointer to buffer length
2570 * Caller holds the rename_lock.
2572 static int prepend_path(const struct path *path,
2573 const struct path *root,
2574 char **buffer, int *buflen)
2576 struct dentry *dentry = path->dentry;
2577 struct vfsmount *vfsmnt = path->mnt;
2578 struct mount *mnt = real_mount(vfsmnt);
2579 bool slash = false;
2580 int error = 0;
2582 br_read_lock(&vfsmount_lock);
2583 while (dentry != root->dentry || vfsmnt != root->mnt) {
2584 struct dentry * parent;
2586 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2587 /* Global root? */
2588 if (!mnt_has_parent(mnt))
2589 goto global_root;
2590 dentry = mnt->mnt_mountpoint;
2591 mnt = mnt->mnt_parent;
2592 vfsmnt = &mnt->mnt;
2593 continue;
2595 parent = dentry->d_parent;
2596 prefetch(parent);
2597 spin_lock(&dentry->d_lock);
2598 error = prepend_name(buffer, buflen, &dentry->d_name);
2599 spin_unlock(&dentry->d_lock);
2600 if (!error)
2601 error = prepend(buffer, buflen, "/", 1);
2602 if (error)
2603 break;
2605 slash = true;
2606 dentry = parent;
2609 if (!error && !slash)
2610 error = prepend(buffer, buflen, "/", 1);
2612 out:
2613 br_read_unlock(&vfsmount_lock);
2614 return error;
2616 global_root:
2618 * Filesystems needing to implement special "root names"
2619 * should do so with ->d_dname()
2621 if (IS_ROOT(dentry) &&
2622 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2623 WARN(1, "Root dentry has weird name <%.*s>\n",
2624 (int) dentry->d_name.len, dentry->d_name.name);
2626 if (!slash)
2627 error = prepend(buffer, buflen, "/", 1);
2628 if (!error)
2629 error = is_mounted(vfsmnt) ? 1 : 2;
2630 goto out;
2634 * __d_path - return the path of a dentry
2635 * @path: the dentry/vfsmount to report
2636 * @root: root vfsmnt/dentry
2637 * @buf: buffer to return value in
2638 * @buflen: buffer length
2640 * Convert a dentry into an ASCII path name.
2642 * Returns a pointer into the buffer or an error code if the
2643 * path was too long.
2645 * "buflen" should be positive.
2647 * If the path is not reachable from the supplied root, return %NULL.
2649 char *__d_path(const struct path *path,
2650 const struct path *root,
2651 char *buf, int buflen)
2653 char *res = buf + buflen;
2654 int error;
2656 prepend(&res, &buflen, "\0", 1);
2657 write_seqlock(&rename_lock);
2658 error = prepend_path(path, root, &res, &buflen);
2659 write_sequnlock(&rename_lock);
2661 if (error < 0)
2662 return ERR_PTR(error);
2663 if (error > 0)
2664 return NULL;
2665 return res;
2668 char *d_absolute_path(const struct path *path,
2669 char *buf, int buflen)
2671 struct path root = {};
2672 char *res = buf + buflen;
2673 int error;
2675 prepend(&res, &buflen, "\0", 1);
2676 write_seqlock(&rename_lock);
2677 error = prepend_path(path, &root, &res, &buflen);
2678 write_sequnlock(&rename_lock);
2680 if (error > 1)
2681 error = -EINVAL;
2682 if (error < 0)
2683 return ERR_PTR(error);
2684 return res;
2688 * same as __d_path but appends "(deleted)" for unlinked files.
2690 static int path_with_deleted(const struct path *path,
2691 const struct path *root,
2692 char **buf, int *buflen)
2694 prepend(buf, buflen, "\0", 1);
2695 if (d_unlinked(path->dentry)) {
2696 int error = prepend(buf, buflen, " (deleted)", 10);
2697 if (error)
2698 return error;
2701 return prepend_path(path, root, buf, buflen);
2704 static int prepend_unreachable(char **buffer, int *buflen)
2706 return prepend(buffer, buflen, "(unreachable)", 13);
2710 * d_path - return the path of a dentry
2711 * @path: path to report
2712 * @buf: buffer to return value in
2713 * @buflen: buffer length
2715 * Convert a dentry into an ASCII path name. If the entry has been deleted
2716 * the string " (deleted)" is appended. Note that this is ambiguous.
2718 * Returns a pointer into the buffer or an error code if the path was
2719 * too long. Note: Callers should use the returned pointer, not the passed
2720 * in buffer, to use the name! The implementation often starts at an offset
2721 * into the buffer, and may leave 0 bytes at the start.
2723 * "buflen" should be positive.
2725 char *d_path(const struct path *path, char *buf, int buflen)
2727 char *res = buf + buflen;
2728 struct path root;
2729 int error;
2732 * We have various synthetic filesystems that never get mounted. On
2733 * these filesystems dentries are never used for lookup purposes, and
2734 * thus don't need to be hashed. They also don't need a name until a
2735 * user wants to identify the object in /proc/pid/fd/. The little hack
2736 * below allows us to generate a name for these objects on demand:
2738 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2739 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2741 get_fs_root(current->fs, &root);
2742 write_seqlock(&rename_lock);
2743 error = path_with_deleted(path, &root, &res, &buflen);
2744 if (error < 0)
2745 res = ERR_PTR(error);
2746 write_sequnlock(&rename_lock);
2747 path_put(&root);
2748 return res;
2750 EXPORT_SYMBOL(d_path);
2753 * d_path_with_unreachable - return the path of a dentry
2754 * @path: path to report
2755 * @buf: buffer to return value in
2756 * @buflen: buffer length
2758 * The difference from d_path() is that this prepends "(unreachable)"
2759 * to paths which are unreachable from the current process' root.
2761 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2763 char *res = buf + buflen;
2764 struct path root;
2765 int error;
2767 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2768 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2770 get_fs_root(current->fs, &root);
2771 write_seqlock(&rename_lock);
2772 error = path_with_deleted(path, &root, &res, &buflen);
2773 if (error > 0)
2774 error = prepend_unreachable(&res, &buflen);
2775 write_sequnlock(&rename_lock);
2776 path_put(&root);
2777 if (error)
2778 res = ERR_PTR(error);
2780 return res;
2784 * Helper function for dentry_operations.d_dname() members
2786 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2787 const char *fmt, ...)
2789 va_list args;
2790 char temp[64];
2791 int sz;
2793 va_start(args, fmt);
2794 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2795 va_end(args);
2797 if (sz > sizeof(temp) || sz > buflen)
2798 return ERR_PTR(-ENAMETOOLONG);
2800 buffer += buflen - sz;
2801 return memcpy(buffer, temp, sz);
2805 * Write full pathname from the root of the filesystem into the buffer.
2807 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2809 char *end = buf + buflen;
2810 char *retval;
2812 prepend(&end, &buflen, "\0", 1);
2813 if (buflen < 1)
2814 goto Elong;
2815 /* Get '/' right */
2816 retval = end-1;
2817 *retval = '/';
2819 while (!IS_ROOT(dentry)) {
2820 struct dentry *parent = dentry->d_parent;
2821 int error;
2823 prefetch(parent);
2824 spin_lock(&dentry->d_lock);
2825 error = prepend_name(&end, &buflen, &dentry->d_name);
2826 spin_unlock(&dentry->d_lock);
2827 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2828 goto Elong;
2830 retval = end;
2831 dentry = parent;
2833 return retval;
2834 Elong:
2835 return ERR_PTR(-ENAMETOOLONG);
2838 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2840 char *retval;
2842 write_seqlock(&rename_lock);
2843 retval = __dentry_path(dentry, buf, buflen);
2844 write_sequnlock(&rename_lock);
2846 return retval;
2848 EXPORT_SYMBOL(dentry_path_raw);
2850 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2852 char *p = NULL;
2853 char *retval;
2855 write_seqlock(&rename_lock);
2856 if (d_unlinked(dentry)) {
2857 p = buf + buflen;
2858 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2859 goto Elong;
2860 buflen++;
2862 retval = __dentry_path(dentry, buf, buflen);
2863 write_sequnlock(&rename_lock);
2864 if (!IS_ERR(retval) && p)
2865 *p = '/'; /* restore '/' overriden with '\0' */
2866 return retval;
2867 Elong:
2868 return ERR_PTR(-ENAMETOOLONG);
2872 * NOTE! The user-level library version returns a
2873 * character pointer. The kernel system call just
2874 * returns the length of the buffer filled (which
2875 * includes the ending '\0' character), or a negative
2876 * error value. So libc would do something like
2878 * char *getcwd(char * buf, size_t size)
2880 * int retval;
2882 * retval = sys_getcwd(buf, size);
2883 * if (retval >= 0)
2884 * return buf;
2885 * errno = -retval;
2886 * return NULL;
2889 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2891 int error;
2892 struct path pwd, root;
2893 char *page = (char *) __get_free_page(GFP_USER);
2895 if (!page)
2896 return -ENOMEM;
2898 get_fs_root_and_pwd(current->fs, &root, &pwd);
2900 error = -ENOENT;
2901 write_seqlock(&rename_lock);
2902 if (!d_unlinked(pwd.dentry)) {
2903 unsigned long len;
2904 char *cwd = page + PAGE_SIZE;
2905 int buflen = PAGE_SIZE;
2907 prepend(&cwd, &buflen, "\0", 1);
2908 error = prepend_path(&pwd, &root, &cwd, &buflen);
2909 write_sequnlock(&rename_lock);
2911 if (error < 0)
2912 goto out;
2914 /* Unreachable from current root */
2915 if (error > 0) {
2916 error = prepend_unreachable(&cwd, &buflen);
2917 if (error)
2918 goto out;
2921 error = -ERANGE;
2922 len = PAGE_SIZE + page - cwd;
2923 if (len <= size) {
2924 error = len;
2925 if (copy_to_user(buf, cwd, len))
2926 error = -EFAULT;
2928 } else {
2929 write_sequnlock(&rename_lock);
2932 out:
2933 path_put(&pwd);
2934 path_put(&root);
2935 free_page((unsigned long) page);
2936 return error;
2940 * Test whether new_dentry is a subdirectory of old_dentry.
2942 * Trivially implemented using the dcache structure
2946 * is_subdir - is new dentry a subdirectory of old_dentry
2947 * @new_dentry: new dentry
2948 * @old_dentry: old dentry
2950 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2951 * Returns 0 otherwise.
2952 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2955 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2957 int result;
2958 unsigned seq;
2960 if (new_dentry == old_dentry)
2961 return 1;
2963 do {
2964 /* for restarting inner loop in case of seq retry */
2965 seq = read_seqbegin(&rename_lock);
2967 * Need rcu_readlock to protect against the d_parent trashing
2968 * due to d_move
2970 rcu_read_lock();
2971 if (d_ancestor(old_dentry, new_dentry))
2972 result = 1;
2973 else
2974 result = 0;
2975 rcu_read_unlock();
2976 } while (read_seqretry(&rename_lock, seq));
2978 return result;
2981 void d_genocide(struct dentry *root)
2983 struct dentry *this_parent;
2984 struct list_head *next;
2985 unsigned seq;
2986 int locked = 0;
2988 seq = read_seqbegin(&rename_lock);
2989 again:
2990 this_parent = root;
2991 spin_lock(&this_parent->d_lock);
2992 repeat:
2993 next = this_parent->d_subdirs.next;
2994 resume:
2995 while (next != &this_parent->d_subdirs) {
2996 struct list_head *tmp = next;
2997 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2998 next = tmp->next;
3000 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3001 if (d_unhashed(dentry) || !dentry->d_inode) {
3002 spin_unlock(&dentry->d_lock);
3003 continue;
3005 if (!list_empty(&dentry->d_subdirs)) {
3006 spin_unlock(&this_parent->d_lock);
3007 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
3008 this_parent = dentry;
3009 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
3010 goto repeat;
3012 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3013 dentry->d_flags |= DCACHE_GENOCIDE;
3014 dentry->d_count--;
3016 spin_unlock(&dentry->d_lock);
3018 if (this_parent != root) {
3019 struct dentry *child = this_parent;
3020 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3021 this_parent->d_flags |= DCACHE_GENOCIDE;
3022 this_parent->d_count--;
3024 this_parent = try_to_ascend(this_parent, locked, seq);
3025 if (!this_parent)
3026 goto rename_retry;
3027 next = child->d_u.d_child.next;
3028 goto resume;
3030 spin_unlock(&this_parent->d_lock);
3031 if (!locked && read_seqretry(&rename_lock, seq))
3032 goto rename_retry;
3033 if (locked)
3034 write_sequnlock(&rename_lock);
3035 return;
3037 rename_retry:
3038 locked = 1;
3039 write_seqlock(&rename_lock);
3040 goto again;
3044 * find_inode_number - check for dentry with name
3045 * @dir: directory to check
3046 * @name: Name to find.
3048 * Check whether a dentry already exists for the given name,
3049 * and return the inode number if it has an inode. Otherwise
3050 * 0 is returned.
3052 * This routine is used to post-process directory listings for
3053 * filesystems using synthetic inode numbers, and is necessary
3054 * to keep getcwd() working.
3057 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3059 struct dentry * dentry;
3060 ino_t ino = 0;
3062 dentry = d_hash_and_lookup(dir, name);
3063 if (dentry) {
3064 if (dentry->d_inode)
3065 ino = dentry->d_inode->i_ino;
3066 dput(dentry);
3068 return ino;
3070 EXPORT_SYMBOL(find_inode_number);
3072 static __initdata unsigned long dhash_entries;
3073 static int __init set_dhash_entries(char *str)
3075 if (!str)
3076 return 0;
3077 dhash_entries = simple_strtoul(str, &str, 0);
3078 return 1;
3080 __setup("dhash_entries=", set_dhash_entries);
3082 static void __init dcache_init_early(void)
3084 unsigned int loop;
3086 /* If hashes are distributed across NUMA nodes, defer
3087 * hash allocation until vmalloc space is available.
3089 if (hashdist)
3090 return;
3092 dentry_hashtable =
3093 alloc_large_system_hash("Dentry cache",
3094 sizeof(struct hlist_bl_head),
3095 dhash_entries,
3097 HASH_EARLY,
3098 &d_hash_shift,
3099 &d_hash_mask,
3103 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3104 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3107 static void __init dcache_init(void)
3109 unsigned int loop;
3112 * A constructor could be added for stable state like the lists,
3113 * but it is probably not worth it because of the cache nature
3114 * of the dcache.
3116 dentry_cache = KMEM_CACHE(dentry,
3117 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3119 /* Hash may have been set up in dcache_init_early */
3120 if (!hashdist)
3121 return;
3123 dentry_hashtable =
3124 alloc_large_system_hash("Dentry cache",
3125 sizeof(struct hlist_bl_head),
3126 dhash_entries,
3129 &d_hash_shift,
3130 &d_hash_mask,
3134 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3135 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3138 /* SLAB cache for __getname() consumers */
3139 struct kmem_cache *names_cachep __read_mostly;
3140 EXPORT_SYMBOL(names_cachep);
3142 EXPORT_SYMBOL(d_genocide);
3144 void __init vfs_caches_init_early(void)
3146 dcache_init_early();
3147 inode_init_early();
3150 void __init vfs_caches_init(unsigned long mempages)
3152 unsigned long reserve;
3154 /* Base hash sizes on available memory, with a reserve equal to
3155 150% of current kernel size */
3157 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3158 mempages -= reserve;
3160 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3161 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3163 dcache_init();
3164 inode_init();
3165 files_init(mempages);
3166 mnt_init();
3167 bdev_cache_init();
3168 chrdev_init();