2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
40 #include <linux/atomic.h>
44 * There are three level of locking required by epoll :
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
98 #define EP_UNACTIVE_PTR ((void *) -1L)
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
102 struct epoll_filefd
{
108 * Structure used to track possible nested calls, for too deep recursions
111 struct nested_call_node
{
112 struct list_head llink
;
118 * This structure is used as collector for nested calls, to check for
119 * maximum recursion dept and loop cycles.
121 struct nested_calls
{
122 struct list_head tasks_call_list
;
127 * Each file descriptor added to the eventpoll interface will
128 * have an entry of this type linked to the "rbr" RB tree.
131 /* RB tree node used to link this structure to the eventpoll RB tree */
134 /* List header used to link this structure to the eventpoll ready list */
135 struct list_head rdllink
;
138 * Works together "struct eventpoll"->ovflist in keeping the
139 * single linked chain of items.
143 /* The file descriptor information this item refers to */
144 struct epoll_filefd ffd
;
146 /* Number of active wait queue attached to poll operations */
149 /* List containing poll wait queues */
150 struct list_head pwqlist
;
152 /* The "container" of this item */
153 struct eventpoll
*ep
;
155 /* List header used to link this item to the "struct file" items list */
156 struct list_head fllink
;
158 /* The structure that describe the interested events and the source fd */
159 struct epoll_event event
;
163 * This structure is stored inside the "private_data" member of the file
164 * structure and represents the main data structure for the eventpoll
168 /* Protect the access to this structure */
172 * This mutex is used to ensure that files are not removed
173 * while epoll is using them. This is held during the event
174 * collection loop, the file cleanup path, the epoll file exit
175 * code and the ctl operations.
179 /* Wait queue used by sys_epoll_wait() */
180 wait_queue_head_t wq
;
182 /* Wait queue used by file->poll() */
183 wait_queue_head_t poll_wait
;
185 /* List of ready file descriptors */
186 struct list_head rdllist
;
188 /* RB tree root used to store monitored fd structs */
192 * This is a single linked list that chains all the "struct epitem" that
193 * happened while transferring ready events to userspace w/out
196 struct epitem
*ovflist
;
198 /* The user that created the eventpoll descriptor */
199 struct user_struct
*user
;
202 /* Wait structure used by the poll hooks */
203 struct eppoll_entry
{
204 /* List header used to link this structure to the "struct epitem" */
205 struct list_head llink
;
207 /* The "base" pointer is set to the container "struct epitem" */
211 * Wait queue item that will be linked to the target file wait
216 /* The wait queue head that linked the "wait" wait queue item */
217 wait_queue_head_t
*whead
;
220 /* Wrapper struct used by poll queueing */
226 /* Used by the ep_send_events() function as callback private data */
227 struct ep_send_events_data
{
229 struct epoll_event __user
*events
;
233 * Configuration options available inside /proc/sys/fs/epoll/
235 /* Maximum number of epoll watched descriptors, per user */
236 static long max_user_watches __read_mostly
;
239 * This mutex is used to serialize ep_free() and eventpoll_release_file().
241 static DEFINE_MUTEX(epmutex
);
243 /* Used to check for epoll file descriptor inclusion loops */
244 static struct nested_calls poll_loop_ncalls
;
246 /* Used for safe wake up implementation */
247 static struct nested_calls poll_safewake_ncalls
;
249 /* Used to call file's f_op->poll() under the nested calls boundaries */
250 static struct nested_calls poll_readywalk_ncalls
;
252 /* Slab cache used to allocate "struct epitem" */
253 static struct kmem_cache
*epi_cache __read_mostly
;
255 /* Slab cache used to allocate "struct eppoll_entry" */
256 static struct kmem_cache
*pwq_cache __read_mostly
;
260 #include <linux/sysctl.h>
263 static long long_max
= LONG_MAX
;
265 ctl_table epoll_table
[] = {
267 .procname
= "max_user_watches",
268 .data
= &max_user_watches
,
269 .maxlen
= sizeof(max_user_watches
),
271 .proc_handler
= proc_doulongvec_minmax
,
277 #endif /* CONFIG_SYSCTL */
280 /* Setup the structure that is used as key for the RB tree */
281 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
282 struct file
*file
, int fd
)
288 /* Compare RB tree keys */
289 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
290 struct epoll_filefd
*p2
)
292 return (p1
->file
> p2
->file
? +1:
293 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
296 /* Tells us if the item is currently linked */
297 static inline int ep_is_linked(struct list_head
*p
)
299 return !list_empty(p
);
302 /* Get the "struct epitem" from a wait queue pointer */
303 static inline struct epitem
*ep_item_from_wait(wait_queue_t
*p
)
305 return container_of(p
, struct eppoll_entry
, wait
)->base
;
308 /* Get the "struct epitem" from an epoll queue wrapper */
309 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
311 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
314 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
315 static inline int ep_op_has_event(int op
)
317 return op
!= EPOLL_CTL_DEL
;
320 /* Initialize the poll safe wake up structure */
321 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
323 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
324 spin_lock_init(&ncalls
->lock
);
328 * ep_events_available - Checks if ready events might be available.
330 * @ep: Pointer to the eventpoll context.
332 * Returns: Returns a value different than zero if ready events are available,
335 static inline int ep_events_available(struct eventpoll
*ep
)
337 return !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
341 * ep_call_nested - Perform a bound (possibly) nested call, by checking
342 * that the recursion limit is not exceeded, and that
343 * the same nested call (by the meaning of same cookie) is
346 * @ncalls: Pointer to the nested_calls structure to be used for this call.
347 * @max_nests: Maximum number of allowed nesting calls.
348 * @nproc: Nested call core function pointer.
349 * @priv: Opaque data to be passed to the @nproc callback.
350 * @cookie: Cookie to be used to identify this nested call.
351 * @ctx: This instance context.
353 * Returns: Returns the code returned by the @nproc callback, or -1 if
354 * the maximum recursion limit has been exceeded.
356 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
357 int (*nproc
)(void *, void *, int), void *priv
,
358 void *cookie
, void *ctx
)
360 int error
, call_nests
= 0;
362 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
363 struct nested_call_node
*tncur
;
364 struct nested_call_node tnode
;
366 spin_lock_irqsave(&ncalls
->lock
, flags
);
369 * Try to see if the current task is already inside this wakeup call.
370 * We use a list here, since the population inside this set is always
373 list_for_each_entry(tncur
, lsthead
, llink
) {
374 if (tncur
->ctx
== ctx
&&
375 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
377 * Ops ... loop detected or maximum nest level reached.
378 * We abort this wake by breaking the cycle itself.
385 /* Add the current task and cookie to the list */
387 tnode
.cookie
= cookie
;
388 list_add(&tnode
.llink
, lsthead
);
390 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
392 /* Call the nested function */
393 error
= (*nproc
)(priv
, cookie
, call_nests
);
395 /* Remove the current task from the list */
396 spin_lock_irqsave(&ncalls
->lock
, flags
);
397 list_del(&tnode
.llink
);
399 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
404 #ifdef CONFIG_DEBUG_LOCK_ALLOC
405 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
406 unsigned long events
, int subclass
)
410 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
411 wake_up_locked_poll(wqueue
, events
);
412 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
415 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
416 unsigned long events
, int subclass
)
418 wake_up_poll(wqueue
, events
);
422 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
424 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
430 * Perform a safe wake up of the poll wait list. The problem is that
431 * with the new callback'd wake up system, it is possible that the
432 * poll callback is reentered from inside the call to wake_up() done
433 * on the poll wait queue head. The rule is that we cannot reenter the
434 * wake up code from the same task more than EP_MAX_NESTS times,
435 * and we cannot reenter the same wait queue head at all. This will
436 * enable to have a hierarchy of epoll file descriptor of no more than
439 static void ep_poll_safewake(wait_queue_head_t
*wq
)
441 int this_cpu
= get_cpu();
443 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
444 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
450 * This function unregisters poll callbacks from the associated file
451 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
454 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
456 struct list_head
*lsthead
= &epi
->pwqlist
;
457 struct eppoll_entry
*pwq
;
459 while (!list_empty(lsthead
)) {
460 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
462 list_del(&pwq
->llink
);
463 remove_wait_queue(pwq
->whead
, &pwq
->wait
);
464 kmem_cache_free(pwq_cache
, pwq
);
469 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
470 * the scan code, to call f_op->poll(). Also allows for
471 * O(NumReady) performance.
473 * @ep: Pointer to the epoll private data structure.
474 * @sproc: Pointer to the scan callback.
475 * @priv: Private opaque data passed to the @sproc callback.
476 * @depth: The current depth of recursive f_op->poll calls.
478 * Returns: The same integer error code returned by the @sproc callback.
480 static int ep_scan_ready_list(struct eventpoll
*ep
,
481 int (*sproc
)(struct eventpoll
*,
482 struct list_head
*, void *),
486 int error
, pwake
= 0;
488 struct epitem
*epi
, *nepi
;
492 * We need to lock this because we could be hit by
493 * eventpoll_release_file() and epoll_ctl().
495 mutex_lock_nested(&ep
->mtx
, depth
);
498 * Steal the ready list, and re-init the original one to the
499 * empty list. Also, set ep->ovflist to NULL so that events
500 * happening while looping w/out locks, are not lost. We cannot
501 * have the poll callback to queue directly on ep->rdllist,
502 * because we want the "sproc" callback to be able to do it
505 spin_lock_irqsave(&ep
->lock
, flags
);
506 list_splice_init(&ep
->rdllist
, &txlist
);
508 spin_unlock_irqrestore(&ep
->lock
, flags
);
511 * Now call the callback function.
513 error
= (*sproc
)(ep
, &txlist
, priv
);
515 spin_lock_irqsave(&ep
->lock
, flags
);
517 * During the time we spent inside the "sproc" callback, some
518 * other events might have been queued by the poll callback.
519 * We re-insert them inside the main ready-list here.
521 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
522 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
524 * We need to check if the item is already in the list.
525 * During the "sproc" callback execution time, items are
526 * queued into ->ovflist but the "txlist" might already
527 * contain them, and the list_splice() below takes care of them.
529 if (!ep_is_linked(&epi
->rdllink
))
530 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
533 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
534 * releasing the lock, events will be queued in the normal way inside
537 ep
->ovflist
= EP_UNACTIVE_PTR
;
540 * Quickly re-inject items left on "txlist".
542 list_splice(&txlist
, &ep
->rdllist
);
544 if (!list_empty(&ep
->rdllist
)) {
546 * Wake up (if active) both the eventpoll wait list and
547 * the ->poll() wait list (delayed after we release the lock).
549 if (waitqueue_active(&ep
->wq
))
550 wake_up_locked(&ep
->wq
);
551 if (waitqueue_active(&ep
->poll_wait
))
554 spin_unlock_irqrestore(&ep
->lock
, flags
);
556 mutex_unlock(&ep
->mtx
);
558 /* We have to call this outside the lock */
560 ep_poll_safewake(&ep
->poll_wait
);
566 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
567 * all the associated resources. Must be called with "mtx" held.
569 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
572 struct file
*file
= epi
->ffd
.file
;
575 * Removes poll wait queue hooks. We _have_ to do this without holding
576 * the "ep->lock" otherwise a deadlock might occur. This because of the
577 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
578 * queue head lock when unregistering the wait queue. The wakeup callback
579 * will run by holding the wait queue head lock and will call our callback
580 * that will try to get "ep->lock".
582 ep_unregister_pollwait(ep
, epi
);
584 /* Remove the current item from the list of epoll hooks */
585 spin_lock(&file
->f_lock
);
586 if (ep_is_linked(&epi
->fllink
))
587 list_del_init(&epi
->fllink
);
588 spin_unlock(&file
->f_lock
);
590 rb_erase(&epi
->rbn
, &ep
->rbr
);
592 spin_lock_irqsave(&ep
->lock
, flags
);
593 if (ep_is_linked(&epi
->rdllink
))
594 list_del_init(&epi
->rdllink
);
595 spin_unlock_irqrestore(&ep
->lock
, flags
);
597 /* At this point it is safe to free the eventpoll item */
598 kmem_cache_free(epi_cache
, epi
);
600 atomic_long_dec(&ep
->user
->epoll_watches
);
605 static void ep_free(struct eventpoll
*ep
)
610 /* We need to release all tasks waiting for these file */
611 if (waitqueue_active(&ep
->poll_wait
))
612 ep_poll_safewake(&ep
->poll_wait
);
615 * We need to lock this because we could be hit by
616 * eventpoll_release_file() while we're freeing the "struct eventpoll".
617 * We do not need to hold "ep->mtx" here because the epoll file
618 * is on the way to be removed and no one has references to it
619 * anymore. The only hit might come from eventpoll_release_file() but
620 * holding "epmutex" is sufficient here.
622 mutex_lock(&epmutex
);
625 * Walks through the whole tree by unregistering poll callbacks.
627 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
628 epi
= rb_entry(rbp
, struct epitem
, rbn
);
630 ep_unregister_pollwait(ep
, epi
);
634 * Walks through the whole tree by freeing each "struct epitem". At this
635 * point we are sure no poll callbacks will be lingering around, and also by
636 * holding "epmutex" we can be sure that no file cleanup code will hit
637 * us during this operation. So we can avoid the lock on "ep->lock".
639 while ((rbp
= rb_first(&ep
->rbr
)) != NULL
) {
640 epi
= rb_entry(rbp
, struct epitem
, rbn
);
644 mutex_unlock(&epmutex
);
645 mutex_destroy(&ep
->mtx
);
650 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
652 struct eventpoll
*ep
= file
->private_data
;
660 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
663 struct epitem
*epi
, *tmp
;
665 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
666 if (epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
) &
668 return POLLIN
| POLLRDNORM
;
671 * Item has been dropped into the ready list by the poll
672 * callback, but it's not actually ready, as far as
673 * caller requested events goes. We can remove it here.
675 list_del_init(&epi
->rdllink
);
682 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
684 return ep_scan_ready_list(priv
, ep_read_events_proc
, NULL
, call_nests
+ 1);
687 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
690 struct eventpoll
*ep
= file
->private_data
;
692 /* Insert inside our poll wait queue */
693 poll_wait(file
, &ep
->poll_wait
, wait
);
696 * Proceed to find out if wanted events are really available inside
697 * the ready list. This need to be done under ep_call_nested()
698 * supervision, since the call to f_op->poll() done on listed files
699 * could re-enter here.
701 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
702 ep_poll_readyevents_proc
, ep
, ep
, current
);
704 return pollflags
!= -1 ? pollflags
: 0;
707 /* File callbacks that implement the eventpoll file behaviour */
708 static const struct file_operations eventpoll_fops
= {
709 .release
= ep_eventpoll_release
,
710 .poll
= ep_eventpoll_poll
,
711 .llseek
= noop_llseek
,
714 /* Fast test to see if the file is an eventpoll file */
715 static inline int is_file_epoll(struct file
*f
)
717 return f
->f_op
== &eventpoll_fops
;
721 * This is called from eventpoll_release() to unlink files from the eventpoll
722 * interface. We need to have this facility to cleanup correctly files that are
723 * closed without being removed from the eventpoll interface.
725 void eventpoll_release_file(struct file
*file
)
727 struct list_head
*lsthead
= &file
->f_ep_links
;
728 struct eventpoll
*ep
;
732 * We don't want to get "file->f_lock" because it is not
733 * necessary. It is not necessary because we're in the "struct file"
734 * cleanup path, and this means that no one is using this file anymore.
735 * So, for example, epoll_ctl() cannot hit here since if we reach this
736 * point, the file counter already went to zero and fget() would fail.
737 * The only hit might come from ep_free() but by holding the mutex
738 * will correctly serialize the operation. We do need to acquire
739 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
740 * from anywhere but ep_free().
742 * Besides, ep_remove() acquires the lock, so we can't hold it here.
744 mutex_lock(&epmutex
);
746 while (!list_empty(lsthead
)) {
747 epi
= list_first_entry(lsthead
, struct epitem
, fllink
);
750 list_del_init(&epi
->fllink
);
751 mutex_lock_nested(&ep
->mtx
, 0);
753 mutex_unlock(&ep
->mtx
);
756 mutex_unlock(&epmutex
);
759 static int ep_alloc(struct eventpoll
**pep
)
762 struct user_struct
*user
;
763 struct eventpoll
*ep
;
765 user
= get_current_user();
767 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
771 spin_lock_init(&ep
->lock
);
772 mutex_init(&ep
->mtx
);
773 init_waitqueue_head(&ep
->wq
);
774 init_waitqueue_head(&ep
->poll_wait
);
775 INIT_LIST_HEAD(&ep
->rdllist
);
777 ep
->ovflist
= EP_UNACTIVE_PTR
;
790 * Search the file inside the eventpoll tree. The RB tree operations
791 * are protected by the "mtx" mutex, and ep_find() must be called with
794 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
798 struct epitem
*epi
, *epir
= NULL
;
799 struct epoll_filefd ffd
;
801 ep_set_ffd(&ffd
, file
, fd
);
802 for (rbp
= ep
->rbr
.rb_node
; rbp
; ) {
803 epi
= rb_entry(rbp
, struct epitem
, rbn
);
804 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
819 * This is the callback that is passed to the wait queue wakeup
820 * mechanism. It is called by the stored file descriptors when they
821 * have events to report.
823 static int ep_poll_callback(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
827 struct epitem
*epi
= ep_item_from_wait(wait
);
828 struct eventpoll
*ep
= epi
->ep
;
830 spin_lock_irqsave(&ep
->lock
, flags
);
833 * If the event mask does not contain any poll(2) event, we consider the
834 * descriptor to be disabled. This condition is likely the effect of the
835 * EPOLLONESHOT bit that disables the descriptor when an event is received,
836 * until the next EPOLL_CTL_MOD will be issued.
838 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
842 * Check the events coming with the callback. At this stage, not
843 * every device reports the events in the "key" parameter of the
844 * callback. We need to be able to handle both cases here, hence the
845 * test for "key" != NULL before the event match test.
847 if (key
&& !((unsigned long) key
& epi
->event
.events
))
851 * If we are transferring events to userspace, we can hold no locks
852 * (because we're accessing user memory, and because of linux f_op->poll()
853 * semantics). All the events that happen during that period of time are
854 * chained in ep->ovflist and requeued later on.
856 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
857 if (epi
->next
== EP_UNACTIVE_PTR
) {
858 epi
->next
= ep
->ovflist
;
864 /* If this file is already in the ready list we exit soon */
865 if (!ep_is_linked(&epi
->rdllink
))
866 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
869 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
872 if (waitqueue_active(&ep
->wq
))
873 wake_up_locked(&ep
->wq
);
874 if (waitqueue_active(&ep
->poll_wait
))
878 spin_unlock_irqrestore(&ep
->lock
, flags
);
880 /* We have to call this outside the lock */
882 ep_poll_safewake(&ep
->poll_wait
);
888 * This is the callback that is used to add our wait queue to the
889 * target file wakeup lists.
891 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
894 struct epitem
*epi
= ep_item_from_epqueue(pt
);
895 struct eppoll_entry
*pwq
;
897 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
898 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
901 add_wait_queue(whead
, &pwq
->wait
);
902 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
905 /* We have to signal that an error occurred */
910 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
913 struct rb_node
**p
= &ep
->rbr
.rb_node
, *parent
= NULL
;
918 epic
= rb_entry(parent
, struct epitem
, rbn
);
919 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
921 p
= &parent
->rb_right
;
923 p
= &parent
->rb_left
;
925 rb_link_node(&epi
->rbn
, parent
, p
);
926 rb_insert_color(&epi
->rbn
, &ep
->rbr
);
930 * Must be called with "mtx" held.
932 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
933 struct file
*tfile
, int fd
)
935 int error
, revents
, pwake
= 0;
939 struct ep_pqueue epq
;
941 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
942 if (unlikely(user_watches
>= max_user_watches
))
944 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
947 /* Item initialization follow here ... */
948 INIT_LIST_HEAD(&epi
->rdllink
);
949 INIT_LIST_HEAD(&epi
->fllink
);
950 INIT_LIST_HEAD(&epi
->pwqlist
);
952 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
955 epi
->next
= EP_UNACTIVE_PTR
;
957 /* Initialize the poll table using the queue callback */
959 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
962 * Attach the item to the poll hooks and get current event bits.
963 * We can safely use the file* here because its usage count has
964 * been increased by the caller of this function. Note that after
965 * this operation completes, the poll callback can start hitting
968 revents
= tfile
->f_op
->poll(tfile
, &epq
.pt
);
971 * We have to check if something went wrong during the poll wait queue
972 * install process. Namely an allocation for a wait queue failed due
973 * high memory pressure.
977 goto error_unregister
;
979 /* Add the current item to the list of active epoll hook for this file */
980 spin_lock(&tfile
->f_lock
);
981 list_add_tail(&epi
->fllink
, &tfile
->f_ep_links
);
982 spin_unlock(&tfile
->f_lock
);
985 * Add the current item to the RB tree. All RB tree operations are
986 * protected by "mtx", and ep_insert() is called with "mtx" held.
988 ep_rbtree_insert(ep
, epi
);
990 /* We have to drop the new item inside our item list to keep track of it */
991 spin_lock_irqsave(&ep
->lock
, flags
);
993 /* If the file is already "ready" we drop it inside the ready list */
994 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
995 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
997 /* Notify waiting tasks that events are available */
998 if (waitqueue_active(&ep
->wq
))
999 wake_up_locked(&ep
->wq
);
1000 if (waitqueue_active(&ep
->poll_wait
))
1004 spin_unlock_irqrestore(&ep
->lock
, flags
);
1006 atomic_long_inc(&ep
->user
->epoll_watches
);
1008 /* We have to call this outside the lock */
1010 ep_poll_safewake(&ep
->poll_wait
);
1015 ep_unregister_pollwait(ep
, epi
);
1018 * We need to do this because an event could have been arrived on some
1019 * allocated wait queue. Note that we don't care about the ep->ovflist
1020 * list, since that is used/cleaned only inside a section bound by "mtx".
1021 * And ep_insert() is called with "mtx" held.
1023 spin_lock_irqsave(&ep
->lock
, flags
);
1024 if (ep_is_linked(&epi
->rdllink
))
1025 list_del_init(&epi
->rdllink
);
1026 spin_unlock_irqrestore(&ep
->lock
, flags
);
1028 kmem_cache_free(epi_cache
, epi
);
1034 * Modify the interest event mask by dropping an event if the new mask
1035 * has a match in the current file status. Must be called with "mtx" held.
1037 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1040 unsigned int revents
;
1043 * Set the new event interest mask before calling f_op->poll();
1044 * otherwise we might miss an event that happens between the
1045 * f_op->poll() call and the new event set registering.
1047 epi
->event
.events
= event
->events
;
1048 epi
->event
.data
= event
->data
; /* protected by mtx */
1051 * Get current event bits. We can safely use the file* here because
1052 * its usage count has been increased by the caller of this function.
1054 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
);
1057 * If the item is "hot" and it is not registered inside the ready
1058 * list, push it inside.
1060 if (revents
& event
->events
) {
1061 spin_lock_irq(&ep
->lock
);
1062 if (!ep_is_linked(&epi
->rdllink
)) {
1063 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1065 /* Notify waiting tasks that events are available */
1066 if (waitqueue_active(&ep
->wq
))
1067 wake_up_locked(&ep
->wq
);
1068 if (waitqueue_active(&ep
->poll_wait
))
1071 spin_unlock_irq(&ep
->lock
);
1074 /* We have to call this outside the lock */
1076 ep_poll_safewake(&ep
->poll_wait
);
1081 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1084 struct ep_send_events_data
*esed
= priv
;
1086 unsigned int revents
;
1088 struct epoll_event __user
*uevent
;
1091 * We can loop without lock because we are passed a task private list.
1092 * Items cannot vanish during the loop because ep_scan_ready_list() is
1093 * holding "mtx" during this call.
1095 for (eventcnt
= 0, uevent
= esed
->events
;
1096 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1097 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1099 list_del_init(&epi
->rdllink
);
1101 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
) &
1105 * If the event mask intersect the caller-requested one,
1106 * deliver the event to userspace. Again, ep_scan_ready_list()
1107 * is holding "mtx", so no operations coming from userspace
1108 * can change the item.
1111 if (__put_user(revents
, &uevent
->events
) ||
1112 __put_user(epi
->event
.data
, &uevent
->data
)) {
1113 list_add(&epi
->rdllink
, head
);
1114 return eventcnt
? eventcnt
: -EFAULT
;
1118 if (epi
->event
.events
& EPOLLONESHOT
)
1119 epi
->event
.events
&= EP_PRIVATE_BITS
;
1120 else if (!(epi
->event
.events
& EPOLLET
)) {
1122 * If this file has been added with Level
1123 * Trigger mode, we need to insert back inside
1124 * the ready list, so that the next call to
1125 * epoll_wait() will check again the events
1126 * availability. At this point, no one can insert
1127 * into ep->rdllist besides us. The epoll_ctl()
1128 * callers are locked out by
1129 * ep_scan_ready_list() holding "mtx" and the
1130 * poll callback will queue them in ep->ovflist.
1132 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1140 static int ep_send_events(struct eventpoll
*ep
,
1141 struct epoll_event __user
*events
, int maxevents
)
1143 struct ep_send_events_data esed
;
1145 esed
.maxevents
= maxevents
;
1146 esed
.events
= events
;
1148 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0);
1151 static inline struct timespec
ep_set_mstimeout(long ms
)
1153 struct timespec now
, ts
= {
1154 .tv_sec
= ms
/ MSEC_PER_SEC
,
1155 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1159 return timespec_add_safe(now
, ts
);
1163 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1166 * @ep: Pointer to the eventpoll context.
1167 * @events: Pointer to the userspace buffer where the ready events should be
1169 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1170 * @timeout: Maximum timeout for the ready events fetch operation, in
1171 * milliseconds. If the @timeout is zero, the function will not block,
1172 * while if the @timeout is less than zero, the function will block
1173 * until at least one event has been retrieved (or an error
1176 * Returns: Returns the number of ready events which have been fetched, or an
1177 * error code, in case of error.
1179 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1180 int maxevents
, long timeout
)
1182 int res
= 0, eavail
, timed_out
= 0;
1183 unsigned long flags
;
1186 ktime_t expires
, *to
= NULL
;
1189 struct timespec end_time
= ep_set_mstimeout(timeout
);
1191 slack
= select_estimate_accuracy(&end_time
);
1193 *to
= timespec_to_ktime(end_time
);
1194 } else if (timeout
== 0) {
1196 * Avoid the unnecessary trip to the wait queue loop, if the
1197 * caller specified a non blocking operation.
1200 spin_lock_irqsave(&ep
->lock
, flags
);
1205 spin_lock_irqsave(&ep
->lock
, flags
);
1207 if (!ep_events_available(ep
)) {
1209 * We don't have any available event to return to the caller.
1210 * We need to sleep here, and we will be wake up by
1211 * ep_poll_callback() when events will become available.
1213 init_waitqueue_entry(&wait
, current
);
1214 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1218 * We don't want to sleep if the ep_poll_callback() sends us
1219 * a wakeup in between. That's why we set the task state
1220 * to TASK_INTERRUPTIBLE before doing the checks.
1222 set_current_state(TASK_INTERRUPTIBLE
);
1223 if (ep_events_available(ep
) || timed_out
)
1225 if (signal_pending(current
)) {
1230 spin_unlock_irqrestore(&ep
->lock
, flags
);
1231 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
))
1234 spin_lock_irqsave(&ep
->lock
, flags
);
1236 __remove_wait_queue(&ep
->wq
, &wait
);
1238 set_current_state(TASK_RUNNING
);
1241 /* Is it worth to try to dig for events ? */
1242 eavail
= ep_events_available(ep
);
1244 spin_unlock_irqrestore(&ep
->lock
, flags
);
1247 * Try to transfer events to user space. In case we get 0 events and
1248 * there's still timeout left over, we go trying again in search of
1251 if (!res
&& eavail
&&
1252 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1259 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1260 * API, to verify that adding an epoll file inside another
1261 * epoll structure, does not violate the constraints, in
1262 * terms of closed loops, or too deep chains (which can
1263 * result in excessive stack usage).
1265 * @priv: Pointer to the epoll file to be currently checked.
1266 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1267 * data structure pointer.
1268 * @call_nests: Current dept of the @ep_call_nested() call stack.
1270 * Returns: Returns zero if adding the epoll @file inside current epoll
1271 * structure @ep does not violate the constraints, or -1 otherwise.
1273 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1276 struct file
*file
= priv
;
1277 struct eventpoll
*ep
= file
->private_data
;
1278 struct rb_node
*rbp
;
1281 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1282 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1283 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1284 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1285 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1286 ep_loop_check_proc
, epi
->ffd
.file
,
1287 epi
->ffd
.file
->private_data
, current
);
1292 mutex_unlock(&ep
->mtx
);
1298 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1299 * another epoll file (represented by @ep) does not create
1300 * closed loops or too deep chains.
1302 * @ep: Pointer to the epoll private data structure.
1303 * @file: Pointer to the epoll file to be checked.
1305 * Returns: Returns zero if adding the epoll @file inside current epoll
1306 * structure @ep does not violate the constraints, or -1 otherwise.
1308 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1310 return ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1311 ep_loop_check_proc
, file
, ep
, current
);
1315 * Open an eventpoll file descriptor.
1317 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1320 struct eventpoll
*ep
= NULL
;
1322 /* Check the EPOLL_* constant for consistency. */
1323 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1325 if (flags
& ~EPOLL_CLOEXEC
)
1328 * Create the internal data structure ("struct eventpoll").
1330 error
= ep_alloc(&ep
);
1334 * Creates all the items needed to setup an eventpoll file. That is,
1335 * a file structure and a free file descriptor.
1337 error
= anon_inode_getfd("[eventpoll]", &eventpoll_fops
, ep
,
1338 O_RDWR
| (flags
& O_CLOEXEC
));
1345 SYSCALL_DEFINE1(epoll_create
, int, size
)
1350 return sys_epoll_create1(0);
1354 * The following function implements the controller interface for
1355 * the eventpoll file that enables the insertion/removal/change of
1356 * file descriptors inside the interest set.
1358 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
1359 struct epoll_event __user
*, event
)
1362 int did_lock_epmutex
= 0;
1363 struct file
*file
, *tfile
;
1364 struct eventpoll
*ep
;
1366 struct epoll_event epds
;
1369 if (ep_op_has_event(op
) &&
1370 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
1373 /* Get the "struct file *" for the eventpoll file */
1379 /* Get the "struct file *" for the target file */
1384 /* The target file descriptor must support poll */
1386 if (!tfile
->f_op
|| !tfile
->f_op
->poll
)
1387 goto error_tgt_fput
;
1390 * We have to check that the file structure underneath the file descriptor
1391 * the user passed to us _is_ an eventpoll file. And also we do not permit
1392 * adding an epoll file descriptor inside itself.
1395 if (file
== tfile
|| !is_file_epoll(file
))
1396 goto error_tgt_fput
;
1399 * At this point it is safe to assume that the "private_data" contains
1400 * our own data structure.
1402 ep
= file
->private_data
;
1405 * When we insert an epoll file descriptor, inside another epoll file
1406 * descriptor, there is the change of creating closed loops, which are
1407 * better be handled here, than in more critical paths.
1409 * We hold epmutex across the loop check and the insert in this case, in
1410 * order to prevent two separate inserts from racing and each doing the
1411 * insert "at the same time" such that ep_loop_check passes on both
1412 * before either one does the insert, thereby creating a cycle.
1414 if (unlikely(is_file_epoll(tfile
) && op
== EPOLL_CTL_ADD
)) {
1415 mutex_lock(&epmutex
);
1416 did_lock_epmutex
= 1;
1418 if (ep_loop_check(ep
, tfile
) != 0)
1419 goto error_tgt_fput
;
1423 mutex_lock_nested(&ep
->mtx
, 0);
1426 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1427 * above, we can be sure to be able to use the item looked up by
1428 * ep_find() till we release the mutex.
1430 epi
= ep_find(ep
, tfile
, fd
);
1436 epds
.events
|= POLLERR
| POLLHUP
;
1437 error
= ep_insert(ep
, &epds
, tfile
, fd
);
1443 error
= ep_remove(ep
, epi
);
1449 epds
.events
|= POLLERR
| POLLHUP
;
1450 error
= ep_modify(ep
, epi
, &epds
);
1455 mutex_unlock(&ep
->mtx
);
1458 if (unlikely(did_lock_epmutex
))
1459 mutex_unlock(&epmutex
);
1470 * Implement the event wait interface for the eventpoll file. It is the kernel
1471 * part of the user space epoll_wait(2).
1473 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
1474 int, maxevents
, int, timeout
)
1478 struct eventpoll
*ep
;
1480 /* The maximum number of event must be greater than zero */
1481 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
1484 /* Verify that the area passed by the user is writeable */
1485 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
))) {
1490 /* Get the "struct file *" for the eventpoll file */
1497 * We have to check that the file structure underneath the fd
1498 * the user passed to us _is_ an eventpoll file.
1501 if (!is_file_epoll(file
))
1505 * At this point it is safe to assume that the "private_data" contains
1506 * our own data structure.
1508 ep
= file
->private_data
;
1510 /* Time to fish for events ... */
1511 error
= ep_poll(ep
, events
, maxevents
, timeout
);
1520 #ifdef HAVE_SET_RESTORE_SIGMASK
1523 * Implement the event wait interface for the eventpoll file. It is the kernel
1524 * part of the user space epoll_pwait(2).
1526 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
1527 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
1531 sigset_t ksigmask
, sigsaved
;
1534 * If the caller wants a certain signal mask to be set during the wait,
1538 if (sigsetsize
!= sizeof(sigset_t
))
1540 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
1542 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
1543 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
1546 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
1549 * If we changed the signal mask, we need to restore the original one.
1550 * In case we've got a signal while waiting, we do not restore the
1551 * signal mask yet, and we allow do_signal() to deliver the signal on
1552 * the way back to userspace, before the signal mask is restored.
1555 if (error
== -EINTR
) {
1556 memcpy(¤t
->saved_sigmask
, &sigsaved
,
1558 set_restore_sigmask();
1560 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
1566 #endif /* HAVE_SET_RESTORE_SIGMASK */
1568 static int __init
eventpoll_init(void)
1574 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1576 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
1578 BUG_ON(max_user_watches
< 0);
1581 * Initialize the structure used to perform epoll file descriptor
1582 * inclusion loops checks.
1584 ep_nested_calls_init(&poll_loop_ncalls
);
1586 /* Initialize the structure used to perform safe poll wait head wake ups */
1587 ep_nested_calls_init(&poll_safewake_ncalls
);
1589 /* Initialize the structure used to perform file's f_op->poll() calls */
1590 ep_nested_calls_init(&poll_readywalk_ncalls
);
1592 /* Allocates slab cache used to allocate "struct epitem" items */
1593 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
1594 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
1596 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1597 pwq_cache
= kmem_cache_create("eventpoll_pwq",
1598 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
1602 fs_initcall(eventpoll_init
);