driver core: platform.c: fix checkpatch errors and warnings
[linux-2.6.git] / fs / btrfs / send.c
blobf7a8b861058b5234094d24e9fc35a49d9e78fe1c
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/crc32c.h>
28 #include <linux/vmalloc.h>
30 #include "send.h"
31 #include "backref.h"
32 #include "locking.h"
33 #include "disk-io.h"
34 #include "btrfs_inode.h"
35 #include "transaction.h"
37 static int g_verbose = 0;
39 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
42 * A fs_path is a helper to dynamically build path names with unknown size.
43 * It reallocates the internal buffer on demand.
44 * It allows fast adding of path elements on the right side (normal path) and
45 * fast adding to the left side (reversed path). A reversed path can also be
46 * unreversed if needed.
48 struct fs_path {
49 union {
50 struct {
51 char *start;
52 char *end;
53 char *prepared;
55 char *buf;
56 int buf_len;
57 int reversed:1;
58 int virtual_mem:1;
59 char inline_buf[];
61 char pad[PAGE_SIZE];
64 #define FS_PATH_INLINE_SIZE \
65 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
68 /* reused for each extent */
69 struct clone_root {
70 struct btrfs_root *root;
71 u64 ino;
72 u64 offset;
74 u64 found_refs;
77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80 struct send_ctx {
81 struct file *send_filp;
82 loff_t send_off;
83 char *send_buf;
84 u32 send_size;
85 u32 send_max_size;
86 u64 total_send_size;
87 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
88 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
90 struct vfsmount *mnt;
92 struct btrfs_root *send_root;
93 struct btrfs_root *parent_root;
94 struct clone_root *clone_roots;
95 int clone_roots_cnt;
97 /* current state of the compare_tree call */
98 struct btrfs_path *left_path;
99 struct btrfs_path *right_path;
100 struct btrfs_key *cmp_key;
103 * infos of the currently processed inode. In case of deleted inodes,
104 * these are the values from the deleted inode.
106 u64 cur_ino;
107 u64 cur_inode_gen;
108 int cur_inode_new;
109 int cur_inode_new_gen;
110 int cur_inode_deleted;
111 u64 cur_inode_size;
112 u64 cur_inode_mode;
114 u64 send_progress;
116 struct list_head new_refs;
117 struct list_head deleted_refs;
119 struct radix_tree_root name_cache;
120 struct list_head name_cache_list;
121 int name_cache_size;
123 struct file *cur_inode_filp;
124 char *read_buf;
127 struct name_cache_entry {
128 struct list_head list;
130 * radix_tree has only 32bit entries but we need to handle 64bit inums.
131 * We use the lower 32bit of the 64bit inum to store it in the tree. If
132 * more then one inum would fall into the same entry, we use radix_list
133 * to store the additional entries. radix_list is also used to store
134 * entries where two entries have the same inum but different
135 * generations.
137 struct list_head radix_list;
138 u64 ino;
139 u64 gen;
140 u64 parent_ino;
141 u64 parent_gen;
142 int ret;
143 int need_later_update;
144 int name_len;
145 char name[];
148 static void fs_path_reset(struct fs_path *p)
150 if (p->reversed) {
151 p->start = p->buf + p->buf_len - 1;
152 p->end = p->start;
153 *p->start = 0;
154 } else {
155 p->start = p->buf;
156 p->end = p->start;
157 *p->start = 0;
161 static struct fs_path *fs_path_alloc(struct send_ctx *sctx)
163 struct fs_path *p;
165 p = kmalloc(sizeof(*p), GFP_NOFS);
166 if (!p)
167 return NULL;
168 p->reversed = 0;
169 p->virtual_mem = 0;
170 p->buf = p->inline_buf;
171 p->buf_len = FS_PATH_INLINE_SIZE;
172 fs_path_reset(p);
173 return p;
176 static struct fs_path *fs_path_alloc_reversed(struct send_ctx *sctx)
178 struct fs_path *p;
180 p = fs_path_alloc(sctx);
181 if (!p)
182 return NULL;
183 p->reversed = 1;
184 fs_path_reset(p);
185 return p;
188 static void fs_path_free(struct send_ctx *sctx, struct fs_path *p)
190 if (!p)
191 return;
192 if (p->buf != p->inline_buf) {
193 if (p->virtual_mem)
194 vfree(p->buf);
195 else
196 kfree(p->buf);
198 kfree(p);
201 static int fs_path_len(struct fs_path *p)
203 return p->end - p->start;
206 static int fs_path_ensure_buf(struct fs_path *p, int len)
208 char *tmp_buf;
209 int path_len;
210 int old_buf_len;
212 len++;
214 if (p->buf_len >= len)
215 return 0;
217 path_len = p->end - p->start;
218 old_buf_len = p->buf_len;
219 len = PAGE_ALIGN(len);
221 if (p->buf == p->inline_buf) {
222 tmp_buf = kmalloc(len, GFP_NOFS);
223 if (!tmp_buf) {
224 tmp_buf = vmalloc(len);
225 if (!tmp_buf)
226 return -ENOMEM;
227 p->virtual_mem = 1;
229 memcpy(tmp_buf, p->buf, p->buf_len);
230 p->buf = tmp_buf;
231 p->buf_len = len;
232 } else {
233 if (p->virtual_mem) {
234 tmp_buf = vmalloc(len);
235 if (!tmp_buf)
236 return -ENOMEM;
237 memcpy(tmp_buf, p->buf, p->buf_len);
238 vfree(p->buf);
239 } else {
240 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
241 if (!tmp_buf) {
242 tmp_buf = vmalloc(len);
243 if (!tmp_buf)
244 return -ENOMEM;
245 memcpy(tmp_buf, p->buf, p->buf_len);
246 kfree(p->buf);
247 p->virtual_mem = 1;
250 p->buf = tmp_buf;
251 p->buf_len = len;
253 if (p->reversed) {
254 tmp_buf = p->buf + old_buf_len - path_len - 1;
255 p->end = p->buf + p->buf_len - 1;
256 p->start = p->end - path_len;
257 memmove(p->start, tmp_buf, path_len + 1);
258 } else {
259 p->start = p->buf;
260 p->end = p->start + path_len;
262 return 0;
265 static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
267 int ret;
268 int new_len;
270 new_len = p->end - p->start + name_len;
271 if (p->start != p->end)
272 new_len++;
273 ret = fs_path_ensure_buf(p, new_len);
274 if (ret < 0)
275 goto out;
277 if (p->reversed) {
278 if (p->start != p->end)
279 *--p->start = '/';
280 p->start -= name_len;
281 p->prepared = p->start;
282 } else {
283 if (p->start != p->end)
284 *p->end++ = '/';
285 p->prepared = p->end;
286 p->end += name_len;
287 *p->end = 0;
290 out:
291 return ret;
294 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
296 int ret;
298 ret = fs_path_prepare_for_add(p, name_len);
299 if (ret < 0)
300 goto out;
301 memcpy(p->prepared, name, name_len);
302 p->prepared = NULL;
304 out:
305 return ret;
308 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
310 int ret;
312 ret = fs_path_prepare_for_add(p, p2->end - p2->start);
313 if (ret < 0)
314 goto out;
315 memcpy(p->prepared, p2->start, p2->end - p2->start);
316 p->prepared = NULL;
318 out:
319 return ret;
322 static int fs_path_add_from_extent_buffer(struct fs_path *p,
323 struct extent_buffer *eb,
324 unsigned long off, int len)
326 int ret;
328 ret = fs_path_prepare_for_add(p, len);
329 if (ret < 0)
330 goto out;
332 read_extent_buffer(eb, p->prepared, off, len);
333 p->prepared = NULL;
335 out:
336 return ret;
339 #if 0
340 static void fs_path_remove(struct fs_path *p)
342 BUG_ON(p->reversed);
343 while (p->start != p->end && *p->end != '/')
344 p->end--;
345 *p->end = 0;
347 #endif
349 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
351 int ret;
353 p->reversed = from->reversed;
354 fs_path_reset(p);
356 ret = fs_path_add_path(p, from);
358 return ret;
362 static void fs_path_unreverse(struct fs_path *p)
364 char *tmp;
365 int len;
367 if (!p->reversed)
368 return;
370 tmp = p->start;
371 len = p->end - p->start;
372 p->start = p->buf;
373 p->end = p->start + len;
374 memmove(p->start, tmp, len + 1);
375 p->reversed = 0;
378 static struct btrfs_path *alloc_path_for_send(void)
380 struct btrfs_path *path;
382 path = btrfs_alloc_path();
383 if (!path)
384 return NULL;
385 path->search_commit_root = 1;
386 path->skip_locking = 1;
387 return path;
390 int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
392 int ret;
393 mm_segment_t old_fs;
394 u32 pos = 0;
396 old_fs = get_fs();
397 set_fs(KERNEL_DS);
399 while (pos < len) {
400 ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
401 /* TODO handle that correctly */
402 /*if (ret == -ERESTARTSYS) {
403 continue;
405 if (ret < 0)
406 goto out;
407 if (ret == 0) {
408 ret = -EIO;
409 goto out;
411 pos += ret;
414 ret = 0;
416 out:
417 set_fs(old_fs);
418 return ret;
421 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
423 struct btrfs_tlv_header *hdr;
424 int total_len = sizeof(*hdr) + len;
425 int left = sctx->send_max_size - sctx->send_size;
427 if (unlikely(left < total_len))
428 return -EOVERFLOW;
430 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
431 hdr->tlv_type = cpu_to_le16(attr);
432 hdr->tlv_len = cpu_to_le16(len);
433 memcpy(hdr + 1, data, len);
434 sctx->send_size += total_len;
436 return 0;
439 #if 0
440 static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value)
442 return tlv_put(sctx, attr, &value, sizeof(value));
445 static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value)
447 __le16 tmp = cpu_to_le16(value);
448 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
451 static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value)
453 __le32 tmp = cpu_to_le32(value);
454 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
456 #endif
458 static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value)
460 __le64 tmp = cpu_to_le64(value);
461 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
464 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
465 const char *str, int len)
467 if (len == -1)
468 len = strlen(str);
469 return tlv_put(sctx, attr, str, len);
472 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
473 const u8 *uuid)
475 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
478 #if 0
479 static int tlv_put_timespec(struct send_ctx *sctx, u16 attr,
480 struct timespec *ts)
482 struct btrfs_timespec bts;
483 bts.sec = cpu_to_le64(ts->tv_sec);
484 bts.nsec = cpu_to_le32(ts->tv_nsec);
485 return tlv_put(sctx, attr, &bts, sizeof(bts));
487 #endif
489 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
490 struct extent_buffer *eb,
491 struct btrfs_timespec *ts)
493 struct btrfs_timespec bts;
494 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
495 return tlv_put(sctx, attr, &bts, sizeof(bts));
499 #define TLV_PUT(sctx, attrtype, attrlen, data) \
500 do { \
501 ret = tlv_put(sctx, attrtype, attrlen, data); \
502 if (ret < 0) \
503 goto tlv_put_failure; \
504 } while (0)
506 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
507 do { \
508 ret = tlv_put_u##bits(sctx, attrtype, value); \
509 if (ret < 0) \
510 goto tlv_put_failure; \
511 } while (0)
513 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
514 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
515 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
516 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
517 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
518 do { \
519 ret = tlv_put_string(sctx, attrtype, str, len); \
520 if (ret < 0) \
521 goto tlv_put_failure; \
522 } while (0)
523 #define TLV_PUT_PATH(sctx, attrtype, p) \
524 do { \
525 ret = tlv_put_string(sctx, attrtype, p->start, \
526 p->end - p->start); \
527 if (ret < 0) \
528 goto tlv_put_failure; \
529 } while(0)
530 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
531 do { \
532 ret = tlv_put_uuid(sctx, attrtype, uuid); \
533 if (ret < 0) \
534 goto tlv_put_failure; \
535 } while (0)
536 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
537 do { \
538 ret = tlv_put_timespec(sctx, attrtype, ts); \
539 if (ret < 0) \
540 goto tlv_put_failure; \
541 } while (0)
542 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
543 do { \
544 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
545 if (ret < 0) \
546 goto tlv_put_failure; \
547 } while (0)
549 static int send_header(struct send_ctx *sctx)
551 struct btrfs_stream_header hdr;
553 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
554 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
556 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
557 &sctx->send_off);
561 * For each command/item we want to send to userspace, we call this function.
563 static int begin_cmd(struct send_ctx *sctx, int cmd)
565 struct btrfs_cmd_header *hdr;
567 if (!sctx->send_buf) {
568 WARN_ON(1);
569 return -EINVAL;
572 BUG_ON(sctx->send_size);
574 sctx->send_size += sizeof(*hdr);
575 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
576 hdr->cmd = cpu_to_le16(cmd);
578 return 0;
581 static int send_cmd(struct send_ctx *sctx)
583 int ret;
584 struct btrfs_cmd_header *hdr;
585 u32 crc;
587 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
588 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
589 hdr->crc = 0;
591 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
592 hdr->crc = cpu_to_le32(crc);
594 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
595 &sctx->send_off);
597 sctx->total_send_size += sctx->send_size;
598 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
599 sctx->send_size = 0;
601 return ret;
605 * Sends a move instruction to user space
607 static int send_rename(struct send_ctx *sctx,
608 struct fs_path *from, struct fs_path *to)
610 int ret;
612 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
614 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
615 if (ret < 0)
616 goto out;
618 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
619 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
621 ret = send_cmd(sctx);
623 tlv_put_failure:
624 out:
625 return ret;
629 * Sends a link instruction to user space
631 static int send_link(struct send_ctx *sctx,
632 struct fs_path *path, struct fs_path *lnk)
634 int ret;
636 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
638 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
639 if (ret < 0)
640 goto out;
642 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
645 ret = send_cmd(sctx);
647 tlv_put_failure:
648 out:
649 return ret;
653 * Sends an unlink instruction to user space
655 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
657 int ret;
659 verbose_printk("btrfs: send_unlink %s\n", path->start);
661 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
662 if (ret < 0)
663 goto out;
665 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
667 ret = send_cmd(sctx);
669 tlv_put_failure:
670 out:
671 return ret;
675 * Sends a rmdir instruction to user space
677 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
679 int ret;
681 verbose_printk("btrfs: send_rmdir %s\n", path->start);
683 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
684 if (ret < 0)
685 goto out;
687 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
689 ret = send_cmd(sctx);
691 tlv_put_failure:
692 out:
693 return ret;
697 * Helper function to retrieve some fields from an inode item.
699 static int get_inode_info(struct btrfs_root *root,
700 u64 ino, u64 *size, u64 *gen,
701 u64 *mode, u64 *uid, u64 *gid,
702 u64 *rdev)
704 int ret;
705 struct btrfs_inode_item *ii;
706 struct btrfs_key key;
707 struct btrfs_path *path;
709 path = alloc_path_for_send();
710 if (!path)
711 return -ENOMEM;
713 key.objectid = ino;
714 key.type = BTRFS_INODE_ITEM_KEY;
715 key.offset = 0;
716 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
717 if (ret < 0)
718 goto out;
719 if (ret) {
720 ret = -ENOENT;
721 goto out;
724 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
725 struct btrfs_inode_item);
726 if (size)
727 *size = btrfs_inode_size(path->nodes[0], ii);
728 if (gen)
729 *gen = btrfs_inode_generation(path->nodes[0], ii);
730 if (mode)
731 *mode = btrfs_inode_mode(path->nodes[0], ii);
732 if (uid)
733 *uid = btrfs_inode_uid(path->nodes[0], ii);
734 if (gid)
735 *gid = btrfs_inode_gid(path->nodes[0], ii);
736 if (rdev)
737 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
739 out:
740 btrfs_free_path(path);
741 return ret;
744 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
745 struct fs_path *p,
746 void *ctx);
749 * Helper function to iterate the entries in ONE btrfs_inode_ref or
750 * btrfs_inode_extref.
751 * The iterate callback may return a non zero value to stop iteration. This can
752 * be a negative value for error codes or 1 to simply stop it.
754 * path must point to the INODE_REF or INODE_EXTREF when called.
756 static int iterate_inode_ref(struct send_ctx *sctx,
757 struct btrfs_root *root, struct btrfs_path *path,
758 struct btrfs_key *found_key, int resolve,
759 iterate_inode_ref_t iterate, void *ctx)
761 struct extent_buffer *eb = path->nodes[0];
762 struct btrfs_item *item;
763 struct btrfs_inode_ref *iref;
764 struct btrfs_inode_extref *extref;
765 struct btrfs_path *tmp_path;
766 struct fs_path *p;
767 u32 cur = 0;
768 u32 total;
769 int slot = path->slots[0];
770 u32 name_len;
771 char *start;
772 int ret = 0;
773 int num = 0;
774 int index;
775 u64 dir;
776 unsigned long name_off;
777 unsigned long elem_size;
778 unsigned long ptr;
780 p = fs_path_alloc_reversed(sctx);
781 if (!p)
782 return -ENOMEM;
784 tmp_path = alloc_path_for_send();
785 if (!tmp_path) {
786 fs_path_free(sctx, p);
787 return -ENOMEM;
791 if (found_key->type == BTRFS_INODE_REF_KEY) {
792 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
793 struct btrfs_inode_ref);
794 item = btrfs_item_nr(eb, slot);
795 total = btrfs_item_size(eb, item);
796 elem_size = sizeof(*iref);
797 } else {
798 ptr = btrfs_item_ptr_offset(eb, slot);
799 total = btrfs_item_size_nr(eb, slot);
800 elem_size = sizeof(*extref);
803 while (cur < total) {
804 fs_path_reset(p);
806 if (found_key->type == BTRFS_INODE_REF_KEY) {
807 iref = (struct btrfs_inode_ref *)(ptr + cur);
808 name_len = btrfs_inode_ref_name_len(eb, iref);
809 name_off = (unsigned long)(iref + 1);
810 index = btrfs_inode_ref_index(eb, iref);
811 dir = found_key->offset;
812 } else {
813 extref = (struct btrfs_inode_extref *)(ptr + cur);
814 name_len = btrfs_inode_extref_name_len(eb, extref);
815 name_off = (unsigned long)&extref->name;
816 index = btrfs_inode_extref_index(eb, extref);
817 dir = btrfs_inode_extref_parent(eb, extref);
820 if (resolve) {
821 start = btrfs_ref_to_path(root, tmp_path, name_len,
822 name_off, eb, dir,
823 p->buf, p->buf_len);
824 if (IS_ERR(start)) {
825 ret = PTR_ERR(start);
826 goto out;
828 if (start < p->buf) {
829 /* overflow , try again with larger buffer */
830 ret = fs_path_ensure_buf(p,
831 p->buf_len + p->buf - start);
832 if (ret < 0)
833 goto out;
834 start = btrfs_ref_to_path(root, tmp_path,
835 name_len, name_off,
836 eb, dir,
837 p->buf, p->buf_len);
838 if (IS_ERR(start)) {
839 ret = PTR_ERR(start);
840 goto out;
842 BUG_ON(start < p->buf);
844 p->start = start;
845 } else {
846 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
847 name_len);
848 if (ret < 0)
849 goto out;
852 cur += elem_size + name_len;
853 ret = iterate(num, dir, index, p, ctx);
854 if (ret)
855 goto out;
856 num++;
859 out:
860 btrfs_free_path(tmp_path);
861 fs_path_free(sctx, p);
862 return ret;
865 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
866 const char *name, int name_len,
867 const char *data, int data_len,
868 u8 type, void *ctx);
871 * Helper function to iterate the entries in ONE btrfs_dir_item.
872 * The iterate callback may return a non zero value to stop iteration. This can
873 * be a negative value for error codes or 1 to simply stop it.
875 * path must point to the dir item when called.
877 static int iterate_dir_item(struct send_ctx *sctx,
878 struct btrfs_root *root, struct btrfs_path *path,
879 struct btrfs_key *found_key,
880 iterate_dir_item_t iterate, void *ctx)
882 int ret = 0;
883 struct extent_buffer *eb;
884 struct btrfs_item *item;
885 struct btrfs_dir_item *di;
886 struct btrfs_key di_key;
887 char *buf = NULL;
888 char *buf2 = NULL;
889 int buf_len;
890 int buf_virtual = 0;
891 u32 name_len;
892 u32 data_len;
893 u32 cur;
894 u32 len;
895 u32 total;
896 int slot;
897 int num;
898 u8 type;
900 buf_len = PAGE_SIZE;
901 buf = kmalloc(buf_len, GFP_NOFS);
902 if (!buf) {
903 ret = -ENOMEM;
904 goto out;
907 eb = path->nodes[0];
908 slot = path->slots[0];
909 item = btrfs_item_nr(eb, slot);
910 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
911 cur = 0;
912 len = 0;
913 total = btrfs_item_size(eb, item);
915 num = 0;
916 while (cur < total) {
917 name_len = btrfs_dir_name_len(eb, di);
918 data_len = btrfs_dir_data_len(eb, di);
919 type = btrfs_dir_type(eb, di);
920 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
922 if (name_len + data_len > buf_len) {
923 buf_len = PAGE_ALIGN(name_len + data_len);
924 if (buf_virtual) {
925 buf2 = vmalloc(buf_len);
926 if (!buf2) {
927 ret = -ENOMEM;
928 goto out;
930 vfree(buf);
931 } else {
932 buf2 = krealloc(buf, buf_len, GFP_NOFS);
933 if (!buf2) {
934 buf2 = vmalloc(buf_len);
935 if (!buf2) {
936 ret = -ENOMEM;
937 goto out;
939 kfree(buf);
940 buf_virtual = 1;
944 buf = buf2;
945 buf2 = NULL;
948 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
949 name_len + data_len);
951 len = sizeof(*di) + name_len + data_len;
952 di = (struct btrfs_dir_item *)((char *)di + len);
953 cur += len;
955 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
956 data_len, type, ctx);
957 if (ret < 0)
958 goto out;
959 if (ret) {
960 ret = 0;
961 goto out;
964 num++;
967 out:
968 if (buf_virtual)
969 vfree(buf);
970 else
971 kfree(buf);
972 return ret;
975 static int __copy_first_ref(int num, u64 dir, int index,
976 struct fs_path *p, void *ctx)
978 int ret;
979 struct fs_path *pt = ctx;
981 ret = fs_path_copy(pt, p);
982 if (ret < 0)
983 return ret;
985 /* we want the first only */
986 return 1;
990 * Retrieve the first path of an inode. If an inode has more then one
991 * ref/hardlink, this is ignored.
993 static int get_inode_path(struct send_ctx *sctx, struct btrfs_root *root,
994 u64 ino, struct fs_path *path)
996 int ret;
997 struct btrfs_key key, found_key;
998 struct btrfs_path *p;
1000 p = alloc_path_for_send();
1001 if (!p)
1002 return -ENOMEM;
1004 fs_path_reset(path);
1006 key.objectid = ino;
1007 key.type = BTRFS_INODE_REF_KEY;
1008 key.offset = 0;
1010 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1011 if (ret < 0)
1012 goto out;
1013 if (ret) {
1014 ret = 1;
1015 goto out;
1017 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1018 if (found_key.objectid != ino ||
1019 (found_key.type != BTRFS_INODE_REF_KEY &&
1020 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1021 ret = -ENOENT;
1022 goto out;
1025 ret = iterate_inode_ref(sctx, root, p, &found_key, 1,
1026 __copy_first_ref, path);
1027 if (ret < 0)
1028 goto out;
1029 ret = 0;
1031 out:
1032 btrfs_free_path(p);
1033 return ret;
1036 struct backref_ctx {
1037 struct send_ctx *sctx;
1039 /* number of total found references */
1040 u64 found;
1043 * used for clones found in send_root. clones found behind cur_objectid
1044 * and cur_offset are not considered as allowed clones.
1046 u64 cur_objectid;
1047 u64 cur_offset;
1049 /* may be truncated in case it's the last extent in a file */
1050 u64 extent_len;
1052 /* Just to check for bugs in backref resolving */
1053 int found_itself;
1056 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1058 u64 root = (u64)(uintptr_t)key;
1059 struct clone_root *cr = (struct clone_root *)elt;
1061 if (root < cr->root->objectid)
1062 return -1;
1063 if (root > cr->root->objectid)
1064 return 1;
1065 return 0;
1068 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1070 struct clone_root *cr1 = (struct clone_root *)e1;
1071 struct clone_root *cr2 = (struct clone_root *)e2;
1073 if (cr1->root->objectid < cr2->root->objectid)
1074 return -1;
1075 if (cr1->root->objectid > cr2->root->objectid)
1076 return 1;
1077 return 0;
1081 * Called for every backref that is found for the current extent.
1082 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1084 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1086 struct backref_ctx *bctx = ctx_;
1087 struct clone_root *found;
1088 int ret;
1089 u64 i_size;
1091 /* First check if the root is in the list of accepted clone sources */
1092 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1093 bctx->sctx->clone_roots_cnt,
1094 sizeof(struct clone_root),
1095 __clone_root_cmp_bsearch);
1096 if (!found)
1097 return 0;
1099 if (found->root == bctx->sctx->send_root &&
1100 ino == bctx->cur_objectid &&
1101 offset == bctx->cur_offset) {
1102 bctx->found_itself = 1;
1106 * There are inodes that have extents that lie behind its i_size. Don't
1107 * accept clones from these extents.
1109 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1110 NULL);
1111 if (ret < 0)
1112 return ret;
1114 if (offset + bctx->extent_len > i_size)
1115 return 0;
1118 * Make sure we don't consider clones from send_root that are
1119 * behind the current inode/offset.
1121 if (found->root == bctx->sctx->send_root) {
1123 * TODO for the moment we don't accept clones from the inode
1124 * that is currently send. We may change this when
1125 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1126 * file.
1128 if (ino >= bctx->cur_objectid)
1129 return 0;
1130 #if 0
1131 if (ino > bctx->cur_objectid)
1132 return 0;
1133 if (offset + bctx->extent_len > bctx->cur_offset)
1134 return 0;
1135 #endif
1138 bctx->found++;
1139 found->found_refs++;
1140 if (ino < found->ino) {
1141 found->ino = ino;
1142 found->offset = offset;
1143 } else if (found->ino == ino) {
1145 * same extent found more then once in the same file.
1147 if (found->offset > offset + bctx->extent_len)
1148 found->offset = offset;
1151 return 0;
1155 * Given an inode, offset and extent item, it finds a good clone for a clone
1156 * instruction. Returns -ENOENT when none could be found. The function makes
1157 * sure that the returned clone is usable at the point where sending is at the
1158 * moment. This means, that no clones are accepted which lie behind the current
1159 * inode+offset.
1161 * path must point to the extent item when called.
1163 static int find_extent_clone(struct send_ctx *sctx,
1164 struct btrfs_path *path,
1165 u64 ino, u64 data_offset,
1166 u64 ino_size,
1167 struct clone_root **found)
1169 int ret;
1170 int extent_type;
1171 u64 logical;
1172 u64 disk_byte;
1173 u64 num_bytes;
1174 u64 extent_item_pos;
1175 u64 flags = 0;
1176 struct btrfs_file_extent_item *fi;
1177 struct extent_buffer *eb = path->nodes[0];
1178 struct backref_ctx *backref_ctx = NULL;
1179 struct clone_root *cur_clone_root;
1180 struct btrfs_key found_key;
1181 struct btrfs_path *tmp_path;
1182 int compressed;
1183 u32 i;
1185 tmp_path = alloc_path_for_send();
1186 if (!tmp_path)
1187 return -ENOMEM;
1189 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1190 if (!backref_ctx) {
1191 ret = -ENOMEM;
1192 goto out;
1195 if (data_offset >= ino_size) {
1197 * There may be extents that lie behind the file's size.
1198 * I at least had this in combination with snapshotting while
1199 * writing large files.
1201 ret = 0;
1202 goto out;
1205 fi = btrfs_item_ptr(eb, path->slots[0],
1206 struct btrfs_file_extent_item);
1207 extent_type = btrfs_file_extent_type(eb, fi);
1208 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1209 ret = -ENOENT;
1210 goto out;
1212 compressed = btrfs_file_extent_compression(eb, fi);
1214 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1215 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1216 if (disk_byte == 0) {
1217 ret = -ENOENT;
1218 goto out;
1220 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1222 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1223 &found_key, &flags);
1224 btrfs_release_path(tmp_path);
1226 if (ret < 0)
1227 goto out;
1228 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1229 ret = -EIO;
1230 goto out;
1234 * Setup the clone roots.
1236 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1237 cur_clone_root = sctx->clone_roots + i;
1238 cur_clone_root->ino = (u64)-1;
1239 cur_clone_root->offset = 0;
1240 cur_clone_root->found_refs = 0;
1243 backref_ctx->sctx = sctx;
1244 backref_ctx->found = 0;
1245 backref_ctx->cur_objectid = ino;
1246 backref_ctx->cur_offset = data_offset;
1247 backref_ctx->found_itself = 0;
1248 backref_ctx->extent_len = num_bytes;
1251 * The last extent of a file may be too large due to page alignment.
1252 * We need to adjust extent_len in this case so that the checks in
1253 * __iterate_backrefs work.
1255 if (data_offset + num_bytes >= ino_size)
1256 backref_ctx->extent_len = ino_size - data_offset;
1259 * Now collect all backrefs.
1261 if (compressed == BTRFS_COMPRESS_NONE)
1262 extent_item_pos = logical - found_key.objectid;
1263 else
1264 extent_item_pos = 0;
1266 extent_item_pos = logical - found_key.objectid;
1267 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1268 found_key.objectid, extent_item_pos, 1,
1269 __iterate_backrefs, backref_ctx);
1271 if (ret < 0)
1272 goto out;
1274 if (!backref_ctx->found_itself) {
1275 /* found a bug in backref code? */
1276 ret = -EIO;
1277 printk(KERN_ERR "btrfs: ERROR did not find backref in "
1278 "send_root. inode=%llu, offset=%llu, "
1279 "disk_byte=%llu found extent=%llu\n",
1280 ino, data_offset, disk_byte, found_key.objectid);
1281 goto out;
1284 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1285 "ino=%llu, "
1286 "num_bytes=%llu, logical=%llu\n",
1287 data_offset, ino, num_bytes, logical);
1289 if (!backref_ctx->found)
1290 verbose_printk("btrfs: no clones found\n");
1292 cur_clone_root = NULL;
1293 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1294 if (sctx->clone_roots[i].found_refs) {
1295 if (!cur_clone_root)
1296 cur_clone_root = sctx->clone_roots + i;
1297 else if (sctx->clone_roots[i].root == sctx->send_root)
1298 /* prefer clones from send_root over others */
1299 cur_clone_root = sctx->clone_roots + i;
1304 if (cur_clone_root) {
1305 *found = cur_clone_root;
1306 ret = 0;
1307 } else {
1308 ret = -ENOENT;
1311 out:
1312 btrfs_free_path(tmp_path);
1313 kfree(backref_ctx);
1314 return ret;
1317 static int read_symlink(struct send_ctx *sctx,
1318 struct btrfs_root *root,
1319 u64 ino,
1320 struct fs_path *dest)
1322 int ret;
1323 struct btrfs_path *path;
1324 struct btrfs_key key;
1325 struct btrfs_file_extent_item *ei;
1326 u8 type;
1327 u8 compression;
1328 unsigned long off;
1329 int len;
1331 path = alloc_path_for_send();
1332 if (!path)
1333 return -ENOMEM;
1335 key.objectid = ino;
1336 key.type = BTRFS_EXTENT_DATA_KEY;
1337 key.offset = 0;
1338 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1339 if (ret < 0)
1340 goto out;
1341 BUG_ON(ret);
1343 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1344 struct btrfs_file_extent_item);
1345 type = btrfs_file_extent_type(path->nodes[0], ei);
1346 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1347 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1348 BUG_ON(compression);
1350 off = btrfs_file_extent_inline_start(ei);
1351 len = btrfs_file_extent_inline_len(path->nodes[0], ei);
1353 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1355 out:
1356 btrfs_free_path(path);
1357 return ret;
1361 * Helper function to generate a file name that is unique in the root of
1362 * send_root and parent_root. This is used to generate names for orphan inodes.
1364 static int gen_unique_name(struct send_ctx *sctx,
1365 u64 ino, u64 gen,
1366 struct fs_path *dest)
1368 int ret = 0;
1369 struct btrfs_path *path;
1370 struct btrfs_dir_item *di;
1371 char tmp[64];
1372 int len;
1373 u64 idx = 0;
1375 path = alloc_path_for_send();
1376 if (!path)
1377 return -ENOMEM;
1379 while (1) {
1380 len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu",
1381 ino, gen, idx);
1382 if (len >= sizeof(tmp)) {
1383 /* should really not happen */
1384 ret = -EOVERFLOW;
1385 goto out;
1388 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1389 path, BTRFS_FIRST_FREE_OBJECTID,
1390 tmp, strlen(tmp), 0);
1391 btrfs_release_path(path);
1392 if (IS_ERR(di)) {
1393 ret = PTR_ERR(di);
1394 goto out;
1396 if (di) {
1397 /* not unique, try again */
1398 idx++;
1399 continue;
1402 if (!sctx->parent_root) {
1403 /* unique */
1404 ret = 0;
1405 break;
1408 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1409 path, BTRFS_FIRST_FREE_OBJECTID,
1410 tmp, strlen(tmp), 0);
1411 btrfs_release_path(path);
1412 if (IS_ERR(di)) {
1413 ret = PTR_ERR(di);
1414 goto out;
1416 if (di) {
1417 /* not unique, try again */
1418 idx++;
1419 continue;
1421 /* unique */
1422 break;
1425 ret = fs_path_add(dest, tmp, strlen(tmp));
1427 out:
1428 btrfs_free_path(path);
1429 return ret;
1432 enum inode_state {
1433 inode_state_no_change,
1434 inode_state_will_create,
1435 inode_state_did_create,
1436 inode_state_will_delete,
1437 inode_state_did_delete,
1440 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1442 int ret;
1443 int left_ret;
1444 int right_ret;
1445 u64 left_gen;
1446 u64 right_gen;
1448 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1449 NULL, NULL);
1450 if (ret < 0 && ret != -ENOENT)
1451 goto out;
1452 left_ret = ret;
1454 if (!sctx->parent_root) {
1455 right_ret = -ENOENT;
1456 } else {
1457 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1458 NULL, NULL, NULL, NULL);
1459 if (ret < 0 && ret != -ENOENT)
1460 goto out;
1461 right_ret = ret;
1464 if (!left_ret && !right_ret) {
1465 if (left_gen == gen && right_gen == gen) {
1466 ret = inode_state_no_change;
1467 } else if (left_gen == gen) {
1468 if (ino < sctx->send_progress)
1469 ret = inode_state_did_create;
1470 else
1471 ret = inode_state_will_create;
1472 } else if (right_gen == gen) {
1473 if (ino < sctx->send_progress)
1474 ret = inode_state_did_delete;
1475 else
1476 ret = inode_state_will_delete;
1477 } else {
1478 ret = -ENOENT;
1480 } else if (!left_ret) {
1481 if (left_gen == gen) {
1482 if (ino < sctx->send_progress)
1483 ret = inode_state_did_create;
1484 else
1485 ret = inode_state_will_create;
1486 } else {
1487 ret = -ENOENT;
1489 } else if (!right_ret) {
1490 if (right_gen == gen) {
1491 if (ino < sctx->send_progress)
1492 ret = inode_state_did_delete;
1493 else
1494 ret = inode_state_will_delete;
1495 } else {
1496 ret = -ENOENT;
1498 } else {
1499 ret = -ENOENT;
1502 out:
1503 return ret;
1506 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1508 int ret;
1510 ret = get_cur_inode_state(sctx, ino, gen);
1511 if (ret < 0)
1512 goto out;
1514 if (ret == inode_state_no_change ||
1515 ret == inode_state_did_create ||
1516 ret == inode_state_will_delete)
1517 ret = 1;
1518 else
1519 ret = 0;
1521 out:
1522 return ret;
1526 * Helper function to lookup a dir item in a dir.
1528 static int lookup_dir_item_inode(struct btrfs_root *root,
1529 u64 dir, const char *name, int name_len,
1530 u64 *found_inode,
1531 u8 *found_type)
1533 int ret = 0;
1534 struct btrfs_dir_item *di;
1535 struct btrfs_key key;
1536 struct btrfs_path *path;
1538 path = alloc_path_for_send();
1539 if (!path)
1540 return -ENOMEM;
1542 di = btrfs_lookup_dir_item(NULL, root, path,
1543 dir, name, name_len, 0);
1544 if (!di) {
1545 ret = -ENOENT;
1546 goto out;
1548 if (IS_ERR(di)) {
1549 ret = PTR_ERR(di);
1550 goto out;
1552 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1553 *found_inode = key.objectid;
1554 *found_type = btrfs_dir_type(path->nodes[0], di);
1556 out:
1557 btrfs_free_path(path);
1558 return ret;
1562 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1563 * generation of the parent dir and the name of the dir entry.
1565 static int get_first_ref(struct send_ctx *sctx,
1566 struct btrfs_root *root, u64 ino,
1567 u64 *dir, u64 *dir_gen, struct fs_path *name)
1569 int ret;
1570 struct btrfs_key key;
1571 struct btrfs_key found_key;
1572 struct btrfs_path *path;
1573 int len;
1574 u64 parent_dir;
1576 path = alloc_path_for_send();
1577 if (!path)
1578 return -ENOMEM;
1580 key.objectid = ino;
1581 key.type = BTRFS_INODE_REF_KEY;
1582 key.offset = 0;
1584 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1585 if (ret < 0)
1586 goto out;
1587 if (!ret)
1588 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1589 path->slots[0]);
1590 if (ret || found_key.objectid != ino ||
1591 (found_key.type != BTRFS_INODE_REF_KEY &&
1592 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1593 ret = -ENOENT;
1594 goto out;
1597 if (key.type == BTRFS_INODE_REF_KEY) {
1598 struct btrfs_inode_ref *iref;
1599 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1600 struct btrfs_inode_ref);
1601 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1602 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1603 (unsigned long)(iref + 1),
1604 len);
1605 parent_dir = found_key.offset;
1606 } else {
1607 struct btrfs_inode_extref *extref;
1608 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1609 struct btrfs_inode_extref);
1610 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1611 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1612 (unsigned long)&extref->name, len);
1613 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1615 if (ret < 0)
1616 goto out;
1617 btrfs_release_path(path);
1619 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1620 NULL, NULL);
1621 if (ret < 0)
1622 goto out;
1624 *dir = parent_dir;
1626 out:
1627 btrfs_free_path(path);
1628 return ret;
1631 static int is_first_ref(struct send_ctx *sctx,
1632 struct btrfs_root *root,
1633 u64 ino, u64 dir,
1634 const char *name, int name_len)
1636 int ret;
1637 struct fs_path *tmp_name;
1638 u64 tmp_dir;
1639 u64 tmp_dir_gen;
1641 tmp_name = fs_path_alloc(sctx);
1642 if (!tmp_name)
1643 return -ENOMEM;
1645 ret = get_first_ref(sctx, root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1646 if (ret < 0)
1647 goto out;
1649 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1650 ret = 0;
1651 goto out;
1654 ret = !memcmp(tmp_name->start, name, name_len);
1656 out:
1657 fs_path_free(sctx, tmp_name);
1658 return ret;
1662 * Used by process_recorded_refs to determine if a new ref would overwrite an
1663 * already existing ref. In case it detects an overwrite, it returns the
1664 * inode/gen in who_ino/who_gen.
1665 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1666 * to make sure later references to the overwritten inode are possible.
1667 * Orphanizing is however only required for the first ref of an inode.
1668 * process_recorded_refs does an additional is_first_ref check to see if
1669 * orphanizing is really required.
1671 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1672 const char *name, int name_len,
1673 u64 *who_ino, u64 *who_gen)
1675 int ret = 0;
1676 u64 other_inode = 0;
1677 u8 other_type = 0;
1679 if (!sctx->parent_root)
1680 goto out;
1682 ret = is_inode_existent(sctx, dir, dir_gen);
1683 if (ret <= 0)
1684 goto out;
1686 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1687 &other_inode, &other_type);
1688 if (ret < 0 && ret != -ENOENT)
1689 goto out;
1690 if (ret) {
1691 ret = 0;
1692 goto out;
1696 * Check if the overwritten ref was already processed. If yes, the ref
1697 * was already unlinked/moved, so we can safely assume that we will not
1698 * overwrite anything at this point in time.
1700 if (other_inode > sctx->send_progress) {
1701 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1702 who_gen, NULL, NULL, NULL, NULL);
1703 if (ret < 0)
1704 goto out;
1706 ret = 1;
1707 *who_ino = other_inode;
1708 } else {
1709 ret = 0;
1712 out:
1713 return ret;
1717 * Checks if the ref was overwritten by an already processed inode. This is
1718 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1719 * thus the orphan name needs be used.
1720 * process_recorded_refs also uses it to avoid unlinking of refs that were
1721 * overwritten.
1723 static int did_overwrite_ref(struct send_ctx *sctx,
1724 u64 dir, u64 dir_gen,
1725 u64 ino, u64 ino_gen,
1726 const char *name, int name_len)
1728 int ret = 0;
1729 u64 gen;
1730 u64 ow_inode;
1731 u8 other_type;
1733 if (!sctx->parent_root)
1734 goto out;
1736 ret = is_inode_existent(sctx, dir, dir_gen);
1737 if (ret <= 0)
1738 goto out;
1740 /* check if the ref was overwritten by another ref */
1741 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1742 &ow_inode, &other_type);
1743 if (ret < 0 && ret != -ENOENT)
1744 goto out;
1745 if (ret) {
1746 /* was never and will never be overwritten */
1747 ret = 0;
1748 goto out;
1751 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1752 NULL, NULL);
1753 if (ret < 0)
1754 goto out;
1756 if (ow_inode == ino && gen == ino_gen) {
1757 ret = 0;
1758 goto out;
1761 /* we know that it is or will be overwritten. check this now */
1762 if (ow_inode < sctx->send_progress)
1763 ret = 1;
1764 else
1765 ret = 0;
1767 out:
1768 return ret;
1772 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1773 * that got overwritten. This is used by process_recorded_refs to determine
1774 * if it has to use the path as returned by get_cur_path or the orphan name.
1776 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1778 int ret = 0;
1779 struct fs_path *name = NULL;
1780 u64 dir;
1781 u64 dir_gen;
1783 if (!sctx->parent_root)
1784 goto out;
1786 name = fs_path_alloc(sctx);
1787 if (!name)
1788 return -ENOMEM;
1790 ret = get_first_ref(sctx, sctx->parent_root, ino, &dir, &dir_gen, name);
1791 if (ret < 0)
1792 goto out;
1794 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1795 name->start, fs_path_len(name));
1797 out:
1798 fs_path_free(sctx, name);
1799 return ret;
1803 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1804 * so we need to do some special handling in case we have clashes. This function
1805 * takes care of this with the help of name_cache_entry::radix_list.
1806 * In case of error, nce is kfreed.
1808 static int name_cache_insert(struct send_ctx *sctx,
1809 struct name_cache_entry *nce)
1811 int ret = 0;
1812 struct list_head *nce_head;
1814 nce_head = radix_tree_lookup(&sctx->name_cache,
1815 (unsigned long)nce->ino);
1816 if (!nce_head) {
1817 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1818 if (!nce_head) {
1819 kfree(nce);
1820 return -ENOMEM;
1822 INIT_LIST_HEAD(nce_head);
1824 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1825 if (ret < 0) {
1826 kfree(nce_head);
1827 kfree(nce);
1828 return ret;
1831 list_add_tail(&nce->radix_list, nce_head);
1832 list_add_tail(&nce->list, &sctx->name_cache_list);
1833 sctx->name_cache_size++;
1835 return ret;
1838 static void name_cache_delete(struct send_ctx *sctx,
1839 struct name_cache_entry *nce)
1841 struct list_head *nce_head;
1843 nce_head = radix_tree_lookup(&sctx->name_cache,
1844 (unsigned long)nce->ino);
1845 BUG_ON(!nce_head);
1847 list_del(&nce->radix_list);
1848 list_del(&nce->list);
1849 sctx->name_cache_size--;
1851 if (list_empty(nce_head)) {
1852 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1853 kfree(nce_head);
1857 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1858 u64 ino, u64 gen)
1860 struct list_head *nce_head;
1861 struct name_cache_entry *cur;
1863 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1864 if (!nce_head)
1865 return NULL;
1867 list_for_each_entry(cur, nce_head, radix_list) {
1868 if (cur->ino == ino && cur->gen == gen)
1869 return cur;
1871 return NULL;
1875 * Removes the entry from the list and adds it back to the end. This marks the
1876 * entry as recently used so that name_cache_clean_unused does not remove it.
1878 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1880 list_del(&nce->list);
1881 list_add_tail(&nce->list, &sctx->name_cache_list);
1885 * Remove some entries from the beginning of name_cache_list.
1887 static void name_cache_clean_unused(struct send_ctx *sctx)
1889 struct name_cache_entry *nce;
1891 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1892 return;
1894 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1895 nce = list_entry(sctx->name_cache_list.next,
1896 struct name_cache_entry, list);
1897 name_cache_delete(sctx, nce);
1898 kfree(nce);
1902 static void name_cache_free(struct send_ctx *sctx)
1904 struct name_cache_entry *nce;
1906 while (!list_empty(&sctx->name_cache_list)) {
1907 nce = list_entry(sctx->name_cache_list.next,
1908 struct name_cache_entry, list);
1909 name_cache_delete(sctx, nce);
1910 kfree(nce);
1915 * Used by get_cur_path for each ref up to the root.
1916 * Returns 0 if it succeeded.
1917 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1918 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1919 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1920 * Returns <0 in case of error.
1922 static int __get_cur_name_and_parent(struct send_ctx *sctx,
1923 u64 ino, u64 gen,
1924 u64 *parent_ino,
1925 u64 *parent_gen,
1926 struct fs_path *dest)
1928 int ret;
1929 int nce_ret;
1930 struct btrfs_path *path = NULL;
1931 struct name_cache_entry *nce = NULL;
1934 * First check if we already did a call to this function with the same
1935 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1936 * return the cached result.
1938 nce = name_cache_search(sctx, ino, gen);
1939 if (nce) {
1940 if (ino < sctx->send_progress && nce->need_later_update) {
1941 name_cache_delete(sctx, nce);
1942 kfree(nce);
1943 nce = NULL;
1944 } else {
1945 name_cache_used(sctx, nce);
1946 *parent_ino = nce->parent_ino;
1947 *parent_gen = nce->parent_gen;
1948 ret = fs_path_add(dest, nce->name, nce->name_len);
1949 if (ret < 0)
1950 goto out;
1951 ret = nce->ret;
1952 goto out;
1956 path = alloc_path_for_send();
1957 if (!path)
1958 return -ENOMEM;
1961 * If the inode is not existent yet, add the orphan name and return 1.
1962 * This should only happen for the parent dir that we determine in
1963 * __record_new_ref
1965 ret = is_inode_existent(sctx, ino, gen);
1966 if (ret < 0)
1967 goto out;
1969 if (!ret) {
1970 ret = gen_unique_name(sctx, ino, gen, dest);
1971 if (ret < 0)
1972 goto out;
1973 ret = 1;
1974 goto out_cache;
1978 * Depending on whether the inode was already processed or not, use
1979 * send_root or parent_root for ref lookup.
1981 if (ino < sctx->send_progress)
1982 ret = get_first_ref(sctx, sctx->send_root, ino,
1983 parent_ino, parent_gen, dest);
1984 else
1985 ret = get_first_ref(sctx, sctx->parent_root, ino,
1986 parent_ino, parent_gen, dest);
1987 if (ret < 0)
1988 goto out;
1991 * Check if the ref was overwritten by an inode's ref that was processed
1992 * earlier. If yes, treat as orphan and return 1.
1994 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
1995 dest->start, dest->end - dest->start);
1996 if (ret < 0)
1997 goto out;
1998 if (ret) {
1999 fs_path_reset(dest);
2000 ret = gen_unique_name(sctx, ino, gen, dest);
2001 if (ret < 0)
2002 goto out;
2003 ret = 1;
2006 out_cache:
2008 * Store the result of the lookup in the name cache.
2010 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2011 if (!nce) {
2012 ret = -ENOMEM;
2013 goto out;
2016 nce->ino = ino;
2017 nce->gen = gen;
2018 nce->parent_ino = *parent_ino;
2019 nce->parent_gen = *parent_gen;
2020 nce->name_len = fs_path_len(dest);
2021 nce->ret = ret;
2022 strcpy(nce->name, dest->start);
2024 if (ino < sctx->send_progress)
2025 nce->need_later_update = 0;
2026 else
2027 nce->need_later_update = 1;
2029 nce_ret = name_cache_insert(sctx, nce);
2030 if (nce_ret < 0)
2031 ret = nce_ret;
2032 name_cache_clean_unused(sctx);
2034 out:
2035 btrfs_free_path(path);
2036 return ret;
2040 * Magic happens here. This function returns the first ref to an inode as it
2041 * would look like while receiving the stream at this point in time.
2042 * We walk the path up to the root. For every inode in between, we check if it
2043 * was already processed/sent. If yes, we continue with the parent as found
2044 * in send_root. If not, we continue with the parent as found in parent_root.
2045 * If we encounter an inode that was deleted at this point in time, we use the
2046 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2047 * that were not created yet and overwritten inodes/refs.
2049 * When do we have have orphan inodes:
2050 * 1. When an inode is freshly created and thus no valid refs are available yet
2051 * 2. When a directory lost all it's refs (deleted) but still has dir items
2052 * inside which were not processed yet (pending for move/delete). If anyone
2053 * tried to get the path to the dir items, it would get a path inside that
2054 * orphan directory.
2055 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2056 * of an unprocessed inode. If in that case the first ref would be
2057 * overwritten, the overwritten inode gets "orphanized". Later when we
2058 * process this overwritten inode, it is restored at a new place by moving
2059 * the orphan inode.
2061 * sctx->send_progress tells this function at which point in time receiving
2062 * would be.
2064 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2065 struct fs_path *dest)
2067 int ret = 0;
2068 struct fs_path *name = NULL;
2069 u64 parent_inode = 0;
2070 u64 parent_gen = 0;
2071 int stop = 0;
2073 name = fs_path_alloc(sctx);
2074 if (!name) {
2075 ret = -ENOMEM;
2076 goto out;
2079 dest->reversed = 1;
2080 fs_path_reset(dest);
2082 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2083 fs_path_reset(name);
2085 ret = __get_cur_name_and_parent(sctx, ino, gen,
2086 &parent_inode, &parent_gen, name);
2087 if (ret < 0)
2088 goto out;
2089 if (ret)
2090 stop = 1;
2092 ret = fs_path_add_path(dest, name);
2093 if (ret < 0)
2094 goto out;
2096 ino = parent_inode;
2097 gen = parent_gen;
2100 out:
2101 fs_path_free(sctx, name);
2102 if (!ret)
2103 fs_path_unreverse(dest);
2104 return ret;
2108 * Called for regular files when sending extents data. Opens a struct file
2109 * to read from the file.
2111 static int open_cur_inode_file(struct send_ctx *sctx)
2113 int ret = 0;
2114 struct btrfs_key key;
2115 struct path path;
2116 struct inode *inode;
2117 struct dentry *dentry;
2118 struct file *filp;
2119 int new = 0;
2121 if (sctx->cur_inode_filp)
2122 goto out;
2124 key.objectid = sctx->cur_ino;
2125 key.type = BTRFS_INODE_ITEM_KEY;
2126 key.offset = 0;
2128 inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root,
2129 &new);
2130 if (IS_ERR(inode)) {
2131 ret = PTR_ERR(inode);
2132 goto out;
2135 dentry = d_obtain_alias(inode);
2136 inode = NULL;
2137 if (IS_ERR(dentry)) {
2138 ret = PTR_ERR(dentry);
2139 goto out;
2142 path.mnt = sctx->mnt;
2143 path.dentry = dentry;
2144 filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred());
2145 dput(dentry);
2146 dentry = NULL;
2147 if (IS_ERR(filp)) {
2148 ret = PTR_ERR(filp);
2149 goto out;
2151 sctx->cur_inode_filp = filp;
2153 out:
2155 * no xxxput required here as every vfs op
2156 * does it by itself on failure
2158 return ret;
2162 * Closes the struct file that was created in open_cur_inode_file
2164 static int close_cur_inode_file(struct send_ctx *sctx)
2166 int ret = 0;
2168 if (!sctx->cur_inode_filp)
2169 goto out;
2171 ret = filp_close(sctx->cur_inode_filp, NULL);
2172 sctx->cur_inode_filp = NULL;
2174 out:
2175 return ret;
2179 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2181 static int send_subvol_begin(struct send_ctx *sctx)
2183 int ret;
2184 struct btrfs_root *send_root = sctx->send_root;
2185 struct btrfs_root *parent_root = sctx->parent_root;
2186 struct btrfs_path *path;
2187 struct btrfs_key key;
2188 struct btrfs_root_ref *ref;
2189 struct extent_buffer *leaf;
2190 char *name = NULL;
2191 int namelen;
2193 path = alloc_path_for_send();
2194 if (!path)
2195 return -ENOMEM;
2197 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2198 if (!name) {
2199 btrfs_free_path(path);
2200 return -ENOMEM;
2203 key.objectid = send_root->objectid;
2204 key.type = BTRFS_ROOT_BACKREF_KEY;
2205 key.offset = 0;
2207 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2208 &key, path, 1, 0);
2209 if (ret < 0)
2210 goto out;
2211 if (ret) {
2212 ret = -ENOENT;
2213 goto out;
2216 leaf = path->nodes[0];
2217 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2218 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2219 key.objectid != send_root->objectid) {
2220 ret = -ENOENT;
2221 goto out;
2223 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2224 namelen = btrfs_root_ref_name_len(leaf, ref);
2225 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2226 btrfs_release_path(path);
2228 if (parent_root) {
2229 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2230 if (ret < 0)
2231 goto out;
2232 } else {
2233 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2234 if (ret < 0)
2235 goto out;
2238 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2239 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2240 sctx->send_root->root_item.uuid);
2241 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2242 sctx->send_root->root_item.ctransid);
2243 if (parent_root) {
2244 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2245 sctx->parent_root->root_item.uuid);
2246 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2247 sctx->parent_root->root_item.ctransid);
2250 ret = send_cmd(sctx);
2252 tlv_put_failure:
2253 out:
2254 btrfs_free_path(path);
2255 kfree(name);
2256 return ret;
2259 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2261 int ret = 0;
2262 struct fs_path *p;
2264 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2266 p = fs_path_alloc(sctx);
2267 if (!p)
2268 return -ENOMEM;
2270 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2271 if (ret < 0)
2272 goto out;
2274 ret = get_cur_path(sctx, ino, gen, p);
2275 if (ret < 0)
2276 goto out;
2277 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2278 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2280 ret = send_cmd(sctx);
2282 tlv_put_failure:
2283 out:
2284 fs_path_free(sctx, p);
2285 return ret;
2288 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2290 int ret = 0;
2291 struct fs_path *p;
2293 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2295 p = fs_path_alloc(sctx);
2296 if (!p)
2297 return -ENOMEM;
2299 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2300 if (ret < 0)
2301 goto out;
2303 ret = get_cur_path(sctx, ino, gen, p);
2304 if (ret < 0)
2305 goto out;
2306 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2307 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2309 ret = send_cmd(sctx);
2311 tlv_put_failure:
2312 out:
2313 fs_path_free(sctx, p);
2314 return ret;
2317 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2319 int ret = 0;
2320 struct fs_path *p;
2322 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2324 p = fs_path_alloc(sctx);
2325 if (!p)
2326 return -ENOMEM;
2328 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2329 if (ret < 0)
2330 goto out;
2332 ret = get_cur_path(sctx, ino, gen, p);
2333 if (ret < 0)
2334 goto out;
2335 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2336 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2337 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2339 ret = send_cmd(sctx);
2341 tlv_put_failure:
2342 out:
2343 fs_path_free(sctx, p);
2344 return ret;
2347 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2349 int ret = 0;
2350 struct fs_path *p = NULL;
2351 struct btrfs_inode_item *ii;
2352 struct btrfs_path *path = NULL;
2353 struct extent_buffer *eb;
2354 struct btrfs_key key;
2355 int slot;
2357 verbose_printk("btrfs: send_utimes %llu\n", ino);
2359 p = fs_path_alloc(sctx);
2360 if (!p)
2361 return -ENOMEM;
2363 path = alloc_path_for_send();
2364 if (!path) {
2365 ret = -ENOMEM;
2366 goto out;
2369 key.objectid = ino;
2370 key.type = BTRFS_INODE_ITEM_KEY;
2371 key.offset = 0;
2372 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2373 if (ret < 0)
2374 goto out;
2376 eb = path->nodes[0];
2377 slot = path->slots[0];
2378 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2380 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2381 if (ret < 0)
2382 goto out;
2384 ret = get_cur_path(sctx, ino, gen, p);
2385 if (ret < 0)
2386 goto out;
2387 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2388 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2389 btrfs_inode_atime(ii));
2390 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2391 btrfs_inode_mtime(ii));
2392 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2393 btrfs_inode_ctime(ii));
2394 /* TODO Add otime support when the otime patches get into upstream */
2396 ret = send_cmd(sctx);
2398 tlv_put_failure:
2399 out:
2400 fs_path_free(sctx, p);
2401 btrfs_free_path(path);
2402 return ret;
2406 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2407 * a valid path yet because we did not process the refs yet. So, the inode
2408 * is created as orphan.
2410 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2412 int ret = 0;
2413 struct fs_path *p;
2414 int cmd;
2415 u64 gen;
2416 u64 mode;
2417 u64 rdev;
2419 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2421 p = fs_path_alloc(sctx);
2422 if (!p)
2423 return -ENOMEM;
2425 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2426 NULL, &rdev);
2427 if (ret < 0)
2428 goto out;
2430 if (S_ISREG(mode)) {
2431 cmd = BTRFS_SEND_C_MKFILE;
2432 } else if (S_ISDIR(mode)) {
2433 cmd = BTRFS_SEND_C_MKDIR;
2434 } else if (S_ISLNK(mode)) {
2435 cmd = BTRFS_SEND_C_SYMLINK;
2436 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2437 cmd = BTRFS_SEND_C_MKNOD;
2438 } else if (S_ISFIFO(mode)) {
2439 cmd = BTRFS_SEND_C_MKFIFO;
2440 } else if (S_ISSOCK(mode)) {
2441 cmd = BTRFS_SEND_C_MKSOCK;
2442 } else {
2443 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2444 (int)(mode & S_IFMT));
2445 ret = -ENOTSUPP;
2446 goto out;
2449 ret = begin_cmd(sctx, cmd);
2450 if (ret < 0)
2451 goto out;
2453 ret = gen_unique_name(sctx, ino, gen, p);
2454 if (ret < 0)
2455 goto out;
2457 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2458 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2460 if (S_ISLNK(mode)) {
2461 fs_path_reset(p);
2462 ret = read_symlink(sctx, sctx->send_root, ino, p);
2463 if (ret < 0)
2464 goto out;
2465 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2466 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2467 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2468 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2469 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2472 ret = send_cmd(sctx);
2473 if (ret < 0)
2474 goto out;
2477 tlv_put_failure:
2478 out:
2479 fs_path_free(sctx, p);
2480 return ret;
2484 * We need some special handling for inodes that get processed before the parent
2485 * directory got created. See process_recorded_refs for details.
2486 * This function does the check if we already created the dir out of order.
2488 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2490 int ret = 0;
2491 struct btrfs_path *path = NULL;
2492 struct btrfs_key key;
2493 struct btrfs_key found_key;
2494 struct btrfs_key di_key;
2495 struct extent_buffer *eb;
2496 struct btrfs_dir_item *di;
2497 int slot;
2499 path = alloc_path_for_send();
2500 if (!path) {
2501 ret = -ENOMEM;
2502 goto out;
2505 key.objectid = dir;
2506 key.type = BTRFS_DIR_INDEX_KEY;
2507 key.offset = 0;
2508 while (1) {
2509 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2510 1, 0);
2511 if (ret < 0)
2512 goto out;
2513 if (!ret) {
2514 eb = path->nodes[0];
2515 slot = path->slots[0];
2516 btrfs_item_key_to_cpu(eb, &found_key, slot);
2518 if (ret || found_key.objectid != key.objectid ||
2519 found_key.type != key.type) {
2520 ret = 0;
2521 goto out;
2524 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2525 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2527 if (di_key.objectid < sctx->send_progress) {
2528 ret = 1;
2529 goto out;
2532 key.offset = found_key.offset + 1;
2533 btrfs_release_path(path);
2536 out:
2537 btrfs_free_path(path);
2538 return ret;
2542 * Only creates the inode if it is:
2543 * 1. Not a directory
2544 * 2. Or a directory which was not created already due to out of order
2545 * directories. See did_create_dir and process_recorded_refs for details.
2547 static int send_create_inode_if_needed(struct send_ctx *sctx)
2549 int ret;
2551 if (S_ISDIR(sctx->cur_inode_mode)) {
2552 ret = did_create_dir(sctx, sctx->cur_ino);
2553 if (ret < 0)
2554 goto out;
2555 if (ret) {
2556 ret = 0;
2557 goto out;
2561 ret = send_create_inode(sctx, sctx->cur_ino);
2562 if (ret < 0)
2563 goto out;
2565 out:
2566 return ret;
2569 struct recorded_ref {
2570 struct list_head list;
2571 char *dir_path;
2572 char *name;
2573 struct fs_path *full_path;
2574 u64 dir;
2575 u64 dir_gen;
2576 int dir_path_len;
2577 int name_len;
2581 * We need to process new refs before deleted refs, but compare_tree gives us
2582 * everything mixed. So we first record all refs and later process them.
2583 * This function is a helper to record one ref.
2585 static int record_ref(struct list_head *head, u64 dir,
2586 u64 dir_gen, struct fs_path *path)
2588 struct recorded_ref *ref;
2589 char *tmp;
2591 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2592 if (!ref)
2593 return -ENOMEM;
2595 ref->dir = dir;
2596 ref->dir_gen = dir_gen;
2597 ref->full_path = path;
2599 tmp = strrchr(ref->full_path->start, '/');
2600 if (!tmp) {
2601 ref->name_len = ref->full_path->end - ref->full_path->start;
2602 ref->name = ref->full_path->start;
2603 ref->dir_path_len = 0;
2604 ref->dir_path = ref->full_path->start;
2605 } else {
2606 tmp++;
2607 ref->name_len = ref->full_path->end - tmp;
2608 ref->name = tmp;
2609 ref->dir_path = ref->full_path->start;
2610 ref->dir_path_len = ref->full_path->end -
2611 ref->full_path->start - 1 - ref->name_len;
2614 list_add_tail(&ref->list, head);
2615 return 0;
2618 static void __free_recorded_refs(struct send_ctx *sctx, struct list_head *head)
2620 struct recorded_ref *cur;
2622 while (!list_empty(head)) {
2623 cur = list_entry(head->next, struct recorded_ref, list);
2624 fs_path_free(sctx, cur->full_path);
2625 list_del(&cur->list);
2626 kfree(cur);
2630 static void free_recorded_refs(struct send_ctx *sctx)
2632 __free_recorded_refs(sctx, &sctx->new_refs);
2633 __free_recorded_refs(sctx, &sctx->deleted_refs);
2637 * Renames/moves a file/dir to its orphan name. Used when the first
2638 * ref of an unprocessed inode gets overwritten and for all non empty
2639 * directories.
2641 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2642 struct fs_path *path)
2644 int ret;
2645 struct fs_path *orphan;
2647 orphan = fs_path_alloc(sctx);
2648 if (!orphan)
2649 return -ENOMEM;
2651 ret = gen_unique_name(sctx, ino, gen, orphan);
2652 if (ret < 0)
2653 goto out;
2655 ret = send_rename(sctx, path, orphan);
2657 out:
2658 fs_path_free(sctx, orphan);
2659 return ret;
2663 * Returns 1 if a directory can be removed at this point in time.
2664 * We check this by iterating all dir items and checking if the inode behind
2665 * the dir item was already processed.
2667 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2669 int ret = 0;
2670 struct btrfs_root *root = sctx->parent_root;
2671 struct btrfs_path *path;
2672 struct btrfs_key key;
2673 struct btrfs_key found_key;
2674 struct btrfs_key loc;
2675 struct btrfs_dir_item *di;
2678 * Don't try to rmdir the top/root subvolume dir.
2680 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2681 return 0;
2683 path = alloc_path_for_send();
2684 if (!path)
2685 return -ENOMEM;
2687 key.objectid = dir;
2688 key.type = BTRFS_DIR_INDEX_KEY;
2689 key.offset = 0;
2691 while (1) {
2692 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2693 if (ret < 0)
2694 goto out;
2695 if (!ret) {
2696 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2697 path->slots[0]);
2699 if (ret || found_key.objectid != key.objectid ||
2700 found_key.type != key.type) {
2701 break;
2704 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2705 struct btrfs_dir_item);
2706 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2708 if (loc.objectid > send_progress) {
2709 ret = 0;
2710 goto out;
2713 btrfs_release_path(path);
2714 key.offset = found_key.offset + 1;
2717 ret = 1;
2719 out:
2720 btrfs_free_path(path);
2721 return ret;
2725 * This does all the move/link/unlink/rmdir magic.
2727 static int process_recorded_refs(struct send_ctx *sctx)
2729 int ret = 0;
2730 struct recorded_ref *cur;
2731 struct recorded_ref *cur2;
2732 struct ulist *check_dirs = NULL;
2733 struct ulist_iterator uit;
2734 struct ulist_node *un;
2735 struct fs_path *valid_path = NULL;
2736 u64 ow_inode = 0;
2737 u64 ow_gen;
2738 int did_overwrite = 0;
2739 int is_orphan = 0;
2741 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
2744 * This should never happen as the root dir always has the same ref
2745 * which is always '..'
2747 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
2749 valid_path = fs_path_alloc(sctx);
2750 if (!valid_path) {
2751 ret = -ENOMEM;
2752 goto out;
2755 check_dirs = ulist_alloc(GFP_NOFS);
2756 if (!check_dirs) {
2757 ret = -ENOMEM;
2758 goto out;
2762 * First, check if the first ref of the current inode was overwritten
2763 * before. If yes, we know that the current inode was already orphanized
2764 * and thus use the orphan name. If not, we can use get_cur_path to
2765 * get the path of the first ref as it would like while receiving at
2766 * this point in time.
2767 * New inodes are always orphan at the beginning, so force to use the
2768 * orphan name in this case.
2769 * The first ref is stored in valid_path and will be updated if it
2770 * gets moved around.
2772 if (!sctx->cur_inode_new) {
2773 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
2774 sctx->cur_inode_gen);
2775 if (ret < 0)
2776 goto out;
2777 if (ret)
2778 did_overwrite = 1;
2780 if (sctx->cur_inode_new || did_overwrite) {
2781 ret = gen_unique_name(sctx, sctx->cur_ino,
2782 sctx->cur_inode_gen, valid_path);
2783 if (ret < 0)
2784 goto out;
2785 is_orphan = 1;
2786 } else {
2787 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2788 valid_path);
2789 if (ret < 0)
2790 goto out;
2793 list_for_each_entry(cur, &sctx->new_refs, list) {
2795 * We may have refs where the parent directory does not exist
2796 * yet. This happens if the parent directories inum is higher
2797 * the the current inum. To handle this case, we create the
2798 * parent directory out of order. But we need to check if this
2799 * did already happen before due to other refs in the same dir.
2801 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
2802 if (ret < 0)
2803 goto out;
2804 if (ret == inode_state_will_create) {
2805 ret = 0;
2807 * First check if any of the current inodes refs did
2808 * already create the dir.
2810 list_for_each_entry(cur2, &sctx->new_refs, list) {
2811 if (cur == cur2)
2812 break;
2813 if (cur2->dir == cur->dir) {
2814 ret = 1;
2815 break;
2820 * If that did not happen, check if a previous inode
2821 * did already create the dir.
2823 if (!ret)
2824 ret = did_create_dir(sctx, cur->dir);
2825 if (ret < 0)
2826 goto out;
2827 if (!ret) {
2828 ret = send_create_inode(sctx, cur->dir);
2829 if (ret < 0)
2830 goto out;
2835 * Check if this new ref would overwrite the first ref of
2836 * another unprocessed inode. If yes, orphanize the
2837 * overwritten inode. If we find an overwritten ref that is
2838 * not the first ref, simply unlink it.
2840 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2841 cur->name, cur->name_len,
2842 &ow_inode, &ow_gen);
2843 if (ret < 0)
2844 goto out;
2845 if (ret) {
2846 ret = is_first_ref(sctx, sctx->parent_root,
2847 ow_inode, cur->dir, cur->name,
2848 cur->name_len);
2849 if (ret < 0)
2850 goto out;
2851 if (ret) {
2852 ret = orphanize_inode(sctx, ow_inode, ow_gen,
2853 cur->full_path);
2854 if (ret < 0)
2855 goto out;
2856 } else {
2857 ret = send_unlink(sctx, cur->full_path);
2858 if (ret < 0)
2859 goto out;
2864 * link/move the ref to the new place. If we have an orphan
2865 * inode, move it and update valid_path. If not, link or move
2866 * it depending on the inode mode.
2868 if (is_orphan) {
2869 ret = send_rename(sctx, valid_path, cur->full_path);
2870 if (ret < 0)
2871 goto out;
2872 is_orphan = 0;
2873 ret = fs_path_copy(valid_path, cur->full_path);
2874 if (ret < 0)
2875 goto out;
2876 } else {
2877 if (S_ISDIR(sctx->cur_inode_mode)) {
2879 * Dirs can't be linked, so move it. For moved
2880 * dirs, we always have one new and one deleted
2881 * ref. The deleted ref is ignored later.
2883 ret = send_rename(sctx, valid_path,
2884 cur->full_path);
2885 if (ret < 0)
2886 goto out;
2887 ret = fs_path_copy(valid_path, cur->full_path);
2888 if (ret < 0)
2889 goto out;
2890 } else {
2891 ret = send_link(sctx, cur->full_path,
2892 valid_path);
2893 if (ret < 0)
2894 goto out;
2897 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2898 GFP_NOFS);
2899 if (ret < 0)
2900 goto out;
2903 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
2905 * Check if we can already rmdir the directory. If not,
2906 * orphanize it. For every dir item inside that gets deleted
2907 * later, we do this check again and rmdir it then if possible.
2908 * See the use of check_dirs for more details.
2910 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
2911 if (ret < 0)
2912 goto out;
2913 if (ret) {
2914 ret = send_rmdir(sctx, valid_path);
2915 if (ret < 0)
2916 goto out;
2917 } else if (!is_orphan) {
2918 ret = orphanize_inode(sctx, sctx->cur_ino,
2919 sctx->cur_inode_gen, valid_path);
2920 if (ret < 0)
2921 goto out;
2922 is_orphan = 1;
2925 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2926 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2927 GFP_NOFS);
2928 if (ret < 0)
2929 goto out;
2931 } else if (S_ISDIR(sctx->cur_inode_mode) &&
2932 !list_empty(&sctx->deleted_refs)) {
2934 * We have a moved dir. Add the old parent to check_dirs
2936 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
2937 list);
2938 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2939 GFP_NOFS);
2940 if (ret < 0)
2941 goto out;
2942 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
2944 * We have a non dir inode. Go through all deleted refs and
2945 * unlink them if they were not already overwritten by other
2946 * inodes.
2948 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2949 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2950 sctx->cur_ino, sctx->cur_inode_gen,
2951 cur->name, cur->name_len);
2952 if (ret < 0)
2953 goto out;
2954 if (!ret) {
2955 ret = send_unlink(sctx, cur->full_path);
2956 if (ret < 0)
2957 goto out;
2959 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2960 GFP_NOFS);
2961 if (ret < 0)
2962 goto out;
2966 * If the inode is still orphan, unlink the orphan. This may
2967 * happen when a previous inode did overwrite the first ref
2968 * of this inode and no new refs were added for the current
2969 * inode. Unlinking does not mean that the inode is deleted in
2970 * all cases. There may still be links to this inode in other
2971 * places.
2973 if (is_orphan) {
2974 ret = send_unlink(sctx, valid_path);
2975 if (ret < 0)
2976 goto out;
2981 * We did collect all parent dirs where cur_inode was once located. We
2982 * now go through all these dirs and check if they are pending for
2983 * deletion and if it's finally possible to perform the rmdir now.
2984 * We also update the inode stats of the parent dirs here.
2986 ULIST_ITER_INIT(&uit);
2987 while ((un = ulist_next(check_dirs, &uit))) {
2989 * In case we had refs into dirs that were not processed yet,
2990 * we don't need to do the utime and rmdir logic for these dirs.
2991 * The dir will be processed later.
2993 if (un->val > sctx->cur_ino)
2994 continue;
2996 ret = get_cur_inode_state(sctx, un->val, un->aux);
2997 if (ret < 0)
2998 goto out;
3000 if (ret == inode_state_did_create ||
3001 ret == inode_state_no_change) {
3002 /* TODO delayed utimes */
3003 ret = send_utimes(sctx, un->val, un->aux);
3004 if (ret < 0)
3005 goto out;
3006 } else if (ret == inode_state_did_delete) {
3007 ret = can_rmdir(sctx, un->val, sctx->cur_ino);
3008 if (ret < 0)
3009 goto out;
3010 if (ret) {
3011 ret = get_cur_path(sctx, un->val, un->aux,
3012 valid_path);
3013 if (ret < 0)
3014 goto out;
3015 ret = send_rmdir(sctx, valid_path);
3016 if (ret < 0)
3017 goto out;
3022 ret = 0;
3024 out:
3025 free_recorded_refs(sctx);
3026 ulist_free(check_dirs);
3027 fs_path_free(sctx, valid_path);
3028 return ret;
3031 static int __record_new_ref(int num, u64 dir, int index,
3032 struct fs_path *name,
3033 void *ctx)
3035 int ret = 0;
3036 struct send_ctx *sctx = ctx;
3037 struct fs_path *p;
3038 u64 gen;
3040 p = fs_path_alloc(sctx);
3041 if (!p)
3042 return -ENOMEM;
3044 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3045 NULL, NULL);
3046 if (ret < 0)
3047 goto out;
3049 ret = get_cur_path(sctx, dir, gen, p);
3050 if (ret < 0)
3051 goto out;
3052 ret = fs_path_add_path(p, name);
3053 if (ret < 0)
3054 goto out;
3056 ret = record_ref(&sctx->new_refs, dir, gen, p);
3058 out:
3059 if (ret)
3060 fs_path_free(sctx, p);
3061 return ret;
3064 static int __record_deleted_ref(int num, u64 dir, int index,
3065 struct fs_path *name,
3066 void *ctx)
3068 int ret = 0;
3069 struct send_ctx *sctx = ctx;
3070 struct fs_path *p;
3071 u64 gen;
3073 p = fs_path_alloc(sctx);
3074 if (!p)
3075 return -ENOMEM;
3077 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3078 NULL, NULL);
3079 if (ret < 0)
3080 goto out;
3082 ret = get_cur_path(sctx, dir, gen, p);
3083 if (ret < 0)
3084 goto out;
3085 ret = fs_path_add_path(p, name);
3086 if (ret < 0)
3087 goto out;
3089 ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3091 out:
3092 if (ret)
3093 fs_path_free(sctx, p);
3094 return ret;
3097 static int record_new_ref(struct send_ctx *sctx)
3099 int ret;
3101 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3102 sctx->cmp_key, 0, __record_new_ref, sctx);
3103 if (ret < 0)
3104 goto out;
3105 ret = 0;
3107 out:
3108 return ret;
3111 static int record_deleted_ref(struct send_ctx *sctx)
3113 int ret;
3115 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3116 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3117 if (ret < 0)
3118 goto out;
3119 ret = 0;
3121 out:
3122 return ret;
3125 struct find_ref_ctx {
3126 u64 dir;
3127 struct fs_path *name;
3128 int found_idx;
3131 static int __find_iref(int num, u64 dir, int index,
3132 struct fs_path *name,
3133 void *ctx_)
3135 struct find_ref_ctx *ctx = ctx_;
3137 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3138 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3139 ctx->found_idx = num;
3140 return 1;
3142 return 0;
3145 static int find_iref(struct send_ctx *sctx,
3146 struct btrfs_root *root,
3147 struct btrfs_path *path,
3148 struct btrfs_key *key,
3149 u64 dir, struct fs_path *name)
3151 int ret;
3152 struct find_ref_ctx ctx;
3154 ctx.dir = dir;
3155 ctx.name = name;
3156 ctx.found_idx = -1;
3158 ret = iterate_inode_ref(sctx, root, path, key, 0, __find_iref, &ctx);
3159 if (ret < 0)
3160 return ret;
3162 if (ctx.found_idx == -1)
3163 return -ENOENT;
3165 return ctx.found_idx;
3168 static int __record_changed_new_ref(int num, u64 dir, int index,
3169 struct fs_path *name,
3170 void *ctx)
3172 int ret;
3173 struct send_ctx *sctx = ctx;
3175 ret = find_iref(sctx, sctx->parent_root, sctx->right_path,
3176 sctx->cmp_key, dir, name);
3177 if (ret == -ENOENT)
3178 ret = __record_new_ref(num, dir, index, name, sctx);
3179 else if (ret > 0)
3180 ret = 0;
3182 return ret;
3185 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3186 struct fs_path *name,
3187 void *ctx)
3189 int ret;
3190 struct send_ctx *sctx = ctx;
3192 ret = find_iref(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3193 dir, name);
3194 if (ret == -ENOENT)
3195 ret = __record_deleted_ref(num, dir, index, name, sctx);
3196 else if (ret > 0)
3197 ret = 0;
3199 return ret;
3202 static int record_changed_ref(struct send_ctx *sctx)
3204 int ret = 0;
3206 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3207 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3208 if (ret < 0)
3209 goto out;
3210 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3211 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3212 if (ret < 0)
3213 goto out;
3214 ret = 0;
3216 out:
3217 return ret;
3221 * Record and process all refs at once. Needed when an inode changes the
3222 * generation number, which means that it was deleted and recreated.
3224 static int process_all_refs(struct send_ctx *sctx,
3225 enum btrfs_compare_tree_result cmd)
3227 int ret;
3228 struct btrfs_root *root;
3229 struct btrfs_path *path;
3230 struct btrfs_key key;
3231 struct btrfs_key found_key;
3232 struct extent_buffer *eb;
3233 int slot;
3234 iterate_inode_ref_t cb;
3236 path = alloc_path_for_send();
3237 if (!path)
3238 return -ENOMEM;
3240 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3241 root = sctx->send_root;
3242 cb = __record_new_ref;
3243 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3244 root = sctx->parent_root;
3245 cb = __record_deleted_ref;
3246 } else {
3247 BUG();
3250 key.objectid = sctx->cmp_key->objectid;
3251 key.type = BTRFS_INODE_REF_KEY;
3252 key.offset = 0;
3253 while (1) {
3254 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3255 if (ret < 0)
3256 goto out;
3257 if (ret)
3258 break;
3260 eb = path->nodes[0];
3261 slot = path->slots[0];
3262 btrfs_item_key_to_cpu(eb, &found_key, slot);
3264 if (found_key.objectid != key.objectid ||
3265 (found_key.type != BTRFS_INODE_REF_KEY &&
3266 found_key.type != BTRFS_INODE_EXTREF_KEY))
3267 break;
3269 ret = iterate_inode_ref(sctx, root, path, &found_key, 0, cb,
3270 sctx);
3271 btrfs_release_path(path);
3272 if (ret < 0)
3273 goto out;
3275 key.offset = found_key.offset + 1;
3277 btrfs_release_path(path);
3279 ret = process_recorded_refs(sctx);
3281 out:
3282 btrfs_free_path(path);
3283 return ret;
3286 static int send_set_xattr(struct send_ctx *sctx,
3287 struct fs_path *path,
3288 const char *name, int name_len,
3289 const char *data, int data_len)
3291 int ret = 0;
3293 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3294 if (ret < 0)
3295 goto out;
3297 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3298 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3299 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3301 ret = send_cmd(sctx);
3303 tlv_put_failure:
3304 out:
3305 return ret;
3308 static int send_remove_xattr(struct send_ctx *sctx,
3309 struct fs_path *path,
3310 const char *name, int name_len)
3312 int ret = 0;
3314 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3315 if (ret < 0)
3316 goto out;
3318 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3319 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3321 ret = send_cmd(sctx);
3323 tlv_put_failure:
3324 out:
3325 return ret;
3328 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3329 const char *name, int name_len,
3330 const char *data, int data_len,
3331 u8 type, void *ctx)
3333 int ret;
3334 struct send_ctx *sctx = ctx;
3335 struct fs_path *p;
3336 posix_acl_xattr_header dummy_acl;
3338 p = fs_path_alloc(sctx);
3339 if (!p)
3340 return -ENOMEM;
3343 * This hack is needed because empty acl's are stored as zero byte
3344 * data in xattrs. Problem with that is, that receiving these zero byte
3345 * acl's will fail later. To fix this, we send a dummy acl list that
3346 * only contains the version number and no entries.
3348 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3349 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3350 if (data_len == 0) {
3351 dummy_acl.a_version =
3352 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3353 data = (char *)&dummy_acl;
3354 data_len = sizeof(dummy_acl);
3358 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3359 if (ret < 0)
3360 goto out;
3362 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3364 out:
3365 fs_path_free(sctx, p);
3366 return ret;
3369 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3370 const char *name, int name_len,
3371 const char *data, int data_len,
3372 u8 type, void *ctx)
3374 int ret;
3375 struct send_ctx *sctx = ctx;
3376 struct fs_path *p;
3378 p = fs_path_alloc(sctx);
3379 if (!p)
3380 return -ENOMEM;
3382 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3383 if (ret < 0)
3384 goto out;
3386 ret = send_remove_xattr(sctx, p, name, name_len);
3388 out:
3389 fs_path_free(sctx, p);
3390 return ret;
3393 static int process_new_xattr(struct send_ctx *sctx)
3395 int ret = 0;
3397 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3398 sctx->cmp_key, __process_new_xattr, sctx);
3400 return ret;
3403 static int process_deleted_xattr(struct send_ctx *sctx)
3405 int ret;
3407 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3408 sctx->cmp_key, __process_deleted_xattr, sctx);
3410 return ret;
3413 struct find_xattr_ctx {
3414 const char *name;
3415 int name_len;
3416 int found_idx;
3417 char *found_data;
3418 int found_data_len;
3421 static int __find_xattr(int num, struct btrfs_key *di_key,
3422 const char *name, int name_len,
3423 const char *data, int data_len,
3424 u8 type, void *vctx)
3426 struct find_xattr_ctx *ctx = vctx;
3428 if (name_len == ctx->name_len &&
3429 strncmp(name, ctx->name, name_len) == 0) {
3430 ctx->found_idx = num;
3431 ctx->found_data_len = data_len;
3432 ctx->found_data = kmalloc(data_len, GFP_NOFS);
3433 if (!ctx->found_data)
3434 return -ENOMEM;
3435 memcpy(ctx->found_data, data, data_len);
3436 return 1;
3438 return 0;
3441 static int find_xattr(struct send_ctx *sctx,
3442 struct btrfs_root *root,
3443 struct btrfs_path *path,
3444 struct btrfs_key *key,
3445 const char *name, int name_len,
3446 char **data, int *data_len)
3448 int ret;
3449 struct find_xattr_ctx ctx;
3451 ctx.name = name;
3452 ctx.name_len = name_len;
3453 ctx.found_idx = -1;
3454 ctx.found_data = NULL;
3455 ctx.found_data_len = 0;
3457 ret = iterate_dir_item(sctx, root, path, key, __find_xattr, &ctx);
3458 if (ret < 0)
3459 return ret;
3461 if (ctx.found_idx == -1)
3462 return -ENOENT;
3463 if (data) {
3464 *data = ctx.found_data;
3465 *data_len = ctx.found_data_len;
3466 } else {
3467 kfree(ctx.found_data);
3469 return ctx.found_idx;
3473 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3474 const char *name, int name_len,
3475 const char *data, int data_len,
3476 u8 type, void *ctx)
3478 int ret;
3479 struct send_ctx *sctx = ctx;
3480 char *found_data = NULL;
3481 int found_data_len = 0;
3482 struct fs_path *p = NULL;
3484 ret = find_xattr(sctx, sctx->parent_root, sctx->right_path,
3485 sctx->cmp_key, name, name_len, &found_data,
3486 &found_data_len);
3487 if (ret == -ENOENT) {
3488 ret = __process_new_xattr(num, di_key, name, name_len, data,
3489 data_len, type, ctx);
3490 } else if (ret >= 0) {
3491 if (data_len != found_data_len ||
3492 memcmp(data, found_data, data_len)) {
3493 ret = __process_new_xattr(num, di_key, name, name_len,
3494 data, data_len, type, ctx);
3495 } else {
3496 ret = 0;
3500 kfree(found_data);
3501 fs_path_free(sctx, p);
3502 return ret;
3505 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3506 const char *name, int name_len,
3507 const char *data, int data_len,
3508 u8 type, void *ctx)
3510 int ret;
3511 struct send_ctx *sctx = ctx;
3513 ret = find_xattr(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3514 name, name_len, NULL, NULL);
3515 if (ret == -ENOENT)
3516 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3517 data_len, type, ctx);
3518 else if (ret >= 0)
3519 ret = 0;
3521 return ret;
3524 static int process_changed_xattr(struct send_ctx *sctx)
3526 int ret = 0;
3528 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3529 sctx->cmp_key, __process_changed_new_xattr, sctx);
3530 if (ret < 0)
3531 goto out;
3532 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3533 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3535 out:
3536 return ret;
3539 static int process_all_new_xattrs(struct send_ctx *sctx)
3541 int ret;
3542 struct btrfs_root *root;
3543 struct btrfs_path *path;
3544 struct btrfs_key key;
3545 struct btrfs_key found_key;
3546 struct extent_buffer *eb;
3547 int slot;
3549 path = alloc_path_for_send();
3550 if (!path)
3551 return -ENOMEM;
3553 root = sctx->send_root;
3555 key.objectid = sctx->cmp_key->objectid;
3556 key.type = BTRFS_XATTR_ITEM_KEY;
3557 key.offset = 0;
3558 while (1) {
3559 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3560 if (ret < 0)
3561 goto out;
3562 if (ret) {
3563 ret = 0;
3564 goto out;
3567 eb = path->nodes[0];
3568 slot = path->slots[0];
3569 btrfs_item_key_to_cpu(eb, &found_key, slot);
3571 if (found_key.objectid != key.objectid ||
3572 found_key.type != key.type) {
3573 ret = 0;
3574 goto out;
3577 ret = iterate_dir_item(sctx, root, path, &found_key,
3578 __process_new_xattr, sctx);
3579 if (ret < 0)
3580 goto out;
3582 btrfs_release_path(path);
3583 key.offset = found_key.offset + 1;
3586 out:
3587 btrfs_free_path(path);
3588 return ret;
3592 * Read some bytes from the current inode/file and send a write command to
3593 * user space.
3595 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
3597 int ret = 0;
3598 struct fs_path *p;
3599 loff_t pos = offset;
3600 int num_read = 0;
3601 mm_segment_t old_fs;
3603 p = fs_path_alloc(sctx);
3604 if (!p)
3605 return -ENOMEM;
3608 * vfs normally only accepts user space buffers for security reasons.
3609 * we only read from the file and also only provide the read_buf buffer
3610 * to vfs. As this buffer does not come from a user space call, it's
3611 * ok to temporary allow kernel space buffers.
3613 old_fs = get_fs();
3614 set_fs(KERNEL_DS);
3616 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
3618 ret = open_cur_inode_file(sctx);
3619 if (ret < 0)
3620 goto out;
3622 ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos);
3623 if (ret < 0)
3624 goto out;
3625 num_read = ret;
3626 if (!num_read)
3627 goto out;
3629 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
3630 if (ret < 0)
3631 goto out;
3633 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3634 if (ret < 0)
3635 goto out;
3637 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3638 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3639 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
3641 ret = send_cmd(sctx);
3643 tlv_put_failure:
3644 out:
3645 fs_path_free(sctx, p);
3646 set_fs(old_fs);
3647 if (ret < 0)
3648 return ret;
3649 return num_read;
3653 * Send a clone command to user space.
3655 static int send_clone(struct send_ctx *sctx,
3656 u64 offset, u32 len,
3657 struct clone_root *clone_root)
3659 int ret = 0;
3660 struct fs_path *p;
3661 u64 gen;
3663 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3664 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
3665 clone_root->root->objectid, clone_root->ino,
3666 clone_root->offset);
3668 p = fs_path_alloc(sctx);
3669 if (!p)
3670 return -ENOMEM;
3672 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
3673 if (ret < 0)
3674 goto out;
3676 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3677 if (ret < 0)
3678 goto out;
3680 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3681 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
3682 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3684 if (clone_root->root == sctx->send_root) {
3685 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
3686 &gen, NULL, NULL, NULL, NULL);
3687 if (ret < 0)
3688 goto out;
3689 ret = get_cur_path(sctx, clone_root->ino, gen, p);
3690 } else {
3691 ret = get_inode_path(sctx, clone_root->root,
3692 clone_root->ino, p);
3694 if (ret < 0)
3695 goto out;
3697 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
3698 clone_root->root->root_item.uuid);
3699 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
3700 clone_root->root->root_item.ctransid);
3701 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
3702 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
3703 clone_root->offset);
3705 ret = send_cmd(sctx);
3707 tlv_put_failure:
3708 out:
3709 fs_path_free(sctx, p);
3710 return ret;
3714 * Send an update extent command to user space.
3716 static int send_update_extent(struct send_ctx *sctx,
3717 u64 offset, u32 len)
3719 int ret = 0;
3720 struct fs_path *p;
3722 p = fs_path_alloc(sctx);
3723 if (!p)
3724 return -ENOMEM;
3726 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
3727 if (ret < 0)
3728 goto out;
3730 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3731 if (ret < 0)
3732 goto out;
3734 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3735 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3736 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
3738 ret = send_cmd(sctx);
3740 tlv_put_failure:
3741 out:
3742 fs_path_free(sctx, p);
3743 return ret;
3746 static int send_write_or_clone(struct send_ctx *sctx,
3747 struct btrfs_path *path,
3748 struct btrfs_key *key,
3749 struct clone_root *clone_root)
3751 int ret = 0;
3752 struct btrfs_file_extent_item *ei;
3753 u64 offset = key->offset;
3754 u64 pos = 0;
3755 u64 len;
3756 u32 l;
3757 u8 type;
3759 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3760 struct btrfs_file_extent_item);
3761 type = btrfs_file_extent_type(path->nodes[0], ei);
3762 if (type == BTRFS_FILE_EXTENT_INLINE) {
3763 len = btrfs_file_extent_inline_len(path->nodes[0], ei);
3765 * it is possible the inline item won't cover the whole page,
3766 * but there may be items after this page. Make
3767 * sure to send the whole thing
3769 len = PAGE_CACHE_ALIGN(len);
3770 } else {
3771 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3774 if (offset + len > sctx->cur_inode_size)
3775 len = sctx->cur_inode_size - offset;
3776 if (len == 0) {
3777 ret = 0;
3778 goto out;
3781 if (clone_root) {
3782 ret = send_clone(sctx, offset, len, clone_root);
3783 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
3784 ret = send_update_extent(sctx, offset, len);
3785 } else {
3786 while (pos < len) {
3787 l = len - pos;
3788 if (l > BTRFS_SEND_READ_SIZE)
3789 l = BTRFS_SEND_READ_SIZE;
3790 ret = send_write(sctx, pos + offset, l);
3791 if (ret < 0)
3792 goto out;
3793 if (!ret)
3794 break;
3795 pos += ret;
3797 ret = 0;
3799 out:
3800 return ret;
3803 static int is_extent_unchanged(struct send_ctx *sctx,
3804 struct btrfs_path *left_path,
3805 struct btrfs_key *ekey)
3807 int ret = 0;
3808 struct btrfs_key key;
3809 struct btrfs_path *path = NULL;
3810 struct extent_buffer *eb;
3811 int slot;
3812 struct btrfs_key found_key;
3813 struct btrfs_file_extent_item *ei;
3814 u64 left_disknr;
3815 u64 right_disknr;
3816 u64 left_offset;
3817 u64 right_offset;
3818 u64 left_offset_fixed;
3819 u64 left_len;
3820 u64 right_len;
3821 u64 left_gen;
3822 u64 right_gen;
3823 u8 left_type;
3824 u8 right_type;
3826 path = alloc_path_for_send();
3827 if (!path)
3828 return -ENOMEM;
3830 eb = left_path->nodes[0];
3831 slot = left_path->slots[0];
3832 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3833 left_type = btrfs_file_extent_type(eb, ei);
3835 if (left_type != BTRFS_FILE_EXTENT_REG) {
3836 ret = 0;
3837 goto out;
3839 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3840 left_len = btrfs_file_extent_num_bytes(eb, ei);
3841 left_offset = btrfs_file_extent_offset(eb, ei);
3842 left_gen = btrfs_file_extent_generation(eb, ei);
3845 * Following comments will refer to these graphics. L is the left
3846 * extents which we are checking at the moment. 1-8 are the right
3847 * extents that we iterate.
3849 * |-----L-----|
3850 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3852 * |-----L-----|
3853 * |--1--|-2b-|...(same as above)
3855 * Alternative situation. Happens on files where extents got split.
3856 * |-----L-----|
3857 * |-----------7-----------|-6-|
3859 * Alternative situation. Happens on files which got larger.
3860 * |-----L-----|
3861 * |-8-|
3862 * Nothing follows after 8.
3865 key.objectid = ekey->objectid;
3866 key.type = BTRFS_EXTENT_DATA_KEY;
3867 key.offset = ekey->offset;
3868 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
3869 if (ret < 0)
3870 goto out;
3871 if (ret) {
3872 ret = 0;
3873 goto out;
3877 * Handle special case where the right side has no extents at all.
3879 eb = path->nodes[0];
3880 slot = path->slots[0];
3881 btrfs_item_key_to_cpu(eb, &found_key, slot);
3882 if (found_key.objectid != key.objectid ||
3883 found_key.type != key.type) {
3884 ret = 0;
3885 goto out;
3889 * We're now on 2a, 2b or 7.
3891 key = found_key;
3892 while (key.offset < ekey->offset + left_len) {
3893 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3894 right_type = btrfs_file_extent_type(eb, ei);
3895 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3896 right_len = btrfs_file_extent_num_bytes(eb, ei);
3897 right_offset = btrfs_file_extent_offset(eb, ei);
3898 right_gen = btrfs_file_extent_generation(eb, ei);
3900 if (right_type != BTRFS_FILE_EXTENT_REG) {
3901 ret = 0;
3902 goto out;
3906 * Are we at extent 8? If yes, we know the extent is changed.
3907 * This may only happen on the first iteration.
3909 if (found_key.offset + right_len <= ekey->offset) {
3910 ret = 0;
3911 goto out;
3914 left_offset_fixed = left_offset;
3915 if (key.offset < ekey->offset) {
3916 /* Fix the right offset for 2a and 7. */
3917 right_offset += ekey->offset - key.offset;
3918 } else {
3919 /* Fix the left offset for all behind 2a and 2b */
3920 left_offset_fixed += key.offset - ekey->offset;
3924 * Check if we have the same extent.
3926 if (left_disknr != right_disknr ||
3927 left_offset_fixed != right_offset ||
3928 left_gen != right_gen) {
3929 ret = 0;
3930 goto out;
3934 * Go to the next extent.
3936 ret = btrfs_next_item(sctx->parent_root, path);
3937 if (ret < 0)
3938 goto out;
3939 if (!ret) {
3940 eb = path->nodes[0];
3941 slot = path->slots[0];
3942 btrfs_item_key_to_cpu(eb, &found_key, slot);
3944 if (ret || found_key.objectid != key.objectid ||
3945 found_key.type != key.type) {
3946 key.offset += right_len;
3947 break;
3948 } else {
3949 if (found_key.offset != key.offset + right_len) {
3950 /* Should really not happen */
3951 ret = -EIO;
3952 goto out;
3955 key = found_key;
3959 * We're now behind the left extent (treat as unchanged) or at the end
3960 * of the right side (treat as changed).
3962 if (key.offset >= ekey->offset + left_len)
3963 ret = 1;
3964 else
3965 ret = 0;
3968 out:
3969 btrfs_free_path(path);
3970 return ret;
3973 static int process_extent(struct send_ctx *sctx,
3974 struct btrfs_path *path,
3975 struct btrfs_key *key)
3977 int ret = 0;
3978 struct clone_root *found_clone = NULL;
3980 if (S_ISLNK(sctx->cur_inode_mode))
3981 return 0;
3983 if (sctx->parent_root && !sctx->cur_inode_new) {
3984 ret = is_extent_unchanged(sctx, path, key);
3985 if (ret < 0)
3986 goto out;
3987 if (ret) {
3988 ret = 0;
3989 goto out;
3993 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
3994 sctx->cur_inode_size, &found_clone);
3995 if (ret != -ENOENT && ret < 0)
3996 goto out;
3998 ret = send_write_or_clone(sctx, path, key, found_clone);
4000 out:
4001 return ret;
4004 static int process_all_extents(struct send_ctx *sctx)
4006 int ret;
4007 struct btrfs_root *root;
4008 struct btrfs_path *path;
4009 struct btrfs_key key;
4010 struct btrfs_key found_key;
4011 struct extent_buffer *eb;
4012 int slot;
4014 root = sctx->send_root;
4015 path = alloc_path_for_send();
4016 if (!path)
4017 return -ENOMEM;
4019 key.objectid = sctx->cmp_key->objectid;
4020 key.type = BTRFS_EXTENT_DATA_KEY;
4021 key.offset = 0;
4022 while (1) {
4023 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
4024 if (ret < 0)
4025 goto out;
4026 if (ret) {
4027 ret = 0;
4028 goto out;
4031 eb = path->nodes[0];
4032 slot = path->slots[0];
4033 btrfs_item_key_to_cpu(eb, &found_key, slot);
4035 if (found_key.objectid != key.objectid ||
4036 found_key.type != key.type) {
4037 ret = 0;
4038 goto out;
4041 ret = process_extent(sctx, path, &found_key);
4042 if (ret < 0)
4043 goto out;
4045 btrfs_release_path(path);
4046 key.offset = found_key.offset + 1;
4049 out:
4050 btrfs_free_path(path);
4051 return ret;
4054 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end)
4056 int ret = 0;
4058 if (sctx->cur_ino == 0)
4059 goto out;
4060 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4061 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4062 goto out;
4063 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4064 goto out;
4066 ret = process_recorded_refs(sctx);
4067 if (ret < 0)
4068 goto out;
4071 * We have processed the refs and thus need to advance send_progress.
4072 * Now, calls to get_cur_xxx will take the updated refs of the current
4073 * inode into account.
4075 sctx->send_progress = sctx->cur_ino + 1;
4077 out:
4078 return ret;
4081 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4083 int ret = 0;
4084 u64 left_mode;
4085 u64 left_uid;
4086 u64 left_gid;
4087 u64 right_mode;
4088 u64 right_uid;
4089 u64 right_gid;
4090 int need_chmod = 0;
4091 int need_chown = 0;
4093 ret = process_recorded_refs_if_needed(sctx, at_end);
4094 if (ret < 0)
4095 goto out;
4097 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4098 goto out;
4099 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4100 goto out;
4102 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4103 &left_mode, &left_uid, &left_gid, NULL);
4104 if (ret < 0)
4105 goto out;
4107 if (!sctx->parent_root || sctx->cur_inode_new) {
4108 need_chown = 1;
4109 if (!S_ISLNK(sctx->cur_inode_mode))
4110 need_chmod = 1;
4111 } else {
4112 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4113 NULL, NULL, &right_mode, &right_uid,
4114 &right_gid, NULL);
4115 if (ret < 0)
4116 goto out;
4118 if (left_uid != right_uid || left_gid != right_gid)
4119 need_chown = 1;
4120 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4121 need_chmod = 1;
4124 if (S_ISREG(sctx->cur_inode_mode)) {
4125 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4126 sctx->cur_inode_size);
4127 if (ret < 0)
4128 goto out;
4131 if (need_chown) {
4132 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4133 left_uid, left_gid);
4134 if (ret < 0)
4135 goto out;
4137 if (need_chmod) {
4138 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4139 left_mode);
4140 if (ret < 0)
4141 goto out;
4145 * Need to send that every time, no matter if it actually changed
4146 * between the two trees as we have done changes to the inode before.
4148 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4149 if (ret < 0)
4150 goto out;
4152 out:
4153 return ret;
4156 static int changed_inode(struct send_ctx *sctx,
4157 enum btrfs_compare_tree_result result)
4159 int ret = 0;
4160 struct btrfs_key *key = sctx->cmp_key;
4161 struct btrfs_inode_item *left_ii = NULL;
4162 struct btrfs_inode_item *right_ii = NULL;
4163 u64 left_gen = 0;
4164 u64 right_gen = 0;
4166 ret = close_cur_inode_file(sctx);
4167 if (ret < 0)
4168 goto out;
4170 sctx->cur_ino = key->objectid;
4171 sctx->cur_inode_new_gen = 0;
4174 * Set send_progress to current inode. This will tell all get_cur_xxx
4175 * functions that the current inode's refs are not updated yet. Later,
4176 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4178 sctx->send_progress = sctx->cur_ino;
4180 if (result == BTRFS_COMPARE_TREE_NEW ||
4181 result == BTRFS_COMPARE_TREE_CHANGED) {
4182 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4183 sctx->left_path->slots[0],
4184 struct btrfs_inode_item);
4185 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4186 left_ii);
4187 } else {
4188 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4189 sctx->right_path->slots[0],
4190 struct btrfs_inode_item);
4191 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4192 right_ii);
4194 if (result == BTRFS_COMPARE_TREE_CHANGED) {
4195 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4196 sctx->right_path->slots[0],
4197 struct btrfs_inode_item);
4199 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4200 right_ii);
4203 * The cur_ino = root dir case is special here. We can't treat
4204 * the inode as deleted+reused because it would generate a
4205 * stream that tries to delete/mkdir the root dir.
4207 if (left_gen != right_gen &&
4208 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4209 sctx->cur_inode_new_gen = 1;
4212 if (result == BTRFS_COMPARE_TREE_NEW) {
4213 sctx->cur_inode_gen = left_gen;
4214 sctx->cur_inode_new = 1;
4215 sctx->cur_inode_deleted = 0;
4216 sctx->cur_inode_size = btrfs_inode_size(
4217 sctx->left_path->nodes[0], left_ii);
4218 sctx->cur_inode_mode = btrfs_inode_mode(
4219 sctx->left_path->nodes[0], left_ii);
4220 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4221 ret = send_create_inode_if_needed(sctx);
4222 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4223 sctx->cur_inode_gen = right_gen;
4224 sctx->cur_inode_new = 0;
4225 sctx->cur_inode_deleted = 1;
4226 sctx->cur_inode_size = btrfs_inode_size(
4227 sctx->right_path->nodes[0], right_ii);
4228 sctx->cur_inode_mode = btrfs_inode_mode(
4229 sctx->right_path->nodes[0], right_ii);
4230 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4232 * We need to do some special handling in case the inode was
4233 * reported as changed with a changed generation number. This
4234 * means that the original inode was deleted and new inode
4235 * reused the same inum. So we have to treat the old inode as
4236 * deleted and the new one as new.
4238 if (sctx->cur_inode_new_gen) {
4240 * First, process the inode as if it was deleted.
4242 sctx->cur_inode_gen = right_gen;
4243 sctx->cur_inode_new = 0;
4244 sctx->cur_inode_deleted = 1;
4245 sctx->cur_inode_size = btrfs_inode_size(
4246 sctx->right_path->nodes[0], right_ii);
4247 sctx->cur_inode_mode = btrfs_inode_mode(
4248 sctx->right_path->nodes[0], right_ii);
4249 ret = process_all_refs(sctx,
4250 BTRFS_COMPARE_TREE_DELETED);
4251 if (ret < 0)
4252 goto out;
4255 * Now process the inode as if it was new.
4257 sctx->cur_inode_gen = left_gen;
4258 sctx->cur_inode_new = 1;
4259 sctx->cur_inode_deleted = 0;
4260 sctx->cur_inode_size = btrfs_inode_size(
4261 sctx->left_path->nodes[0], left_ii);
4262 sctx->cur_inode_mode = btrfs_inode_mode(
4263 sctx->left_path->nodes[0], left_ii);
4264 ret = send_create_inode_if_needed(sctx);
4265 if (ret < 0)
4266 goto out;
4268 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4269 if (ret < 0)
4270 goto out;
4272 * Advance send_progress now as we did not get into
4273 * process_recorded_refs_if_needed in the new_gen case.
4275 sctx->send_progress = sctx->cur_ino + 1;
4278 * Now process all extents and xattrs of the inode as if
4279 * they were all new.
4281 ret = process_all_extents(sctx);
4282 if (ret < 0)
4283 goto out;
4284 ret = process_all_new_xattrs(sctx);
4285 if (ret < 0)
4286 goto out;
4287 } else {
4288 sctx->cur_inode_gen = left_gen;
4289 sctx->cur_inode_new = 0;
4290 sctx->cur_inode_new_gen = 0;
4291 sctx->cur_inode_deleted = 0;
4292 sctx->cur_inode_size = btrfs_inode_size(
4293 sctx->left_path->nodes[0], left_ii);
4294 sctx->cur_inode_mode = btrfs_inode_mode(
4295 sctx->left_path->nodes[0], left_ii);
4299 out:
4300 return ret;
4304 * We have to process new refs before deleted refs, but compare_trees gives us
4305 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4306 * first and later process them in process_recorded_refs.
4307 * For the cur_inode_new_gen case, we skip recording completely because
4308 * changed_inode did already initiate processing of refs. The reason for this is
4309 * that in this case, compare_tree actually compares the refs of 2 different
4310 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4311 * refs of the right tree as deleted and all refs of the left tree as new.
4313 static int changed_ref(struct send_ctx *sctx,
4314 enum btrfs_compare_tree_result result)
4316 int ret = 0;
4318 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4320 if (!sctx->cur_inode_new_gen &&
4321 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4322 if (result == BTRFS_COMPARE_TREE_NEW)
4323 ret = record_new_ref(sctx);
4324 else if (result == BTRFS_COMPARE_TREE_DELETED)
4325 ret = record_deleted_ref(sctx);
4326 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4327 ret = record_changed_ref(sctx);
4330 return ret;
4334 * Process new/deleted/changed xattrs. We skip processing in the
4335 * cur_inode_new_gen case because changed_inode did already initiate processing
4336 * of xattrs. The reason is the same as in changed_ref
4338 static int changed_xattr(struct send_ctx *sctx,
4339 enum btrfs_compare_tree_result result)
4341 int ret = 0;
4343 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4345 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4346 if (result == BTRFS_COMPARE_TREE_NEW)
4347 ret = process_new_xattr(sctx);
4348 else if (result == BTRFS_COMPARE_TREE_DELETED)
4349 ret = process_deleted_xattr(sctx);
4350 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4351 ret = process_changed_xattr(sctx);
4354 return ret;
4358 * Process new/deleted/changed extents. We skip processing in the
4359 * cur_inode_new_gen case because changed_inode did already initiate processing
4360 * of extents. The reason is the same as in changed_ref
4362 static int changed_extent(struct send_ctx *sctx,
4363 enum btrfs_compare_tree_result result)
4365 int ret = 0;
4367 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4369 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4370 if (result != BTRFS_COMPARE_TREE_DELETED)
4371 ret = process_extent(sctx, sctx->left_path,
4372 sctx->cmp_key);
4375 return ret;
4379 * Updates compare related fields in sctx and simply forwards to the actual
4380 * changed_xxx functions.
4382 static int changed_cb(struct btrfs_root *left_root,
4383 struct btrfs_root *right_root,
4384 struct btrfs_path *left_path,
4385 struct btrfs_path *right_path,
4386 struct btrfs_key *key,
4387 enum btrfs_compare_tree_result result,
4388 void *ctx)
4390 int ret = 0;
4391 struct send_ctx *sctx = ctx;
4393 sctx->left_path = left_path;
4394 sctx->right_path = right_path;
4395 sctx->cmp_key = key;
4397 ret = finish_inode_if_needed(sctx, 0);
4398 if (ret < 0)
4399 goto out;
4401 /* Ignore non-FS objects */
4402 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
4403 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
4404 goto out;
4406 if (key->type == BTRFS_INODE_ITEM_KEY)
4407 ret = changed_inode(sctx, result);
4408 else if (key->type == BTRFS_INODE_REF_KEY ||
4409 key->type == BTRFS_INODE_EXTREF_KEY)
4410 ret = changed_ref(sctx, result);
4411 else if (key->type == BTRFS_XATTR_ITEM_KEY)
4412 ret = changed_xattr(sctx, result);
4413 else if (key->type == BTRFS_EXTENT_DATA_KEY)
4414 ret = changed_extent(sctx, result);
4416 out:
4417 return ret;
4420 static int full_send_tree(struct send_ctx *sctx)
4422 int ret;
4423 struct btrfs_trans_handle *trans = NULL;
4424 struct btrfs_root *send_root = sctx->send_root;
4425 struct btrfs_key key;
4426 struct btrfs_key found_key;
4427 struct btrfs_path *path;
4428 struct extent_buffer *eb;
4429 int slot;
4430 u64 start_ctransid;
4431 u64 ctransid;
4433 path = alloc_path_for_send();
4434 if (!path)
4435 return -ENOMEM;
4437 spin_lock(&send_root->root_item_lock);
4438 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
4439 spin_unlock(&send_root->root_item_lock);
4441 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
4442 key.type = BTRFS_INODE_ITEM_KEY;
4443 key.offset = 0;
4445 join_trans:
4447 * We need to make sure the transaction does not get committed
4448 * while we do anything on commit roots. Join a transaction to prevent
4449 * this.
4451 trans = btrfs_join_transaction(send_root);
4452 if (IS_ERR(trans)) {
4453 ret = PTR_ERR(trans);
4454 trans = NULL;
4455 goto out;
4459 * Make sure the tree has not changed after re-joining. We detect this
4460 * by comparing start_ctransid and ctransid. They should always match.
4462 spin_lock(&send_root->root_item_lock);
4463 ctransid = btrfs_root_ctransid(&send_root->root_item);
4464 spin_unlock(&send_root->root_item_lock);
4466 if (ctransid != start_ctransid) {
4467 WARN(1, KERN_WARNING "btrfs: the root that you're trying to "
4468 "send was modified in between. This is "
4469 "probably a bug.\n");
4470 ret = -EIO;
4471 goto out;
4474 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
4475 if (ret < 0)
4476 goto out;
4477 if (ret)
4478 goto out_finish;
4480 while (1) {
4482 * When someone want to commit while we iterate, end the
4483 * joined transaction and rejoin.
4485 if (btrfs_should_end_transaction(trans, send_root)) {
4486 ret = btrfs_end_transaction(trans, send_root);
4487 trans = NULL;
4488 if (ret < 0)
4489 goto out;
4490 btrfs_release_path(path);
4491 goto join_trans;
4494 eb = path->nodes[0];
4495 slot = path->slots[0];
4496 btrfs_item_key_to_cpu(eb, &found_key, slot);
4498 ret = changed_cb(send_root, NULL, path, NULL,
4499 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
4500 if (ret < 0)
4501 goto out;
4503 key.objectid = found_key.objectid;
4504 key.type = found_key.type;
4505 key.offset = found_key.offset + 1;
4507 ret = btrfs_next_item(send_root, path);
4508 if (ret < 0)
4509 goto out;
4510 if (ret) {
4511 ret = 0;
4512 break;
4516 out_finish:
4517 ret = finish_inode_if_needed(sctx, 1);
4519 out:
4520 btrfs_free_path(path);
4521 if (trans) {
4522 if (!ret)
4523 ret = btrfs_end_transaction(trans, send_root);
4524 else
4525 btrfs_end_transaction(trans, send_root);
4527 return ret;
4530 static int send_subvol(struct send_ctx *sctx)
4532 int ret;
4534 ret = send_header(sctx);
4535 if (ret < 0)
4536 goto out;
4538 ret = send_subvol_begin(sctx);
4539 if (ret < 0)
4540 goto out;
4542 if (sctx->parent_root) {
4543 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
4544 changed_cb, sctx);
4545 if (ret < 0)
4546 goto out;
4547 ret = finish_inode_if_needed(sctx, 1);
4548 if (ret < 0)
4549 goto out;
4550 } else {
4551 ret = full_send_tree(sctx);
4552 if (ret < 0)
4553 goto out;
4556 out:
4557 if (!ret)
4558 ret = close_cur_inode_file(sctx);
4559 else
4560 close_cur_inode_file(sctx);
4562 free_recorded_refs(sctx);
4563 return ret;
4566 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
4568 int ret = 0;
4569 struct btrfs_root *send_root;
4570 struct btrfs_root *clone_root;
4571 struct btrfs_fs_info *fs_info;
4572 struct btrfs_ioctl_send_args *arg = NULL;
4573 struct btrfs_key key;
4574 struct send_ctx *sctx = NULL;
4575 u32 i;
4576 u64 *clone_sources_tmp = NULL;
4578 if (!capable(CAP_SYS_ADMIN))
4579 return -EPERM;
4581 send_root = BTRFS_I(file_inode(mnt_file))->root;
4582 fs_info = send_root->fs_info;
4584 arg = memdup_user(arg_, sizeof(*arg));
4585 if (IS_ERR(arg)) {
4586 ret = PTR_ERR(arg);
4587 arg = NULL;
4588 goto out;
4591 if (!access_ok(VERIFY_READ, arg->clone_sources,
4592 sizeof(*arg->clone_sources *
4593 arg->clone_sources_count))) {
4594 ret = -EFAULT;
4595 goto out;
4598 if (arg->flags & ~BTRFS_SEND_FLAG_NO_FILE_DATA) {
4599 ret = -EINVAL;
4600 goto out;
4603 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
4604 if (!sctx) {
4605 ret = -ENOMEM;
4606 goto out;
4609 INIT_LIST_HEAD(&sctx->new_refs);
4610 INIT_LIST_HEAD(&sctx->deleted_refs);
4611 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
4612 INIT_LIST_HEAD(&sctx->name_cache_list);
4614 sctx->flags = arg->flags;
4616 sctx->send_filp = fget(arg->send_fd);
4617 if (IS_ERR(sctx->send_filp)) {
4618 ret = PTR_ERR(sctx->send_filp);
4619 goto out;
4622 sctx->mnt = mnt_file->f_path.mnt;
4624 sctx->send_root = send_root;
4625 sctx->clone_roots_cnt = arg->clone_sources_count;
4627 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
4628 sctx->send_buf = vmalloc(sctx->send_max_size);
4629 if (!sctx->send_buf) {
4630 ret = -ENOMEM;
4631 goto out;
4634 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
4635 if (!sctx->read_buf) {
4636 ret = -ENOMEM;
4637 goto out;
4640 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
4641 (arg->clone_sources_count + 1));
4642 if (!sctx->clone_roots) {
4643 ret = -ENOMEM;
4644 goto out;
4647 if (arg->clone_sources_count) {
4648 clone_sources_tmp = vmalloc(arg->clone_sources_count *
4649 sizeof(*arg->clone_sources));
4650 if (!clone_sources_tmp) {
4651 ret = -ENOMEM;
4652 goto out;
4655 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
4656 arg->clone_sources_count *
4657 sizeof(*arg->clone_sources));
4658 if (ret) {
4659 ret = -EFAULT;
4660 goto out;
4663 for (i = 0; i < arg->clone_sources_count; i++) {
4664 key.objectid = clone_sources_tmp[i];
4665 key.type = BTRFS_ROOT_ITEM_KEY;
4666 key.offset = (u64)-1;
4667 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
4668 if (!clone_root) {
4669 ret = -EINVAL;
4670 goto out;
4672 if (IS_ERR(clone_root)) {
4673 ret = PTR_ERR(clone_root);
4674 goto out;
4676 sctx->clone_roots[i].root = clone_root;
4678 vfree(clone_sources_tmp);
4679 clone_sources_tmp = NULL;
4682 if (arg->parent_root) {
4683 key.objectid = arg->parent_root;
4684 key.type = BTRFS_ROOT_ITEM_KEY;
4685 key.offset = (u64)-1;
4686 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
4687 if (!sctx->parent_root) {
4688 ret = -EINVAL;
4689 goto out;
4694 * Clones from send_root are allowed, but only if the clone source
4695 * is behind the current send position. This is checked while searching
4696 * for possible clone sources.
4698 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
4700 /* We do a bsearch later */
4701 sort(sctx->clone_roots, sctx->clone_roots_cnt,
4702 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
4703 NULL);
4705 ret = send_subvol(sctx);
4706 if (ret < 0)
4707 goto out;
4709 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
4710 if (ret < 0)
4711 goto out;
4712 ret = send_cmd(sctx);
4713 if (ret < 0)
4714 goto out;
4716 out:
4717 kfree(arg);
4718 vfree(clone_sources_tmp);
4720 if (sctx) {
4721 if (sctx->send_filp)
4722 fput(sctx->send_filp);
4724 vfree(sctx->clone_roots);
4725 vfree(sctx->send_buf);
4726 vfree(sctx->read_buf);
4728 name_cache_free(sctx);
4730 kfree(sctx);
4733 return ret;