MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / net / ppp_async.c
blobb64f284c18f84b6e226be58de0d32683eb7bebb3
1 /*
2 * PPP async serial channel driver for Linux.
4 * Copyright 1999 Paul Mackerras.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * This driver provides the encapsulation and framing for sending
12 * and receiving PPP frames over async serial lines. It relies on
13 * the generic PPP layer to give it frames to send and to process
14 * received frames. It implements the PPP line discipline.
16 * Part of the code in this driver was inspired by the old async-only
17 * PPP driver, written by Michael Callahan and Al Longyear, and
18 * subsequently hacked by Paul Mackerras.
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/skbuff.h>
24 #include <linux/tty.h>
25 #include <linux/netdevice.h>
26 #include <linux/poll.h>
27 #include <linux/crc-ccitt.h>
28 #include <linux/ppp_defs.h>
29 #include <linux/if_ppp.h>
30 #include <linux/ppp_channel.h>
31 #include <linux/spinlock.h>
32 #include <linux/init.h>
33 #include <asm/uaccess.h>
35 #define PPP_VERSION "2.4.2"
37 #define OBUFSIZE 256
39 /* Structure for storing local state. */
40 struct asyncppp {
41 struct tty_struct *tty;
42 unsigned int flags;
43 unsigned int state;
44 unsigned int rbits;
45 int mru;
46 spinlock_t xmit_lock;
47 spinlock_t recv_lock;
48 unsigned long xmit_flags;
49 u32 xaccm[8];
50 u32 raccm;
51 unsigned int bytes_sent;
52 unsigned int bytes_rcvd;
54 struct sk_buff *tpkt;
55 int tpkt_pos;
56 u16 tfcs;
57 unsigned char *optr;
58 unsigned char *olim;
59 unsigned long last_xmit;
61 struct sk_buff *rpkt;
62 int lcp_fcs;
63 struct sk_buff_head rqueue;
65 struct tasklet_struct tsk;
67 atomic_t refcnt;
68 struct semaphore dead_sem;
69 struct ppp_channel chan; /* interface to generic ppp layer */
70 unsigned char obuf[OBUFSIZE];
73 /* Bit numbers in xmit_flags */
74 #define XMIT_WAKEUP 0
75 #define XMIT_FULL 1
76 #define XMIT_BUSY 2
78 /* State bits */
79 #define SC_TOSS 1
80 #define SC_ESCAPE 2
81 #define SC_PREV_ERROR 4
83 /* Bits in rbits */
84 #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
86 static int flag_time = HZ;
87 MODULE_PARM(flag_time, "i");
88 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
89 MODULE_LICENSE("GPL");
90 MODULE_ALIAS_LDISC(N_PPP);
93 * Prototypes.
95 static int ppp_async_encode(struct asyncppp *ap);
96 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
97 static int ppp_async_push(struct asyncppp *ap);
98 static void ppp_async_flush_output(struct asyncppp *ap);
99 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
100 char *flags, int count);
101 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
102 unsigned long arg);
103 static void ppp_async_process(unsigned long arg);
105 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
106 int len, int inbound);
108 static struct ppp_channel_ops async_ops = {
109 ppp_async_send,
110 ppp_async_ioctl
114 * Routines implementing the PPP line discipline.
118 * We have a potential race on dereferencing tty->disc_data,
119 * because the tty layer provides no locking at all - thus one
120 * cpu could be running ppp_asynctty_receive while another
121 * calls ppp_asynctty_close, which zeroes tty->disc_data and
122 * frees the memory that ppp_asynctty_receive is using. The best
123 * way to fix this is to use a rwlock in the tty struct, but for now
124 * we use a single global rwlock for all ttys in ppp line discipline.
126 * FIXME: this is no longer true. The _close path for the ldisc is
127 * now guaranteed to be sane.
129 static rwlock_t disc_data_lock = RW_LOCK_UNLOCKED;
131 static struct asyncppp *ap_get(struct tty_struct *tty)
133 struct asyncppp *ap;
135 read_lock(&disc_data_lock);
136 ap = tty->disc_data;
137 if (ap != NULL)
138 atomic_inc(&ap->refcnt);
139 read_unlock(&disc_data_lock);
140 return ap;
143 static void ap_put(struct asyncppp *ap)
145 if (atomic_dec_and_test(&ap->refcnt))
146 up(&ap->dead_sem);
150 * Called when a tty is put into PPP line discipline. Called in process
151 * context.
153 static int
154 ppp_asynctty_open(struct tty_struct *tty)
156 struct asyncppp *ap;
157 int err;
159 err = -ENOMEM;
160 ap = kmalloc(sizeof(*ap), GFP_KERNEL);
161 if (ap == 0)
162 goto out;
164 /* initialize the asyncppp structure */
165 memset(ap, 0, sizeof(*ap));
166 ap->tty = tty;
167 ap->mru = PPP_MRU;
168 spin_lock_init(&ap->xmit_lock);
169 spin_lock_init(&ap->recv_lock);
170 ap->xaccm[0] = ~0U;
171 ap->xaccm[3] = 0x60000000U;
172 ap->raccm = ~0U;
173 ap->optr = ap->obuf;
174 ap->olim = ap->obuf;
175 ap->lcp_fcs = -1;
177 skb_queue_head_init(&ap->rqueue);
178 tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap);
180 atomic_set(&ap->refcnt, 1);
181 init_MUTEX_LOCKED(&ap->dead_sem);
183 ap->chan.private = ap;
184 ap->chan.ops = &async_ops;
185 ap->chan.mtu = PPP_MRU;
186 err = ppp_register_channel(&ap->chan);
187 if (err)
188 goto out_free;
190 tty->disc_data = ap;
192 return 0;
194 out_free:
195 kfree(ap);
196 out:
197 return err;
201 * Called when the tty is put into another line discipline
202 * or it hangs up. We have to wait for any cpu currently
203 * executing in any of the other ppp_asynctty_* routines to
204 * finish before we can call ppp_unregister_channel and free
205 * the asyncppp struct. This routine must be called from
206 * process context, not interrupt or softirq context.
208 static void
209 ppp_asynctty_close(struct tty_struct *tty)
211 struct asyncppp *ap;
213 write_lock_irq(&disc_data_lock);
214 ap = tty->disc_data;
215 tty->disc_data = NULL;
216 write_unlock_irq(&disc_data_lock);
217 if (ap == 0)
218 return;
221 * We have now ensured that nobody can start using ap from now
222 * on, but we have to wait for all existing users to finish.
223 * Note that ppp_unregister_channel ensures that no calls to
224 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
225 * by the time it returns.
227 if (!atomic_dec_and_test(&ap->refcnt))
228 down(&ap->dead_sem);
229 tasklet_kill(&ap->tsk);
231 ppp_unregister_channel(&ap->chan);
232 if (ap->rpkt != 0)
233 kfree_skb(ap->rpkt);
234 skb_queue_purge(&ap->rqueue);
235 if (ap->tpkt != 0)
236 kfree_skb(ap->tpkt);
237 kfree(ap);
241 * Read does nothing - no data is ever available this way.
242 * Pppd reads and writes packets via /dev/ppp instead.
244 static ssize_t
245 ppp_asynctty_read(struct tty_struct *tty, struct file *file,
246 unsigned char __user *buf, size_t count)
248 return -EAGAIN;
252 * Write on the tty does nothing, the packets all come in
253 * from the ppp generic stuff.
255 static ssize_t
256 ppp_asynctty_write(struct tty_struct *tty, struct file *file,
257 const unsigned char __user *buf, size_t count)
259 return -EAGAIN;
263 * Called in process context only. May be re-entered by multiple
264 * ioctl calling threads.
267 static int
268 ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file,
269 unsigned int cmd, unsigned long arg)
271 struct asyncppp *ap = ap_get(tty);
272 int err, val;
273 int __user *p = (int __user *)arg;
275 if (ap == 0)
276 return -ENXIO;
277 err = -EFAULT;
278 switch (cmd) {
279 case PPPIOCGCHAN:
280 err = -ENXIO;
281 if (ap == 0)
282 break;
283 err = -EFAULT;
284 if (put_user(ppp_channel_index(&ap->chan), p))
285 break;
286 err = 0;
287 break;
289 case PPPIOCGUNIT:
290 err = -ENXIO;
291 if (ap == 0)
292 break;
293 err = -EFAULT;
294 if (put_user(ppp_unit_number(&ap->chan), p))
295 break;
296 err = 0;
297 break;
299 case TCGETS:
300 case TCGETA:
301 err = n_tty_ioctl(tty, file, cmd, arg);
302 break;
304 case TCFLSH:
305 /* flush our buffers and the serial port's buffer */
306 if (arg == TCIOFLUSH || arg == TCOFLUSH)
307 ppp_async_flush_output(ap);
308 err = n_tty_ioctl(tty, file, cmd, arg);
309 break;
311 case FIONREAD:
312 val = 0;
313 if (put_user(val, p))
314 break;
315 err = 0;
316 break;
318 default:
319 err = -ENOIOCTLCMD;
322 ap_put(ap);
323 return err;
326 /* No kernel lock - fine */
327 static unsigned int
328 ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait)
330 return 0;
333 static int
334 ppp_asynctty_room(struct tty_struct *tty)
336 return 65535;
340 * This can now be called from hard interrupt level as well
341 * as soft interrupt level or mainline.
343 static void
344 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,
345 char *cflags, int count)
347 struct asyncppp *ap = ap_get(tty);
348 unsigned long flags;
350 if (ap == 0)
351 return;
352 spin_lock_irqsave(&ap->recv_lock, flags);
353 ppp_async_input(ap, buf, cflags, count);
354 spin_unlock_irqrestore(&ap->recv_lock, flags);
355 if (skb_queue_len(&ap->rqueue))
356 tasklet_schedule(&ap->tsk);
357 ap_put(ap);
358 if (test_and_clear_bit(TTY_THROTTLED, &tty->flags)
359 && tty->driver->unthrottle)
360 tty->driver->unthrottle(tty);
363 static void
364 ppp_asynctty_wakeup(struct tty_struct *tty)
366 struct asyncppp *ap = ap_get(tty);
368 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
369 if (ap == 0)
370 return;
371 set_bit(XMIT_WAKEUP, &ap->xmit_flags);
372 tasklet_schedule(&ap->tsk);
373 ap_put(ap);
377 static struct tty_ldisc ppp_ldisc = {
378 .owner = THIS_MODULE,
379 .magic = TTY_LDISC_MAGIC,
380 .name = "ppp",
381 .open = ppp_asynctty_open,
382 .close = ppp_asynctty_close,
383 .read = ppp_asynctty_read,
384 .write = ppp_asynctty_write,
385 .ioctl = ppp_asynctty_ioctl,
386 .poll = ppp_asynctty_poll,
387 .receive_room = ppp_asynctty_room,
388 .receive_buf = ppp_asynctty_receive,
389 .write_wakeup = ppp_asynctty_wakeup,
392 static int __init
393 ppp_async_init(void)
395 int err;
397 err = tty_register_ldisc(N_PPP, &ppp_ldisc);
398 if (err != 0)
399 printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
400 err);
401 return err;
405 * The following routines provide the PPP channel interface.
407 static int
408 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
410 struct asyncppp *ap = chan->private;
411 void __user *argp = (void __user *)arg;
412 int __user *p = argp;
413 int err, val;
414 u32 accm[8];
416 err = -EFAULT;
417 switch (cmd) {
418 case PPPIOCGFLAGS:
419 val = ap->flags | ap->rbits;
420 if (put_user(val, p))
421 break;
422 err = 0;
423 break;
424 case PPPIOCSFLAGS:
425 if (get_user(val, p))
426 break;
427 ap->flags = val & ~SC_RCV_BITS;
428 spin_lock_irq(&ap->recv_lock);
429 ap->rbits = val & SC_RCV_BITS;
430 spin_unlock_irq(&ap->recv_lock);
431 err = 0;
432 break;
434 case PPPIOCGASYNCMAP:
435 if (put_user(ap->xaccm[0], (u32 __user *)argp))
436 break;
437 err = 0;
438 break;
439 case PPPIOCSASYNCMAP:
440 if (get_user(ap->xaccm[0], (u32 __user *)argp))
441 break;
442 err = 0;
443 break;
445 case PPPIOCGRASYNCMAP:
446 if (put_user(ap->raccm, (u32 __user *)argp))
447 break;
448 err = 0;
449 break;
450 case PPPIOCSRASYNCMAP:
451 if (get_user(ap->raccm, (u32 __user *)argp))
452 break;
453 err = 0;
454 break;
456 case PPPIOCGXASYNCMAP:
457 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
458 break;
459 err = 0;
460 break;
461 case PPPIOCSXASYNCMAP:
462 if (copy_from_user(accm, argp, sizeof(accm)))
463 break;
464 accm[2] &= ~0x40000000U; /* can't escape 0x5e */
465 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */
466 memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
467 err = 0;
468 break;
470 case PPPIOCGMRU:
471 if (put_user(ap->mru, p))
472 break;
473 err = 0;
474 break;
475 case PPPIOCSMRU:
476 if (get_user(val, p))
477 break;
478 if (val < PPP_MRU)
479 val = PPP_MRU;
480 ap->mru = val;
481 err = 0;
482 break;
484 default:
485 err = -ENOTTY;
488 return err;
492 * This is called at softirq level to deliver received packets
493 * to the ppp_generic code, and to tell the ppp_generic code
494 * if we can accept more output now.
496 static void ppp_async_process(unsigned long arg)
498 struct asyncppp *ap = (struct asyncppp *) arg;
499 struct sk_buff *skb;
501 /* process received packets */
502 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
503 if (skb->cb[0])
504 ppp_input_error(&ap->chan, 0);
505 ppp_input(&ap->chan, skb);
508 /* try to push more stuff out */
509 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
510 ppp_output_wakeup(&ap->chan);
514 * Procedures for encapsulation and framing.
518 * Procedure to encode the data for async serial transmission.
519 * Does octet stuffing (escaping), puts the address/control bytes
520 * on if A/C compression is disabled, and does protocol compression.
521 * Assumes ap->tpkt != 0 on entry.
522 * Returns 1 if we finished the current frame, 0 otherwise.
525 #define PUT_BYTE(ap, buf, c, islcp) do { \
526 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
527 *buf++ = PPP_ESCAPE; \
528 *buf++ = c ^ 0x20; \
529 } else \
530 *buf++ = c; \
531 } while (0)
533 static int
534 ppp_async_encode(struct asyncppp *ap)
536 int fcs, i, count, c, proto;
537 unsigned char *buf, *buflim;
538 unsigned char *data;
539 int islcp;
541 buf = ap->obuf;
542 ap->olim = buf;
543 ap->optr = buf;
544 i = ap->tpkt_pos;
545 data = ap->tpkt->data;
546 count = ap->tpkt->len;
547 fcs = ap->tfcs;
548 proto = (data[0] << 8) + data[1];
551 * LCP packets with code values between 1 (configure-reqest)
552 * and 7 (code-reject) must be sent as though no options
553 * had been negotiated.
555 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7;
557 if (i == 0) {
558 if (islcp)
559 async_lcp_peek(ap, data, count, 0);
562 * Start of a new packet - insert the leading FLAG
563 * character if necessary.
565 if (islcp || flag_time == 0
566 || jiffies - ap->last_xmit >= flag_time)
567 *buf++ = PPP_FLAG;
568 ap->last_xmit = jiffies;
569 fcs = PPP_INITFCS;
572 * Put in the address/control bytes if necessary
574 if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
575 PUT_BYTE(ap, buf, 0xff, islcp);
576 fcs = PPP_FCS(fcs, 0xff);
577 PUT_BYTE(ap, buf, 0x03, islcp);
578 fcs = PPP_FCS(fcs, 0x03);
583 * Once we put in the last byte, we need to put in the FCS
584 * and closing flag, so make sure there is at least 7 bytes
585 * of free space in the output buffer.
587 buflim = ap->obuf + OBUFSIZE - 6;
588 while (i < count && buf < buflim) {
589 c = data[i++];
590 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
591 continue; /* compress protocol field */
592 fcs = PPP_FCS(fcs, c);
593 PUT_BYTE(ap, buf, c, islcp);
596 if (i < count) {
598 * Remember where we are up to in this packet.
600 ap->olim = buf;
601 ap->tpkt_pos = i;
602 ap->tfcs = fcs;
603 return 0;
607 * We have finished the packet. Add the FCS and flag.
609 fcs = ~fcs;
610 c = fcs & 0xff;
611 PUT_BYTE(ap, buf, c, islcp);
612 c = (fcs >> 8) & 0xff;
613 PUT_BYTE(ap, buf, c, islcp);
614 *buf++ = PPP_FLAG;
615 ap->olim = buf;
617 kfree_skb(ap->tpkt);
618 ap->tpkt = NULL;
619 return 1;
623 * Transmit-side routines.
627 * Send a packet to the peer over an async tty line.
628 * Returns 1 iff the packet was accepted.
629 * If the packet was not accepted, we will call ppp_output_wakeup
630 * at some later time.
632 static int
633 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
635 struct asyncppp *ap = chan->private;
637 ppp_async_push(ap);
639 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
640 return 0; /* already full */
641 ap->tpkt = skb;
642 ap->tpkt_pos = 0;
644 ppp_async_push(ap);
645 return 1;
649 * Push as much data as possible out to the tty.
651 static int
652 ppp_async_push(struct asyncppp *ap)
654 int avail, sent, done = 0;
655 struct tty_struct *tty = ap->tty;
656 int tty_stuffed = 0;
659 * We can get called recursively here if the tty write
660 * function calls our wakeup function. This can happen
661 * for example on a pty with both the master and slave
662 * set to PPP line discipline.
663 * We use the XMIT_BUSY bit to detect this and get out,
664 * leaving the XMIT_WAKEUP bit set to tell the other
665 * instance that it may now be able to write more now.
667 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
668 return 0;
669 spin_lock_bh(&ap->xmit_lock);
670 for (;;) {
671 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
672 tty_stuffed = 0;
673 if (!tty_stuffed && ap->optr < ap->olim) {
674 avail = ap->olim - ap->optr;
675 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
676 sent = tty->driver->write(tty, 0, ap->optr, avail);
677 if (sent < 0)
678 goto flush; /* error, e.g. loss of CD */
679 ap->optr += sent;
680 if (sent < avail)
681 tty_stuffed = 1;
682 continue;
684 if (ap->optr >= ap->olim && ap->tpkt != 0) {
685 if (ppp_async_encode(ap)) {
686 /* finished processing ap->tpkt */
687 clear_bit(XMIT_FULL, &ap->xmit_flags);
688 done = 1;
690 continue;
693 * We haven't made any progress this time around.
694 * Clear XMIT_BUSY to let other callers in, but
695 * after doing so we have to check if anyone set
696 * XMIT_WAKEUP since we last checked it. If they
697 * did, we should try again to set XMIT_BUSY and go
698 * around again in case XMIT_BUSY was still set when
699 * the other caller tried.
701 clear_bit(XMIT_BUSY, &ap->xmit_flags);
702 /* any more work to do? if not, exit the loop */
703 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags)
704 || (!tty_stuffed && ap->tpkt != 0)))
705 break;
706 /* more work to do, see if we can do it now */
707 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
708 break;
710 spin_unlock_bh(&ap->xmit_lock);
711 return done;
713 flush:
714 clear_bit(XMIT_BUSY, &ap->xmit_flags);
715 if (ap->tpkt != 0) {
716 kfree_skb(ap->tpkt);
717 ap->tpkt = NULL;
718 clear_bit(XMIT_FULL, &ap->xmit_flags);
719 done = 1;
721 ap->optr = ap->olim;
722 spin_unlock_bh(&ap->xmit_lock);
723 return done;
727 * Flush output from our internal buffers.
728 * Called for the TCFLSH ioctl. Can be entered in parallel
729 * but this is covered by the xmit_lock.
731 static void
732 ppp_async_flush_output(struct asyncppp *ap)
734 int done = 0;
736 spin_lock_bh(&ap->xmit_lock);
737 ap->optr = ap->olim;
738 if (ap->tpkt != NULL) {
739 kfree_skb(ap->tpkt);
740 ap->tpkt = NULL;
741 clear_bit(XMIT_FULL, &ap->xmit_flags);
742 done = 1;
744 spin_unlock_bh(&ap->xmit_lock);
745 if (done)
746 ppp_output_wakeup(&ap->chan);
750 * Receive-side routines.
753 /* see how many ordinary chars there are at the start of buf */
754 static inline int
755 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
757 int i, c;
759 for (i = 0; i < count; ++i) {
760 c = buf[i];
761 if (c == PPP_ESCAPE || c == PPP_FLAG
762 || (c < 0x20 && (ap->raccm & (1 << c)) != 0))
763 break;
765 return i;
768 /* called when a flag is seen - do end-of-packet processing */
769 static void
770 process_input_packet(struct asyncppp *ap)
772 struct sk_buff *skb;
773 unsigned char *p;
774 unsigned int len, fcs, proto;
776 skb = ap->rpkt;
777 if (ap->state & (SC_TOSS | SC_ESCAPE))
778 goto err;
780 if (skb == NULL)
781 return; /* 0-length packet */
783 /* check the FCS */
784 p = skb->data;
785 len = skb->len;
786 if (len < 3)
787 goto err; /* too short */
788 fcs = PPP_INITFCS;
789 for (; len > 0; --len)
790 fcs = PPP_FCS(fcs, *p++);
791 if (fcs != PPP_GOODFCS)
792 goto err; /* bad FCS */
793 skb_trim(skb, skb->len - 2);
795 /* check for address/control and protocol compression */
796 p = skb->data;
797 if (p[0] == PPP_ALLSTATIONS && p[1] == PPP_UI) {
798 /* chop off address/control */
799 if (skb->len < 3)
800 goto err;
801 p = skb_pull(skb, 2);
803 proto = p[0];
804 if (proto & 1) {
805 /* protocol is compressed */
806 skb_push(skb, 1)[0] = 0;
807 } else {
808 if (skb->len < 2)
809 goto err;
810 proto = (proto << 8) + p[1];
811 if (proto == PPP_LCP)
812 async_lcp_peek(ap, p, skb->len, 1);
815 /* queue the frame to be processed */
816 skb->cb[0] = ap->state;
817 skb_queue_tail(&ap->rqueue, skb);
818 ap->rpkt = NULL;
819 ap->state = 0;
820 return;
822 err:
823 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
824 ap->state = SC_PREV_ERROR;
825 if (skb)
826 skb_trim(skb, 0);
829 /* Called when the tty driver has data for us. Runs parallel with the
830 other ldisc functions but will not be re-entered */
832 static void
833 ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
834 char *flags, int count)
836 struct sk_buff *skb;
837 int c, i, j, n, s, f;
838 unsigned char *sp;
840 /* update bits used for 8-bit cleanness detection */
841 if (~ap->rbits & SC_RCV_BITS) {
842 s = 0;
843 for (i = 0; i < count; ++i) {
844 c = buf[i];
845 if (flags != 0 && flags[i] != 0)
846 continue;
847 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
848 c = ((c >> 4) ^ c) & 0xf;
849 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
851 ap->rbits |= s;
854 while (count > 0) {
855 /* scan through and see how many chars we can do in bulk */
856 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
857 n = 1;
858 else
859 n = scan_ordinary(ap, buf, count);
861 f = 0;
862 if (flags != 0 && (ap->state & SC_TOSS) == 0) {
863 /* check the flags to see if any char had an error */
864 for (j = 0; j < n; ++j)
865 if ((f = flags[j]) != 0)
866 break;
868 if (f != 0) {
869 /* start tossing */
870 ap->state |= SC_TOSS;
872 } else if (n > 0 && (ap->state & SC_TOSS) == 0) {
873 /* stuff the chars in the skb */
874 skb = ap->rpkt;
875 if (skb == 0) {
876 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
877 if (skb == 0)
878 goto nomem;
879 /* Try to get the payload 4-byte aligned */
880 if (buf[0] != PPP_ALLSTATIONS)
881 skb_reserve(skb, 2 + (buf[0] & 1));
882 ap->rpkt = skb;
884 if (n > skb_tailroom(skb)) {
885 /* packet overflowed MRU */
886 ap->state |= SC_TOSS;
887 } else {
888 sp = skb_put(skb, n);
889 memcpy(sp, buf, n);
890 if (ap->state & SC_ESCAPE) {
891 sp[0] ^= 0x20;
892 ap->state &= ~SC_ESCAPE;
897 if (n >= count)
898 break;
900 c = buf[n];
901 if (c == PPP_FLAG) {
902 process_input_packet(ap);
903 } else if (c == PPP_ESCAPE) {
904 ap->state |= SC_ESCAPE;
905 } else if (I_IXON(ap->tty)) {
906 if (c == START_CHAR(ap->tty))
907 start_tty(ap->tty);
908 else if (c == STOP_CHAR(ap->tty))
909 stop_tty(ap->tty);
911 /* otherwise it's a char in the recv ACCM */
912 ++n;
914 buf += n;
915 if (flags != 0)
916 flags += n;
917 count -= n;
919 return;
921 nomem:
922 printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
923 ap->state |= SC_TOSS;
927 * We look at LCP frames going past so that we can notice
928 * and react to the LCP configure-ack from the peer.
929 * In the situation where the peer has been sent a configure-ack
930 * already, LCP is up once it has sent its configure-ack
931 * so the immediately following packet can be sent with the
932 * configured LCP options. This allows us to process the following
933 * packet correctly without pppd needing to respond quickly.
935 * We only respond to the received configure-ack if we have just
936 * sent a configure-request, and the configure-ack contains the
937 * same data (this is checked using a 16-bit crc of the data).
939 #define CONFREQ 1 /* LCP code field values */
940 #define CONFACK 2
941 #define LCP_MRU 1 /* LCP option numbers */
942 #define LCP_ASYNCMAP 2
944 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
945 int len, int inbound)
947 int dlen, fcs, i, code;
948 u32 val;
950 data += 2; /* skip protocol bytes */
951 len -= 2;
952 if (len < 4) /* 4 = code, ID, length */
953 return;
954 code = data[0];
955 if (code != CONFACK && code != CONFREQ)
956 return;
957 dlen = (data[2] << 8) + data[3];
958 if (len < dlen)
959 return; /* packet got truncated or length is bogus */
961 if (code == (inbound? CONFACK: CONFREQ)) {
963 * sent confreq or received confack:
964 * calculate the crc of the data from the ID field on.
966 fcs = PPP_INITFCS;
967 for (i = 1; i < dlen; ++i)
968 fcs = PPP_FCS(fcs, data[i]);
970 if (!inbound) {
971 /* outbound confreq - remember the crc for later */
972 ap->lcp_fcs = fcs;
973 return;
976 /* received confack, check the crc */
977 fcs ^= ap->lcp_fcs;
978 ap->lcp_fcs = -1;
979 if (fcs != 0)
980 return;
981 } else if (inbound)
982 return; /* not interested in received confreq */
984 /* process the options in the confack */
985 data += 4;
986 dlen -= 4;
987 /* data[0] is code, data[1] is length */
988 while (dlen >= 2 && dlen >= data[1]) {
989 switch (data[0]) {
990 case LCP_MRU:
991 val = (data[2] << 8) + data[3];
992 if (inbound)
993 ap->mru = val;
994 else
995 ap->chan.mtu = val;
996 break;
997 case LCP_ASYNCMAP:
998 val = (data[2] << 24) + (data[3] << 16)
999 + (data[4] << 8) + data[5];
1000 if (inbound)
1001 ap->raccm = val;
1002 else
1003 ap->xaccm[0] = val;
1004 break;
1006 dlen -= data[1];
1007 data += data[1];
1011 static void __exit ppp_async_cleanup(void)
1013 if (tty_register_ldisc(N_PPP, NULL) != 0)
1014 printk(KERN_ERR "failed to unregister PPP line discipline\n");
1017 module_init(ppp_async_init);
1018 module_exit(ppp_async_cleanup);