MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / net / fec.c
blob8eefac61e422206de8e1bcc6134eb73eec4c42f3
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282.
22 * Copyright (c) 2001-2004 Greg Ungerer (gerg@snapgear.com)
25 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/string.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/pci.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/spinlock.h>
41 #include <linux/workqueue.h>
43 #include <asm/irq.h>
44 #include <asm/bitops.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/pgtable.h>
49 #if defined(CONFIG_M527x) || defined(CONFIG_M5272) || defined(CONFIG_M528x)
50 #include <asm/coldfire.h>
51 #include <asm/mcfsim.h>
52 #include "fec.h"
53 #else
54 #include <asm/8xx_immap.h>
55 #include <asm/mpc8xx.h>
56 #include "commproc.h"
57 #endif
59 #if defined(CONFIG_FEC2)
60 #define FEC_MAX_PORTS 2
61 #else
62 #define FEC_MAX_PORTS 1
63 #endif
66 * Define the fixed address of the FEC hardware.
68 static unsigned int const fec_hw[] = {
69 #if defined(CONFIG_M5272)
70 (MCF_MBAR + 0x840),
71 #elif defined(CONFIG_M527x)
72 (MCF_MBAR + 0x1000),
73 (MCF_MBAR + 0x1800),
74 #elif defined(CONFIG_M528x)
75 (MCF_MBAR + 0x1000),
76 #else
77 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
78 #endif
81 static unsigned char const fec_mac_default[] = {
82 0x00, 0xcf, 0x52, 0x00, 0x00, 0x00,
86 * Some hardware gets it MAC address out of local flash memory.
87 * if this is non-zero then assume it is the address to get MAC from.
89 #if defined(CONFIG_NETtel)
90 #define FEC_FLASHMAC 0xf0006006
91 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
92 #define FEC_FLASHMAC 0xf0006000
93 #elif defined (CONFIG_MTD_KeyTechnology)
94 #define FEC_FLASHMAC 0xffe04000
95 #elif defined(CONFIG_CANCam)
96 #define FEC_FLASHMAC 0xf0020000
97 #elif defined (CONFIG_M5272C3)
98 #define FEC_FLASHMAC (0xffe04000 + 4)
99 #else
100 #define FEC_FLASHMAC 0
101 #endif
103 /* Forward declarations of some structures to support different PHYs
106 typedef struct {
107 uint mii_data;
108 void (*funct)(uint mii_reg, struct net_device *dev);
109 } phy_cmd_t;
111 typedef struct {
112 uint id;
113 char *name;
115 const phy_cmd_t *config;
116 const phy_cmd_t *startup;
117 const phy_cmd_t *ack_int;
118 const phy_cmd_t *shutdown;
119 } phy_info_t;
121 /* The number of Tx and Rx buffers. These are allocated from the page
122 * pool. The code may assume these are power of two, so it it best
123 * to keep them that size.
124 * We don't need to allocate pages for the transmitter. We just use
125 * the skbuffer directly.
127 #define FEC_ENET_RX_PAGES 8
128 #define FEC_ENET_RX_FRSIZE 2048
129 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
130 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
131 #define FEC_ENET_TX_FRSIZE 2048
132 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
133 #define TX_RING_SIZE 16 /* Must be power of two */
134 #define TX_RING_MOD_MASK 15 /* for this to work */
136 /* Interrupt events/masks.
138 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
139 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
140 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
141 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
142 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
143 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
144 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
145 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
146 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
147 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
149 /* The FEC stores dest/src/type, data, and checksum for receive packets.
151 #define PKT_MAXBUF_SIZE 1518
152 #define PKT_MINBUF_SIZE 64
153 #define PKT_MAXBLR_SIZE 1520
157 * The 5270/5271/5280/5282 RX control register also contains maximum frame
158 * size bits. Other FEC hardware does not, so we need to take that into
159 * account when setting it.
161 #if defined(CONFIG_M527x) || defined(CONFIG_M528x)
162 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
163 #else
164 #define OPT_FRAME_SIZE 0
165 #endif
167 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
168 * tx_bd_base always point to the base of the buffer descriptors. The
169 * cur_rx and cur_tx point to the currently available buffer.
170 * The dirty_tx tracks the current buffer that is being sent by the
171 * controller. The cur_tx and dirty_tx are equal under both completely
172 * empty and completely full conditions. The empty/ready indicator in
173 * the buffer descriptor determines the actual condition.
175 struct fec_enet_private {
176 /* Hardware registers of the FEC device */
177 volatile fec_t *hwp;
179 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
180 unsigned char *tx_bounce[TX_RING_SIZE];
181 struct sk_buff* tx_skbuff[TX_RING_SIZE];
182 ushort skb_cur;
183 ushort skb_dirty;
185 /* CPM dual port RAM relative addresses.
187 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
188 cbd_t *tx_bd_base;
189 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
190 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
191 struct net_device_stats stats;
192 uint tx_full;
193 spinlock_t lock;
195 uint phy_id;
196 uint phy_id_done;
197 uint phy_status;
198 uint phy_speed;
199 phy_info_t const *phy;
200 struct work_struct phy_task;
202 uint sequence_done;
203 uint mii_phy_task_queued;
205 uint phy_addr;
207 int index;
208 int opened;
209 int link;
210 int old_link;
211 int full_duplex;
212 unsigned char mac_addr[ETH_ALEN];
215 static int fec_enet_open(struct net_device *dev);
216 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
217 static void fec_enet_mii(struct net_device *dev);
218 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
219 static void fec_enet_tx(struct net_device *dev);
220 static void fec_enet_rx(struct net_device *dev);
221 static int fec_enet_close(struct net_device *dev);
222 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
223 static void set_multicast_list(struct net_device *dev);
224 static void fec_restart(struct net_device *dev, int duplex);
225 static void fec_stop(struct net_device *dev);
226 static void fec_set_mac_address(struct net_device *dev);
229 /* MII processing. We keep this as simple as possible. Requests are
230 * placed on the list (if there is room). When the request is finished
231 * by the MII, an optional function may be called.
233 typedef struct mii_list {
234 uint mii_regval;
235 void (*mii_func)(uint val, struct net_device *dev);
236 struct mii_list *mii_next;
237 } mii_list_t;
239 #define NMII 20
240 static mii_list_t mii_cmds[NMII];
241 static mii_list_t *mii_free;
242 static mii_list_t *mii_head;
243 static mii_list_t *mii_tail;
245 static int mii_queue(struct net_device *dev, int request,
246 void (*func)(uint, struct net_device *));
248 /* Make MII read/write commands for the FEC.
250 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
251 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
252 (VAL & 0xffff))
253 #define mk_mii_end 0
255 /* Transmitter timeout.
257 #define TX_TIMEOUT (2*HZ)
259 /* Register definitions for the PHY.
262 #define MII_REG_CR 0 /* Control Register */
263 #define MII_REG_SR 1 /* Status Register */
264 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
265 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
266 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
267 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
268 #define MII_REG_ANER 6 /* A-N Expansion Register */
269 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
270 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
272 /* values for phy_status */
274 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
275 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
276 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
277 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
278 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
279 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
280 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
282 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
283 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
284 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
285 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
286 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
287 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
288 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
289 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
292 static int
293 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
295 struct fec_enet_private *fep;
296 volatile fec_t *fecp;
297 volatile cbd_t *bdp;
299 fep = netdev_priv(dev);
300 fecp = (volatile fec_t*)dev->base_addr;
302 if (!fep->link) {
303 /* Link is down or autonegotiation is in progress. */
304 return 1;
307 /* Fill in a Tx ring entry */
308 bdp = fep->cur_tx;
310 #ifndef final_version
311 if (bdp->cbd_sc & BD_ENET_TX_READY) {
312 /* Ooops. All transmit buffers are full. Bail out.
313 * This should not happen, since dev->tbusy should be set.
315 printk("%s: tx queue full!.\n", dev->name);
316 return 1;
318 #endif
320 /* Clear all of the status flags.
322 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
324 /* Set buffer length and buffer pointer.
326 bdp->cbd_bufaddr = __pa(skb->data);
327 bdp->cbd_datlen = skb->len;
330 * On some FEC implementations data must be aligned on
331 * 4-byte boundaries. Use bounce buffers to copy data
332 * and get it aligned. Ugh.
334 if (bdp->cbd_bufaddr & 0x3) {
335 unsigned int index;
336 index = bdp - fep->tx_bd_base;
337 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
338 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
341 /* Save skb pointer.
343 fep->tx_skbuff[fep->skb_cur] = skb;
345 fep->stats.tx_bytes += skb->len;
346 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
348 /* Push the data cache so the CPM does not get stale memory
349 * data.
351 flush_dcache_range((unsigned long)skb->data,
352 (unsigned long)skb->data + skb->len);
354 spin_lock_irq(&fep->lock);
356 /* Send it on its way. Tell FEC its ready, interrupt when done,
357 * its the last BD of the frame, and to put the CRC on the end.
360 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
361 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
363 dev->trans_start = jiffies;
365 /* Trigger transmission start */
366 fecp->fec_x_des_active = 0x01000000;
368 /* If this was the last BD in the ring, start at the beginning again.
370 if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
371 bdp = fep->tx_bd_base;
372 } else {
373 bdp++;
376 if (bdp == fep->dirty_tx) {
377 fep->tx_full = 1;
378 netif_stop_queue(dev);
381 fep->cur_tx = (cbd_t *)bdp;
383 spin_unlock_irq(&fep->lock);
385 return 0;
388 static void
389 fec_timeout(struct net_device *dev)
391 struct fec_enet_private *fep = netdev_priv(dev);
393 printk("%s: transmit timed out.\n", dev->name);
394 fep->stats.tx_errors++;
395 #ifndef final_version
397 int i;
398 cbd_t *bdp;
400 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
401 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
402 (unsigned long)fep->dirty_tx,
403 (unsigned long)fep->cur_rx);
405 bdp = fep->tx_bd_base;
406 printk(" tx: %u buffers\n", TX_RING_SIZE);
407 for (i = 0 ; i < TX_RING_SIZE; i++) {
408 printk(" %08x: %04x %04x %08x\n",
409 (uint) bdp,
410 bdp->cbd_sc,
411 bdp->cbd_datlen,
412 (int) bdp->cbd_bufaddr);
413 bdp++;
416 bdp = fep->rx_bd_base;
417 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
418 for (i = 0 ; i < RX_RING_SIZE; i++) {
419 printk(" %08x: %04x %04x %08x\n",
420 (uint) bdp,
421 bdp->cbd_sc,
422 bdp->cbd_datlen,
423 (int) bdp->cbd_bufaddr);
424 bdp++;
427 #endif
428 fec_restart(dev, 0);
429 netif_wake_queue(dev);
432 /* The interrupt handler.
433 * This is called from the MPC core interrupt.
435 static irqreturn_t
436 fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
438 struct net_device *dev = dev_id;
439 volatile fec_t *fecp;
440 uint int_events;
441 int handled = 0;
443 fecp = (volatile fec_t*)dev->base_addr;
445 /* Get the interrupt events that caused us to be here.
447 while ((int_events = fecp->fec_ievent) != 0) {
448 fecp->fec_ievent = int_events;
450 /* Handle receive event in its own function.
452 if (int_events & FEC_ENET_RXF) {
453 handled = 1;
454 fec_enet_rx(dev);
457 /* Transmit OK, or non-fatal error. Update the buffer
458 descriptors. FEC handles all errors, we just discover
459 them as part of the transmit process.
461 if (int_events & FEC_ENET_TXF) {
462 handled = 1;
463 fec_enet_tx(dev);
466 if (int_events & FEC_ENET_MII) {
467 handled = 1;
468 fec_enet_mii(dev);
472 return IRQ_RETVAL(handled);
476 static void
477 fec_enet_tx(struct net_device *dev)
479 struct fec_enet_private *fep;
480 volatile cbd_t *bdp;
481 struct sk_buff *skb;
483 fep = netdev_priv(dev);
484 spin_lock(&fep->lock);
485 bdp = fep->dirty_tx;
487 while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
488 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
490 skb = fep->tx_skbuff[fep->skb_dirty];
491 /* Check for errors. */
492 if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
493 BD_ENET_TX_RL | BD_ENET_TX_UN |
494 BD_ENET_TX_CSL)) {
495 fep->stats.tx_errors++;
496 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
497 fep->stats.tx_heartbeat_errors++;
498 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
499 fep->stats.tx_window_errors++;
500 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
501 fep->stats.tx_aborted_errors++;
502 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
503 fep->stats.tx_fifo_errors++;
504 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
505 fep->stats.tx_carrier_errors++;
506 } else {
507 fep->stats.tx_packets++;
510 #ifndef final_version
511 if (bdp->cbd_sc & BD_ENET_TX_READY)
512 printk("HEY! Enet xmit interrupt and TX_READY.\n");
513 #endif
514 /* Deferred means some collisions occurred during transmit,
515 * but we eventually sent the packet OK.
517 if (bdp->cbd_sc & BD_ENET_TX_DEF)
518 fep->stats.collisions++;
520 /* Free the sk buffer associated with this last transmit.
522 dev_kfree_skb_any(skb);
523 fep->tx_skbuff[fep->skb_dirty] = NULL;
524 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
526 /* Update pointer to next buffer descriptor to be transmitted.
528 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
529 bdp = fep->tx_bd_base;
530 else
531 bdp++;
533 /* Since we have freed up a buffer, the ring is no longer
534 * full.
536 if (fep->tx_full) {
537 fep->tx_full = 0;
538 if (netif_queue_stopped(dev))
539 netif_wake_queue(dev);
542 fep->dirty_tx = (cbd_t *)bdp;
543 spin_unlock(&fep->lock);
547 /* During a receive, the cur_rx points to the current incoming buffer.
548 * When we update through the ring, if the next incoming buffer has
549 * not been given to the system, we just set the empty indicator,
550 * effectively tossing the packet.
552 static void
553 fec_enet_rx(struct net_device *dev)
555 struct fec_enet_private *fep;
556 volatile fec_t *fecp;
557 volatile cbd_t *bdp;
558 struct sk_buff *skb;
559 ushort pkt_len;
560 __u8 *data;
562 fep = netdev_priv(dev);
563 fecp = (volatile fec_t*)dev->base_addr;
565 /* First, grab all of the stats for the incoming packet.
566 * These get messed up if we get called due to a busy condition.
568 bdp = fep->cur_rx;
570 while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
572 #ifndef final_version
573 /* Since we have allocated space to hold a complete frame,
574 * the last indicator should be set.
576 if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
577 printk("FEC ENET: rcv is not +last\n");
578 #endif
580 if (!fep->opened)
581 goto rx_processing_done;
583 /* Check for errors. */
584 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
585 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
586 fep->stats.rx_errors++;
587 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
588 /* Frame too long or too short. */
589 fep->stats.rx_length_errors++;
591 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
592 fep->stats.rx_frame_errors++;
593 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
594 fep->stats.rx_crc_errors++;
595 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
596 fep->stats.rx_crc_errors++;
599 /* Report late collisions as a frame error.
600 * On this error, the BD is closed, but we don't know what we
601 * have in the buffer. So, just drop this frame on the floor.
603 if (bdp->cbd_sc & BD_ENET_RX_CL) {
604 fep->stats.rx_errors++;
605 fep->stats.rx_frame_errors++;
606 goto rx_processing_done;
609 /* Process the incoming frame.
611 fep->stats.rx_packets++;
612 pkt_len = bdp->cbd_datlen;
613 fep->stats.rx_bytes += pkt_len;
614 data = (__u8*)__va(bdp->cbd_bufaddr);
616 /* This does 16 byte alignment, exactly what we need.
617 * The packet length includes FCS, but we don't want to
618 * include that when passing upstream as it messes up
619 * bridging applications.
621 skb = dev_alloc_skb(pkt_len-4);
623 if (skb == NULL) {
624 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
625 fep->stats.rx_dropped++;
626 } else {
627 skb->dev = dev;
628 skb_put(skb,pkt_len-4); /* Make room */
629 eth_copy_and_sum(skb,
630 (unsigned char *)__va(bdp->cbd_bufaddr),
631 pkt_len-4, 0);
632 skb->protocol=eth_type_trans(skb,dev);
633 netif_rx(skb);
635 rx_processing_done:
637 /* Clear the status flags for this buffer.
639 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
641 /* Mark the buffer empty.
643 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
645 /* Update BD pointer to next entry.
647 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
648 bdp = fep->rx_bd_base;
649 else
650 bdp++;
652 #if 1
653 /* Doing this here will keep the FEC running while we process
654 * incoming frames. On a heavily loaded network, we should be
655 * able to keep up at the expense of system resources.
657 fecp->fec_r_des_active = 0x01000000;
658 #endif
659 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
660 fep->cur_rx = (cbd_t *)bdp;
662 #if 0
663 /* Doing this here will allow us to process all frames in the
664 * ring before the FEC is allowed to put more there. On a heavily
665 * loaded network, some frames may be lost. Unfortunately, this
666 * increases the interrupt overhead since we can potentially work
667 * our way back to the interrupt return only to come right back
668 * here.
670 fecp->fec_r_des_active = 0x01000000;
671 #endif
675 static void
676 fec_enet_mii(struct net_device *dev)
678 struct fec_enet_private *fep;
679 volatile fec_t *ep;
680 mii_list_t *mip;
681 uint mii_reg;
683 fep = netdev_priv(dev);
684 ep = fep->hwp;
685 mii_reg = ep->fec_mii_data;
687 if ((mip = mii_head) == NULL) {
688 printk("MII and no head!\n");
689 return;
692 if (mip->mii_func != NULL)
693 (*(mip->mii_func))(mii_reg, dev);
695 mii_head = mip->mii_next;
696 mip->mii_next = mii_free;
697 mii_free = mip;
699 if ((mip = mii_head) != NULL)
700 ep->fec_mii_data = mip->mii_regval;
703 static int
704 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
706 struct fec_enet_private *fep;
707 unsigned long flags;
708 mii_list_t *mip;
709 int retval;
711 /* Add PHY address to register command.
713 fep = netdev_priv(dev);
714 regval |= fep->phy_addr << 23;
716 retval = 0;
718 save_flags(flags);
719 cli();
721 if ((mip = mii_free) != NULL) {
722 mii_free = mip->mii_next;
723 mip->mii_regval = regval;
724 mip->mii_func = func;
725 mip->mii_next = NULL;
726 if (mii_head) {
727 mii_tail->mii_next = mip;
728 mii_tail = mip;
730 else {
731 mii_head = mii_tail = mip;
732 fep->hwp->fec_mii_data = regval;
735 else {
736 retval = 1;
739 restore_flags(flags);
741 return(retval);
744 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
746 int k;
748 if(!c)
749 return;
751 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
752 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
756 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
758 struct fec_enet_private *fep = netdev_priv(dev);
759 volatile uint *s = &(fep->phy_status);
760 uint status;
762 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
764 if (mii_reg & 0x0004)
765 status |= PHY_STAT_LINK;
766 if (mii_reg & 0x0010)
767 status |= PHY_STAT_FAULT;
768 if (mii_reg & 0x0020)
769 status |= PHY_STAT_ANC;
771 *s = status;
774 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
776 struct fec_enet_private *fep = netdev_priv(dev);
777 volatile uint *s = &(fep->phy_status);
779 *s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
781 if (mii_reg & 0x1000)
782 *s |= PHY_CONF_ANE;
783 if (mii_reg & 0x4000)
784 *s |= PHY_CONF_LOOP;
787 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
789 struct fec_enet_private *fep = netdev_priv(dev);
790 volatile uint *s = &(fep->phy_status);
792 *s &= ~(PHY_CONF_SPMASK);
794 if (mii_reg & 0x0020)
795 *s |= PHY_CONF_10HDX;
796 if (mii_reg & 0x0040)
797 *s |= PHY_CONF_10FDX;
798 if (mii_reg & 0x0080)
799 *s |= PHY_CONF_100HDX;
800 if (mii_reg & 0x00100)
801 *s |= PHY_CONF_100FDX;
804 /* ------------------------------------------------------------------------- */
805 /* The Level one LXT970 is used by many boards */
807 #define MII_LXT970_MIRROR 16 /* Mirror register */
808 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
809 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
810 #define MII_LXT970_CONFIG 19 /* Configuration Register */
811 #define MII_LXT970_CSR 20 /* Chip Status Register */
813 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
815 struct fec_enet_private *fep = netdev_priv(dev);
816 volatile uint *s = &(fep->phy_status);
817 uint status;
819 status = *s & ~(PHY_STAT_SPMASK);
820 if (mii_reg & 0x0800) {
821 if (mii_reg & 0x1000)
822 status |= PHY_STAT_100FDX;
823 else
824 status |= PHY_STAT_100HDX;
825 } else {
826 if (mii_reg & 0x1000)
827 status |= PHY_STAT_10FDX;
828 else
829 status |= PHY_STAT_10HDX;
831 *s = status;
834 static phy_cmd_t const phy_cmd_lxt970_config[] = {
835 { mk_mii_read(MII_REG_CR), mii_parse_cr },
836 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
837 { mk_mii_end, }
839 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
840 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
841 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
842 { mk_mii_end, }
844 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
845 /* read SR and ISR to acknowledge */
846 { mk_mii_read(MII_REG_SR), mii_parse_sr },
847 { mk_mii_read(MII_LXT970_ISR), NULL },
849 /* find out the current status */
850 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
851 { mk_mii_end, }
853 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
854 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
855 { mk_mii_end, }
857 static phy_info_t const phy_info_lxt970 = {
858 0x07810000,
859 "LXT970",
860 phy_cmd_lxt970_config,
861 phy_cmd_lxt970_startup,
862 phy_cmd_lxt970_ack_int,
863 phy_cmd_lxt970_shutdown
866 /* ------------------------------------------------------------------------- */
867 /* The Level one LXT971 is used on some of my custom boards */
869 /* register definitions for the 971 */
871 #define MII_LXT971_PCR 16 /* Port Control Register */
872 #define MII_LXT971_SR2 17 /* Status Register 2 */
873 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
874 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
875 #define MII_LXT971_LCR 20 /* LED Control Register */
876 #define MII_LXT971_TCR 30 /* Transmit Control Register */
879 * I had some nice ideas of running the MDIO faster...
880 * The 971 should support 8MHz and I tried it, but things acted really
881 * weird, so 2.5 MHz ought to be enough for anyone...
884 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
886 struct fec_enet_private *fep = netdev_priv(dev);
887 volatile uint *s = &(fep->phy_status);
888 uint status;
890 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
892 if (mii_reg & 0x0400) {
893 fep->link = 1;
894 status |= PHY_STAT_LINK;
895 } else {
896 fep->link = 0;
898 if (mii_reg & 0x0080)
899 status |= PHY_STAT_ANC;
900 if (mii_reg & 0x4000) {
901 if (mii_reg & 0x0200)
902 status |= PHY_STAT_100FDX;
903 else
904 status |= PHY_STAT_100HDX;
905 } else {
906 if (mii_reg & 0x0200)
907 status |= PHY_STAT_10FDX;
908 else
909 status |= PHY_STAT_10HDX;
911 if (mii_reg & 0x0008)
912 status |= PHY_STAT_FAULT;
914 *s = status;
917 static phy_cmd_t const phy_cmd_lxt971_config[] = {
918 /* limit to 10MBit because my prototype board
919 * doesn't work with 100. */
920 { mk_mii_read(MII_REG_CR), mii_parse_cr },
921 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
922 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
923 { mk_mii_end, }
925 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
926 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
927 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
928 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
929 /* Somehow does the 971 tell me that the link is down
930 * the first read after power-up.
931 * read here to get a valid value in ack_int */
932 { mk_mii_read(MII_REG_SR), mii_parse_sr },
933 { mk_mii_end, }
935 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
936 /* find out the current status */
937 { mk_mii_read(MII_REG_SR), mii_parse_sr },
938 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
939 /* we only need to read ISR to acknowledge */
940 { mk_mii_read(MII_LXT971_ISR), NULL },
941 { mk_mii_end, }
943 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
944 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
945 { mk_mii_end, }
947 static phy_info_t const phy_info_lxt971 = {
948 0x0001378e,
949 "LXT971",
950 phy_cmd_lxt971_config,
951 phy_cmd_lxt971_startup,
952 phy_cmd_lxt971_ack_int,
953 phy_cmd_lxt971_shutdown
956 /* ------------------------------------------------------------------------- */
957 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
959 /* register definitions */
961 #define MII_QS6612_MCR 17 /* Mode Control Register */
962 #define MII_QS6612_FTR 27 /* Factory Test Register */
963 #define MII_QS6612_MCO 28 /* Misc. Control Register */
964 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
965 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
966 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
968 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
970 struct fec_enet_private *fep = netdev_priv(dev);
971 volatile uint *s = &(fep->phy_status);
972 uint status;
974 status = *s & ~(PHY_STAT_SPMASK);
976 switch((mii_reg >> 2) & 7) {
977 case 1: status |= PHY_STAT_10HDX; break;
978 case 2: status |= PHY_STAT_100HDX; break;
979 case 5: status |= PHY_STAT_10FDX; break;
980 case 6: status |= PHY_STAT_100FDX; break;
983 *s = status;
986 static phy_cmd_t const phy_cmd_qs6612_config[] = {
987 /* The PHY powers up isolated on the RPX,
988 * so send a command to allow operation.
990 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
992 /* parse cr and anar to get some info */
993 { mk_mii_read(MII_REG_CR), mii_parse_cr },
994 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
995 { mk_mii_end, }
997 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
998 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
999 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1000 { mk_mii_end, }
1002 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1003 /* we need to read ISR, SR and ANER to acknowledge */
1004 { mk_mii_read(MII_QS6612_ISR), NULL },
1005 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1006 { mk_mii_read(MII_REG_ANER), NULL },
1008 /* read pcr to get info */
1009 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1010 { mk_mii_end, }
1012 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1013 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1014 { mk_mii_end, }
1016 static phy_info_t const phy_info_qs6612 = {
1017 0x00181440,
1018 "QS6612",
1019 phy_cmd_qs6612_config,
1020 phy_cmd_qs6612_startup,
1021 phy_cmd_qs6612_ack_int,
1022 phy_cmd_qs6612_shutdown
1025 /* ------------------------------------------------------------------------- */
1026 /* AMD AM79C874 phy */
1028 /* register definitions for the 874 */
1030 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1031 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1032 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1033 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1034 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1035 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1036 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1038 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1040 struct fec_enet_private *fep = netdev_priv(dev);
1041 volatile uint *s = &(fep->phy_status);
1042 uint status;
1044 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1046 if (mii_reg & 0x0080)
1047 status |= PHY_STAT_ANC;
1048 if (mii_reg & 0x0400)
1049 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1050 else
1051 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1053 *s = status;
1056 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1057 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1058 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1059 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1060 { mk_mii_end, }
1062 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1063 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1064 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1065 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1066 { mk_mii_end, }
1068 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1069 /* find out the current status */
1070 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1071 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1072 /* we only need to read ISR to acknowledge */
1073 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1074 { mk_mii_end, }
1076 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1077 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1078 { mk_mii_end, }
1080 static phy_info_t const phy_info_am79c874 = {
1081 0x00022561,
1082 "AM79C874",
1083 phy_cmd_am79c874_config,
1084 phy_cmd_am79c874_startup,
1085 phy_cmd_am79c874_ack_int,
1086 phy_cmd_am79c874_shutdown
1090 /* ------------------------------------------------------------------------- */
1091 /* Kendin KS8721BL phy */
1093 /* register definitions for the 8721 */
1095 #define MII_KS8721BL_RXERCR 21
1096 #define MII_KS8721BL_ICSR 22
1097 #define MII_KS8721BL_PHYCR 31
1099 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1100 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1101 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1102 { mk_mii_end, }
1104 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1105 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1106 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1107 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1108 { mk_mii_end, }
1110 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1111 /* find out the current status */
1112 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1113 /* we only need to read ISR to acknowledge */
1114 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1115 { mk_mii_end, }
1117 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1118 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1119 { mk_mii_end, }
1121 static phy_info_t const phy_info_ks8721bl = {
1122 0x00022161,
1123 "KS8721BL",
1124 phy_cmd_ks8721bl_config,
1125 phy_cmd_ks8721bl_startup,
1126 phy_cmd_ks8721bl_ack_int,
1127 phy_cmd_ks8721bl_shutdown
1130 /* ------------------------------------------------------------------------- */
1132 static phy_info_t const * const phy_info[] = {
1133 &phy_info_lxt970,
1134 &phy_info_lxt971,
1135 &phy_info_qs6612,
1136 &phy_info_am79c874,
1137 &phy_info_ks8721bl,
1138 NULL
1141 /* ------------------------------------------------------------------------- */
1143 #ifdef CONFIG_RPXCLASSIC
1144 static void
1145 mii_link_interrupt(void *dev_id);
1146 #else
1147 static irqreturn_t
1148 mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs);
1149 #endif
1151 #if defined(CONFIG_M5272)
1154 * Code specific to Coldfire 5272 setup.
1156 static void __inline__ fec_request_intrs(struct net_device *dev)
1158 volatile unsigned long *icrp;
1159 static const struct idesc {
1160 char *name;
1161 unsigned short irq;
1162 irqreturn_t (*handler)(int, void *, struct pt_regs *);
1163 } *idp, id[] = {
1164 { "fec(RX)", 86, fec_enet_interrupt },
1165 { "fec(TX)", 87, fec_enet_interrupt },
1166 { "fec(OTHER)", 88, fec_enet_interrupt },
1167 { "fec(MII)", 66, mii_link_interrupt },
1168 { NULL },
1171 /* Setup interrupt handlers. */
1172 for (idp = id; idp->name; idp++) {
1173 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1174 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1177 /* Unmask interrupt at ColdFire 5272 SIM */
1178 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1179 *icrp = 0x00000ddd;
1180 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1181 *icrp = (*icrp & 0x70777777) | 0x0d000000;
1184 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1186 volatile fec_t *fecp;
1188 fecp = fep->hwp;
1189 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1190 fecp->fec_x_cntrl = 0x00;
1193 * Set MII speed to 2.5 MHz
1194 * See 5272 manual section 11.5.8: MSCR
1196 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1197 fecp->fec_mii_speed = fep->phy_speed;
1199 fec_restart(dev, 0);
1202 static void __inline__ fec_get_mac(struct net_device *dev)
1204 struct fec_enet_private *fep = netdev_priv(dev);
1205 volatile fec_t *fecp;
1206 unsigned char *iap, tmpaddr[6];
1207 int i;
1209 fecp = fep->hwp;
1211 if (fec_flashmac) {
1213 * Get MAC address from FLASH.
1214 * If it is all 1's or 0's, use the default.
1216 iap = fec_flashmac;
1217 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1218 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1219 iap = fec_mac_default;
1220 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1221 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1222 iap = fec_mac_default;
1223 } else {
1224 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1225 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1226 iap = &tmpaddr[0];
1229 for (i=0; i<ETH_ALEN; i++)
1230 dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
1232 /* Adjust MAC if using default MAC address */
1233 if (iap == fec_mac_default) {
1234 dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] =
1235 iap[ETH_ALEN-1] + fep->index;
1239 static void __inline__ fec_enable_phy_intr(void)
1243 static void __inline__ fec_disable_phy_intr(void)
1245 volatile unsigned long *icrp;
1246 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1247 *icrp = (*icrp & 0x70777777) | 0x08000000;
1250 static void __inline__ fec_phy_ack_intr(void)
1252 volatile unsigned long *icrp;
1253 /* Acknowledge the interrupt */
1254 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1255 *icrp = (*icrp & 0x77777777) | 0x08000000;
1258 static void __inline__ fec_localhw_setup(void)
1263 * Do not need to make region uncached on 5272.
1265 static void __inline__ fec_uncache(unsigned long addr)
1269 /* ------------------------------------------------------------------------- */
1271 #elif defined(CONFIG_M527x) || defined(CONFIG_M528x)
1274 * Code specific to Coldfire 5270/5271/5274/5275 and 5280/5282 setups.
1276 static void __inline__ fec_request_intrs(struct net_device *dev)
1278 struct fec_enet_private *fep;
1279 int b;
1280 static const struct idesc {
1281 char *name;
1282 unsigned short irq;
1283 } *idp, id[] = {
1284 { "fec(TXF)", 23 },
1285 { "fec(TXB)", 24 },
1286 { "fec(TXFIFO)", 25 },
1287 { "fec(TXCR)", 26 },
1288 { "fec(RXF)", 27 },
1289 { "fec(RXB)", 28 },
1290 { "fec(MII)", 29 },
1291 { "fec(LC)", 30 },
1292 { "fec(HBERR)", 31 },
1293 { "fec(GRA)", 32 },
1294 { "fec(EBERR)", 33 },
1295 { "fec(BABT)", 34 },
1296 { "fec(BABR)", 35 },
1297 { NULL },
1300 fep = netdev_priv(dev);
1301 b = (fep->index) ? 128 : 64;
1303 /* Setup interrupt handlers. */
1304 for (idp = id; idp->name; idp++) {
1305 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1306 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1309 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1311 volatile unsigned char *icrp;
1312 volatile unsigned long *imrp;
1313 int i;
1315 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1316 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1317 MCFINTC_ICR0);
1318 for (i = 23; (i < 36); i++)
1319 icrp[i] = 0x23;
1321 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1322 MCFINTC_IMRH);
1323 *imrp &= ~0x0000000f;
1324 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1325 MCFINTC_IMRL);
1326 *imrp &= ~0xff800001;
1329 #if defined(CONFIG_M528x)
1330 /* Set up gpio outputs for MII lines */
1332 volatile unsigned short *gpio_paspar;
1334 gpio_paspar = (volatile unsigned short *) (MCF_IPSBAR +
1335 0x100056);
1336 *gpio_paspar = 0x0f00;
1338 #endif
1341 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1343 volatile fec_t *fecp;
1345 fecp = fep->hwp;
1346 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1347 fecp->fec_x_cntrl = 0x00;
1350 * Set MII speed to 2.5 MHz
1351 * See 5282 manual section 17.5.4.7: MSCR
1353 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1354 fecp->fec_mii_speed = fep->phy_speed;
1356 fec_restart(dev, 0);
1359 static void __inline__ fec_get_mac(struct net_device *dev)
1361 struct fec_enet_private *fep = netdev_priv(dev);
1362 volatile fec_t *fecp;
1363 unsigned char *iap, tmpaddr[6];
1364 int i;
1366 fecp = fep->hwp;
1368 if (FEC_FLASHMAC) {
1370 * Get MAC address from FLASH.
1371 * If it is all 1's or 0's, use the default.
1373 iap = FEC_FLASHMAC;
1374 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1375 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1376 iap = fec_mac_default;
1377 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1378 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1379 iap = fec_mac_default;
1380 } else {
1381 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1382 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1383 iap = &tmpaddr[0];
1386 for (i=0; i<ETH_ALEN; i++)
1387 dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
1389 /* Adjust MAC if using default MAC address */
1390 if (iap == fec_mac_default) {
1391 dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] =
1392 iap[ETH_ALEN-1] + fep->index;
1396 static void __inline__ fec_enable_phy_intr(void)
1400 static void __inline__ fec_disable_phy_intr(void)
1404 static void __inline__ fec_phy_ack_intr(void)
1408 static void __inline__ fec_localhw_setup(void)
1413 * Do not need to make region uncached on 5272.
1415 static void __inline__ fec_uncache(unsigned long addr)
1419 /* ------------------------------------------------------------------------- */
1421 #else
1424 * Code sepcific to the MPC860T setup.
1426 static void __inline__ fec_request_intrs(struct net_device *dev)
1428 volatile immap_t *immap;
1430 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1432 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1433 panic("Could not allocate FEC IRQ!");
1435 #ifdef CONFIG_RPXCLASSIC
1436 /* Make Port C, bit 15 an input that causes interrupts.
1438 immap->im_ioport.iop_pcpar &= ~0x0001;
1439 immap->im_ioport.iop_pcdir &= ~0x0001;
1440 immap->im_ioport.iop_pcso &= ~0x0001;
1441 immap->im_ioport.iop_pcint |= 0x0001;
1442 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1444 /* Make LEDS reflect Link status.
1446 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1447 #endif
1448 #ifdef CONFIG_FADS
1449 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1450 panic("Could not allocate MII IRQ!");
1451 #endif
1454 static void __inline__ fec_get_mac(struct net_device *dev)
1456 struct fec_enet_private *fep = netdev_priv(dev);
1457 unsigned char *iap, tmpaddr[6];
1458 bd_t *bd;
1459 int i;
1461 iap = bd->bi_enetaddr;
1462 bd = (bd_t *)__res;
1464 #ifdef CONFIG_RPXCLASSIC
1465 /* The Embedded Planet boards have only one MAC address in
1466 * the EEPROM, but can have two Ethernet ports. For the
1467 * FEC port, we create another address by setting one of
1468 * the address bits above something that would have (up to
1469 * now) been allocated.
1471 for (i=0; i<6; i++)
1472 tmpaddr[i] = *iap++;
1473 tmpaddr[3] |= 0x80;
1474 iap = tmpaddr;
1475 #endif
1477 for (i=0; i<6; i++)
1478 dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
1481 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1483 extern uint _get_IMMR(void);
1484 volatile immap_t *immap;
1485 volatile fec_t *fecp;
1487 fecp = fep->hwp;
1488 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1490 /* Configure all of port D for MII.
1492 immap->im_ioport.iop_pdpar = 0x1fff;
1494 /* Bits moved from Rev. D onward.
1496 if ((_get_IMMR() & 0xffff) < 0x0501)
1497 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1498 else
1499 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1501 /* Set MII speed to 2.5 MHz
1503 fecp->fec_mii_speed = fep->phy_speed =
1504 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1507 static void __inline__ fec_enable_phy_intr(void)
1509 volatile fec_t *fecp;
1511 fecp = fep->hwp;
1513 /* Enable MII command finished interrupt
1515 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1518 static void __inline__ fec_disable_phy_intr(void)
1522 static void __inline__ fec_phy_ack_intr(void)
1526 static void __inline__ fec_localhw_setup(void)
1528 volatile fec_t *fecp;
1530 fecp = fep->hwp;
1531 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1532 /* Enable big endian and don't care about SDMA FC.
1534 fecp->fec_fun_code = 0x78000000;
1537 static void __inline__ fec_uncache(unsigned long addr)
1539 pte_t *pte;
1540 pte = va_to_pte(mem_addr);
1541 pte_val(*pte) |= _PAGE_NO_CACHE;
1542 flush_tlb_page(init_mm.mmap, mem_addr);
1545 #endif
1547 /* ------------------------------------------------------------------------- */
1549 static void mii_display_status(struct net_device *dev)
1551 struct fec_enet_private *fep = netdev_priv(dev);
1552 volatile uint *s = &(fep->phy_status);
1554 if (!fep->link && !fep->old_link) {
1555 /* Link is still down - don't print anything */
1556 return;
1559 printk("%s: status: ", dev->name);
1561 if (!fep->link) {
1562 printk("link down");
1563 } else {
1564 printk("link up");
1566 switch(*s & PHY_STAT_SPMASK) {
1567 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1568 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1569 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1570 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1571 default:
1572 printk(", Unknown speed/duplex");
1575 if (*s & PHY_STAT_ANC)
1576 printk(", auto-negotiation complete");
1579 if (*s & PHY_STAT_FAULT)
1580 printk(", remote fault");
1582 printk(".\n");
1585 static void mii_display_config(struct net_device *dev)
1587 struct fec_enet_private *fep = netdev_priv(dev);
1588 volatile uint *s = &(fep->phy_status);
1591 ** When we get here, phy_task is already removed from
1592 ** the workqueue. It is thus safe to allow to reuse it.
1594 fep->mii_phy_task_queued = 0;
1595 printk("%s: config: auto-negotiation ", dev->name);
1597 if (*s & PHY_CONF_ANE)
1598 printk("on");
1599 else
1600 printk("off");
1602 if (*s & PHY_CONF_100FDX)
1603 printk(", 100FDX");
1604 if (*s & PHY_CONF_100HDX)
1605 printk(", 100HDX");
1606 if (*s & PHY_CONF_10FDX)
1607 printk(", 10FDX");
1608 if (*s & PHY_CONF_10HDX)
1609 printk(", 10HDX");
1610 if (!(*s & PHY_CONF_SPMASK))
1611 printk(", No speed/duplex selected?");
1613 if (*s & PHY_CONF_LOOP)
1614 printk(", loopback enabled");
1616 printk(".\n");
1618 fep->sequence_done = 1;
1621 static void mii_relink(struct net_device *dev)
1623 struct fec_enet_private *fep = netdev_priv(dev);
1624 int duplex;
1627 ** When we get here, phy_task is already removed from
1628 ** the workqueue. It is thus safe to allow to reuse it.
1630 fep->mii_phy_task_queued = 0;
1631 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1632 mii_display_status(dev);
1633 fep->old_link = fep->link;
1635 if (fep->link) {
1636 duplex = 0;
1637 if (fep->phy_status
1638 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1639 duplex = 1;
1640 fec_restart(dev, duplex);
1642 else
1643 fec_stop(dev);
1645 #if 0
1646 enable_irq(fep->mii_irq);
1647 #endif
1651 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1652 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1654 struct fec_enet_private *fep = netdev_priv(dev);
1657 ** We cannot queue phy_task twice in the workqueue. It
1658 ** would cause an endless loop in the workqueue.
1659 ** Fortunately, if the last mii_relink entry has not yet been
1660 ** executed now, it will do the job for the current interrupt,
1661 ** which is just what we want.
1663 if (fep->mii_phy_task_queued)
1664 return;
1666 fep->mii_phy_task_queued = 1;
1667 INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
1668 schedule_work(&fep->phy_task);
1671 /* mii_queue_config is called in user context from fec_enet_open */
1672 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1674 struct fec_enet_private *fep = netdev_priv(dev);
1676 if (fep->mii_phy_task_queued)
1677 return;
1679 fep->mii_phy_task_queued = 1;
1680 INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
1681 schedule_work(&fep->phy_task);
1684 phy_cmd_t const phy_cmd_relink[] = {
1685 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1686 { mk_mii_end, }
1688 phy_cmd_t const phy_cmd_config[] = {
1689 { mk_mii_read(MII_REG_CR), mii_queue_config },
1690 { mk_mii_end, }
1693 /* Read remainder of PHY ID.
1695 static void
1696 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1698 struct fec_enet_private *fep;
1699 int i;
1701 fep = netdev_priv(dev);
1702 fep->phy_id |= (mii_reg & 0xffff);
1703 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1705 for(i = 0; phy_info[i]; i++) {
1706 if(phy_info[i]->id == (fep->phy_id >> 4))
1707 break;
1710 if (phy_info[i])
1711 printk(" -- %s\n", phy_info[i]->name);
1712 else
1713 printk(" -- unknown PHY!\n");
1715 fep->phy = phy_info[i];
1716 fep->phy_id_done = 1;
1719 /* Scan all of the MII PHY addresses looking for someone to respond
1720 * with a valid ID. This usually happens quickly.
1722 static void
1723 mii_discover_phy(uint mii_reg, struct net_device *dev)
1725 struct fec_enet_private *fep;
1726 volatile fec_t *fecp;
1727 uint phytype;
1729 fep = netdev_priv(dev);
1730 fecp = fep->hwp;
1732 if (fep->phy_addr < 32) {
1733 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1735 /* Got first part of ID, now get remainder.
1737 fep->phy_id = phytype << 16;
1738 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
1739 mii_discover_phy3);
1741 else {
1742 fep->phy_addr++;
1743 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1744 mii_discover_phy);
1746 } else {
1747 printk("FEC: No PHY device found.\n");
1748 /* Disable external MII interface */
1749 fecp->fec_mii_speed = fep->phy_speed = 0;
1750 fec_disable_phy_intr();
1754 /* This interrupt occurs when the PHY detects a link change.
1756 #ifdef CONFIG_RPXCLASSIC
1757 static void
1758 mii_link_interrupt(void *dev_id)
1759 #else
1760 static irqreturn_t
1761 mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
1762 #endif
1764 struct net_device *dev = dev_id;
1765 struct fec_enet_private *fep = netdev_priv(dev);
1767 fec_phy_ack_intr();
1769 #if 0
1770 disable_irq(fep->mii_irq); /* disable now, enable later */
1771 #endif
1773 mii_do_cmd(dev, fep->phy->ack_int);
1774 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1776 return IRQ_HANDLED;
1779 static int
1780 fec_enet_open(struct net_device *dev)
1782 struct fec_enet_private *fep = netdev_priv(dev);
1784 /* I should reset the ring buffers here, but I don't yet know
1785 * a simple way to do that.
1787 fec_set_mac_address(dev);
1789 fep->sequence_done = 0;
1790 fep->link = 0;
1792 if (fep->phy) {
1793 mii_do_cmd(dev, fep->phy->ack_int);
1794 mii_do_cmd(dev, fep->phy->config);
1795 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1797 /* FIXME: use netif_carrier_{on,off} ; this polls
1798 * until link is up which is wrong... could be
1799 * 30 seconds or more we are trapped in here. -jgarzik
1801 while(!fep->sequence_done)
1802 schedule();
1804 mii_do_cmd(dev, fep->phy->startup);
1806 /* Set the initial link state to true. A lot of hardware
1807 * based on this device does not implement a PHY interrupt,
1808 * so we are never notified of link change.
1810 fep->link = 1;
1811 } else {
1812 fep->link = 1; /* lets just try it and see */
1813 /* no phy, go full duplex, it's most likely a hub chip */
1814 fec_restart(dev, 1);
1817 netif_start_queue(dev);
1818 fep->opened = 1;
1819 return 0; /* Success */
1822 static int
1823 fec_enet_close(struct net_device *dev)
1825 struct fec_enet_private *fep = netdev_priv(dev);
1827 /* Don't know what to do yet.
1829 fep->opened = 0;
1830 netif_stop_queue(dev);
1831 fec_stop(dev);
1833 return 0;
1836 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
1838 struct fec_enet_private *fep = netdev_priv(dev);
1840 return &fep->stats;
1843 /* Set or clear the multicast filter for this adaptor.
1844 * Skeleton taken from sunlance driver.
1845 * The CPM Ethernet implementation allows Multicast as well as individual
1846 * MAC address filtering. Some of the drivers check to make sure it is
1847 * a group multicast address, and discard those that are not. I guess I
1848 * will do the same for now, but just remove the test if you want
1849 * individual filtering as well (do the upper net layers want or support
1850 * this kind of feature?).
1853 #define HASH_BITS 6 /* #bits in hash */
1854 #define CRC32_POLY 0xEDB88320
1856 static void set_multicast_list(struct net_device *dev)
1858 struct fec_enet_private *fep;
1859 volatile fec_t *ep;
1860 struct dev_mc_list *dmi;
1861 unsigned int i, j, bit, data, crc;
1862 unsigned char hash;
1864 fep = netdev_priv(dev);
1865 ep = fep->hwp;
1867 if (dev->flags&IFF_PROMISC) {
1868 /* Log any net taps. */
1869 printk("%s: Promiscuous mode enabled.\n", dev->name);
1870 ep->fec_r_cntrl |= 0x0008;
1871 } else {
1873 ep->fec_r_cntrl &= ~0x0008;
1875 if (dev->flags & IFF_ALLMULTI) {
1876 /* Catch all multicast addresses, so set the
1877 * filter to all 1's.
1879 ep->fec_hash_table_high = 0xffffffff;
1880 ep->fec_hash_table_low = 0xffffffff;
1881 } else {
1882 /* Clear filter and add the addresses in hash register.
1884 ep->fec_hash_table_high = 0;
1885 ep->fec_hash_table_low = 0;
1887 dmi = dev->mc_list;
1889 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
1891 /* Only support group multicast for now.
1893 if (!(dmi->dmi_addr[0] & 1))
1894 continue;
1896 /* calculate crc32 value of mac address
1898 crc = 0xffffffff;
1900 for (i = 0; i < dmi->dmi_addrlen; i++)
1902 data = dmi->dmi_addr[i];
1903 for (bit = 0; bit < 8; bit++, data >>= 1)
1905 crc = (crc >> 1) ^
1906 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1910 /* only upper 6 bits (HASH_BITS) are used
1911 which point to specific bit in he hash registers
1913 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1915 if (hash > 31)
1916 ep->fec_hash_table_high |= 1 << (hash - 32);
1917 else
1918 ep->fec_hash_table_low |= 1 << hash;
1924 /* Set a MAC change in hardware.
1926 static void
1927 fec_set_mac_address(struct net_device *dev)
1929 struct fec_enet_private *fep;
1930 volatile fec_t *fecp;
1932 fep = netdev_priv(dev);
1933 fecp = fep->hwp;
1935 /* Set station address. */
1936 fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) |
1937 (fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24);
1938 fecp->fec_addr_high = (fep->mac_addr[5] << 16) |
1939 (fep->mac_addr[4] << 24);
1943 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
1946 * XXX: We need to clean up on failure exits here.
1948 int __init fec_enet_init(struct net_device *dev)
1950 struct fec_enet_private *fep = netdev_priv(dev);
1951 unsigned long mem_addr;
1952 volatile cbd_t *bdp;
1953 cbd_t *cbd_base;
1954 volatile fec_t *fecp;
1955 int i, j;
1956 static int index = 0;
1958 /* Only allow us to be probed once. */
1959 if (index >= FEC_MAX_PORTS)
1960 return -ENXIO;
1962 /* Create an Ethernet device instance.
1964 fecp = (volatile fec_t *) fec_hw[index];
1966 fep->index = index;
1967 fep->hwp = fecp;
1969 /* Whack a reset. We should wait for this.
1971 fecp->fec_ecntrl = 1;
1972 udelay(10);
1974 /* Clear and enable interrupts */
1975 fecp->fec_ievent = 0xffc0;
1976 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
1977 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
1978 fecp->fec_hash_table_high = 0;
1979 fecp->fec_hash_table_low = 0;
1980 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
1981 fecp->fec_ecntrl = 2;
1982 fecp->fec_r_des_active = 0x01000000;
1984 /* Set the Ethernet address. If using multiple Enets on the 8xx,
1985 * this needs some work to get unique addresses.
1987 * This is our default MAC address unless the user changes
1988 * it via eth_mac_addr (our dev->set_mac_addr handler).
1990 fec_get_mac(dev);
1992 /* Allocate memory for buffer descriptors.
1994 if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
1995 printk("FEC init error. Need more space.\n");
1996 printk("FEC initialization failed.\n");
1997 return 1;
1999 mem_addr = __get_free_page(GFP_KERNEL);
2000 cbd_base = (cbd_t *)mem_addr;
2001 /* XXX: missing check for allocation failure */
2003 fec_uncache(mem_addr);
2005 /* Set receive and transmit descriptor base.
2007 fep->rx_bd_base = cbd_base;
2008 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2010 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2011 fep->cur_rx = fep->rx_bd_base;
2013 fep->skb_cur = fep->skb_dirty = 0;
2015 /* Initialize the receive buffer descriptors.
2017 bdp = fep->rx_bd_base;
2018 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2020 /* Allocate a page.
2022 mem_addr = __get_free_page(GFP_KERNEL);
2023 /* XXX: missing check for allocation failure */
2025 fec_uncache(mem_addr);
2027 /* Initialize the BD for every fragment in the page.
2029 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2030 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2031 bdp->cbd_bufaddr = __pa(mem_addr);
2032 mem_addr += FEC_ENET_RX_FRSIZE;
2033 bdp++;
2037 /* Set the last buffer to wrap.
2039 bdp--;
2040 bdp->cbd_sc |= BD_SC_WRAP;
2042 /* ...and the same for transmmit.
2044 bdp = fep->tx_bd_base;
2045 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2046 if (j >= FEC_ENET_TX_FRPPG) {
2047 mem_addr = __get_free_page(GFP_KERNEL);
2048 j = 1;
2049 } else {
2050 mem_addr += FEC_ENET_TX_FRSIZE;
2051 j++;
2053 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2055 /* Initialize the BD for every fragment in the page.
2057 bdp->cbd_sc = 0;
2058 bdp->cbd_bufaddr = 0;
2059 bdp++;
2062 /* Set the last buffer to wrap.
2064 bdp--;
2065 bdp->cbd_sc |= BD_SC_WRAP;
2067 /* Set receive and transmit descriptor base.
2069 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2070 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2072 /* Install our interrupt handlers. This varies depending on
2073 * the architecture.
2075 fec_request_intrs(dev);
2077 dev->base_addr = (unsigned long)fecp;
2079 /* The FEC Ethernet specific entries in the device structure. */
2080 dev->open = fec_enet_open;
2081 dev->hard_start_xmit = fec_enet_start_xmit;
2082 dev->tx_timeout = fec_timeout;
2083 dev->watchdog_timeo = TX_TIMEOUT;
2084 dev->stop = fec_enet_close;
2085 dev->get_stats = fec_enet_get_stats;
2086 dev->set_multicast_list = set_multicast_list;
2088 for (i=0; i<NMII-1; i++)
2089 mii_cmds[i].mii_next = &mii_cmds[i+1];
2090 mii_free = mii_cmds;
2092 /* setup MII interface */
2093 fec_set_mii(dev, fep);
2095 printk("%s: FEC ENET Version 0.2, ", dev->name);
2096 for (i=0; i<5; i++)
2097 printk("%02x:", dev->dev_addr[i]);
2098 printk("%02x\n", dev->dev_addr[5]);
2100 /* Queue up command to detect the PHY and initialize the
2101 * remainder of the interface.
2103 fep->phy_id_done = 0;
2104 fep->phy_addr = 0;
2105 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2107 index++;
2108 return 0;
2111 /* This function is called to start or restart the FEC during a link
2112 * change. This only happens when switching between half and full
2113 * duplex.
2115 static void
2116 fec_restart(struct net_device *dev, int duplex)
2118 struct fec_enet_private *fep;
2119 volatile cbd_t *bdp;
2120 volatile fec_t *fecp;
2121 int i;
2123 fep = netdev_priv(dev);
2124 fecp = fep->hwp;
2126 /* Whack a reset. We should wait for this.
2128 fecp->fec_ecntrl = 1;
2129 udelay(10);
2131 /* Enable interrupts we wish to service.
2133 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2134 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2136 /* Clear any outstanding interrupt.
2138 fecp->fec_ievent = 0xffc0;
2139 fec_enable_phy_intr();
2141 /* Set station address.
2143 fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) |
2144 (fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24);
2145 fecp->fec_addr_high = (fep->mac_addr[5] << 16) |
2146 (fep->mac_addr[4] << 24);
2148 for (i=0; i<ETH_ALEN; i++)
2149 dev->dev_addr[i] = fep->mac_addr[i];
2151 /* Reset all multicast.
2153 fecp->fec_hash_table_high = 0;
2154 fecp->fec_hash_table_low = 0;
2156 /* Set maximum receive buffer size.
2158 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2160 fec_localhw_setup();
2162 /* Set receive and transmit descriptor base.
2164 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2165 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2167 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2168 fep->cur_rx = fep->rx_bd_base;
2170 /* Reset SKB transmit buffers.
2172 fep->skb_cur = fep->skb_dirty = 0;
2173 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2174 if (fep->tx_skbuff[i] != NULL) {
2175 dev_kfree_skb_any(fep->tx_skbuff[i]);
2176 fep->tx_skbuff[i] = NULL;
2180 /* Initialize the receive buffer descriptors.
2182 bdp = fep->rx_bd_base;
2183 for (i=0; i<RX_RING_SIZE; i++) {
2185 /* Initialize the BD for every fragment in the page.
2187 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2188 bdp++;
2191 /* Set the last buffer to wrap.
2193 bdp--;
2194 bdp->cbd_sc |= BD_SC_WRAP;
2196 /* ...and the same for transmmit.
2198 bdp = fep->tx_bd_base;
2199 for (i=0; i<TX_RING_SIZE; i++) {
2201 /* Initialize the BD for every fragment in the page.
2203 bdp->cbd_sc = 0;
2204 bdp->cbd_bufaddr = 0;
2205 bdp++;
2208 /* Set the last buffer to wrap.
2210 bdp--;
2211 bdp->cbd_sc |= BD_SC_WRAP;
2213 /* Enable MII mode.
2215 if (duplex) {
2216 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2217 fecp->fec_x_cntrl = 0x04; /* FD enable */
2219 else {
2220 /* MII enable|No Rcv on Xmit */
2221 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2222 fecp->fec_x_cntrl = 0x00;
2224 fep->full_duplex = duplex;
2226 /* Set MII speed.
2228 fecp->fec_mii_speed = fep->phy_speed;
2230 /* And last, enable the transmit and receive processing.
2232 fecp->fec_ecntrl = 2;
2233 fecp->fec_r_des_active = 0x01000000;
2236 static void
2237 fec_stop(struct net_device *dev)
2239 volatile fec_t *fecp;
2240 struct fec_enet_private *fep;
2242 fep = netdev_priv(dev);
2243 fecp = fep->hwp;
2245 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2247 while(!(fecp->fec_ievent & 0x10000000));
2249 /* Whack a reset. We should wait for this.
2251 fecp->fec_ecntrl = 1;
2252 udelay(10);
2254 /* Clear outstanding MII command interrupts.
2256 fecp->fec_ievent = FEC_ENET_MII;
2257 fec_enable_phy_intr();
2259 fecp->fec_imask = FEC_ENET_MII;
2260 fecp->fec_mii_speed = fep->phy_speed;
2263 static int __init fec_enet_module_init(void)
2265 struct net_device *dev;
2266 int i, err;
2268 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2269 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2270 if (!dev)
2271 return -ENOMEM;
2272 err = fec_enet_init(dev);
2273 if (err) {
2274 free_netdev(dev);
2275 continue;
2277 if (register_netdev(dev) != 0) {
2278 /* XXX: missing cleanup here */
2279 free_netdev(dev);
2280 return -EIO;
2283 return 0;
2286 module_init(fec_enet_module_init);
2288 MODULE_LICENSE("GPL");