MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / md / raid1.c
blob1ed82ea4be8ef3aff8205157bee0f7c1e517264c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2, or (at your option)
18 * any later version.
20 * You should have received a copy of the GNU General Public License
21 * (for example /usr/src/linux/COPYING); if not, write to the Free
22 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/raid/raid1.h>
28 * Number of guaranteed r1bios in case of extreme VM load:
30 #define NR_RAID1_BIOS 256
32 static mdk_personality_t raid1_personality;
33 static spinlock_t retry_list_lock = SPIN_LOCK_UNLOCKED;
34 static LIST_HEAD(retry_list_head);
36 static void unplug_slaves(mddev_t *mddev);
39 static void * r1bio_pool_alloc(int gfp_flags, void *data)
41 struct pool_info *pi = data;
42 r1bio_t *r1_bio;
43 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
45 /* allocate a r1bio with room for raid_disks entries in the bios array */
46 r1_bio = kmalloc(size, gfp_flags);
47 if (r1_bio)
48 memset(r1_bio, 0, size);
49 else
50 unplug_slaves(pi->mddev);
52 return r1_bio;
55 static void r1bio_pool_free(void *r1_bio, void *data)
57 kfree(r1_bio);
60 #define RESYNC_BLOCK_SIZE (64*1024)
61 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
62 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
63 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
64 #define RESYNC_WINDOW (2048*1024)
66 static void * r1buf_pool_alloc(int gfp_flags, void *data)
68 struct pool_info *pi = data;
69 struct page *page;
70 r1bio_t *r1_bio;
71 struct bio *bio;
72 int i, j;
74 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
75 if (!r1_bio) {
76 unplug_slaves(pi->mddev);
77 return NULL;
81 * Allocate bios : 1 for reading, n-1 for writing
83 for (j = pi->raid_disks ; j-- ; ) {
84 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
85 if (!bio)
86 goto out_free_bio;
87 r1_bio->bios[j] = bio;
90 * Allocate RESYNC_PAGES data pages and attach them to
91 * the first bio;
93 bio = r1_bio->bios[0];
94 for (i = 0; i < RESYNC_PAGES; i++) {
95 page = alloc_page(gfp_flags);
96 if (unlikely(!page))
97 goto out_free_pages;
99 bio->bi_io_vec[i].bv_page = page;
102 r1_bio->master_bio = NULL;
104 return r1_bio;
106 out_free_pages:
107 for ( ; i > 0 ; i--)
108 __free_page(bio->bi_io_vec[i-1].bv_page);
109 out_free_bio:
110 while ( ++j < pi->raid_disks )
111 bio_put(r1_bio->bios[j]);
112 r1bio_pool_free(r1_bio, data);
113 return NULL;
116 static void r1buf_pool_free(void *__r1_bio, void *data)
118 struct pool_info *pi = data;
119 int i;
120 r1bio_t *r1bio = __r1_bio;
121 struct bio *bio = r1bio->bios[0];
123 for (i = 0; i < RESYNC_PAGES; i++) {
124 __free_page(bio->bi_io_vec[i].bv_page);
125 bio->bi_io_vec[i].bv_page = NULL;
127 for (i=0 ; i < pi->raid_disks; i++)
128 bio_put(r1bio->bios[i]);
130 r1bio_pool_free(r1bio, data);
133 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
135 int i;
137 for (i = 0; i < conf->raid_disks; i++) {
138 struct bio **bio = r1_bio->bios + i;
139 if (*bio)
140 bio_put(*bio);
141 *bio = NULL;
145 static inline void free_r1bio(r1bio_t *r1_bio)
147 unsigned long flags;
149 conf_t *conf = mddev_to_conf(r1_bio->mddev);
152 * Wake up any possible resync thread that waits for the device
153 * to go idle.
155 spin_lock_irqsave(&conf->resync_lock, flags);
156 if (!--conf->nr_pending) {
157 wake_up(&conf->wait_idle);
158 wake_up(&conf->wait_resume);
160 spin_unlock_irqrestore(&conf->resync_lock, flags);
162 put_all_bios(conf, r1_bio);
163 mempool_free(r1_bio, conf->r1bio_pool);
166 static inline void put_buf(r1bio_t *r1_bio)
168 conf_t *conf = mddev_to_conf(r1_bio->mddev);
169 unsigned long flags;
171 mempool_free(r1_bio, conf->r1buf_pool);
173 spin_lock_irqsave(&conf->resync_lock, flags);
174 if (!conf->barrier)
175 BUG();
176 --conf->barrier;
177 wake_up(&conf->wait_resume);
178 wake_up(&conf->wait_idle);
180 if (!--conf->nr_pending) {
181 wake_up(&conf->wait_idle);
182 wake_up(&conf->wait_resume);
184 spin_unlock_irqrestore(&conf->resync_lock, flags);
187 static void reschedule_retry(r1bio_t *r1_bio)
189 unsigned long flags;
190 mddev_t *mddev = r1_bio->mddev;
192 spin_lock_irqsave(&retry_list_lock, flags);
193 list_add(&r1_bio->retry_list, &retry_list_head);
194 spin_unlock_irqrestore(&retry_list_lock, flags);
196 md_wakeup_thread(mddev->thread);
200 * raid_end_bio_io() is called when we have finished servicing a mirrored
201 * operation and are ready to return a success/failure code to the buffer
202 * cache layer.
204 static void raid_end_bio_io(r1bio_t *r1_bio)
206 struct bio *bio = r1_bio->master_bio;
208 bio_endio(bio, bio->bi_size,
209 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
210 free_r1bio(r1_bio);
214 * Update disk head position estimator based on IRQ completion info.
216 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
218 conf_t *conf = mddev_to_conf(r1_bio->mddev);
220 conf->mirrors[disk].head_position =
221 r1_bio->sector + (r1_bio->sectors);
224 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
226 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
227 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
228 int mirror;
229 conf_t *conf = mddev_to_conf(r1_bio->mddev);
231 if (bio->bi_size)
232 return 1;
234 mirror = r1_bio->read_disk;
236 * this branch is our 'one mirror IO has finished' event handler:
238 if (!uptodate)
239 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
240 else
242 * Set R1BIO_Uptodate in our master bio, so that
243 * we will return a good error code for to the higher
244 * levels even if IO on some other mirrored buffer fails.
246 * The 'master' represents the composite IO operation to
247 * user-side. So if something waits for IO, then it will
248 * wait for the 'master' bio.
250 set_bit(R1BIO_Uptodate, &r1_bio->state);
252 update_head_pos(mirror, r1_bio);
255 * we have only one bio on the read side
257 if (uptodate)
258 raid_end_bio_io(r1_bio);
259 else {
261 * oops, read error:
263 char b[BDEVNAME_SIZE];
264 if (printk_ratelimit())
265 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
266 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
267 reschedule_retry(r1_bio);
270 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
271 return 0;
274 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
276 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
277 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
278 int mirror;
279 conf_t *conf = mddev_to_conf(r1_bio->mddev);
281 if (bio->bi_size)
282 return 1;
284 for (mirror = 0; mirror < conf->raid_disks; mirror++)
285 if (r1_bio->bios[mirror] == bio)
286 break;
289 * this branch is our 'one mirror IO has finished' event handler:
291 if (!uptodate)
292 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
293 else
295 * Set R1BIO_Uptodate in our master bio, so that
296 * we will return a good error code for to the higher
297 * levels even if IO on some other mirrored buffer fails.
299 * The 'master' represents the composite IO operation to
300 * user-side. So if something waits for IO, then it will
301 * wait for the 'master' bio.
303 set_bit(R1BIO_Uptodate, &r1_bio->state);
305 update_head_pos(mirror, r1_bio);
309 * Let's see if all mirrored write operations have finished
310 * already.
312 if (atomic_dec_and_test(&r1_bio->remaining)) {
313 md_write_end(r1_bio->mddev);
314 raid_end_bio_io(r1_bio);
317 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
318 return 0;
323 * This routine returns the disk from which the requested read should
324 * be done. There is a per-array 'next expected sequential IO' sector
325 * number - if this matches on the next IO then we use the last disk.
326 * There is also a per-disk 'last know head position' sector that is
327 * maintained from IRQ contexts, both the normal and the resync IO
328 * completion handlers update this position correctly. If there is no
329 * perfect sequential match then we pick the disk whose head is closest.
331 * If there are 2 mirrors in the same 2 devices, performance degrades
332 * because position is mirror, not device based.
334 * The rdev for the device selected will have nr_pending incremented.
336 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
338 const unsigned long this_sector = r1_bio->sector;
339 int new_disk = conf->last_used, disk = new_disk;
340 const int sectors = r1_bio->sectors;
341 sector_t new_distance, current_distance;
343 spin_lock_irq(&conf->device_lock);
345 * Check if it if we can balance. We can balance on the whole
346 * device if no resync is going on, or below the resync window.
347 * We take the first readable disk when above the resync window.
349 if (conf->mddev->recovery_cp < MaxSector &&
350 (this_sector + sectors >= conf->next_resync)) {
351 /* Choose the first operation device, for consistancy */
352 new_disk = 0;
354 while (!conf->mirrors[new_disk].rdev ||
355 !conf->mirrors[new_disk].rdev->in_sync) {
356 new_disk++;
357 if (new_disk == conf->raid_disks) {
358 new_disk = -1;
359 break;
362 goto rb_out;
366 /* make sure the disk is operational */
367 while (!conf->mirrors[new_disk].rdev ||
368 !conf->mirrors[new_disk].rdev->in_sync) {
369 if (new_disk <= 0)
370 new_disk = conf->raid_disks;
371 new_disk--;
372 if (new_disk == disk) {
373 new_disk = -1;
374 goto rb_out;
377 disk = new_disk;
378 /* now disk == new_disk == starting point for search */
381 * Don't change to another disk for sequential reads:
383 if (conf->next_seq_sect == this_sector)
384 goto rb_out;
385 if (this_sector == conf->mirrors[new_disk].head_position)
386 goto rb_out;
388 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
390 /* Find the disk whose head is closest */
392 do {
393 if (disk <= 0)
394 disk = conf->raid_disks;
395 disk--;
397 if (!conf->mirrors[disk].rdev ||
398 !conf->mirrors[disk].rdev->in_sync)
399 continue;
401 if (!atomic_read(&conf->mirrors[disk].rdev->nr_pending)) {
402 new_disk = disk;
403 break;
405 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
406 if (new_distance < current_distance) {
407 current_distance = new_distance;
408 new_disk = disk;
410 } while (disk != conf->last_used);
412 rb_out:
415 if (new_disk >= 0) {
416 conf->next_seq_sect = this_sector + sectors;
417 conf->last_used = new_disk;
418 atomic_inc(&conf->mirrors[new_disk].rdev->nr_pending);
420 spin_unlock_irq(&conf->device_lock);
422 return new_disk;
425 static void unplug_slaves(mddev_t *mddev)
427 conf_t *conf = mddev_to_conf(mddev);
428 int i;
429 unsigned long flags;
431 spin_lock_irqsave(&conf->device_lock, flags);
432 for (i=0; i<mddev->raid_disks; i++) {
433 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
434 if (rdev && atomic_read(&rdev->nr_pending)) {
435 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
437 atomic_inc(&rdev->nr_pending);
438 spin_unlock_irqrestore(&conf->device_lock, flags);
440 if (r_queue->unplug_fn)
441 r_queue->unplug_fn(r_queue);
443 spin_lock_irqsave(&conf->device_lock, flags);
444 atomic_dec(&rdev->nr_pending);
447 spin_unlock_irqrestore(&conf->device_lock, flags);
449 static void raid1_unplug(request_queue_t *q)
451 unplug_slaves(q->queuedata);
454 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
455 sector_t *error_sector)
457 mddev_t *mddev = q->queuedata;
458 conf_t *conf = mddev_to_conf(mddev);
459 unsigned long flags;
460 int i, ret = 0;
462 spin_lock_irqsave(&conf->device_lock, flags);
463 for (i=0; i<mddev->raid_disks; i++) {
464 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
465 if (rdev && !rdev->faulty) {
466 struct block_device *bdev = rdev->bdev;
467 request_queue_t *r_queue = bdev_get_queue(bdev);
469 if (r_queue->issue_flush_fn) {
470 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, error_sector);
471 if (ret)
472 break;
476 spin_unlock_irqrestore(&conf->device_lock, flags);
477 return ret;
481 * Throttle resync depth, so that we can both get proper overlapping of
482 * requests, but are still able to handle normal requests quickly.
484 #define RESYNC_DEPTH 32
486 static void device_barrier(conf_t *conf, sector_t sect)
488 spin_lock_irq(&conf->resync_lock);
489 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
490 conf->resync_lock, unplug_slaves(conf->mddev));
492 if (!conf->barrier++) {
493 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
494 conf->resync_lock, unplug_slaves(conf->mddev));
495 if (conf->nr_pending)
496 BUG();
498 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
499 conf->resync_lock, unplug_slaves(conf->mddev));
500 conf->next_resync = sect;
501 spin_unlock_irq(&conf->resync_lock);
504 static int make_request(request_queue_t *q, struct bio * bio)
506 mddev_t *mddev = q->queuedata;
507 conf_t *conf = mddev_to_conf(mddev);
508 mirror_info_t *mirror;
509 r1bio_t *r1_bio;
510 struct bio *read_bio;
511 int i, disks;
514 * Register the new request and wait if the reconstruction
515 * thread has put up a bar for new requests.
516 * Continue immediately if no resync is active currently.
518 spin_lock_irq(&conf->resync_lock);
519 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
520 conf->nr_pending++;
521 spin_unlock_irq(&conf->resync_lock);
523 if (bio_data_dir(bio)==WRITE) {
524 disk_stat_inc(mddev->gendisk, writes);
525 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
526 } else {
527 disk_stat_inc(mddev->gendisk, reads);
528 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
532 * make_request() can abort the operation when READA is being
533 * used and no empty request is available.
536 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
538 r1_bio->master_bio = bio;
539 r1_bio->sectors = bio->bi_size >> 9;
541 r1_bio->mddev = mddev;
542 r1_bio->sector = bio->bi_sector;
544 r1_bio->state = 0;
546 if (bio_data_dir(bio) == READ) {
548 * read balancing logic:
550 int rdisk = read_balance(conf, r1_bio);
552 if (rdisk < 0) {
553 /* couldn't find anywhere to read from */
554 raid_end_bio_io(r1_bio);
555 return 0;
557 mirror = conf->mirrors + rdisk;
559 r1_bio->read_disk = rdisk;
561 read_bio = bio_clone(bio, GFP_NOIO);
563 r1_bio->bios[rdisk] = read_bio;
565 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
566 read_bio->bi_bdev = mirror->rdev->bdev;
567 read_bio->bi_end_io = raid1_end_read_request;
568 read_bio->bi_rw = READ;
569 read_bio->bi_private = r1_bio;
571 generic_make_request(read_bio);
572 return 0;
576 * WRITE:
578 /* first select target devices under spinlock and
579 * inc refcount on their rdev. Record them by setting
580 * bios[x] to bio
582 disks = conf->raid_disks;
583 spin_lock_irq(&conf->device_lock);
584 for (i = 0; i < disks; i++) {
585 if (conf->mirrors[i].rdev &&
586 !conf->mirrors[i].rdev->faulty) {
587 atomic_inc(&conf->mirrors[i].rdev->nr_pending);
588 r1_bio->bios[i] = bio;
589 } else
590 r1_bio->bios[i] = NULL;
592 spin_unlock_irq(&conf->device_lock);
594 atomic_set(&r1_bio->remaining, 1);
595 md_write_start(mddev);
596 for (i = 0; i < disks; i++) {
597 struct bio *mbio;
598 if (!r1_bio->bios[i])
599 continue;
601 mbio = bio_clone(bio, GFP_NOIO);
602 r1_bio->bios[i] = mbio;
604 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
605 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
606 mbio->bi_end_io = raid1_end_write_request;
607 mbio->bi_rw = WRITE;
608 mbio->bi_private = r1_bio;
610 atomic_inc(&r1_bio->remaining);
611 generic_make_request(mbio);
614 if (atomic_dec_and_test(&r1_bio->remaining)) {
615 md_write_end(mddev);
616 raid_end_bio_io(r1_bio);
619 return 0;
622 static void status(struct seq_file *seq, mddev_t *mddev)
624 conf_t *conf = mddev_to_conf(mddev);
625 int i;
627 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
628 conf->working_disks);
629 for (i = 0; i < conf->raid_disks; i++)
630 seq_printf(seq, "%s",
631 conf->mirrors[i].rdev &&
632 conf->mirrors[i].rdev->in_sync ? "U" : "_");
633 seq_printf(seq, "]");
637 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
639 char b[BDEVNAME_SIZE];
640 conf_t *conf = mddev_to_conf(mddev);
643 * If it is not operational, then we have already marked it as dead
644 * else if it is the last working disks, ignore the error, let the
645 * next level up know.
646 * else mark the drive as failed
648 if (rdev->in_sync
649 && conf->working_disks == 1)
651 * Don't fail the drive, act as though we were just a
652 * normal single drive
654 return;
655 if (rdev->in_sync) {
656 mddev->degraded++;
657 conf->working_disks--;
659 * if recovery is running, make sure it aborts.
661 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
663 rdev->in_sync = 0;
664 rdev->faulty = 1;
665 mddev->sb_dirty = 1;
666 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
667 " Operation continuing on %d devices\n",
668 bdevname(rdev->bdev,b), conf->working_disks);
671 static void print_conf(conf_t *conf)
673 int i;
674 mirror_info_t *tmp;
676 printk("RAID1 conf printout:\n");
677 if (!conf) {
678 printk("(!conf)\n");
679 return;
681 printk(" --- wd:%d rd:%d\n", conf->working_disks,
682 conf->raid_disks);
684 for (i = 0; i < conf->raid_disks; i++) {
685 char b[BDEVNAME_SIZE];
686 tmp = conf->mirrors + i;
687 if (tmp->rdev)
688 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
689 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
690 bdevname(tmp->rdev->bdev,b));
694 static void close_sync(conf_t *conf)
696 spin_lock_irq(&conf->resync_lock);
697 wait_event_lock_irq(conf->wait_resume, !conf->barrier,
698 conf->resync_lock, unplug_slaves(conf->mddev));
699 spin_unlock_irq(&conf->resync_lock);
701 if (conf->barrier) BUG();
702 if (waitqueue_active(&conf->wait_idle)) BUG();
704 mempool_destroy(conf->r1buf_pool);
705 conf->r1buf_pool = NULL;
708 static int raid1_spare_active(mddev_t *mddev)
710 int i;
711 conf_t *conf = mddev->private;
712 mirror_info_t *tmp;
714 spin_lock_irq(&conf->device_lock);
716 * Find all failed disks within the RAID1 configuration
717 * and mark them readable
719 for (i = 0; i < conf->raid_disks; i++) {
720 tmp = conf->mirrors + i;
721 if (tmp->rdev
722 && !tmp->rdev->faulty
723 && !tmp->rdev->in_sync) {
724 conf->working_disks++;
725 mddev->degraded--;
726 tmp->rdev->in_sync = 1;
729 spin_unlock_irq(&conf->device_lock);
731 print_conf(conf);
732 return 0;
736 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
738 conf_t *conf = mddev->private;
739 int found = 0;
740 int mirror;
741 mirror_info_t *p;
743 spin_lock_irq(&conf->device_lock);
744 for (mirror=0; mirror < mddev->raid_disks; mirror++)
745 if ( !(p=conf->mirrors+mirror)->rdev) {
746 p->rdev = rdev;
748 blk_queue_stack_limits(mddev->queue,
749 rdev->bdev->bd_disk->queue);
750 /* as we don't honour merge_bvec_fn, we must never risk
751 * violating it, so limit ->max_sector to one PAGE, as
752 * a one page request is never in violation.
754 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
755 mddev->queue->max_sectors > (PAGE_SIZE>>9))
756 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
758 p->head_position = 0;
759 rdev->raid_disk = mirror;
760 found = 1;
761 break;
763 spin_unlock_irq(&conf->device_lock);
765 print_conf(conf);
766 return found;
769 static int raid1_remove_disk(mddev_t *mddev, int number)
771 conf_t *conf = mddev->private;
772 int err = 1;
773 mirror_info_t *p = conf->mirrors+ number;
775 print_conf(conf);
776 spin_lock_irq(&conf->device_lock);
777 if (p->rdev) {
778 if (p->rdev->in_sync ||
779 atomic_read(&p->rdev->nr_pending)) {
780 err = -EBUSY;
781 goto abort;
783 p->rdev = NULL;
784 err = 0;
786 if (err)
787 MD_BUG();
788 abort:
789 spin_unlock_irq(&conf->device_lock);
791 print_conf(conf);
792 return err;
796 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
798 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
799 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
800 conf_t *conf = mddev_to_conf(r1_bio->mddev);
802 if (bio->bi_size)
803 return 1;
805 if (r1_bio->bios[r1_bio->read_disk] != bio)
806 BUG();
807 update_head_pos(r1_bio->read_disk, r1_bio);
809 * we have read a block, now it needs to be re-written,
810 * or re-read if the read failed.
811 * We don't do much here, just schedule handling by raid1d
813 if (!uptodate)
814 md_error(r1_bio->mddev,
815 conf->mirrors[r1_bio->read_disk].rdev);
816 else
817 set_bit(R1BIO_Uptodate, &r1_bio->state);
818 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
819 reschedule_retry(r1_bio);
820 return 0;
823 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
825 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
826 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
827 mddev_t *mddev = r1_bio->mddev;
828 conf_t *conf = mddev_to_conf(mddev);
829 int i;
830 int mirror=0;
832 if (bio->bi_size)
833 return 1;
835 for (i = 0; i < conf->raid_disks; i++)
836 if (r1_bio->bios[i] == bio) {
837 mirror = i;
838 break;
840 if (!uptodate)
841 md_error(mddev, conf->mirrors[mirror].rdev);
842 update_head_pos(mirror, r1_bio);
844 if (atomic_dec_and_test(&r1_bio->remaining)) {
845 md_done_sync(mddev, r1_bio->sectors, uptodate);
846 put_buf(r1_bio);
848 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
849 return 0;
852 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
854 conf_t *conf = mddev_to_conf(mddev);
855 int i;
856 int disks = conf->raid_disks;
857 struct bio *bio, *wbio;
859 bio = r1_bio->bios[r1_bio->read_disk];
862 * schedule writes
864 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
866 * There is no point trying a read-for-reconstruct as
867 * reconstruct is about to be aborted
869 char b[BDEVNAME_SIZE];
870 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
871 " for block %llu\n",
872 bdevname(bio->bi_bdev,b),
873 (unsigned long long)r1_bio->sector);
874 md_done_sync(mddev, r1_bio->sectors, 0);
875 put_buf(r1_bio);
876 return;
879 atomic_set(&r1_bio->remaining, 1);
880 for (i = 0; i < disks ; i++) {
881 wbio = r1_bio->bios[i];
882 if (wbio->bi_end_io != end_sync_write)
883 continue;
885 atomic_inc(&conf->mirrors[i].rdev->nr_pending);
886 atomic_inc(&r1_bio->remaining);
887 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
888 generic_make_request(wbio);
891 if (atomic_dec_and_test(&r1_bio->remaining)) {
892 md_done_sync(mddev, r1_bio->sectors, 1);
893 put_buf(r1_bio);
898 * This is a kernel thread which:
900 * 1. Retries failed read operations on working mirrors.
901 * 2. Updates the raid superblock when problems encounter.
902 * 3. Performs writes following reads for array syncronising.
905 static void raid1d(mddev_t *mddev)
907 struct list_head *head = &retry_list_head;
908 r1bio_t *r1_bio;
909 struct bio *bio;
910 unsigned long flags;
911 conf_t *conf = mddev_to_conf(mddev);
912 int unplug=0;
913 mdk_rdev_t *rdev;
915 md_check_recovery(mddev);
916 md_handle_safemode(mddev);
918 for (;;) {
919 char b[BDEVNAME_SIZE];
920 spin_lock_irqsave(&retry_list_lock, flags);
921 if (list_empty(head))
922 break;
923 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
924 list_del(head->prev);
925 spin_unlock_irqrestore(&retry_list_lock, flags);
927 mddev = r1_bio->mddev;
928 conf = mddev_to_conf(mddev);
929 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
930 sync_request_write(mddev, r1_bio);
931 unplug = 1;
932 } else {
933 int disk;
934 bio = r1_bio->bios[r1_bio->read_disk];
935 if ((disk=read_balance(conf, r1_bio)) == -1) {
936 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
937 " read error for block %llu\n",
938 bdevname(bio->bi_bdev,b),
939 (unsigned long long)r1_bio->sector);
940 raid_end_bio_io(r1_bio);
941 } else {
942 r1_bio->bios[r1_bio->read_disk] = NULL;
943 r1_bio->read_disk = disk;
944 r1_bio->bios[r1_bio->read_disk] = bio;
945 rdev = conf->mirrors[disk].rdev;
946 if (printk_ratelimit())
947 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
948 " another mirror\n",
949 bdevname(rdev->bdev,b),
950 (unsigned long long)r1_bio->sector);
951 bio->bi_bdev = rdev->bdev;
952 bio->bi_sector = r1_bio->sector + rdev->data_offset;
953 bio->bi_rw = READ;
954 unplug = 1;
955 generic_make_request(bio);
959 spin_unlock_irqrestore(&retry_list_lock, flags);
960 if (unplug)
961 unplug_slaves(mddev);
965 static int init_resync(conf_t *conf)
967 int buffs;
969 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
970 if (conf->r1buf_pool)
971 BUG();
972 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
973 conf->poolinfo);
974 if (!conf->r1buf_pool)
975 return -ENOMEM;
976 conf->next_resync = 0;
977 return 0;
981 * perform a "sync" on one "block"
983 * We need to make sure that no normal I/O request - particularly write
984 * requests - conflict with active sync requests.
986 * This is achieved by tracking pending requests and a 'barrier' concept
987 * that can be installed to exclude normal IO requests.
990 static int sync_request(mddev_t *mddev, sector_t sector_nr, int go_faster)
992 conf_t *conf = mddev_to_conf(mddev);
993 mirror_info_t *mirror;
994 r1bio_t *r1_bio;
995 struct bio *bio;
996 sector_t max_sector, nr_sectors;
997 int disk;
998 int i;
999 int write_targets = 0;
1001 if (!conf->r1buf_pool)
1002 if (init_resync(conf))
1003 return -ENOMEM;
1005 max_sector = mddev->size << 1;
1006 if (sector_nr >= max_sector) {
1007 close_sync(conf);
1008 return 0;
1012 * If there is non-resync activity waiting for us then
1013 * put in a delay to throttle resync.
1015 if (!go_faster && waitqueue_active(&conf->wait_resume))
1016 schedule_timeout(HZ);
1017 device_barrier(conf, sector_nr + RESYNC_SECTORS);
1020 * If reconstructing, and >1 working disc,
1021 * could dedicate one to rebuild and others to
1022 * service read requests ..
1024 disk = conf->last_used;
1025 /* make sure disk is operational */
1026 spin_lock_irq(&conf->device_lock);
1027 while (conf->mirrors[disk].rdev == NULL ||
1028 !conf->mirrors[disk].rdev->in_sync) {
1029 if (disk <= 0)
1030 disk = conf->raid_disks;
1031 disk--;
1032 if (disk == conf->last_used)
1033 break;
1035 conf->last_used = disk;
1036 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1037 spin_unlock_irq(&conf->device_lock);
1039 mirror = conf->mirrors + disk;
1041 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1043 spin_lock_irq(&conf->resync_lock);
1044 conf->nr_pending++;
1045 spin_unlock_irq(&conf->resync_lock);
1047 r1_bio->mddev = mddev;
1048 r1_bio->sector = sector_nr;
1049 set_bit(R1BIO_IsSync, &r1_bio->state);
1050 r1_bio->read_disk = disk;
1052 for (i=0; i < conf->raid_disks; i++) {
1053 bio = r1_bio->bios[i];
1055 /* take from bio_init */
1056 bio->bi_next = NULL;
1057 bio->bi_flags |= 1 << BIO_UPTODATE;
1058 bio->bi_rw = 0;
1059 bio->bi_vcnt = 0;
1060 bio->bi_idx = 0;
1061 bio->bi_phys_segments = 0;
1062 bio->bi_hw_segments = 0;
1063 bio->bi_size = 0;
1064 bio->bi_end_io = NULL;
1065 bio->bi_private = NULL;
1067 if (i == disk) {
1068 bio->bi_rw = READ;
1069 bio->bi_end_io = end_sync_read;
1070 } else if (conf->mirrors[i].rdev &&
1071 !conf->mirrors[i].rdev->faulty &&
1072 (!conf->mirrors[i].rdev->in_sync ||
1073 sector_nr + RESYNC_SECTORS > mddev->recovery_cp)) {
1074 bio->bi_rw = WRITE;
1075 bio->bi_end_io = end_sync_write;
1076 write_targets ++;
1077 } else
1078 continue;
1079 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1080 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1081 bio->bi_private = r1_bio;
1083 if (write_targets == 0) {
1084 /* There is nowhere to write, so all non-sync
1085 * drives must be failed - so we are finished
1087 int rv = max_sector - sector_nr;
1088 md_done_sync(mddev, rv, 1);
1089 put_buf(r1_bio);
1090 atomic_dec(&conf->mirrors[disk].rdev->nr_pending);
1091 return rv;
1094 nr_sectors = 0;
1095 do {
1096 struct page *page;
1097 int len = PAGE_SIZE;
1098 if (sector_nr + (len>>9) > max_sector)
1099 len = (max_sector - sector_nr) << 9;
1100 if (len == 0)
1101 break;
1102 for (i=0 ; i < conf->raid_disks; i++) {
1103 bio = r1_bio->bios[i];
1104 if (bio->bi_end_io) {
1105 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1106 if (bio_add_page(bio, page, len, 0) == 0) {
1107 /* stop here */
1108 r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1109 while (i > 0) {
1110 i--;
1111 bio = r1_bio->bios[i];
1112 if (bio->bi_end_io==NULL) continue;
1113 /* remove last page from this bio */
1114 bio->bi_vcnt--;
1115 bio->bi_size -= len;
1116 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1118 goto bio_full;
1122 nr_sectors += len>>9;
1123 sector_nr += len>>9;
1124 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1125 bio_full:
1126 bio = r1_bio->bios[disk];
1127 r1_bio->sectors = nr_sectors;
1129 md_sync_acct(mirror->rdev->bdev, nr_sectors);
1131 generic_make_request(bio);
1133 return nr_sectors;
1136 static int run(mddev_t *mddev)
1138 conf_t *conf;
1139 int i, j, disk_idx;
1140 mirror_info_t *disk;
1141 mdk_rdev_t *rdev;
1142 struct list_head *tmp;
1144 if (mddev->level != 1) {
1145 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1146 mdname(mddev), mddev->level);
1147 goto out;
1150 * copy the already verified devices into our private RAID1
1151 * bookkeeping area. [whatever we allocate in run(),
1152 * should be freed in stop()]
1154 conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1155 mddev->private = conf;
1156 if (!conf)
1157 goto out_no_mem;
1159 memset(conf, 0, sizeof(*conf));
1160 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1161 GFP_KERNEL);
1162 if (!conf->mirrors)
1163 goto out_no_mem;
1165 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1167 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1168 if (!conf->poolinfo)
1169 goto out_no_mem;
1170 conf->poolinfo->mddev = mddev;
1171 conf->poolinfo->raid_disks = mddev->raid_disks;
1172 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1173 r1bio_pool_free,
1174 conf->poolinfo);
1175 if (!conf->r1bio_pool)
1176 goto out_no_mem;
1178 mddev->queue->unplug_fn = raid1_unplug;
1180 mddev->queue->issue_flush_fn = raid1_issue_flush;
1182 ITERATE_RDEV(mddev, rdev, tmp) {
1183 disk_idx = rdev->raid_disk;
1184 if (disk_idx >= mddev->raid_disks
1185 || disk_idx < 0)
1186 continue;
1187 disk = conf->mirrors + disk_idx;
1189 disk->rdev = rdev;
1191 blk_queue_stack_limits(mddev->queue,
1192 rdev->bdev->bd_disk->queue);
1193 /* as we don't honour merge_bvec_fn, we must never risk
1194 * violating it, so limit ->max_sector to one PAGE, as
1195 * a one page request is never in violation.
1197 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1198 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1199 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1201 disk->head_position = 0;
1202 if (!rdev->faulty && rdev->in_sync)
1203 conf->working_disks++;
1205 conf->raid_disks = mddev->raid_disks;
1206 conf->mddev = mddev;
1207 conf->device_lock = SPIN_LOCK_UNLOCKED;
1208 if (conf->working_disks == 1)
1209 mddev->recovery_cp = MaxSector;
1211 conf->resync_lock = SPIN_LOCK_UNLOCKED;
1212 init_waitqueue_head(&conf->wait_idle);
1213 init_waitqueue_head(&conf->wait_resume);
1215 if (!conf->working_disks) {
1216 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1217 mdname(mddev));
1218 goto out_free_conf;
1221 mddev->degraded = 0;
1222 for (i = 0; i < conf->raid_disks; i++) {
1224 disk = conf->mirrors + i;
1226 if (!disk->rdev) {
1227 disk->head_position = 0;
1228 mddev->degraded++;
1233 * find the first working one and use it as a starting point
1234 * to read balancing.
1236 for (j = 0; j < conf->raid_disks &&
1237 (!conf->mirrors[j].rdev ||
1238 !conf->mirrors[j].rdev->in_sync) ; j++)
1239 /* nothing */;
1240 conf->last_used = j;
1245 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1246 if (!mddev->thread) {
1247 printk(KERN_ERR
1248 "raid1: couldn't allocate thread for %s\n",
1249 mdname(mddev));
1250 goto out_free_conf;
1253 printk(KERN_INFO
1254 "raid1: raid set %s active with %d out of %d mirrors\n",
1255 mdname(mddev), mddev->raid_disks - mddev->degraded,
1256 mddev->raid_disks);
1258 * Ok, everything is just fine now
1260 mddev->array_size = mddev->size;
1262 return 0;
1264 out_no_mem:
1265 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1266 mdname(mddev));
1268 out_free_conf:
1269 if (conf) {
1270 if (conf->r1bio_pool)
1271 mempool_destroy(conf->r1bio_pool);
1272 if (conf->mirrors)
1273 kfree(conf->mirrors);
1274 if (conf->poolinfo)
1275 kfree(conf->poolinfo);
1276 kfree(conf);
1277 mddev->private = NULL;
1279 out:
1280 return -EIO;
1283 static int stop(mddev_t *mddev)
1285 conf_t *conf = mddev_to_conf(mddev);
1287 md_unregister_thread(mddev->thread);
1288 mddev->thread = NULL;
1289 if (conf->r1bio_pool)
1290 mempool_destroy(conf->r1bio_pool);
1291 if (conf->mirrors)
1292 kfree(conf->mirrors);
1293 if (conf->poolinfo)
1294 kfree(conf->poolinfo);
1295 kfree(conf);
1296 mddev->private = NULL;
1297 return 0;
1300 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1302 /* no resync is happening, and there is enough space
1303 * on all devices, so we can resize.
1304 * We need to make sure resync covers any new space.
1305 * If the array is shrinking we should possibly wait until
1306 * any io in the removed space completes, but it hardly seems
1307 * worth it.
1309 mddev->array_size = sectors>>1;
1310 set_capacity(mddev->gendisk, mddev->array_size << 1);
1311 mddev->changed = 1;
1312 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1313 mddev->recovery_cp = mddev->size << 1;
1314 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1316 mddev->size = mddev->array_size;
1317 return 0;
1320 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1322 /* We need to:
1323 * 1/ resize the r1bio_pool
1324 * 2/ resize conf->mirrors
1326 * We allocate a new r1bio_pool if we can.
1327 * Then raise a device barrier and wait until all IO stops.
1328 * Then resize conf->mirrors and swap in the new r1bio pool.
1330 mempool_t *newpool, *oldpool;
1331 struct pool_info *newpoolinfo;
1332 mirror_info_t *newmirrors;
1333 conf_t *conf = mddev_to_conf(mddev);
1335 int d;
1337 for (d= raid_disks; d < conf->raid_disks; d++)
1338 if (conf->mirrors[d].rdev)
1339 return -EBUSY;
1341 newpoolinfo = kmalloc(sizeof(newpoolinfo), GFP_KERNEL);
1342 if (!newpoolinfo)
1343 return -ENOMEM;
1344 newpoolinfo->mddev = mddev;
1345 newpoolinfo->raid_disks = raid_disks;
1347 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1348 r1bio_pool_free, newpoolinfo);
1349 if (!newpool) {
1350 kfree(newpoolinfo);
1351 return -ENOMEM;
1353 newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1354 if (!newmirrors) {
1355 kfree(newpoolinfo);
1356 mempool_destroy(newpool);
1357 return -ENOMEM;
1359 memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1361 spin_lock_irq(&conf->resync_lock);
1362 conf->barrier++;
1363 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1364 conf->resync_lock, unplug_slaves(mddev));
1365 spin_unlock_irq(&conf->resync_lock);
1367 /* ok, everything is stopped */
1368 oldpool = conf->r1bio_pool;
1369 conf->r1bio_pool = newpool;
1370 for (d=0; d < raid_disks && d < conf->raid_disks; d++)
1371 newmirrors[d] = conf->mirrors[d];
1372 kfree(conf->mirrors);
1373 conf->mirrors = newmirrors;
1374 kfree(conf->poolinfo);
1375 conf->poolinfo = newpoolinfo;
1377 mddev->degraded += (raid_disks - conf->raid_disks);
1378 conf->raid_disks = mddev->raid_disks = raid_disks;
1380 spin_lock_irq(&conf->resync_lock);
1381 conf->barrier--;
1382 spin_unlock_irq(&conf->resync_lock);
1383 wake_up(&conf->wait_resume);
1384 wake_up(&conf->wait_idle);
1387 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1388 md_wakeup_thread(mddev->thread);
1390 mempool_destroy(oldpool);
1391 return 0;
1395 static mdk_personality_t raid1_personality =
1397 .name = "raid1",
1398 .owner = THIS_MODULE,
1399 .make_request = make_request,
1400 .run = run,
1401 .stop = stop,
1402 .status = status,
1403 .error_handler = error,
1404 .hot_add_disk = raid1_add_disk,
1405 .hot_remove_disk= raid1_remove_disk,
1406 .spare_active = raid1_spare_active,
1407 .sync_request = sync_request,
1408 .resize = raid1_resize,
1409 .reshape = raid1_reshape,
1412 static int __init raid_init(void)
1414 return register_md_personality(RAID1, &raid1_personality);
1417 static void raid_exit(void)
1419 unregister_md_personality(RAID1);
1422 module_init(raid_init);
1423 module_exit(raid_exit);
1424 MODULE_LICENSE("GPL");
1425 MODULE_ALIAS("md-personality-3"); /* RAID1 */