MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / block / ll_rw_blk.c
blob26fdf6be6bd0ceb299c5e45f8d9154bc068cc3bf
1 /*
2 * linux/drivers/block/ll_rw_blk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
33 * for max sense size
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data);
38 static void blk_unplug_timeout(unsigned long data);
41 * For the allocated request tables
43 static kmem_cache_t *request_cachep;
46 * For queue allocation
48 static kmem_cache_t *requestq_cachep;
51 * For io context allocations
53 static kmem_cache_t *iocontext_cachep;
55 static wait_queue_head_t congestion_wqh[2] = {
56 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
57 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 unsigned long blk_max_low_pfn, blk_max_pfn;
67 EXPORT_SYMBOL(blk_max_low_pfn);
68 EXPORT_SYMBOL(blk_max_pfn);
70 /* Amount of time in which a process may batch requests */
71 #define BLK_BATCH_TIME (HZ/50UL)
73 /* Number of requests a "batching" process may submit */
74 #define BLK_BATCH_REQ 32
77 * Return the threshold (number of used requests) at which the queue is
78 * considered to be congested. It include a little hysteresis to keep the
79 * context switch rate down.
81 static inline int queue_congestion_on_threshold(struct request_queue *q)
83 return q->nr_congestion_on;
87 * The threshold at which a queue is considered to be uncongested
89 static inline int queue_congestion_off_threshold(struct request_queue *q)
91 return q->nr_congestion_off;
94 static void blk_queue_congestion_threshold(struct request_queue *q)
96 int nr;
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
100 nr = q->nr_requests;
101 q->nr_congestion_on = nr;
103 nr = q->nr_requests - (q->nr_requests / 8) - 1;
104 if (nr < 1)
105 nr = 1;
106 q->nr_congestion_off = nr;
110 * A queue has just exitted congestion. Note this in the global counter of
111 * congested queues, and wake up anyone who was waiting for requests to be
112 * put back.
114 static void clear_queue_congested(request_queue_t *q, int rw)
116 enum bdi_state bit;
117 wait_queue_head_t *wqh = &congestion_wqh[rw];
119 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
120 clear_bit(bit, &q->backing_dev_info.state);
121 smp_mb__after_clear_bit();
122 if (waitqueue_active(wqh))
123 wake_up(wqh);
127 * A queue has just entered congestion. Flag that in the queue's VM-visible
128 * state flags and increment the global gounter of congested queues.
130 static void set_queue_congested(request_queue_t *q, int rw)
132 enum bdi_state bit;
134 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
135 set_bit(bit, &q->backing_dev_info.state);
139 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
140 * @bdev: device
142 * Locates the passed device's request queue and returns the address of its
143 * backing_dev_info
145 * Will return NULL if the request queue cannot be located.
147 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
149 struct backing_dev_info *ret = NULL;
150 request_queue_t *q = bdev_get_queue(bdev);
152 if (q)
153 ret = &q->backing_dev_info;
154 return ret;
157 EXPORT_SYMBOL(blk_get_backing_dev_info);
159 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
161 q->activity_fn = fn;
162 q->activity_data = data;
165 EXPORT_SYMBOL(blk_queue_activity_fn);
168 * blk_queue_prep_rq - set a prepare_request function for queue
169 * @q: queue
170 * @pfn: prepare_request function
172 * It's possible for a queue to register a prepare_request callback which
173 * is invoked before the request is handed to the request_fn. The goal of
174 * the function is to prepare a request for I/O, it can be used to build a
175 * cdb from the request data for instance.
178 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
180 q->prep_rq_fn = pfn;
183 EXPORT_SYMBOL(blk_queue_prep_rq);
186 * blk_queue_merge_bvec - set a merge_bvec function for queue
187 * @q: queue
188 * @mbfn: merge_bvec_fn
190 * Usually queues have static limitations on the max sectors or segments that
191 * we can put in a request. Stacking drivers may have some settings that
192 * are dynamic, and thus we have to query the queue whether it is ok to
193 * add a new bio_vec to a bio at a given offset or not. If the block device
194 * has such limitations, it needs to register a merge_bvec_fn to control
195 * the size of bio's sent to it. Note that a block device *must* allow a
196 * single page to be added to an empty bio. The block device driver may want
197 * to use the bio_split() function to deal with these bio's. By default
198 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
199 * honored.
201 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
203 q->merge_bvec_fn = mbfn;
206 EXPORT_SYMBOL(blk_queue_merge_bvec);
209 * blk_queue_make_request - define an alternate make_request function for a device
210 * @q: the request queue for the device to be affected
211 * @mfn: the alternate make_request function
213 * Description:
214 * The normal way for &struct bios to be passed to a device
215 * driver is for them to be collected into requests on a request
216 * queue, and then to allow the device driver to select requests
217 * off that queue when it is ready. This works well for many block
218 * devices. However some block devices (typically virtual devices
219 * such as md or lvm) do not benefit from the processing on the
220 * request queue, and are served best by having the requests passed
221 * directly to them. This can be achieved by providing a function
222 * to blk_queue_make_request().
224 * Caveat:
225 * The driver that does this *must* be able to deal appropriately
226 * with buffers in "highmemory". This can be accomplished by either calling
227 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
228 * blk_queue_bounce() to create a buffer in normal memory.
230 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
233 * set defaults
235 q->nr_requests = BLKDEV_MAX_RQ;
236 q->max_phys_segments = MAX_PHYS_SEGMENTS;
237 q->max_hw_segments = MAX_HW_SEGMENTS;
238 q->make_request_fn = mfn;
239 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
240 q->backing_dev_info.state = 0;
241 q->backing_dev_info.memory_backed = 0;
242 blk_queue_max_sectors(q, MAX_SECTORS);
243 blk_queue_hardsect_size(q, 512);
244 blk_queue_dma_alignment(q, 511);
245 blk_queue_congestion_threshold(q);
247 q->unplug_thresh = 4; /* hmm */
248 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
249 if (q->unplug_delay == 0)
250 q->unplug_delay = 1;
252 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
254 q->unplug_timer.function = blk_unplug_timeout;
255 q->unplug_timer.data = (unsigned long)q;
258 * by default assume old behaviour and bounce for any highmem page
260 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
262 blk_queue_activity_fn(q, NULL, NULL);
265 EXPORT_SYMBOL(blk_queue_make_request);
268 * blk_queue_ordered - does this queue support ordered writes
269 * @q: the request queue
270 * @flag: see below
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
279 void blk_queue_ordered(request_queue_t *q, int flag)
281 if (flag)
282 set_bit(QUEUE_FLAG_ORDERED, &q->queue_flags);
283 else
284 clear_bit(QUEUE_FLAG_ORDERED, &q->queue_flags);
287 EXPORT_SYMBOL(blk_queue_ordered);
290 * blk_queue_issue_flush_fn - set function for issuing a flush
291 * @q: the request queue
292 * @iff: the function to be called issuing the flush
294 * Description:
295 * If a driver supports issuing a flush command, the support is notified
296 * to the block layer by defining it through this call.
299 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
301 q->issue_flush_fn = iff;
304 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
307 * blk_queue_bounce_limit - set bounce buffer limit for queue
308 * @q: the request queue for the device
309 * @dma_addr: bus address limit
311 * Description:
312 * Different hardware can have different requirements as to what pages
313 * it can do I/O directly to. A low level driver can call
314 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
315 * buffers for doing I/O to pages residing above @page. By default
316 * the block layer sets this to the highest numbered "low" memory page.
318 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
320 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
323 * set appropriate bounce gfp mask -- unfortunately we don't have a
324 * full 4GB zone, so we have to resort to low memory for any bounces.
325 * ISA has its own < 16MB zone.
327 if (bounce_pfn < blk_max_low_pfn) {
328 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
329 init_emergency_isa_pool();
330 q->bounce_gfp = GFP_NOIO | GFP_DMA;
331 } else
332 q->bounce_gfp = GFP_NOIO;
334 q->bounce_pfn = bounce_pfn;
337 EXPORT_SYMBOL(blk_queue_bounce_limit);
340 * blk_queue_max_sectors - set max sectors for a request for this queue
341 * @q: the request queue for the device
342 * @max_sectors: max sectors in the usual 512b unit
344 * Description:
345 * Enables a low level driver to set an upper limit on the size of
346 * received requests.
348 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
350 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
351 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
352 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
355 q->max_sectors = q->max_hw_sectors = max_sectors;
358 EXPORT_SYMBOL(blk_queue_max_sectors);
361 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
362 * @q: the request queue for the device
363 * @max_segments: max number of segments
365 * Description:
366 * Enables a low level driver to set an upper limit on the number of
367 * physical data segments in a request. This would be the largest sized
368 * scatter list the driver could handle.
370 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
372 if (!max_segments) {
373 max_segments = 1;
374 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
377 q->max_phys_segments = max_segments;
380 EXPORT_SYMBOL(blk_queue_max_phys_segments);
383 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
384 * @q: the request queue for the device
385 * @max_segments: max number of segments
387 * Description:
388 * Enables a low level driver to set an upper limit on the number of
389 * hw data segments in a request. This would be the largest number of
390 * address/length pairs the host adapter can actually give as once
391 * to the device.
393 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
395 if (!max_segments) {
396 max_segments = 1;
397 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
400 q->max_hw_segments = max_segments;
403 EXPORT_SYMBOL(blk_queue_max_hw_segments);
406 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
407 * @q: the request queue for the device
408 * @max_size: max size of segment in bytes
410 * Description:
411 * Enables a low level driver to set an upper limit on the size of a
412 * coalesced segment
414 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
416 if (max_size < PAGE_CACHE_SIZE) {
417 max_size = PAGE_CACHE_SIZE;
418 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
421 q->max_segment_size = max_size;
424 EXPORT_SYMBOL(blk_queue_max_segment_size);
427 * blk_queue_hardsect_size - set hardware sector size for the queue
428 * @q: the request queue for the device
429 * @size: the hardware sector size, in bytes
431 * Description:
432 * This should typically be set to the lowest possible sector size
433 * that the hardware can operate on (possible without reverting to
434 * even internal read-modify-write operations). Usually the default
435 * of 512 covers most hardware.
437 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
439 q->hardsect_size = size;
442 EXPORT_SYMBOL(blk_queue_hardsect_size);
445 * Returns the minimum that is _not_ zero, unless both are zero.
447 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
450 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
451 * @t: the stacking driver (top)
452 * @b: the underlying device (bottom)
454 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
456 /* zero is "infinity" */
457 t->max_sectors = t->max_hw_sectors =
458 min_not_zero(t->max_sectors,b->max_sectors);
460 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
461 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
462 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
463 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
466 EXPORT_SYMBOL(blk_queue_stack_limits);
469 * blk_queue_segment_boundary - set boundary rules for segment merging
470 * @q: the request queue for the device
471 * @mask: the memory boundary mask
473 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
475 if (mask < PAGE_CACHE_SIZE - 1) {
476 mask = PAGE_CACHE_SIZE - 1;
477 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
480 q->seg_boundary_mask = mask;
483 EXPORT_SYMBOL(blk_queue_segment_boundary);
486 * blk_queue_dma_alignment - set dma length and memory alignment
487 * @q: the request queue for the device
488 * @mask: alignment mask
490 * description:
491 * set required memory and length aligment for direct dma transactions.
492 * this is used when buiding direct io requests for the queue.
495 void blk_queue_dma_alignment(request_queue_t *q, int mask)
497 q->dma_alignment = mask;
500 EXPORT_SYMBOL(blk_queue_dma_alignment);
503 * blk_queue_find_tag - find a request by its tag and queue
505 * @q: The request queue for the device
506 * @tag: The tag of the request
508 * Notes:
509 * Should be used when a device returns a tag and you want to match
510 * it with a request.
512 * no locks need be held.
514 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
516 struct blk_queue_tag *bqt = q->queue_tags;
518 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
519 return NULL;
521 return bqt->tag_index[tag];
524 EXPORT_SYMBOL(blk_queue_find_tag);
527 * __blk_queue_free_tags - release tag maintenance info
528 * @q: the request queue for the device
530 * Notes:
531 * blk_cleanup_queue() will take care of calling this function, if tagging
532 * has been used. So there's no need to call this directly.
534 static void __blk_queue_free_tags(request_queue_t *q)
536 struct blk_queue_tag *bqt = q->queue_tags;
538 if (!bqt)
539 return;
541 if (atomic_dec_and_test(&bqt->refcnt)) {
542 BUG_ON(bqt->busy);
543 BUG_ON(!list_empty(&bqt->busy_list));
545 kfree(bqt->tag_index);
546 bqt->tag_index = NULL;
548 kfree(bqt->tag_map);
549 bqt->tag_map = NULL;
551 kfree(bqt);
554 q->queue_tags = NULL;
555 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
559 * blk_queue_free_tags - release tag maintenance info
560 * @q: the request queue for the device
562 * Notes:
563 * This is used to disabled tagged queuing to a device, yet leave
564 * queue in function.
566 void blk_queue_free_tags(request_queue_t *q)
568 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
571 EXPORT_SYMBOL(blk_queue_free_tags);
573 static int
574 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
576 int bits, i;
577 struct request **tag_index;
578 unsigned long *tag_map;
580 if (depth > q->nr_requests * 2) {
581 depth = q->nr_requests * 2;
582 printk(KERN_ERR "%s: adjusted depth to %d\n",
583 __FUNCTION__, depth);
586 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
587 if (!tag_index)
588 goto fail;
590 bits = (depth / BLK_TAGS_PER_LONG) + 1;
591 tag_map = kmalloc(bits * sizeof(unsigned long), GFP_ATOMIC);
592 if (!tag_map)
593 goto fail;
595 memset(tag_index, 0, depth * sizeof(struct request *));
596 memset(tag_map, 0, bits * sizeof(unsigned long));
597 tags->max_depth = depth;
598 tags->real_max_depth = bits * BITS_PER_LONG;
599 tags->tag_index = tag_index;
600 tags->tag_map = tag_map;
603 * set the upper bits if the depth isn't a multiple of the word size
605 for (i = depth; i < bits * BLK_TAGS_PER_LONG; i++)
606 __set_bit(i, tag_map);
608 return 0;
609 fail:
610 kfree(tag_index);
611 return -ENOMEM;
615 * blk_queue_init_tags - initialize the queue tag info
616 * @q: the request queue for the device
617 * @depth: the maximum queue depth supported
619 int blk_queue_init_tags(request_queue_t *q, int depth,
620 struct blk_queue_tag *tags)
622 int rc;
624 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
626 if (!tags && !q->queue_tags) {
627 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
628 if (!tags)
629 goto fail;
631 if (init_tag_map(q, tags, depth))
632 goto fail;
634 INIT_LIST_HEAD(&tags->busy_list);
635 tags->busy = 0;
636 atomic_set(&tags->refcnt, 1);
637 } else if (q->queue_tags) {
638 if ((rc = blk_queue_resize_tags(q, depth)))
639 return rc;
640 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
641 return 0;
642 } else
643 atomic_inc(&tags->refcnt);
646 * assign it, all done
648 q->queue_tags = tags;
649 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
650 return 0;
651 fail:
652 kfree(tags);
653 return -ENOMEM;
656 EXPORT_SYMBOL(blk_queue_init_tags);
659 * blk_queue_resize_tags - change the queueing depth
660 * @q: the request queue for the device
661 * @new_depth: the new max command queueing depth
663 * Notes:
664 * Must be called with the queue lock held.
666 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
668 struct blk_queue_tag *bqt = q->queue_tags;
669 struct request **tag_index;
670 unsigned long *tag_map;
671 int bits, max_depth;
673 if (!bqt)
674 return -ENXIO;
677 * don't bother sizing down
679 if (new_depth <= bqt->real_max_depth) {
680 bqt->max_depth = new_depth;
681 return 0;
685 * save the old state info, so we can copy it back
687 tag_index = bqt->tag_index;
688 tag_map = bqt->tag_map;
689 max_depth = bqt->real_max_depth;
691 if (init_tag_map(q, bqt, new_depth))
692 return -ENOMEM;
694 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
695 bits = max_depth / BLK_TAGS_PER_LONG;
696 memcpy(bqt->tag_map, tag_map, bits * sizeof(unsigned long));
698 kfree(tag_index);
699 kfree(tag_map);
700 return 0;
703 EXPORT_SYMBOL(blk_queue_resize_tags);
706 * blk_queue_end_tag - end tag operations for a request
707 * @q: the request queue for the device
708 * @rq: the request that has completed
710 * Description:
711 * Typically called when end_that_request_first() returns 0, meaning
712 * all transfers have been done for a request. It's important to call
713 * this function before end_that_request_last(), as that will put the
714 * request back on the free list thus corrupting the internal tag list.
716 * Notes:
717 * queue lock must be held.
719 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
721 struct blk_queue_tag *bqt = q->queue_tags;
722 int tag = rq->tag;
724 BUG_ON(tag == -1);
726 if (unlikely(tag >= bqt->real_max_depth))
727 return;
729 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
730 printk("attempt to clear non-busy tag (%d)\n", tag);
731 return;
734 list_del_init(&rq->queuelist);
735 rq->flags &= ~REQ_QUEUED;
736 rq->tag = -1;
738 if (unlikely(bqt->tag_index[tag] == NULL))
739 printk("tag %d is missing\n", tag);
741 bqt->tag_index[tag] = NULL;
742 bqt->busy--;
745 EXPORT_SYMBOL(blk_queue_end_tag);
748 * blk_queue_start_tag - find a free tag and assign it
749 * @q: the request queue for the device
750 * @rq: the block request that needs tagging
752 * Description:
753 * This can either be used as a stand-alone helper, or possibly be
754 * assigned as the queue &prep_rq_fn (in which case &struct request
755 * automagically gets a tag assigned). Note that this function
756 * assumes that any type of request can be queued! if this is not
757 * true for your device, you must check the request type before
758 * calling this function. The request will also be removed from
759 * the request queue, so it's the drivers responsibility to readd
760 * it if it should need to be restarted for some reason.
762 * Notes:
763 * queue lock must be held.
765 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
767 struct blk_queue_tag *bqt = q->queue_tags;
768 unsigned long *map = bqt->tag_map;
769 int tag = 0;
771 if (unlikely((rq->flags & REQ_QUEUED))) {
772 printk(KERN_ERR
773 "request %p for device [%s] already tagged %d",
774 rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
775 BUG();
778 for (map = bqt->tag_map; *map == -1UL; map++) {
779 tag += BLK_TAGS_PER_LONG;
781 if (tag >= bqt->max_depth)
782 return 1;
785 tag += ffz(*map);
786 __set_bit(tag, bqt->tag_map);
788 rq->flags |= REQ_QUEUED;
789 rq->tag = tag;
790 bqt->tag_index[tag] = rq;
791 blkdev_dequeue_request(rq);
792 list_add(&rq->queuelist, &bqt->busy_list);
793 bqt->busy++;
794 return 0;
797 EXPORT_SYMBOL(blk_queue_start_tag);
800 * blk_queue_invalidate_tags - invalidate all pending tags
801 * @q: the request queue for the device
803 * Description:
804 * Hardware conditions may dictate a need to stop all pending requests.
805 * In this case, we will safely clear the block side of the tag queue and
806 * readd all requests to the request queue in the right order.
808 * Notes:
809 * queue lock must be held.
811 void blk_queue_invalidate_tags(request_queue_t *q)
813 struct blk_queue_tag *bqt = q->queue_tags;
814 struct list_head *tmp, *n;
815 struct request *rq;
817 list_for_each_safe(tmp, n, &bqt->busy_list) {
818 rq = list_entry_rq(tmp);
820 if (rq->tag == -1) {
821 printk("bad tag found on list\n");
822 list_del_init(&rq->queuelist);
823 rq->flags &= ~REQ_QUEUED;
824 } else
825 blk_queue_end_tag(q, rq);
827 rq->flags &= ~REQ_STARTED;
828 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
832 EXPORT_SYMBOL(blk_queue_invalidate_tags);
834 static char *rq_flags[] = {
835 "REQ_RW",
836 "REQ_FAILFAST",
837 "REQ_SOFTBARRIER",
838 "REQ_HARDBARRIER",
839 "REQ_CMD",
840 "REQ_NOMERGE",
841 "REQ_STARTED",
842 "REQ_DONTPREP",
843 "REQ_QUEUED",
844 "REQ_PC",
845 "REQ_BLOCK_PC",
846 "REQ_SENSE",
847 "REQ_FAILED",
848 "REQ_QUIET",
849 "REQ_SPECIAL",
850 "REQ_DRIVE_CMD",
851 "REQ_DRIVE_TASK",
852 "REQ_DRIVE_TASKFILE",
853 "REQ_PREEMPT",
854 "REQ_PM_SUSPEND",
855 "REQ_PM_RESUME",
856 "REQ_PM_SHUTDOWN",
859 void blk_dump_rq_flags(struct request *rq, char *msg)
861 int bit;
863 printk("%s: dev %s: flags = ", msg,
864 rq->rq_disk ? rq->rq_disk->disk_name : "?");
865 bit = 0;
866 do {
867 if (rq->flags & (1 << bit))
868 printk("%s ", rq_flags[bit]);
869 bit++;
870 } while (bit < __REQ_NR_BITS);
872 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
873 rq->nr_sectors,
874 rq->current_nr_sectors);
875 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
877 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
878 printk("cdb: ");
879 for (bit = 0; bit < sizeof(rq->cmd); bit++)
880 printk("%02x ", rq->cmd[bit]);
881 printk("\n");
885 EXPORT_SYMBOL(blk_dump_rq_flags);
887 void blk_recount_segments(request_queue_t *q, struct bio *bio)
889 struct bio_vec *bv, *bvprv = NULL;
890 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
891 int high, highprv = 1;
893 if (unlikely(!bio->bi_io_vec))
894 return;
896 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
897 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
898 bio_for_each_segment(bv, bio, i) {
900 * the trick here is making sure that a high page is never
901 * considered part of another segment, since that might
902 * change with the bounce page.
904 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
905 if (high || highprv)
906 goto new_hw_segment;
907 if (cluster) {
908 if (seg_size + bv->bv_len > q->max_segment_size)
909 goto new_segment;
910 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
911 goto new_segment;
912 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
913 goto new_segment;
914 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
915 goto new_hw_segment;
917 seg_size += bv->bv_len;
918 hw_seg_size += bv->bv_len;
919 bvprv = bv;
920 continue;
922 new_segment:
923 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
924 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
925 hw_seg_size += bv->bv_len;
926 } else {
927 new_hw_segment:
928 if (hw_seg_size > bio->bi_hw_front_size)
929 bio->bi_hw_front_size = hw_seg_size;
930 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
931 nr_hw_segs++;
934 nr_phys_segs++;
935 bvprv = bv;
936 seg_size = bv->bv_len;
937 highprv = high;
939 if (hw_seg_size > bio->bi_hw_back_size)
940 bio->bi_hw_back_size = hw_seg_size;
941 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
942 bio->bi_hw_front_size = hw_seg_size;
943 bio->bi_phys_segments = nr_phys_segs;
944 bio->bi_hw_segments = nr_hw_segs;
945 bio->bi_flags |= (1 << BIO_SEG_VALID);
949 int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
950 struct bio *nxt)
952 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
953 return 0;
955 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
956 return 0;
957 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
958 return 0;
961 * bio and nxt are contigous in memory, check if the queue allows
962 * these two to be merged into one
964 if (BIO_SEG_BOUNDARY(q, bio, nxt))
965 return 1;
967 return 0;
970 EXPORT_SYMBOL(blk_phys_contig_segment);
972 int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
973 struct bio *nxt)
975 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
976 blk_recount_segments(q, bio);
977 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
978 blk_recount_segments(q, nxt);
979 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
980 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
981 return 0;
982 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
983 return 0;
985 return 1;
988 EXPORT_SYMBOL(blk_hw_contig_segment);
991 * map a request to scatterlist, return number of sg entries setup. Caller
992 * must make sure sg can hold rq->nr_phys_segments entries
994 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
996 struct bio_vec *bvec, *bvprv;
997 struct bio *bio;
998 int nsegs, i, cluster;
1000 nsegs = 0;
1001 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1004 * for each bio in rq
1006 bvprv = NULL;
1007 rq_for_each_bio(bio, rq) {
1009 * for each segment in bio
1011 bio_for_each_segment(bvec, bio, i) {
1012 int nbytes = bvec->bv_len;
1014 if (bvprv && cluster) {
1015 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1016 goto new_segment;
1018 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1019 goto new_segment;
1020 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1021 goto new_segment;
1023 sg[nsegs - 1].length += nbytes;
1024 } else {
1025 new_segment:
1026 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1027 sg[nsegs].page = bvec->bv_page;
1028 sg[nsegs].length = nbytes;
1029 sg[nsegs].offset = bvec->bv_offset;
1031 nsegs++;
1033 bvprv = bvec;
1034 } /* segments in bio */
1035 } /* bios in rq */
1037 return nsegs;
1040 EXPORT_SYMBOL(blk_rq_map_sg);
1043 * the standard queue merge functions, can be overridden with device
1044 * specific ones if so desired
1047 static inline int ll_new_mergeable(request_queue_t *q,
1048 struct request *req,
1049 struct bio *bio)
1051 int nr_phys_segs = bio_phys_segments(q, bio);
1053 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1054 req->flags |= REQ_NOMERGE;
1055 if (req == q->last_merge)
1056 q->last_merge = NULL;
1057 return 0;
1061 * A hw segment is just getting larger, bump just the phys
1062 * counter.
1064 req->nr_phys_segments += nr_phys_segs;
1065 return 1;
1068 static inline int ll_new_hw_segment(request_queue_t *q,
1069 struct request *req,
1070 struct bio *bio)
1072 int nr_hw_segs = bio_hw_segments(q, bio);
1073 int nr_phys_segs = bio_phys_segments(q, bio);
1075 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1076 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1077 req->flags |= REQ_NOMERGE;
1078 if (req == q->last_merge)
1079 q->last_merge = NULL;
1080 return 0;
1084 * This will form the start of a new hw segment. Bump both
1085 * counters.
1087 req->nr_hw_segments += nr_hw_segs;
1088 req->nr_phys_segments += nr_phys_segs;
1089 return 1;
1092 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1093 struct bio *bio)
1095 int len;
1097 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1098 req->flags |= REQ_NOMERGE;
1099 if (req == q->last_merge)
1100 q->last_merge = NULL;
1101 return 0;
1103 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1104 blk_recount_segments(q, req->biotail);
1105 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1106 blk_recount_segments(q, bio);
1107 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1108 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1109 !BIOVEC_VIRT_OVERSIZE(len)) {
1110 int mergeable = ll_new_mergeable(q, req, bio);
1112 if (mergeable) {
1113 if (req->nr_hw_segments == 1)
1114 req->bio->bi_hw_front_size = len;
1115 if (bio->bi_hw_segments == 1)
1116 bio->bi_hw_back_size = len;
1118 return mergeable;
1121 return ll_new_hw_segment(q, req, bio);
1124 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1125 struct bio *bio)
1127 int len;
1129 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1130 req->flags |= REQ_NOMERGE;
1131 if (req == q->last_merge)
1132 q->last_merge = NULL;
1133 return 0;
1135 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1136 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1137 blk_recount_segments(q, bio);
1138 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1139 blk_recount_segments(q, req->bio);
1140 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1141 !BIOVEC_VIRT_OVERSIZE(len)) {
1142 int mergeable = ll_new_mergeable(q, req, bio);
1144 if (mergeable) {
1145 if (bio->bi_hw_segments == 1)
1146 bio->bi_hw_front_size = len;
1147 if (req->nr_hw_segments == 1)
1148 req->biotail->bi_hw_back_size = len;
1150 return mergeable;
1153 return ll_new_hw_segment(q, req, bio);
1156 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1157 struct request *next)
1159 int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
1160 int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1163 * First check if the either of the requests are re-queued
1164 * requests. Can't merge them if they are.
1166 if (req->special || next->special)
1167 return 0;
1170 * Will it become to large?
1172 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1173 return 0;
1175 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1176 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1177 total_phys_segments--;
1179 if (total_phys_segments > q->max_phys_segments)
1180 return 0;
1182 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1183 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1184 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1186 * propagate the combined length to the end of the requests
1188 if (req->nr_hw_segments == 1)
1189 req->bio->bi_hw_front_size = len;
1190 if (next->nr_hw_segments == 1)
1191 next->biotail->bi_hw_back_size = len;
1192 total_hw_segments--;
1195 if (total_hw_segments > q->max_hw_segments)
1196 return 0;
1198 /* Merge is OK... */
1199 req->nr_phys_segments = total_phys_segments;
1200 req->nr_hw_segments = total_hw_segments;
1201 return 1;
1205 * "plug" the device if there are no outstanding requests: this will
1206 * force the transfer to start only after we have put all the requests
1207 * on the list.
1209 * This is called with interrupts off and no requests on the queue and
1210 * with the queue lock held.
1212 void blk_plug_device(request_queue_t *q)
1214 WARN_ON(!irqs_disabled());
1217 * don't plug a stopped queue, it must be paired with blk_start_queue()
1218 * which will restart the queueing
1220 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1221 return;
1223 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1224 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1227 EXPORT_SYMBOL(blk_plug_device);
1230 * remove the queue from the plugged list, if present. called with
1231 * queue lock held and interrupts disabled.
1233 int blk_remove_plug(request_queue_t *q)
1235 WARN_ON(!irqs_disabled());
1237 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1238 return 0;
1240 del_timer(&q->unplug_timer);
1241 return 1;
1244 EXPORT_SYMBOL(blk_remove_plug);
1247 * remove the plug and let it rip..
1249 void __generic_unplug_device(request_queue_t *q)
1251 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1252 return;
1254 if (!blk_remove_plug(q))
1255 return;
1258 * was plugged, fire request_fn if queue has stuff to do
1260 if (elv_next_request(q))
1261 q->request_fn(q);
1263 EXPORT_SYMBOL(__generic_unplug_device);
1266 * generic_unplug_device - fire a request queue
1267 * @q: The &request_queue_t in question
1269 * Description:
1270 * Linux uses plugging to build bigger requests queues before letting
1271 * the device have at them. If a queue is plugged, the I/O scheduler
1272 * is still adding and merging requests on the queue. Once the queue
1273 * gets unplugged, the request_fn defined for the queue is invoked and
1274 * transfers started.
1276 void generic_unplug_device(request_queue_t *q)
1278 spin_lock_irq(q->queue_lock);
1279 __generic_unplug_device(q);
1280 spin_unlock_irq(q->queue_lock);
1282 EXPORT_SYMBOL(generic_unplug_device);
1284 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1285 struct page *page)
1287 request_queue_t *q = bdi->unplug_io_data;
1290 * devices don't necessarily have an ->unplug_fn defined
1292 if (q->unplug_fn)
1293 q->unplug_fn(q);
1296 static void blk_unplug_work(void *data)
1298 request_queue_t *q = data;
1300 q->unplug_fn(q);
1303 static void blk_unplug_timeout(unsigned long data)
1305 request_queue_t *q = (request_queue_t *)data;
1307 kblockd_schedule_work(&q->unplug_work);
1311 * blk_start_queue - restart a previously stopped queue
1312 * @q: The &request_queue_t in question
1314 * Description:
1315 * blk_start_queue() will clear the stop flag on the queue, and call
1316 * the request_fn for the queue if it was in a stopped state when
1317 * entered. Also see blk_stop_queue(). Queue lock must be held.
1319 void blk_start_queue(request_queue_t *q)
1321 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1324 * one level of recursion is ok and is much faster than kicking
1325 * the unplug handling
1327 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1328 q->request_fn(q);
1329 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1330 } else {
1331 blk_plug_device(q);
1332 kblockd_schedule_work(&q->unplug_work);
1336 EXPORT_SYMBOL(blk_start_queue);
1339 * blk_stop_queue - stop a queue
1340 * @q: The &request_queue_t in question
1342 * Description:
1343 * The Linux block layer assumes that a block driver will consume all
1344 * entries on the request queue when the request_fn strategy is called.
1345 * Often this will not happen, because of hardware limitations (queue
1346 * depth settings). If a device driver gets a 'queue full' response,
1347 * or if it simply chooses not to queue more I/O at one point, it can
1348 * call this function to prevent the request_fn from being called until
1349 * the driver has signalled it's ready to go again. This happens by calling
1350 * blk_start_queue() to restart queue operations. Queue lock must be held.
1352 void blk_stop_queue(request_queue_t *q)
1354 blk_remove_plug(q);
1355 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1358 EXPORT_SYMBOL(blk_stop_queue);
1361 * blk_run_queue - run a single device queue
1362 * @q: The queue to run
1364 void blk_run_queue(struct request_queue *q)
1366 unsigned long flags;
1368 spin_lock_irqsave(q->queue_lock, flags);
1369 blk_remove_plug(q);
1370 q->request_fn(q);
1371 spin_unlock_irqrestore(q->queue_lock, flags);
1374 EXPORT_SYMBOL(blk_run_queue);
1377 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1378 * @q: the request queue to be released
1380 * Description:
1381 * blk_cleanup_queue is the pair to blk_init_queue() or
1382 * blk_queue_make_request(). It should be called when a request queue is
1383 * being released; typically when a block device is being de-registered.
1384 * Currently, its primary task it to free all the &struct request
1385 * structures that were allocated to the queue and the queue itself.
1387 * Caveat:
1388 * Hopefully the low level driver will have finished any
1389 * outstanding requests first...
1391 void blk_cleanup_queue(request_queue_t * q)
1393 struct request_list *rl = &q->rq;
1395 if (!atomic_dec_and_test(&q->refcnt))
1396 return;
1398 elevator_exit(q);
1400 del_timer_sync(&q->unplug_timer);
1401 kblockd_flush();
1403 if (rl->rq_pool)
1404 mempool_destroy(rl->rq_pool);
1406 if (q->queue_tags)
1407 __blk_queue_free_tags(q);
1409 kmem_cache_free(requestq_cachep, q);
1412 EXPORT_SYMBOL(blk_cleanup_queue);
1414 static int blk_init_free_list(request_queue_t *q)
1416 struct request_list *rl = &q->rq;
1418 rl->count[READ] = rl->count[WRITE] = 0;
1419 init_waitqueue_head(&rl->wait[READ]);
1420 init_waitqueue_head(&rl->wait[WRITE]);
1422 rl->rq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, request_cachep);
1424 if (!rl->rq_pool)
1425 return -ENOMEM;
1427 return 0;
1430 static int __make_request(request_queue_t *, struct bio *);
1432 static elevator_t *chosen_elevator =
1433 #if defined(CONFIG_IOSCHED_AS)
1434 &iosched_as;
1435 #elif defined(CONFIG_IOSCHED_DEADLINE)
1436 &iosched_deadline;
1437 #elif defined(CONFIG_IOSCHED_CFQ)
1438 &iosched_cfq;
1439 #elif defined(CONFIG_IOSCHED_NOOP)
1440 &elevator_noop;
1441 #else
1442 NULL;
1443 #error "You must have at least 1 I/O scheduler selected"
1444 #endif
1446 #if defined(CONFIG_IOSCHED_AS) || defined(CONFIG_IOSCHED_DEADLINE) || defined (CONFIG_IOSCHED_NOOP)
1447 static int __init elevator_setup(char *str)
1449 #ifdef CONFIG_IOSCHED_DEADLINE
1450 if (!strcmp(str, "deadline"))
1451 chosen_elevator = &iosched_deadline;
1452 #endif
1453 #ifdef CONFIG_IOSCHED_AS
1454 if (!strcmp(str, "as"))
1455 chosen_elevator = &iosched_as;
1456 #endif
1457 #ifdef CONFIG_IOSCHED_CFQ
1458 if (!strcmp(str, "cfq"))
1459 chosen_elevator = &iosched_cfq;
1460 #endif
1461 #ifdef CONFIG_IOSCHED_NOOP
1462 if (!strcmp(str, "noop"))
1463 chosen_elevator = &elevator_noop;
1464 #endif
1465 return 1;
1468 __setup("elevator=", elevator_setup);
1469 #endif /* CONFIG_IOSCHED_AS || CONFIG_IOSCHED_DEADLINE || CONFIG_IOSCHED_NOOP */
1471 request_queue_t *blk_alloc_queue(int gfp_mask)
1473 request_queue_t *q = kmem_cache_alloc(requestq_cachep, gfp_mask);
1475 if (!q)
1476 return NULL;
1478 memset(q, 0, sizeof(*q));
1479 init_timer(&q->unplug_timer);
1480 atomic_set(&q->refcnt, 1);
1482 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1483 q->backing_dev_info.unplug_io_data = q;
1485 return q;
1488 EXPORT_SYMBOL(blk_alloc_queue);
1491 * blk_init_queue - prepare a request queue for use with a block device
1492 * @rfn: The function to be called to process requests that have been
1493 * placed on the queue.
1494 * @lock: Request queue spin lock
1496 * Description:
1497 * If a block device wishes to use the standard request handling procedures,
1498 * which sorts requests and coalesces adjacent requests, then it must
1499 * call blk_init_queue(). The function @rfn will be called when there
1500 * are requests on the queue that need to be processed. If the device
1501 * supports plugging, then @rfn may not be called immediately when requests
1502 * are available on the queue, but may be called at some time later instead.
1503 * Plugged queues are generally unplugged when a buffer belonging to one
1504 * of the requests on the queue is needed, or due to memory pressure.
1506 * @rfn is not required, or even expected, to remove all requests off the
1507 * queue, but only as many as it can handle at a time. If it does leave
1508 * requests on the queue, it is responsible for arranging that the requests
1509 * get dealt with eventually.
1511 * The queue spin lock must be held while manipulating the requests on the
1512 * request queue.
1514 * Function returns a pointer to the initialized request queue, or NULL if
1515 * it didn't succeed.
1517 * Note:
1518 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1519 * when the block device is deactivated (such as at module unload).
1521 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1523 request_queue_t *q;
1524 static int printed;
1526 q = blk_alloc_queue(GFP_KERNEL);
1527 if (!q)
1528 return NULL;
1530 if (blk_init_free_list(q))
1531 goto out_init;
1533 if (!printed) {
1534 printed = 1;
1535 printk("Using %s io scheduler\n", chosen_elevator->elevator_name);
1538 q->request_fn = rfn;
1539 q->back_merge_fn = ll_back_merge_fn;
1540 q->front_merge_fn = ll_front_merge_fn;
1541 q->merge_requests_fn = ll_merge_requests_fn;
1542 q->prep_rq_fn = NULL;
1543 q->unplug_fn = generic_unplug_device;
1544 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1545 q->queue_lock = lock;
1547 blk_queue_segment_boundary(q, 0xffffffff);
1549 blk_queue_make_request(q, __make_request);
1550 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1552 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1553 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1556 * all done
1558 if (!elevator_init(q, chosen_elevator))
1559 return q;
1561 blk_cleanup_queue(q);
1562 out_init:
1563 kmem_cache_free(requestq_cachep, q);
1564 return NULL;
1567 EXPORT_SYMBOL(blk_init_queue);
1569 int blk_get_queue(request_queue_t *q)
1571 if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
1572 atomic_inc(&q->refcnt);
1573 return 0;
1576 return 1;
1579 EXPORT_SYMBOL(blk_get_queue);
1581 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1583 elv_put_request(q, rq);
1584 mempool_free(rq, q->rq.rq_pool);
1587 static inline struct request *blk_alloc_request(request_queue_t *q,int gfp_mask)
1589 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1591 if (!rq)
1592 return NULL;
1594 if (!elv_set_request(q, rq, gfp_mask))
1595 return rq;
1597 mempool_free(rq, q->rq.rq_pool);
1598 return NULL;
1602 * ioc_batching returns true if the ioc is a valid batching request and
1603 * should be given priority access to a request.
1605 static inline int ioc_batching(struct io_context *ioc)
1607 if (!ioc)
1608 return 0;
1611 * Make sure the process is able to allocate at least 1 request
1612 * even if the batch times out, otherwise we could theoretically
1613 * lose wakeups.
1615 return ioc->nr_batch_requests == BLK_BATCH_REQ ||
1616 (ioc->nr_batch_requests > 0
1617 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1621 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1622 * will cause the process to be a "batcher" on all queues in the system. This
1623 * is the behaviour we want though - once it gets a wakeup it should be given
1624 * a nice run.
1626 void ioc_set_batching(struct io_context *ioc)
1628 if (!ioc || ioc_batching(ioc))
1629 return;
1631 ioc->nr_batch_requests = BLK_BATCH_REQ;
1632 ioc->last_waited = jiffies;
1636 * A request has just been released. Account for it, update the full and
1637 * congestion status, wake up any waiters. Called under q->queue_lock.
1639 static void freed_request(request_queue_t *q, int rw)
1641 struct request_list *rl = &q->rq;
1643 rl->count[rw]--;
1644 if (rl->count[rw] < queue_congestion_off_threshold(q))
1645 clear_queue_congested(q, rw);
1646 if (rl->count[rw]+1 <= q->nr_requests) {
1647 if (waitqueue_active(&rl->wait[rw]))
1648 wake_up(&rl->wait[rw]);
1649 if (!waitqueue_active(&rl->wait[rw]))
1650 blk_clear_queue_full(q, rw);
1654 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1656 * Get a free request, queue_lock must not be held
1658 static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1660 struct request *rq = NULL;
1661 struct request_list *rl = &q->rq;
1662 struct io_context *ioc = get_io_context(gfp_mask);
1664 spin_lock_irq(q->queue_lock);
1665 if (rl->count[rw]+1 >= q->nr_requests) {
1667 * The queue will fill after this allocation, so set it as
1668 * full, and mark this process as "batching". This process
1669 * will be allowed to complete a batch of requests, others
1670 * will be blocked.
1672 if (!blk_queue_full(q, rw)) {
1673 ioc_set_batching(ioc);
1674 blk_set_queue_full(q, rw);
1678 if (blk_queue_full(q, rw)
1679 && !ioc_batching(ioc) && !elv_may_queue(q, rw)) {
1681 * The queue is full and the allocating process is not a
1682 * "batcher", and not exempted by the IO scheduler
1684 spin_unlock_irq(q->queue_lock);
1685 goto out;
1688 rl->count[rw]++;
1689 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1690 set_queue_congested(q, rw);
1691 spin_unlock_irq(q->queue_lock);
1693 rq = blk_alloc_request(q, gfp_mask);
1694 if (!rq) {
1696 * Allocation failed presumably due to memory. Undo anything
1697 * we might have messed up.
1699 * Allocating task should really be put onto the front of the
1700 * wait queue, but this is pretty rare.
1702 spin_lock_irq(q->queue_lock);
1703 freed_request(q, rw);
1704 spin_unlock_irq(q->queue_lock);
1705 goto out;
1708 if (ioc_batching(ioc))
1709 ioc->nr_batch_requests--;
1711 INIT_LIST_HEAD(&rq->queuelist);
1714 * first three bits are identical in rq->flags and bio->bi_rw,
1715 * see bio.h and blkdev.h
1717 rq->flags = rw;
1719 rq->errors = 0;
1720 rq->rq_status = RQ_ACTIVE;
1721 rq->bio = rq->biotail = NULL;
1722 rq->buffer = NULL;
1723 rq->ref_count = 1;
1724 rq->q = q;
1725 rq->rl = rl;
1726 rq->waiting = NULL;
1727 rq->special = NULL;
1728 rq->data_len = 0;
1729 rq->data = NULL;
1730 rq->sense = NULL;
1732 out:
1733 put_io_context(ioc);
1734 return rq;
1738 * No available requests for this queue, unplug the device and wait for some
1739 * requests to become available.
1741 static struct request *get_request_wait(request_queue_t *q, int rw)
1743 DEFINE_WAIT(wait);
1744 struct request *rq;
1746 generic_unplug_device(q);
1747 do {
1748 struct request_list *rl = &q->rq;
1750 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1751 TASK_UNINTERRUPTIBLE);
1753 rq = get_request(q, rw, GFP_NOIO);
1755 if (!rq) {
1756 struct io_context *ioc;
1758 io_schedule();
1761 * After sleeping, we become a "batching" process and
1762 * will be able to allocate at least one request, and
1763 * up to a big batch of them for a small period time.
1764 * See ioc_batching, ioc_set_batching
1766 ioc = get_io_context(GFP_NOIO);
1767 ioc_set_batching(ioc);
1768 put_io_context(ioc);
1770 finish_wait(&rl->wait[rw], &wait);
1771 } while (!rq);
1773 return rq;
1776 struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
1778 struct request *rq;
1780 BUG_ON(rw != READ && rw != WRITE);
1782 if (gfp_mask & __GFP_WAIT)
1783 rq = get_request_wait(q, rw);
1784 else
1785 rq = get_request(q, rw, gfp_mask);
1787 return rq;
1790 EXPORT_SYMBOL(blk_get_request);
1793 * blk_requeue_request - put a request back on queue
1794 * @q: request queue where request should be inserted
1795 * @rq: request to be inserted
1797 * Description:
1798 * Drivers often keep queueing requests until the hardware cannot accept
1799 * more, when that condition happens we need to put the request back
1800 * on the queue. Must be called with queue lock held.
1802 void blk_requeue_request(request_queue_t *q, struct request *rq)
1804 if (blk_rq_tagged(rq))
1805 blk_queue_end_tag(q, rq);
1807 elv_requeue_request(q, rq);
1810 EXPORT_SYMBOL(blk_requeue_request);
1813 * blk_insert_request - insert a special request in to a request queue
1814 * @q: request queue where request should be inserted
1815 * @rq: request to be inserted
1816 * @at_head: insert request at head or tail of queue
1817 * @data: private data
1818 * @reinsert: true if request it a reinsertion of previously processed one
1820 * Description:
1821 * Many block devices need to execute commands asynchronously, so they don't
1822 * block the whole kernel from preemption during request execution. This is
1823 * accomplished normally by inserting aritficial requests tagged as
1824 * REQ_SPECIAL in to the corresponding request queue, and letting them be
1825 * scheduled for actual execution by the request queue.
1827 * We have the option of inserting the head or the tail of the queue.
1828 * Typically we use the tail for new ioctls and so forth. We use the head
1829 * of the queue for things like a QUEUE_FULL message from a device, or a
1830 * host that is unable to accept a particular command.
1832 void blk_insert_request(request_queue_t *q, struct request *rq,
1833 int at_head, void *data, int reinsert)
1835 unsigned long flags;
1838 * tell I/O scheduler that this isn't a regular read/write (ie it
1839 * must not attempt merges on this) and that it acts as a soft
1840 * barrier
1842 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
1844 rq->special = data;
1846 spin_lock_irqsave(q->queue_lock, flags);
1849 * If command is tagged, release the tag
1851 if (reinsert)
1852 blk_requeue_request(q, rq);
1853 else {
1854 int where = ELEVATOR_INSERT_BACK;
1856 if (at_head)
1857 where = ELEVATOR_INSERT_FRONT;
1859 if (blk_rq_tagged(rq))
1860 blk_queue_end_tag(q, rq);
1862 drive_stat_acct(rq, rq->nr_sectors, 1);
1863 __elv_add_request(q, rq, where, 0);
1865 if (blk_queue_plugged(q))
1866 __generic_unplug_device(q);
1867 else
1868 q->request_fn(q);
1869 spin_unlock_irqrestore(q->queue_lock, flags);
1872 EXPORT_SYMBOL(blk_insert_request);
1875 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
1876 * @q: request queue where request should be inserted
1877 * @rw: READ or WRITE data
1878 * @ubuf: the user buffer
1879 * @len: length of user data
1881 * Description:
1882 * Data will be mapped directly for zero copy io, if possible. Otherwise
1883 * a kernel bounce buffer is used.
1885 * A matching blk_rq_unmap_user() must be issued at the end of io, while
1886 * still in process context.
1888 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
1889 * before being submitted to the device, as pages mapped may be out of
1890 * reach. It's the callers responsibility to make sure this happens. The
1891 * original bio must be passed back in to blk_rq_unmap_user() for proper
1892 * unmapping.
1894 struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
1895 unsigned int len)
1897 unsigned long uaddr;
1898 struct request *rq;
1899 struct bio *bio;
1901 if (len > (q->max_sectors << 9))
1902 return ERR_PTR(-EINVAL);
1903 if ((!len && ubuf) || (len && !ubuf))
1904 return ERR_PTR(-EINVAL);
1906 rq = blk_get_request(q, rw, __GFP_WAIT);
1907 if (!rq)
1908 return ERR_PTR(-ENOMEM);
1911 * if alignment requirement is satisfied, map in user pages for
1912 * direct dma. else, set up kernel bounce buffers
1914 uaddr = (unsigned long) ubuf;
1915 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
1916 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
1917 else
1918 bio = bio_copy_user(q, uaddr, len, rw == READ);
1920 if (!IS_ERR(bio)) {
1921 rq->bio = rq->biotail = bio;
1922 blk_rq_bio_prep(q, rq, bio);
1924 rq->buffer = rq->data = NULL;
1925 rq->data_len = len;
1926 return rq;
1930 * bio is the err-ptr
1932 blk_put_request(rq);
1933 return (struct request *) bio;
1936 EXPORT_SYMBOL(blk_rq_map_user);
1939 * blk_rq_unmap_user - unmap a request with user data
1940 * @rq: request to be unmapped
1941 * @ubuf: user buffer
1942 * @ulen: length of user buffer
1944 * Description:
1945 * Unmap a request previously mapped by blk_rq_map_user().
1947 int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
1949 int ret = 0;
1951 if (bio) {
1952 if (bio_flagged(bio, BIO_USER_MAPPED))
1953 bio_unmap_user(bio);
1954 else
1955 ret = bio_uncopy_user(bio);
1958 blk_put_request(rq);
1959 return ret;
1962 EXPORT_SYMBOL(blk_rq_unmap_user);
1965 * blk_execute_rq - insert a request into queue for execution
1966 * @q: queue to insert the request in
1967 * @bd_disk: matching gendisk
1968 * @rq: request to insert
1970 * Description:
1971 * Insert a fully prepared request at the back of the io scheduler queue
1972 * for execution.
1974 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
1975 struct request *rq)
1977 DECLARE_COMPLETION(wait);
1978 char sense[SCSI_SENSE_BUFFERSIZE];
1979 int err = 0;
1981 rq->rq_disk = bd_disk;
1984 * we need an extra reference to the request, so we can look at
1985 * it after io completion
1987 rq->ref_count++;
1989 if (!rq->sense) {
1990 memset(sense, 0, sizeof(sense));
1991 rq->sense = sense;
1992 rq->sense_len = 0;
1995 rq->flags |= REQ_NOMERGE;
1996 if (!rq->waiting)
1997 rq->waiting = &wait;
1998 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
1999 generic_unplug_device(q);
2000 wait_for_completion(rq->waiting);
2001 rq->waiting = NULL;
2003 if (rq->errors)
2004 err = -EIO;
2006 return err;
2009 EXPORT_SYMBOL(blk_execute_rq);
2012 * blkdev_issue_flush - queue a flush
2013 * @bdev: blockdev to issue flush for
2014 * @error_sector: error sector
2016 * Description:
2017 * Issue a flush for the block device in question. Caller can supply
2018 * room for storing the error offset in case of a flush error, if they
2019 * wish to. Caller must run wait_for_completion() on its own.
2021 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2023 request_queue_t *q;
2025 if (bdev->bd_disk == NULL)
2026 return -ENXIO;
2028 q = bdev_get_queue(bdev);
2029 if (!q)
2030 return -ENXIO;
2031 if (!q->issue_flush_fn)
2032 return -EOPNOTSUPP;
2034 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2037 EXPORT_SYMBOL(blkdev_issue_flush);
2040 * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2041 * @q: device queue
2042 * @disk: gendisk
2043 * @error_sector: error offset
2045 * Description:
2046 * Devices understanding the SCSI command set, can use this function as
2047 * a helper for issuing a cache flush. Note: driver is required to store
2048 * the error offset (in case of error flushing) in ->sector of struct
2049 * request.
2051 int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
2052 sector_t *error_sector)
2054 struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
2055 int ret;
2057 rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
2058 rq->sector = 0;
2059 memset(rq->cmd, 0, sizeof(rq->cmd));
2060 rq->cmd[0] = 0x35;
2061 rq->cmd_len = 12;
2062 rq->data = NULL;
2063 rq->data_len = 0;
2064 rq->timeout = 60 * HZ;
2066 ret = blk_execute_rq(q, disk, rq);
2068 if (ret && error_sector)
2069 *error_sector = rq->sector;
2071 blk_put_request(rq);
2072 return ret;
2075 EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
2077 void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2079 int rw = rq_data_dir(rq);
2081 if (!blk_fs_request(rq) || !rq->rq_disk)
2082 return;
2084 if (rw == READ) {
2085 disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2086 if (!new_io)
2087 disk_stat_inc(rq->rq_disk, read_merges);
2088 } else if (rw == WRITE) {
2089 disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2090 if (!new_io)
2091 disk_stat_inc(rq->rq_disk, write_merges);
2093 if (new_io) {
2094 disk_round_stats(rq->rq_disk);
2095 rq->rq_disk->in_flight++;
2100 * add-request adds a request to the linked list.
2101 * queue lock is held and interrupts disabled, as we muck with the
2102 * request queue list.
2104 static inline void add_request(request_queue_t * q, struct request * req)
2106 drive_stat_acct(req, req->nr_sectors, 1);
2108 if (q->activity_fn)
2109 q->activity_fn(q->activity_data, rq_data_dir(req));
2112 * elevator indicated where it wants this request to be
2113 * inserted at elevator_merge time
2115 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2119 * disk_round_stats() - Round off the performance stats on a struct
2120 * disk_stats.
2122 * The average IO queue length and utilisation statistics are maintained
2123 * by observing the current state of the queue length and the amount of
2124 * time it has been in this state for.
2126 * Normally, that accounting is done on IO completion, but that can result
2127 * in more than a second's worth of IO being accounted for within any one
2128 * second, leading to >100% utilisation. To deal with that, we call this
2129 * function to do a round-off before returning the results when reading
2130 * /proc/diskstats. This accounts immediately for all queue usage up to
2131 * the current jiffies and restarts the counters again.
2133 void disk_round_stats(struct gendisk *disk)
2135 unsigned long now = jiffies;
2137 disk_stat_add(disk, time_in_queue,
2138 disk->in_flight * (now - disk->stamp));
2139 disk->stamp = now;
2141 if (disk->in_flight)
2142 disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2143 disk->stamp_idle = now;
2147 * queue lock must be held
2149 void __blk_put_request(request_queue_t *q, struct request *req)
2151 struct request_list *rl = req->rl;
2153 if (unlikely(!q))
2154 return;
2155 if (unlikely(--req->ref_count))
2156 return;
2158 req->rq_status = RQ_INACTIVE;
2159 req->q = NULL;
2160 req->rl = NULL;
2163 * Request may not have originated from ll_rw_blk. if not,
2164 * it didn't come out of our reserved rq pools
2166 if (rl) {
2167 int rw = rq_data_dir(req);
2169 elv_completed_request(q, req);
2171 BUG_ON(!list_empty(&req->queuelist));
2173 blk_free_request(q, req);
2174 freed_request(q, rw);
2178 void blk_put_request(struct request *req)
2181 * if req->rl isn't set, this request didnt originate from the
2182 * block layer, so it's safe to just disregard it
2184 if (req->rl) {
2185 unsigned long flags;
2186 request_queue_t *q = req->q;
2188 spin_lock_irqsave(q->queue_lock, flags);
2189 __blk_put_request(q, req);
2190 spin_unlock_irqrestore(q->queue_lock, flags);
2194 EXPORT_SYMBOL(blk_put_request);
2197 * blk_congestion_wait - wait for a queue to become uncongested
2198 * @rw: READ or WRITE
2199 * @timeout: timeout in jiffies
2201 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2202 * If no queues are congested then just wait for the next request to be
2203 * returned.
2205 long blk_congestion_wait(int rw, long timeout)
2207 long ret;
2208 DEFINE_WAIT(wait);
2209 wait_queue_head_t *wqh = &congestion_wqh[rw];
2211 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2212 ret = io_schedule_timeout(timeout);
2213 finish_wait(wqh, &wait);
2214 return ret;
2217 EXPORT_SYMBOL(blk_congestion_wait);
2220 * Has to be called with the request spinlock acquired
2222 static int attempt_merge(request_queue_t *q, struct request *req,
2223 struct request *next)
2225 if (!rq_mergeable(req) || !rq_mergeable(next))
2226 return 0;
2229 * not contigious
2231 if (req->sector + req->nr_sectors != next->sector)
2232 return 0;
2234 if (rq_data_dir(req) != rq_data_dir(next)
2235 || req->rq_disk != next->rq_disk
2236 || next->waiting || next->special)
2237 return 0;
2240 * If we are allowed to merge, then append bio list
2241 * from next to rq and release next. merge_requests_fn
2242 * will have updated segment counts, update sector
2243 * counts here.
2245 if (!q->merge_requests_fn(q, req, next))
2246 return 0;
2249 * At this point we have either done a back merge
2250 * or front merge. We need the smaller start_time of
2251 * the merged requests to be the current request
2252 * for accounting purposes.
2254 if (time_after(req->start_time, next->start_time))
2255 req->start_time = next->start_time;
2257 req->biotail->bi_next = next->bio;
2258 req->biotail = next->biotail;
2260 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2262 elv_merge_requests(q, req, next);
2264 if (req->rq_disk) {
2265 disk_round_stats(req->rq_disk);
2266 req->rq_disk->in_flight--;
2269 __blk_put_request(q, next);
2270 return 1;
2273 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2275 struct request *next = elv_latter_request(q, rq);
2277 if (next)
2278 return attempt_merge(q, rq, next);
2280 return 0;
2283 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2285 struct request *prev = elv_former_request(q, rq);
2287 if (prev)
2288 return attempt_merge(q, prev, rq);
2290 return 0;
2294 * blk_attempt_remerge - attempt to remerge active head with next request
2295 * @q: The &request_queue_t belonging to the device
2296 * @rq: The head request (usually)
2298 * Description:
2299 * For head-active devices, the queue can easily be unplugged so quickly
2300 * that proper merging is not done on the front request. This may hurt
2301 * performance greatly for some devices. The block layer cannot safely
2302 * do merging on that first request for these queues, but the driver can
2303 * call this function and make it happen any way. Only the driver knows
2304 * when it is safe to do so.
2306 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2308 unsigned long flags;
2310 spin_lock_irqsave(q->queue_lock, flags);
2311 attempt_back_merge(q, rq);
2312 spin_unlock_irqrestore(q->queue_lock, flags);
2315 EXPORT_SYMBOL(blk_attempt_remerge);
2318 * Non-locking blk_attempt_remerge variant.
2320 void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
2322 attempt_back_merge(q, rq);
2325 EXPORT_SYMBOL(__blk_attempt_remerge);
2327 static int __make_request(request_queue_t *q, struct bio *bio)
2329 struct request *req, *freereq = NULL;
2330 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err;
2331 sector_t sector;
2333 sector = bio->bi_sector;
2334 nr_sectors = bio_sectors(bio);
2335 cur_nr_sectors = bio_cur_sectors(bio);
2337 rw = bio_data_dir(bio);
2340 * low level driver can indicate that it wants pages above a
2341 * certain limit bounced to low memory (ie for highmem, or even
2342 * ISA dma in theory)
2344 blk_queue_bounce(q, &bio);
2346 spin_lock_prefetch(q->queue_lock);
2348 barrier = bio_barrier(bio);
2349 if (barrier && !(q->queue_flags & (1 << QUEUE_FLAG_ORDERED))) {
2350 err = -EOPNOTSUPP;
2351 goto end_io;
2354 again:
2355 spin_lock_irq(q->queue_lock);
2357 if (elv_queue_empty(q)) {
2358 blk_plug_device(q);
2359 goto get_rq;
2361 if (barrier)
2362 goto get_rq;
2364 el_ret = elv_merge(q, &req, bio);
2365 switch (el_ret) {
2366 case ELEVATOR_BACK_MERGE:
2367 BUG_ON(!rq_mergeable(req));
2369 if (!q->back_merge_fn(q, req, bio))
2370 break;
2372 req->biotail->bi_next = bio;
2373 req->biotail = bio;
2374 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2375 drive_stat_acct(req, nr_sectors, 0);
2376 if (!attempt_back_merge(q, req))
2377 elv_merged_request(q, req);
2378 goto out;
2380 case ELEVATOR_FRONT_MERGE:
2381 BUG_ON(!rq_mergeable(req));
2383 if (!q->front_merge_fn(q, req, bio))
2384 break;
2386 bio->bi_next = req->bio;
2387 req->cbio = req->bio = bio;
2388 req->nr_cbio_segments = bio_segments(bio);
2389 req->nr_cbio_sectors = bio_sectors(bio);
2392 * may not be valid. if the low level driver said
2393 * it didn't need a bounce buffer then it better
2394 * not touch req->buffer either...
2396 req->buffer = bio_data(bio);
2397 req->current_nr_sectors = cur_nr_sectors;
2398 req->hard_cur_sectors = cur_nr_sectors;
2399 req->sector = req->hard_sector = sector;
2400 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2401 drive_stat_acct(req, nr_sectors, 0);
2402 if (!attempt_front_merge(q, req))
2403 elv_merged_request(q, req);
2404 goto out;
2407 * elevator says don't/can't merge. get new request
2409 case ELEVATOR_NO_MERGE:
2410 break;
2412 default:
2413 printk("elevator returned crap (%d)\n", el_ret);
2414 BUG();
2418 * Grab a free request from the freelist - if that is empty, check
2419 * if we are doing read ahead and abort instead of blocking for
2420 * a free slot.
2422 get_rq:
2423 if (freereq) {
2424 req = freereq;
2425 freereq = NULL;
2426 } else {
2427 spin_unlock_irq(q->queue_lock);
2428 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2430 * READA bit set
2432 err = -EWOULDBLOCK;
2433 if (bio_rw_ahead(bio))
2434 goto end_io;
2436 freereq = get_request_wait(q, rw);
2438 goto again;
2441 req->flags |= REQ_CMD;
2444 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2446 if (bio_rw_ahead(bio) || bio_failfast(bio))
2447 req->flags |= REQ_FAILFAST;
2450 * REQ_BARRIER implies no merging, but lets make it explicit
2452 if (barrier)
2453 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2455 req->errors = 0;
2456 req->hard_sector = req->sector = sector;
2457 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2458 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2459 req->nr_phys_segments = bio_phys_segments(q, bio);
2460 req->nr_hw_segments = bio_hw_segments(q, bio);
2461 req->nr_cbio_segments = bio_segments(bio);
2462 req->nr_cbio_sectors = bio_sectors(bio);
2463 req->buffer = bio_data(bio); /* see ->buffer comment above */
2464 req->waiting = NULL;
2465 req->cbio = req->bio = req->biotail = bio;
2466 req->rq_disk = bio->bi_bdev->bd_disk;
2467 req->start_time = jiffies;
2469 add_request(q, req);
2470 out:
2471 if (freereq)
2472 __blk_put_request(q, freereq);
2473 if (bio_sync(bio))
2474 __generic_unplug_device(q);
2476 spin_unlock_irq(q->queue_lock);
2477 return 0;
2479 end_io:
2480 bio_endio(bio, nr_sectors << 9, err);
2481 return 0;
2485 * If bio->bi_dev is a partition, remap the location
2487 static inline void blk_partition_remap(struct bio *bio)
2489 struct block_device *bdev = bio->bi_bdev;
2491 if (bdev != bdev->bd_contains) {
2492 struct hd_struct *p = bdev->bd_part;
2494 switch (bio->bi_rw) {
2495 case READ:
2496 p->read_sectors += bio_sectors(bio);
2497 p->reads++;
2498 break;
2499 case WRITE:
2500 p->write_sectors += bio_sectors(bio);
2501 p->writes++;
2502 break;
2504 bio->bi_sector += p->start_sect;
2505 bio->bi_bdev = bdev->bd_contains;
2510 * generic_make_request: hand a buffer to its device driver for I/O
2511 * @bio: The bio describing the location in memory and on the device.
2513 * generic_make_request() is used to make I/O requests of block
2514 * devices. It is passed a &struct bio, which describes the I/O that needs
2515 * to be done.
2517 * generic_make_request() does not return any status. The
2518 * success/failure status of the request, along with notification of
2519 * completion, is delivered asynchronously through the bio->bi_end_io
2520 * function described (one day) else where.
2522 * The caller of generic_make_request must make sure that bi_io_vec
2523 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2524 * set to describe the device address, and the
2525 * bi_end_io and optionally bi_private are set to describe how
2526 * completion notification should be signaled.
2528 * generic_make_request and the drivers it calls may use bi_next if this
2529 * bio happens to be merged with someone else, and may change bi_dev and
2530 * bi_sector for remaps as it sees fit. So the values of these fields
2531 * should NOT be depended on after the call to generic_make_request.
2533 void generic_make_request(struct bio *bio)
2535 request_queue_t *q;
2536 sector_t maxsector;
2537 int ret, nr_sectors = bio_sectors(bio);
2539 might_sleep();
2540 /* Test device or partition size, when known. */
2541 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2542 if (maxsector) {
2543 sector_t sector = bio->bi_sector;
2545 if (maxsector < nr_sectors ||
2546 maxsector - nr_sectors < sector) {
2547 char b[BDEVNAME_SIZE];
2548 /* This may well happen - the kernel calls
2549 * bread() without checking the size of the
2550 * device, e.g., when mounting a device. */
2551 printk(KERN_INFO
2552 "attempt to access beyond end of device\n");
2553 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2554 bdevname(bio->bi_bdev, b),
2555 bio->bi_rw,
2556 (unsigned long long) sector + nr_sectors,
2557 (long long) maxsector);
2559 set_bit(BIO_EOF, &bio->bi_flags);
2560 goto end_io;
2565 * Resolve the mapping until finished. (drivers are
2566 * still free to implement/resolve their own stacking
2567 * by explicitly returning 0)
2569 * NOTE: we don't repeat the blk_size check for each new device.
2570 * Stacking drivers are expected to know what they are doing.
2572 do {
2573 char b[BDEVNAME_SIZE];
2575 q = bdev_get_queue(bio->bi_bdev);
2576 if (!q) {
2577 printk(KERN_ERR
2578 "generic_make_request: Trying to access "
2579 "nonexistent block-device %s (%Lu)\n",
2580 bdevname(bio->bi_bdev, b),
2581 (long long) bio->bi_sector);
2582 end_io:
2583 bio_endio(bio, bio->bi_size, -EIO);
2584 break;
2587 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2588 printk("bio too big device %s (%u > %u)\n",
2589 bdevname(bio->bi_bdev, b),
2590 bio_sectors(bio),
2591 q->max_hw_sectors);
2592 goto end_io;
2595 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
2596 goto end_io;
2599 * If this device has partitions, remap block n
2600 * of partition p to block n+start(p) of the disk.
2602 blk_partition_remap(bio);
2604 ret = q->make_request_fn(q, bio);
2605 } while (ret);
2608 EXPORT_SYMBOL(generic_make_request);
2611 * submit_bio: submit a bio to the block device layer for I/O
2612 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2613 * @bio: The &struct bio which describes the I/O
2615 * submit_bio() is very similar in purpose to generic_make_request(), and
2616 * uses that function to do most of the work. Both are fairly rough
2617 * interfaces, @bio must be presetup and ready for I/O.
2620 void submit_bio(int rw, struct bio *bio)
2622 int count = bio_sectors(bio);
2624 BIO_BUG_ON(!bio->bi_size);
2625 BIO_BUG_ON(!bio->bi_io_vec);
2626 bio->bi_rw = rw;
2627 if (rw & WRITE)
2628 mod_page_state(pgpgout, count);
2629 else
2630 mod_page_state(pgpgin, count);
2632 if (unlikely(block_dump)) {
2633 char b[BDEVNAME_SIZE];
2634 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2635 current->comm, current->pid,
2636 (rw & WRITE) ? "WRITE" : "READ",
2637 (unsigned long long)bio->bi_sector,
2638 bdevname(bio->bi_bdev,b));
2641 generic_make_request(bio);
2644 EXPORT_SYMBOL(submit_bio);
2647 * blk_rq_next_segment
2648 * @rq: the request being processed
2650 * Description:
2651 * Points to the next segment in the request if the current segment
2652 * is complete. Leaves things unchanged if this segment is not over
2653 * or if no more segments are left in this request.
2655 * Meant to be used for bio traversal during I/O submission
2656 * Does not affect any I/O completions or update completion state
2657 * in the request, and does not modify any bio fields.
2659 * Decrementing rq->nr_sectors, rq->current_nr_sectors and
2660 * rq->nr_cbio_sectors as data is transferred is the caller's
2661 * responsibility and should be done before calling this routine.
2663 void blk_rq_next_segment(struct request *rq)
2665 if (rq->current_nr_sectors > 0)
2666 return;
2668 if (rq->nr_cbio_sectors > 0) {
2669 --rq->nr_cbio_segments;
2670 rq->current_nr_sectors = blk_rq_vec(rq)->bv_len >> 9;
2671 } else {
2672 if ((rq->cbio = rq->cbio->bi_next)) {
2673 rq->nr_cbio_segments = bio_segments(rq->cbio);
2674 rq->nr_cbio_sectors = bio_sectors(rq->cbio);
2675 rq->current_nr_sectors = bio_cur_sectors(rq->cbio);
2679 /* remember the size of this segment before we start I/O */
2680 rq->hard_cur_sectors = rq->current_nr_sectors;
2684 * process_that_request_first - process partial request submission
2685 * @req: the request being processed
2686 * @nr_sectors: number of sectors I/O has been submitted on
2688 * Description:
2689 * May be used for processing bio's while submitting I/O without
2690 * signalling completion. Fails if more data is requested than is
2691 * available in the request in which case it doesn't advance any
2692 * pointers.
2694 * Assumes a request is correctly set up. No sanity checks.
2696 * Return:
2697 * 0 - no more data left to submit (not processed)
2698 * 1 - data available to submit for this request (processed)
2700 int process_that_request_first(struct request *req, unsigned int nr_sectors)
2702 unsigned int nsect;
2704 if (req->nr_sectors < nr_sectors)
2705 return 0;
2707 req->nr_sectors -= nr_sectors;
2708 req->sector += nr_sectors;
2709 while (nr_sectors) {
2710 nsect = min_t(unsigned, req->current_nr_sectors, nr_sectors);
2711 req->current_nr_sectors -= nsect;
2712 nr_sectors -= nsect;
2713 if (req->cbio) {
2714 req->nr_cbio_sectors -= nsect;
2715 blk_rq_next_segment(req);
2718 return 1;
2721 EXPORT_SYMBOL(process_that_request_first);
2723 void blk_recalc_rq_segments(struct request *rq)
2725 struct bio *bio, *prevbio = NULL;
2726 int nr_phys_segs, nr_hw_segs;
2728 if (!rq->bio)
2729 return;
2731 nr_phys_segs = nr_hw_segs = 0;
2732 rq_for_each_bio(bio, rq) {
2733 /* Force bio hw/phys segs to be recalculated. */
2734 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2736 nr_phys_segs += bio_phys_segments(rq->q, bio);
2737 nr_hw_segs += bio_hw_segments(rq->q, bio);
2738 if (prevbio) {
2739 if (blk_phys_contig_segment(rq->q, prevbio, bio))
2740 nr_phys_segs--;
2741 if (blk_hw_contig_segment(rq->q, prevbio, bio))
2742 nr_hw_segs--;
2744 prevbio = bio;
2747 rq->nr_phys_segments = nr_phys_segs;
2748 rq->nr_hw_segments = nr_hw_segs;
2751 void blk_recalc_rq_sectors(struct request *rq, int nsect)
2753 if (blk_fs_request(rq)) {
2754 rq->hard_sector += nsect;
2755 rq->hard_nr_sectors -= nsect;
2758 * Move the I/O submission pointers ahead if required,
2759 * i.e. for drivers not aware of rq->cbio.
2761 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
2762 (rq->sector <= rq->hard_sector)) {
2763 rq->sector = rq->hard_sector;
2764 rq->nr_sectors = rq->hard_nr_sectors;
2765 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
2766 rq->current_nr_sectors = rq->hard_cur_sectors;
2767 rq->nr_cbio_segments = bio_segments(rq->bio);
2768 rq->nr_cbio_sectors = bio_sectors(rq->bio);
2769 rq->buffer = bio_data(rq->bio);
2771 rq->cbio = rq->bio;
2775 * if total number of sectors is less than the first segment
2776 * size, something has gone terribly wrong
2778 if (rq->nr_sectors < rq->current_nr_sectors) {
2779 printk("blk: request botched\n");
2780 rq->nr_sectors = rq->current_nr_sectors;
2785 static int __end_that_request_first(struct request *req, int uptodate,
2786 int nr_bytes)
2788 int total_bytes, bio_nbytes, error, next_idx = 0;
2789 struct bio *bio;
2792 * extend uptodate bool to allow < 0 value to be direct io error
2794 error = 0;
2795 if (end_io_error(uptodate))
2796 error = !uptodate ? -EIO : uptodate;
2799 * for a REQ_BLOCK_PC request, we want to carry any eventual
2800 * sense key with us all the way through
2802 if (!blk_pc_request(req))
2803 req->errors = 0;
2805 if (!uptodate) {
2806 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
2807 printk("end_request: I/O error, dev %s, sector %llu\n",
2808 req->rq_disk ? req->rq_disk->disk_name : "?",
2809 (unsigned long long)req->sector);
2812 total_bytes = bio_nbytes = 0;
2813 while ((bio = req->bio) != NULL) {
2814 int nbytes;
2816 if (nr_bytes >= bio->bi_size) {
2817 req->bio = bio->bi_next;
2818 nbytes = bio->bi_size;
2819 bio_endio(bio, nbytes, error);
2820 next_idx = 0;
2821 bio_nbytes = 0;
2822 } else {
2823 int idx = bio->bi_idx + next_idx;
2825 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
2826 blk_dump_rq_flags(req, "__end_that");
2827 printk("%s: bio idx %d >= vcnt %d\n",
2828 __FUNCTION__,
2829 bio->bi_idx, bio->bi_vcnt);
2830 break;
2833 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2834 BIO_BUG_ON(nbytes > bio->bi_size);
2837 * not a complete bvec done
2839 if (unlikely(nbytes > nr_bytes)) {
2840 bio_nbytes += nr_bytes;
2841 total_bytes += nr_bytes;
2842 break;
2846 * advance to the next vector
2848 next_idx++;
2849 bio_nbytes += nbytes;
2852 total_bytes += nbytes;
2853 nr_bytes -= nbytes;
2855 if ((bio = req->bio)) {
2857 * end more in this run, or just return 'not-done'
2859 if (unlikely(nr_bytes <= 0))
2860 break;
2865 * completely done
2867 if (!req->bio)
2868 return 0;
2871 * if the request wasn't completed, update state
2873 if (bio_nbytes) {
2874 bio_endio(bio, bio_nbytes, error);
2875 bio->bi_idx += next_idx;
2876 bio_iovec(bio)->bv_offset += nr_bytes;
2877 bio_iovec(bio)->bv_len -= nr_bytes;
2880 blk_recalc_rq_sectors(req, total_bytes >> 9);
2881 blk_recalc_rq_segments(req);
2882 return 1;
2886 * end_that_request_first - end I/O on a request
2887 * @req: the request being processed
2888 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
2889 * @nr_sectors: number of sectors to end I/O on
2891 * Description:
2892 * Ends I/O on a number of sectors attached to @req, and sets it up
2893 * for the next range of segments (if any) in the cluster.
2895 * Return:
2896 * 0 - we are done with this request, call end_that_request_last()
2897 * 1 - still buffers pending for this request
2899 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
2901 return __end_that_request_first(req, uptodate, nr_sectors << 9);
2904 EXPORT_SYMBOL(end_that_request_first);
2907 * end_that_request_chunk - end I/O on a request
2908 * @req: the request being processed
2909 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
2910 * @nr_bytes: number of bytes to complete
2912 * Description:
2913 * Ends I/O on a number of bytes attached to @req, and sets it up
2914 * for the next range of segments (if any). Like end_that_request_first(),
2915 * but deals with bytes instead of sectors.
2917 * Return:
2918 * 0 - we are done with this request, call end_that_request_last()
2919 * 1 - still buffers pending for this request
2921 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
2923 return __end_that_request_first(req, uptodate, nr_bytes);
2926 EXPORT_SYMBOL(end_that_request_chunk);
2929 * queue lock must be held
2931 void end_that_request_last(struct request *req)
2933 struct gendisk *disk = req->rq_disk;
2934 struct completion *waiting = req->waiting;
2936 if (unlikely(laptop_mode) && blk_fs_request(req))
2937 laptop_io_completion();
2939 if (disk && blk_fs_request(req)) {
2940 unsigned long duration = jiffies - req->start_time;
2941 switch (rq_data_dir(req)) {
2942 case WRITE:
2943 disk_stat_inc(disk, writes);
2944 disk_stat_add(disk, write_ticks, duration);
2945 break;
2946 case READ:
2947 disk_stat_inc(disk, reads);
2948 disk_stat_add(disk, read_ticks, duration);
2949 break;
2951 disk_round_stats(disk);
2952 disk->in_flight--;
2954 __blk_put_request(req->q, req);
2955 /* Do this LAST! The structure may be freed immediately afterwards */
2956 if (waiting)
2957 complete(waiting);
2960 EXPORT_SYMBOL(end_that_request_last);
2962 void end_request(struct request *req, int uptodate)
2964 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
2965 add_disk_randomness(req->rq_disk);
2966 blkdev_dequeue_request(req);
2967 end_that_request_last(req);
2971 EXPORT_SYMBOL(end_request);
2973 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
2975 /* first three bits are identical in rq->flags and bio->bi_rw */
2976 rq->flags |= (bio->bi_rw & 7);
2978 rq->nr_phys_segments = bio_phys_segments(q, bio);
2979 rq->nr_hw_segments = bio_hw_segments(q, bio);
2980 rq->current_nr_sectors = bio_cur_sectors(bio);
2981 rq->hard_cur_sectors = rq->current_nr_sectors;
2982 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2983 rq->nr_cbio_segments = bio_segments(bio);
2984 rq->nr_cbio_sectors = bio_sectors(bio);
2985 rq->buffer = bio_data(bio);
2987 rq->cbio = rq->bio = rq->biotail = bio;
2990 EXPORT_SYMBOL(blk_rq_bio_prep);
2992 void blk_rq_prep_restart(struct request *rq)
2994 struct bio *bio;
2996 bio = rq->cbio = rq->bio;
2997 if (bio) {
2998 rq->nr_cbio_segments = bio_segments(bio);
2999 rq->nr_cbio_sectors = bio_sectors(bio);
3000 rq->hard_cur_sectors = bio_cur_sectors(bio);
3001 rq->buffer = bio_data(bio);
3003 rq->sector = rq->hard_sector;
3004 rq->nr_sectors = rq->hard_nr_sectors;
3005 rq->current_nr_sectors = rq->hard_cur_sectors;
3008 EXPORT_SYMBOL(blk_rq_prep_restart);
3010 int kblockd_schedule_work(struct work_struct *work)
3012 return queue_work(kblockd_workqueue, work);
3015 EXPORT_SYMBOL(kblockd_schedule_work);
3017 void kblockd_flush(void)
3019 flush_workqueue(kblockd_workqueue);
3022 int __init blk_dev_init(void)
3024 kblockd_workqueue = create_workqueue("kblockd");
3025 if (!kblockd_workqueue)
3026 panic("Failed to create kblockd\n");
3028 request_cachep = kmem_cache_create("blkdev_requests",
3029 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3031 requestq_cachep = kmem_cache_create("blkdev_queue",
3032 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3034 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3035 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3037 blk_max_low_pfn = max_low_pfn;
3038 blk_max_pfn = max_pfn;
3039 return 0;
3043 * IO Context helper functions
3045 void put_io_context(struct io_context *ioc)
3047 if (ioc == NULL)
3048 return;
3050 BUG_ON(atomic_read(&ioc->refcount) == 0);
3052 if (atomic_dec_and_test(&ioc->refcount)) {
3053 if (ioc->aic && ioc->aic->dtor)
3054 ioc->aic->dtor(ioc->aic);
3055 kmem_cache_free(iocontext_cachep, ioc);
3059 /* Called by the exitting task */
3060 void exit_io_context(void)
3062 unsigned long flags;
3063 struct io_context *ioc;
3065 local_irq_save(flags);
3066 ioc = current->io_context;
3067 if (ioc) {
3068 if (ioc->aic && ioc->aic->exit)
3069 ioc->aic->exit(ioc->aic);
3070 put_io_context(ioc);
3071 current->io_context = NULL;
3072 } else
3073 WARN_ON(1);
3074 local_irq_restore(flags);
3078 * If the current task has no IO context then create one and initialise it.
3079 * If it does have a context, take a ref on it.
3081 * This is always called in the context of the task which submitted the I/O.
3082 * But weird things happen, so we disable local interrupts to ensure exclusive
3083 * access to *current.
3085 struct io_context *get_io_context(int gfp_flags)
3087 struct task_struct *tsk = current;
3088 unsigned long flags;
3089 struct io_context *ret;
3091 local_irq_save(flags);
3092 ret = tsk->io_context;
3093 if (ret == NULL) {
3094 ret = kmem_cache_alloc(iocontext_cachep, GFP_ATOMIC);
3095 if (ret) {
3096 atomic_set(&ret->refcount, 1);
3097 ret->pid = tsk->pid;
3098 ret->last_waited = jiffies; /* doesn't matter... */
3099 ret->nr_batch_requests = 0; /* because this is 0 */
3100 ret->aic = NULL;
3101 tsk->io_context = ret;
3104 if (ret)
3105 atomic_inc(&ret->refcount);
3106 local_irq_restore(flags);
3107 return ret;
3110 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3112 struct io_context *src = *psrc;
3113 struct io_context *dst = *pdst;
3115 if (src) {
3116 BUG_ON(atomic_read(&src->refcount) == 0);
3117 atomic_inc(&src->refcount);
3118 put_io_context(dst);
3119 *pdst = src;
3123 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3125 struct io_context *temp;
3126 temp = *ioc1;
3127 *ioc1 = *ioc2;
3128 *ioc2 = temp;
3133 * sysfs parts below
3135 struct queue_sysfs_entry {
3136 struct attribute attr;
3137 ssize_t (*show)(struct request_queue *, char *);
3138 ssize_t (*store)(struct request_queue *, const char *, size_t);
3141 static ssize_t
3142 queue_var_show(unsigned int var, char *page)
3144 return sprintf(page, "%d\n", var);
3147 static ssize_t
3148 queue_var_store(unsigned long *var, const char *page, size_t count)
3150 char *p = (char *) page;
3152 *var = simple_strtoul(p, &p, 10);
3153 return count;
3156 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3158 return queue_var_show(q->nr_requests, (page));
3161 static ssize_t
3162 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3164 struct request_list *rl = &q->rq;
3166 int ret = queue_var_store(&q->nr_requests, page, count);
3167 if (q->nr_requests < BLKDEV_MIN_RQ)
3168 q->nr_requests = BLKDEV_MIN_RQ;
3169 blk_queue_congestion_threshold(q);
3171 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3172 set_queue_congested(q, READ);
3173 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3174 clear_queue_congested(q, READ);
3176 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3177 set_queue_congested(q, WRITE);
3178 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3179 clear_queue_congested(q, WRITE);
3181 if (rl->count[READ] >= q->nr_requests) {
3182 blk_set_queue_full(q, READ);
3183 } else if (rl->count[READ]+1 <= q->nr_requests) {
3184 blk_clear_queue_full(q, READ);
3185 wake_up(&rl->wait[READ]);
3188 if (rl->count[WRITE] >= q->nr_requests) {
3189 blk_set_queue_full(q, WRITE);
3190 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3191 blk_clear_queue_full(q, WRITE);
3192 wake_up(&rl->wait[WRITE]);
3194 return ret;
3197 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3199 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3201 return queue_var_show(ra_kb, (page));
3204 static ssize_t
3205 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3207 unsigned long ra_kb;
3208 ssize_t ret = queue_var_store(&ra_kb, page, count);
3210 spin_lock_irq(q->queue_lock);
3211 if (ra_kb > (q->max_sectors >> 1))
3212 ra_kb = (q->max_sectors >> 1);
3214 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3215 spin_unlock_irq(q->queue_lock);
3217 return ret;
3220 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3222 int max_sectors_kb = q->max_sectors >> 1;
3224 return queue_var_show(max_sectors_kb, (page));
3227 static ssize_t
3228 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3230 unsigned long max_sectors_kb,
3231 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3232 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3233 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3234 int ra_kb;
3236 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3237 return -EINVAL;
3239 * Take the queue lock to update the readahead and max_sectors
3240 * values synchronously:
3242 spin_lock_irq(q->queue_lock);
3244 * Trim readahead window as well, if necessary:
3246 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3247 if (ra_kb > max_sectors_kb)
3248 q->backing_dev_info.ra_pages =
3249 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3251 q->max_sectors = max_sectors_kb << 1;
3252 spin_unlock_irq(q->queue_lock);
3254 return ret;
3257 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3259 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3261 return queue_var_show(max_hw_sectors_kb, (page));
3265 static struct queue_sysfs_entry queue_requests_entry = {
3266 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3267 .show = queue_requests_show,
3268 .store = queue_requests_store,
3271 static struct queue_sysfs_entry queue_ra_entry = {
3272 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3273 .show = queue_ra_show,
3274 .store = queue_ra_store,
3277 static struct queue_sysfs_entry queue_max_sectors_entry = {
3278 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3279 .show = queue_max_sectors_show,
3280 .store = queue_max_sectors_store,
3283 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3284 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3285 .show = queue_max_hw_sectors_show,
3288 static struct attribute *default_attrs[] = {
3289 &queue_requests_entry.attr,
3290 &queue_ra_entry.attr,
3291 &queue_max_hw_sectors_entry.attr,
3292 &queue_max_sectors_entry.attr,
3293 NULL,
3296 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3298 static ssize_t
3299 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3301 struct queue_sysfs_entry *entry = to_queue(attr);
3302 struct request_queue *q;
3304 q = container_of(kobj, struct request_queue, kobj);
3305 if (!entry->show)
3306 return 0;
3308 return entry->show(q, page);
3311 static ssize_t
3312 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3313 const char *page, size_t length)
3315 struct queue_sysfs_entry *entry = to_queue(attr);
3316 struct request_queue *q;
3318 q = container_of(kobj, struct request_queue, kobj);
3319 if (!entry->store)
3320 return -EINVAL;
3322 return entry->store(q, page, length);
3325 static struct sysfs_ops queue_sysfs_ops = {
3326 .show = queue_attr_show,
3327 .store = queue_attr_store,
3330 struct kobj_type queue_ktype = {
3331 .sysfs_ops = &queue_sysfs_ops,
3332 .default_attrs = default_attrs,
3335 int blk_register_queue(struct gendisk *disk)
3337 int ret;
3339 request_queue_t *q = disk->queue;
3341 if (!q || !q->request_fn)
3342 return -ENXIO;
3344 q->kobj.parent = kobject_get(&disk->kobj);
3345 if (!q->kobj.parent)
3346 return -EBUSY;
3348 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3349 q->kobj.ktype = &queue_ktype;
3351 ret = kobject_register(&q->kobj);
3352 if (ret < 0)
3353 return ret;
3355 ret = elv_register_queue(q);
3356 if (ret) {
3357 kobject_unregister(&q->kobj);
3358 return ret;
3361 return 0;
3364 void blk_unregister_queue(struct gendisk *disk)
3366 request_queue_t *q = disk->queue;
3368 if (q && q->request_fn) {
3369 elv_unregister_queue(q);
3371 kobject_unregister(&q->kobj);
3372 kobject_put(&disk->kobj);