MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / arch / x86_64 / kernel / i8259.c
blobf5d084a990d3bb869bfd34b1d053eb8c2c47523b
1 #include <linux/linkage.h>
2 #include <linux/config.h>
3 #include <linux/errno.h>
4 #include <linux/signal.h>
5 #include <linux/sched.h>
6 #include <linux/ioport.h>
7 #include <linux/interrupt.h>
8 #include <linux/timex.h>
9 #include <linux/slab.h>
10 #include <linux/random.h>
11 #include <linux/smp_lock.h>
12 #include <linux/init.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/sysdev.h>
16 #include <asm/acpi.h>
17 #include <asm/atomic.h>
18 #include <asm/system.h>
19 #include <asm/io.h>
20 #include <asm/irq.h>
21 #include <asm/hw_irq.h>
22 #include <asm/bitops.h>
23 #include <asm/pgtable.h>
24 #include <asm/delay.h>
25 #include <asm/desc.h>
26 #include <asm/apic.h>
28 #include <linux/irq.h>
31 * Common place to define all x86 IRQ vectors
33 * This builds up the IRQ handler stubs using some ugly macros in irq.h
35 * These macros create the low-level assembly IRQ routines that save
36 * register context and call do_IRQ(). do_IRQ() then does all the
37 * operations that are needed to keep the AT (or SMP IOAPIC)
38 * interrupt-controller happy.
41 #define BI(x,y) \
42 BUILD_IRQ(x##y)
44 #define BUILD_16_IRQS(x) \
45 BI(x,0) BI(x,1) BI(x,2) BI(x,3) \
46 BI(x,4) BI(x,5) BI(x,6) BI(x,7) \
47 BI(x,8) BI(x,9) BI(x,a) BI(x,b) \
48 BI(x,c) BI(x,d) BI(x,e) BI(x,f)
50 #define BUILD_14_IRQS(x) \
51 BI(x,0) BI(x,1) BI(x,2) BI(x,3) \
52 BI(x,4) BI(x,5) BI(x,6) BI(x,7) \
53 BI(x,8) BI(x,9) BI(x,a) BI(x,b) \
54 BI(x,c) BI(x,d)
57 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
58 * (these are usually mapped to vectors 0x20-0x2f)
60 BUILD_16_IRQS(0x0)
62 #ifdef CONFIG_X86_LOCAL_APIC
64 * The IO-APIC gives us many more interrupt sources. Most of these
65 * are unused but an SMP system is supposed to have enough memory ...
66 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
67 * across the spectrum, so we really want to be prepared to get all
68 * of these. Plus, more powerful systems might have more than 64
69 * IO-APIC registers.
71 * (these are usually mapped into the 0x30-0xff vector range)
73 BUILD_16_IRQS(0x1) BUILD_16_IRQS(0x2) BUILD_16_IRQS(0x3)
74 BUILD_16_IRQS(0x4) BUILD_16_IRQS(0x5) BUILD_16_IRQS(0x6) BUILD_16_IRQS(0x7)
75 BUILD_16_IRQS(0x8) BUILD_16_IRQS(0x9) BUILD_16_IRQS(0xa) BUILD_16_IRQS(0xb)
76 BUILD_16_IRQS(0xc) BUILD_16_IRQS(0xd)
78 #ifdef CONFIG_PCI_MSI
79 BUILD_14_IRQS(0xe)
80 #endif
82 #endif
84 #undef BUILD_16_IRQS
85 #undef BUILD_14_IRQS
86 #undef BI
89 #define IRQ(x,y) \
90 IRQ##x##y##_interrupt
92 #define IRQLIST_16(x) \
93 IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \
94 IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \
95 IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \
96 IRQ(x,c), IRQ(x,d), IRQ(x,e), IRQ(x,f)
98 #define IRQLIST_14(x) \
99 IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \
100 IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \
101 IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \
102 IRQ(x,c), IRQ(x,d)
104 void (*interrupt[NR_IRQS])(void) = {
105 IRQLIST_16(0x0),
107 #ifdef CONFIG_X86_IO_APIC
108 IRQLIST_16(0x1), IRQLIST_16(0x2), IRQLIST_16(0x3),
109 IRQLIST_16(0x4), IRQLIST_16(0x5), IRQLIST_16(0x6), IRQLIST_16(0x7),
110 IRQLIST_16(0x8), IRQLIST_16(0x9), IRQLIST_16(0xa), IRQLIST_16(0xb),
111 IRQLIST_16(0xc), IRQLIST_16(0xd)
113 #ifdef CONFIG_PCI_MSI
114 , IRQLIST_14(0xe)
115 #endif
117 #endif
120 #undef IRQ
121 #undef IRQLIST_16
122 #undef IRQLIST_14
125 * This is the 'legacy' 8259A Programmable Interrupt Controller,
126 * present in the majority of PC/AT boxes.
127 * plus some generic x86 specific things if generic specifics makes
128 * any sense at all.
129 * this file should become arch/i386/kernel/irq.c when the old irq.c
130 * moves to arch independent land
133 spinlock_t i8259A_lock = SPIN_LOCK_UNLOCKED;
135 static void end_8259A_irq (unsigned int irq)
137 if (irq > 256) {
138 char var;
139 printk("return %p stack %p ti %p\n", __builtin_return_address(0), &var, current->thread_info);
141 BUG();
144 if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) &&
145 irq_desc[irq].action)
146 enable_8259A_irq(irq);
149 #define shutdown_8259A_irq disable_8259A_irq
151 void mask_and_ack_8259A(unsigned int);
153 static unsigned int startup_8259A_irq(unsigned int irq)
155 enable_8259A_irq(irq);
156 return 0; /* never anything pending */
159 static struct hw_interrupt_type i8259A_irq_type = {
160 "XT-PIC",
161 startup_8259A_irq,
162 shutdown_8259A_irq,
163 enable_8259A_irq,
164 disable_8259A_irq,
165 mask_and_ack_8259A,
166 end_8259A_irq,
167 NULL
171 * 8259A PIC functions to handle ISA devices:
175 * This contains the irq mask for both 8259A irq controllers,
177 static unsigned int cached_irq_mask = 0xffff;
179 #define __byte(x,y) (((unsigned char *)&(y))[x])
180 #define cached_21 (__byte(0,cached_irq_mask))
181 #define cached_A1 (__byte(1,cached_irq_mask))
184 * Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
185 * boards the timer interrupt is not really connected to any IO-APIC pin,
186 * it's fed to the master 8259A's IR0 line only.
188 * Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
189 * this 'mixed mode' IRQ handling costs nothing because it's only used
190 * at IRQ setup time.
192 unsigned long io_apic_irqs;
194 void disable_8259A_irq(unsigned int irq)
196 unsigned int mask = 1 << irq;
197 unsigned long flags;
199 spin_lock_irqsave(&i8259A_lock, flags);
200 cached_irq_mask |= mask;
201 if (irq & 8)
202 outb(cached_A1,0xA1);
203 else
204 outb(cached_21,0x21);
205 spin_unlock_irqrestore(&i8259A_lock, flags);
208 void enable_8259A_irq(unsigned int irq)
210 unsigned int mask = ~(1 << irq);
211 unsigned long flags;
213 spin_lock_irqsave(&i8259A_lock, flags);
214 cached_irq_mask &= mask;
215 if (irq & 8)
216 outb(cached_A1,0xA1);
217 else
218 outb(cached_21,0x21);
219 spin_unlock_irqrestore(&i8259A_lock, flags);
222 int i8259A_irq_pending(unsigned int irq)
224 unsigned int mask = 1<<irq;
225 unsigned long flags;
226 int ret;
228 spin_lock_irqsave(&i8259A_lock, flags);
229 if (irq < 8)
230 ret = inb(0x20) & mask;
231 else
232 ret = inb(0xA0) & (mask >> 8);
233 spin_unlock_irqrestore(&i8259A_lock, flags);
235 return ret;
238 void make_8259A_irq(unsigned int irq)
240 disable_irq_nosync(irq);
241 io_apic_irqs &= ~(1<<irq);
242 irq_desc[irq].handler = &i8259A_irq_type;
243 enable_irq(irq);
247 * This function assumes to be called rarely. Switching between
248 * 8259A registers is slow.
249 * This has to be protected by the irq controller spinlock
250 * before being called.
252 static inline int i8259A_irq_real(unsigned int irq)
254 int value;
255 int irqmask = 1<<irq;
257 if (irq < 8) {
258 outb(0x0B,0x20); /* ISR register */
259 value = inb(0x20) & irqmask;
260 outb(0x0A,0x20); /* back to the IRR register */
261 return value;
263 outb(0x0B,0xA0); /* ISR register */
264 value = inb(0xA0) & (irqmask >> 8);
265 outb(0x0A,0xA0); /* back to the IRR register */
266 return value;
270 * Careful! The 8259A is a fragile beast, it pretty
271 * much _has_ to be done exactly like this (mask it
272 * first, _then_ send the EOI, and the order of EOI
273 * to the two 8259s is important!
275 void mask_and_ack_8259A(unsigned int irq)
277 unsigned int irqmask = 1 << irq;
278 unsigned long flags;
280 spin_lock_irqsave(&i8259A_lock, flags);
282 * Lightweight spurious IRQ detection. We do not want
283 * to overdo spurious IRQ handling - it's usually a sign
284 * of hardware problems, so we only do the checks we can
285 * do without slowing down good hardware unnecesserily.
287 * Note that IRQ7 and IRQ15 (the two spurious IRQs
288 * usually resulting from the 8259A-1|2 PICs) occur
289 * even if the IRQ is masked in the 8259A. Thus we
290 * can check spurious 8259A IRQs without doing the
291 * quite slow i8259A_irq_real() call for every IRQ.
292 * This does not cover 100% of spurious interrupts,
293 * but should be enough to warn the user that there
294 * is something bad going on ...
296 if (cached_irq_mask & irqmask)
297 goto spurious_8259A_irq;
298 cached_irq_mask |= irqmask;
300 handle_real_irq:
301 if (irq & 8) {
302 inb(0xA1); /* DUMMY - (do we need this?) */
303 outb(cached_A1,0xA1);
304 outb(0x60+(irq&7),0xA0);/* 'Specific EOI' to slave */
305 outb(0x62,0x20); /* 'Specific EOI' to master-IRQ2 */
306 } else {
307 inb(0x21); /* DUMMY - (do we need this?) */
308 outb(cached_21,0x21);
309 outb(0x60+irq,0x20); /* 'Specific EOI' to master */
311 spin_unlock_irqrestore(&i8259A_lock, flags);
312 return;
314 spurious_8259A_irq:
316 * this is the slow path - should happen rarely.
318 if (i8259A_irq_real(irq))
320 * oops, the IRQ _is_ in service according to the
321 * 8259A - not spurious, go handle it.
323 goto handle_real_irq;
326 static int spurious_irq_mask;
328 * At this point we can be sure the IRQ is spurious,
329 * lets ACK and report it. [once per IRQ]
331 if (!(spurious_irq_mask & irqmask)) {
332 printk(KERN_DEBUG "spurious 8259A interrupt: IRQ%d.\n", irq);
333 spurious_irq_mask |= irqmask;
335 atomic_inc(&irq_err_count);
337 * Theoretically we do not have to handle this IRQ,
338 * but in Linux this does not cause problems and is
339 * simpler for us.
341 goto handle_real_irq;
345 void init_8259A(int auto_eoi)
347 unsigned long flags;
349 spin_lock_irqsave(&i8259A_lock, flags);
351 outb(0xff, 0x21); /* mask all of 8259A-1 */
352 outb(0xff, 0xA1); /* mask all of 8259A-2 */
355 * outb_p - this has to work on a wide range of PC hardware.
357 outb_p(0x11, 0x20); /* ICW1: select 8259A-1 init */
358 outb_p(0x20 + 0, 0x21); /* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */
359 outb_p(0x04, 0x21); /* 8259A-1 (the master) has a slave on IR2 */
360 if (auto_eoi)
361 outb_p(0x03, 0x21); /* master does Auto EOI */
362 else
363 outb_p(0x01, 0x21); /* master expects normal EOI */
365 outb_p(0x11, 0xA0); /* ICW1: select 8259A-2 init */
366 outb_p(0x20 + 8, 0xA1); /* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */
367 outb_p(0x02, 0xA1); /* 8259A-2 is a slave on master's IR2 */
368 outb_p(0x01, 0xA1); /* (slave's support for AEOI in flat mode
369 is to be investigated) */
371 if (auto_eoi)
373 * in AEOI mode we just have to mask the interrupt
374 * when acking.
376 i8259A_irq_type.ack = disable_8259A_irq;
377 else
378 i8259A_irq_type.ack = mask_and_ack_8259A;
380 udelay(100); /* wait for 8259A to initialize */
382 outb(cached_21, 0x21); /* restore master IRQ mask */
383 outb(cached_A1, 0xA1); /* restore slave IRQ mask */
385 spin_unlock_irqrestore(&i8259A_lock, flags);
388 static char irq_trigger[2];
390 * ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ
392 static void restore_ELCR(char *trigger)
394 outb(trigger[0], 0x4d0);
395 outb(trigger[1], 0x4d1);
398 static void save_ELCR(char *trigger)
400 /* IRQ 0,1,2,8,13 are marked as reserved */
401 trigger[0] = inb(0x4d0) & 0xF8;
402 trigger[1] = inb(0x4d1) & 0xDE;
405 static int i8259A_resume(struct sys_device *dev)
407 init_8259A(0);
408 restore_ELCR(irq_trigger);
409 return 0;
412 static int i8259A_suspend(struct sys_device *dev, u32 state)
414 save_ELCR(irq_trigger);
415 return 0;
418 static struct sysdev_class i8259_sysdev_class = {
419 set_kset_name("i8259"),
420 .suspend = i8259A_suspend,
421 .resume = i8259A_resume,
424 static struct sys_device device_i8259A = {
425 .id = 0,
426 .cls = &i8259_sysdev_class,
429 static int __init i8259A_init_sysfs(void)
431 int error = sysdev_class_register(&i8259_sysdev_class);
432 if (!error)
433 error = sysdev_register(&device_i8259A);
434 return error;
437 device_initcall(i8259A_init_sysfs);
440 * IRQ2 is cascade interrupt to second interrupt controller
443 static struct irqaction irq2 = { no_action, 0, CPU_MASK_NONE, "cascade", NULL, NULL};
445 void __init init_ISA_irqs (void)
447 int i;
449 #ifdef CONFIG_X86_LOCAL_APIC
450 init_bsp_APIC();
451 #endif
452 init_8259A(0);
454 for (i = 0; i < NR_IRQS; i++) {
455 irq_desc[i].status = IRQ_DISABLED;
456 irq_desc[i].action = NULL;
457 irq_desc[i].depth = 1;
459 if (i < 16) {
461 * 16 old-style INTA-cycle interrupts:
463 irq_desc[i].handler = &i8259A_irq_type;
464 } else {
466 * 'high' PCI IRQs filled in on demand
468 irq_desc[i].handler = &no_irq_type;
473 void apic_timer_interrupt(void);
474 void spurious_interrupt(void);
475 void error_interrupt(void);
476 void reschedule_interrupt(void);
477 void call_function_interrupt(void);
478 void invalidate_interrupt(void);
480 static void setup_timer(void)
482 outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */
483 udelay(10);
484 outb_p(LATCH & 0xff , 0x40); /* LSB */
485 udelay(10);
486 outb(LATCH >> 8 , 0x40); /* MSB */
489 static int timer_resume(struct sys_device *dev)
491 setup_timer();
492 return 0;
495 static struct sysdev_class timer_sysclass = {
496 set_kset_name("timer"),
497 .resume = timer_resume,
500 static struct sys_device device_timer = {
501 .id = 0,
502 .cls = &timer_sysclass,
505 static int __init init_timer_sysfs(void)
507 int error = sysdev_class_register(&timer_sysclass);
508 if (!error)
509 error = sysdev_register(&device_timer);
510 return error;
513 device_initcall(init_timer_sysfs);
515 void __init init_IRQ(void)
517 int i;
519 init_ISA_irqs();
521 * Cover the whole vector space, no vector can escape
522 * us. (some of these will be overridden and become
523 * 'special' SMP interrupts)
525 for (i = 0; i < (NR_VECTORS - FIRST_EXTERNAL_VECTOR); i++) {
526 int vector = FIRST_EXTERNAL_VECTOR + i;
527 if (i >= NR_IRQS)
528 break;
529 if (vector != IA32_SYSCALL_VECTOR && vector != KDB_VECTOR) {
530 set_intr_gate(vector, interrupt[i]);
534 #ifdef CONFIG_SMP
536 * IRQ0 must be given a fixed assignment and initialized,
537 * because it's used before the IO-APIC is set up.
539 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
542 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
543 * IPI, driven by wakeup.
545 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
547 /* IPI for invalidation */
548 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
550 /* IPI for generic function call */
551 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
552 #endif
554 #ifdef CONFIG_X86_LOCAL_APIC
555 /* self generated IPI for local APIC timer */
556 set_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
558 /* IPI vectors for APIC spurious and error interrupts */
559 set_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
560 set_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
561 #endif
564 * Set the clock to HZ Hz, we already have a valid
565 * vector now:
567 setup_timer();
569 if (!acpi_ioapic)
570 setup_irq(2, &irq2);