initial commit with v2.6.9
[linux-2.6.9-moxart.git] / sound / i2c / other / ak4xxx-adda.c
blobabd82625bfd8238bd8f1f7eef7f029ecff3a5651
1 /*
2 * ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4381
3 * AD and DA converters
5 * Copyright (c) 2000-2003 Jaroslav Kysela <perex@suse.cz>,
6 * Takashi Iwai <tiwai@suse.de>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
24 #include <sound/driver.h>
25 #include <asm/io.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <sound/core.h>
30 #include <sound/control.h>
31 #include <sound/ak4xxx-adda.h>
33 MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>, Takashi Iwai <tiwai@suse.de>");
34 MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx AD/DA converters");
35 MODULE_LICENSE("GPL");
37 void snd_akm4xxx_write(akm4xxx_t *ak, int chip, unsigned char reg, unsigned char val)
39 ak->ops.lock(ak, chip);
40 ak->ops.write(ak, chip, reg, val);
42 /* save the data */
43 if (ak->type == SND_AK4524 || ak->type == SND_AK4528) {
44 if ((reg != 0x04 && reg != 0x05) || (val & 0x80) == 0)
45 snd_akm4xxx_set(ak, chip, reg, val);
46 else
47 snd_akm4xxx_set_ipga(ak, chip, reg, val);
48 } else {
49 /* AK4529, or else */
50 snd_akm4xxx_set(ak, chip, reg, val);
52 ak->ops.unlock(ak, chip);
56 * reset the AKM codecs
57 * @state: 1 = reset codec, 0 = restore the registers
59 * assert the reset operation and restores the register values to the chips.
61 void snd_akm4xxx_reset(akm4xxx_t *ak, int state)
63 unsigned int chip;
64 unsigned char reg;
66 switch (ak->type) {
67 case SND_AK4524:
68 case SND_AK4528:
69 for (chip = 0; chip < ak->num_dacs/2; chip++) {
70 snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03);
71 if (state)
72 continue;
73 /* DAC volumes */
74 for (reg = 0x04; reg < (ak->type == SND_AK4528 ? 0x06 : 0x08); reg++)
75 snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg));
76 if (ak->type == SND_AK4528)
77 continue;
78 /* IPGA */
79 for (reg = 0x04; reg < 0x06; reg++)
80 snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get_ipga(ak, chip, reg));
82 break;
83 case SND_AK4529:
84 /* FIXME: needed for ak4529? */
85 break;
86 case SND_AK4355:
87 if (state) {
88 snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */
89 return;
91 for (reg = 0x00; reg < 0x0b; reg++)
92 if (reg != 0x01)
93 snd_akm4xxx_write(ak, 0, reg, snd_akm4xxx_get(ak, 0, reg));
94 snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */
95 break;
96 case SND_AK4381:
97 for (chip = 0; chip < ak->num_dacs/2; chip++) {
98 snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f);
99 if (state)
100 continue;
101 for (reg = 0x01; reg < 0x05; reg++)
102 snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg));
104 break;
109 * initialize all the ak4xxx chips
111 void snd_akm4xxx_init(akm4xxx_t *ak)
113 static unsigned char inits_ak4524[] = {
114 0x00, 0x07, /* 0: all power up */
115 0x01, 0x00, /* 1: ADC/DAC reset */
116 0x02, 0x60, /* 2: 24bit I2S */
117 0x03, 0x19, /* 3: deemphasis off */
118 0x01, 0x03, /* 1: ADC/DAC enable */
119 0x04, 0x00, /* 4: ADC left muted */
120 0x05, 0x00, /* 5: ADC right muted */
121 0x04, 0x80, /* 4: ADC IPGA gain 0dB */
122 0x05, 0x80, /* 5: ADC IPGA gain 0dB */
123 0x06, 0x00, /* 6: DAC left muted */
124 0x07, 0x00, /* 7: DAC right muted */
125 0xff, 0xff
127 static unsigned char inits_ak4528[] = {
128 0x00, 0x07, /* 0: all power up */
129 0x01, 0x00, /* 1: ADC/DAC reset */
130 0x02, 0x60, /* 2: 24bit I2S */
131 0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */
132 0x01, 0x03, /* 1: ADC/DAC enable */
133 0x04, 0x00, /* 4: ADC left muted */
134 0x05, 0x00, /* 5: ADC right muted */
135 0xff, 0xff
137 static unsigned char inits_ak4529[] = {
138 0x09, 0x01, /* 9: ATS=0, RSTN=1 */
139 0x0a, 0x3f, /* A: all power up, no zero/overflow detection */
140 0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */
141 0x01, 0x00, /* 1: ACKS=0, ADC, loop off */
142 0x02, 0xff, /* 2: LOUT1 muted */
143 0x03, 0xff, /* 3: ROUT1 muted */
144 0x04, 0xff, /* 4: LOUT2 muted */
145 0x05, 0xff, /* 5: ROUT2 muted */
146 0x06, 0xff, /* 6: LOUT3 muted */
147 0x07, 0xff, /* 7: ROUT3 muted */
148 0x0b, 0xff, /* B: LOUT4 muted */
149 0x0c, 0xff, /* C: ROUT4 muted */
150 0x08, 0x55, /* 8: deemphasis all off */
151 0xff, 0xff
153 static unsigned char inits_ak4355[] = {
154 0x01, 0x02, /* 1: reset and soft-mute */
155 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, disable DZF, sharp roll-off, RSTN#=0 */
156 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
157 // 0x02, 0x2e, /* quad speed */
158 0x03, 0x01, /* 3: de-emphasis off */
159 0x04, 0x00, /* 4: LOUT1 volume muted */
160 0x05, 0x00, /* 5: ROUT1 volume muted */
161 0x06, 0x00, /* 6: LOUT2 volume muted */
162 0x07, 0x00, /* 7: ROUT2 volume muted */
163 0x08, 0x00, /* 8: LOUT3 volume muted */
164 0x09, 0x00, /* 9: ROUT3 volume muted */
165 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
166 0x01, 0x01, /* 1: un-reset, unmute */
167 0xff, 0xff
169 static unsigned char inits_ak4381[] = {
170 0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */
171 0x01, 0x02, /* 1: de-emphasis off, normal speed, sharp roll-off, DZF off */
172 // 0x01, 0x12, /* quad speed */
173 0x02, 0x00, /* 2: DZF disabled */
174 0x03, 0x00, /* 3: LATT 0 */
175 0x04, 0x00, /* 4: RATT 0 */
176 0x00, 0x0f, /* 0: power-up, un-reset */
177 0xff, 0xff
180 int chip, num_chips;
181 unsigned char *ptr, reg, data, *inits;
183 switch (ak->type) {
184 case SND_AK4524:
185 inits = inits_ak4524;
186 num_chips = ak->num_dacs / 2;
187 break;
188 case SND_AK4528:
189 inits = inits_ak4528;
190 num_chips = ak->num_dacs / 2;
191 break;
192 case SND_AK4529:
193 inits = inits_ak4529;
194 num_chips = 1;
195 break;
196 case SND_AK4355:
197 inits = inits_ak4355;
198 num_chips = 1;
199 break;
200 case SND_AK4381:
201 inits = inits_ak4381;
202 num_chips = ak->num_dacs / 2;
203 break;
204 default:
205 snd_BUG();
206 return;
209 for (chip = 0; chip < num_chips; chip++) {
210 ptr = inits;
211 while (*ptr != 0xff) {
212 reg = *ptr++;
213 data = *ptr++;
214 snd_akm4xxx_write(ak, chip, reg, data);
219 #define AK_GET_CHIP(val) (((val) >> 8) & 0xff)
220 #define AK_GET_ADDR(val) ((val) & 0xff)
221 #define AK_GET_SHIFT(val) (((val) >> 16) & 0x7f)
222 #define AK_GET_INVERT(val) (((val) >> 23) & 1)
223 #define AK_GET_MASK(val) (((val) >> 24) & 0xff)
224 #define AK_COMPOSE(chip,addr,shift,mask) (((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24))
225 #define AK_INVERT (1<<23)
227 static int snd_akm4xxx_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
229 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
231 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
232 uinfo->count = 1;
233 uinfo->value.integer.min = 0;
234 uinfo->value.integer.max = mask;
235 return 0;
238 static int snd_akm4xxx_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
240 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
241 int chip = AK_GET_CHIP(kcontrol->private_value);
242 int addr = AK_GET_ADDR(kcontrol->private_value);
243 int invert = AK_GET_INVERT(kcontrol->private_value);
244 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
245 unsigned char val = snd_akm4xxx_get(ak, chip, addr);
247 ucontrol->value.integer.value[0] = invert ? mask - val : val;
248 return 0;
251 static int snd_akm4xxx_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
253 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
254 int chip = AK_GET_CHIP(kcontrol->private_value);
255 int addr = AK_GET_ADDR(kcontrol->private_value);
256 int invert = AK_GET_INVERT(kcontrol->private_value);
257 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
258 unsigned char nval = ucontrol->value.integer.value[0] % (mask+1);
259 int change;
261 if (invert)
262 nval = mask - nval;
263 change = snd_akm4xxx_get(ak, chip, addr) != nval;
264 if (change)
265 snd_akm4xxx_write(ak, chip, addr, nval);
266 return change;
269 static int snd_akm4xxx_ipga_gain_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
271 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
272 uinfo->count = 1;
273 uinfo->value.integer.min = 0;
274 uinfo->value.integer.max = 36;
275 return 0;
278 static int snd_akm4xxx_ipga_gain_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
280 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
281 int chip = AK_GET_CHIP(kcontrol->private_value);
282 int addr = AK_GET_ADDR(kcontrol->private_value);
283 ucontrol->value.integer.value[0] = snd_akm4xxx_get_ipga(ak, chip, addr) & 0x7f;
284 return 0;
287 static int snd_akm4xxx_ipga_gain_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
289 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
290 int chip = AK_GET_CHIP(kcontrol->private_value);
291 int addr = AK_GET_ADDR(kcontrol->private_value);
292 unsigned char nval = (ucontrol->value.integer.value[0] % 37) | 0x80;
293 int change = snd_akm4xxx_get_ipga(ak, chip, addr) != nval;
294 if (change)
295 snd_akm4xxx_write(ak, chip, addr, nval);
296 return change;
299 static int snd_akm4xxx_deemphasis_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
301 static char *texts[4] = {
302 "44.1kHz", "Off", "48kHz", "32kHz",
304 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
305 uinfo->count = 1;
306 uinfo->value.enumerated.items = 4;
307 if (uinfo->value.enumerated.item >= 4)
308 uinfo->value.enumerated.item = 3;
309 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
310 return 0;
313 static int snd_akm4xxx_deemphasis_get(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t *ucontrol)
315 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
316 int chip = AK_GET_CHIP(kcontrol->private_value);
317 int addr = AK_GET_ADDR(kcontrol->private_value);
318 int shift = AK_GET_SHIFT(kcontrol->private_value);
319 ucontrol->value.enumerated.item[0] = (snd_akm4xxx_get(ak, chip, addr) >> shift) & 3;
320 return 0;
323 static int snd_akm4xxx_deemphasis_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
325 akm4xxx_t *ak = snd_kcontrol_chip(kcontrol);
326 int chip = AK_GET_CHIP(kcontrol->private_value);
327 int addr = AK_GET_ADDR(kcontrol->private_value);
328 int shift = AK_GET_SHIFT(kcontrol->private_value);
329 unsigned char nval = ucontrol->value.enumerated.item[0] & 3;
330 int change;
332 nval = (nval << shift) | (snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift));
333 change = snd_akm4xxx_get(ak, chip, addr) != nval;
334 if (change)
335 snd_akm4xxx_write(ak, chip, addr, nval);
336 return change;
340 * build AK4xxx controls
343 int snd_akm4xxx_build_controls(akm4xxx_t *ak)
345 unsigned int idx, num_emphs;
346 int err;
348 for (idx = 0; idx < ak->num_dacs; ++idx) {
349 snd_kcontrol_t ctl;
350 memset(&ctl, 0, sizeof(ctl));
351 strcpy(ctl.id.name, "DAC Volume");
352 ctl.id.index = idx + ak->idx_offset * 2;
353 ctl.id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
354 ctl.count = 1;
355 ctl.info = snd_akm4xxx_volume_info;
356 ctl.get = snd_akm4xxx_volume_get;
357 ctl.put = snd_akm4xxx_volume_put;
358 switch (ak->type) {
359 case SND_AK4524:
360 ctl.private_value = AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127); /* register 6 & 7 */
361 break;
362 case SND_AK4528:
363 ctl.private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127); /* register 4 & 5 */
364 break;
365 case SND_AK4529: {
366 int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb; /* registers 2-7 and b,c */
367 ctl.private_value = AK_COMPOSE(0, val, 0, 255) | AK_INVERT;
368 break;
370 case SND_AK4355:
371 ctl.private_value = AK_COMPOSE(0, idx + 4, 0, 255); /* register 4-9, chip #0 only */
372 break;
373 case SND_AK4381:
374 ctl.private_value = AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255); /* register 3 & 4 */
375 break;
376 default:
377 return -EINVAL;
379 ctl.private_data = ak;
380 if ((err = snd_ctl_add(ak->card, snd_ctl_new(&ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
381 return err;
383 for (idx = 0; idx < ak->num_adcs && ak->type == SND_AK4524; ++idx) {
384 snd_kcontrol_t ctl;
385 memset(&ctl, 0, sizeof(ctl));
386 strcpy(ctl.id.name, "ADC Volume");
387 ctl.id.index = idx + ak->idx_offset * 2;
388 ctl.id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
389 ctl.count = 1;
390 ctl.info = snd_akm4xxx_volume_info;
391 ctl.get = snd_akm4xxx_volume_get;
392 ctl.put = snd_akm4xxx_volume_put;
393 ctl.private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127); /* register 4 & 5 */
394 ctl.private_data = ak;
395 if ((err = snd_ctl_add(ak->card, snd_ctl_new(&ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
396 return err;
397 memset(&ctl, 0, sizeof(ctl));
398 strcpy(ctl.id.name, "IPGA Analog Capture Volume");
399 ctl.id.index = idx + ak->idx_offset * 2;
400 ctl.id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
401 ctl.count = 1;
402 ctl.info = snd_akm4xxx_ipga_gain_info;
403 ctl.get = snd_akm4xxx_ipga_gain_get;
404 ctl.put = snd_akm4xxx_ipga_gain_put;
405 ctl.private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 0); /* register 4 & 5 */
406 ctl.private_data = ak;
407 if ((err = snd_ctl_add(ak->card, snd_ctl_new(&ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
408 return err;
410 if (ak->type == SND_AK4355)
411 num_emphs = 1;
412 else
413 num_emphs = ak->num_dacs / 2;
414 for (idx = 0; idx < num_emphs; idx++) {
415 snd_kcontrol_t ctl;
416 memset(&ctl, 0, sizeof(ctl));
417 strcpy(ctl.id.name, "Deemphasis");
418 ctl.id.index = idx + ak->idx_offset;
419 ctl.id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
420 ctl.count = 1;
421 ctl.info = snd_akm4xxx_deemphasis_info;
422 ctl.get = snd_akm4xxx_deemphasis_get;
423 ctl.put = snd_akm4xxx_deemphasis_put;
424 switch (ak->type) {
425 case SND_AK4524:
426 case SND_AK4528:
427 ctl.private_value = AK_COMPOSE(idx, 3, 0, 0); /* register 3 */
428 break;
429 case SND_AK4529: {
430 int shift = idx == 3 ? 6 : (2 - idx) * 2;
431 ctl.private_value = AK_COMPOSE(0, 8, shift, 0); /* register 8 with shift */
432 break;
434 case SND_AK4355:
435 ctl.private_value = AK_COMPOSE(idx, 3, 0, 0);
436 break;
437 case SND_AK4381:
438 ctl.private_value = AK_COMPOSE(idx, 1, 1, 0);
439 break;
441 ctl.private_data = ak;
442 if ((err = snd_ctl_add(ak->card, snd_ctl_new(&ctl, SNDRV_CTL_ELEM_ACCESS_READ|SNDRV_CTL_ELEM_ACCESS_WRITE))) < 0)
443 return err;
445 return 0;
448 static int __init alsa_akm4xxx_module_init(void)
450 return 0;
453 static void __exit alsa_akm4xxx_module_exit(void)
457 module_init(alsa_akm4xxx_module_init)
458 module_exit(alsa_akm4xxx_module_exit)
460 EXPORT_SYMBOL(snd_akm4xxx_write);
461 EXPORT_SYMBOL(snd_akm4xxx_reset);
462 EXPORT_SYMBOL(snd_akm4xxx_init);
463 EXPORT_SYMBOL(snd_akm4xxx_build_controls);