initial commit with v2.6.9
[linux-2.6.9-moxart.git] / security / selinux / ss / services.c
blobcad425719719327b587210e10366205d35872884
1 /*
2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2,
11 * as published by the Free Software Foundation.
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
15 * Added conditional policy language extensions
17 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation, version 2.
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/in.h>
28 #include <linux/sched.h>
29 #include <linux/audit.h>
30 #include <asm/semaphore.h>
31 #include "flask.h"
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "security.h"
35 #include "context.h"
36 #include "policydb.h"
37 #include "sidtab.h"
38 #include "services.h"
39 #include "conditional.h"
40 #include "mls.h"
42 extern void selnl_notify_policyload(u32 seqno);
43 extern int policydb_loaded_version;
45 static rwlock_t policy_rwlock = RW_LOCK_UNLOCKED;
46 #define POLICY_RDLOCK read_lock(&policy_rwlock)
47 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
48 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
49 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
51 static DECLARE_MUTEX(load_sem);
52 #define LOAD_LOCK down(&load_sem)
53 #define LOAD_UNLOCK up(&load_sem)
55 struct sidtab sidtab;
56 struct policydb policydb;
57 int ss_initialized = 0;
60 * The largest sequence number that has been used when
61 * providing an access decision to the access vector cache.
62 * The sequence number only changes when a policy change
63 * occurs.
65 static u32 latest_granting = 0;
68 * Return the boolean value of a constraint expression
69 * when it is applied to the specified source and target
70 * security contexts.
72 static int constraint_expr_eval(struct context *scontext,
73 struct context *tcontext,
74 struct constraint_expr *cexpr)
76 u32 val1, val2;
77 struct context *c;
78 struct role_datum *r1, *r2;
79 struct constraint_expr *e;
80 int s[CEXPR_MAXDEPTH];
81 int sp = -1;
83 for (e = cexpr; e; e = e->next) {
84 switch (e->expr_type) {
85 case CEXPR_NOT:
86 BUG_ON(sp < 0);
87 s[sp] = !s[sp];
88 break;
89 case CEXPR_AND:
90 BUG_ON(sp < 1);
91 sp--;
92 s[sp] &= s[sp+1];
93 break;
94 case CEXPR_OR:
95 BUG_ON(sp < 1);
96 sp--;
97 s[sp] |= s[sp+1];
98 break;
99 case CEXPR_ATTR:
100 if (sp == (CEXPR_MAXDEPTH-1))
101 return 0;
102 switch (e->attr) {
103 case CEXPR_USER:
104 val1 = scontext->user;
105 val2 = tcontext->user;
106 break;
107 case CEXPR_TYPE:
108 val1 = scontext->type;
109 val2 = tcontext->type;
110 break;
111 case CEXPR_ROLE:
112 val1 = scontext->role;
113 val2 = tcontext->role;
114 r1 = policydb.role_val_to_struct[val1 - 1];
115 r2 = policydb.role_val_to_struct[val2 - 1];
116 switch (e->op) {
117 case CEXPR_DOM:
118 s[++sp] = ebitmap_get_bit(&r1->dominates,
119 val2 - 1);
120 continue;
121 case CEXPR_DOMBY:
122 s[++sp] = ebitmap_get_bit(&r2->dominates,
123 val1 - 1);
124 continue;
125 case CEXPR_INCOMP:
126 s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
127 val2 - 1) &&
128 !ebitmap_get_bit(&r2->dominates,
129 val1 - 1) );
130 continue;
131 default:
132 break;
134 break;
135 default:
136 BUG();
137 return 0;
140 switch (e->op) {
141 case CEXPR_EQ:
142 s[++sp] = (val1 == val2);
143 break;
144 case CEXPR_NEQ:
145 s[++sp] = (val1 != val2);
146 break;
147 default:
148 BUG();
149 return 0;
151 break;
152 case CEXPR_NAMES:
153 if (sp == (CEXPR_MAXDEPTH-1))
154 return 0;
155 c = scontext;
156 if (e->attr & CEXPR_TARGET)
157 c = tcontext;
158 if (e->attr & CEXPR_USER)
159 val1 = c->user;
160 else if (e->attr & CEXPR_ROLE)
161 val1 = c->role;
162 else if (e->attr & CEXPR_TYPE)
163 val1 = c->type;
164 else {
165 BUG();
166 return 0;
169 switch (e->op) {
170 case CEXPR_EQ:
171 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
172 break;
173 case CEXPR_NEQ:
174 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
175 break;
176 default:
177 BUG();
178 return 0;
180 break;
181 default:
182 BUG();
183 return 0;
187 BUG_ON(sp != 0);
188 return s[0];
192 * Compute access vectors based on a context structure pair for
193 * the permissions in a particular class.
195 static int context_struct_compute_av(struct context *scontext,
196 struct context *tcontext,
197 u16 tclass,
198 u32 requested,
199 struct av_decision *avd)
201 struct constraint_node *constraint;
202 struct role_allow *ra;
203 struct avtab_key avkey;
204 struct avtab_datum *avdatum;
205 struct class_datum *tclass_datum;
208 * Remap extended Netlink classes for old policy versions.
209 * Do this here rather than socket_type_to_security_class()
210 * in case a newer policy version is loaded, allowing sockets
211 * to remain in the correct class.
213 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
214 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
215 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
216 tclass = SECCLASS_NETLINK_SOCKET;
218 if (!tclass || tclass > policydb.p_classes.nprim) {
219 printk(KERN_ERR "security_compute_av: unrecognized class %d\n",
220 tclass);
221 return -EINVAL;
223 tclass_datum = policydb.class_val_to_struct[tclass - 1];
226 * Initialize the access vectors to the default values.
228 avd->allowed = 0;
229 avd->decided = 0xffffffff;
230 avd->auditallow = 0;
231 avd->auditdeny = 0xffffffff;
232 avd->seqno = latest_granting;
235 * If a specific type enforcement rule was defined for
236 * this permission check, then use it.
238 avkey.source_type = scontext->type;
239 avkey.target_type = tcontext->type;
240 avkey.target_class = tclass;
241 avdatum = avtab_search(&policydb.te_avtab, &avkey, AVTAB_AV);
242 if (avdatum) {
243 if (avdatum->specified & AVTAB_ALLOWED)
244 avd->allowed = avtab_allowed(avdatum);
245 if (avdatum->specified & AVTAB_AUDITDENY)
246 avd->auditdeny = avtab_auditdeny(avdatum);
247 if (avdatum->specified & AVTAB_AUDITALLOW)
248 avd->auditallow = avtab_auditallow(avdatum);
251 /* Check conditional av table for additional permissions */
252 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
255 * Remove any permissions prohibited by the MLS policy.
257 mls_compute_av(scontext, tcontext, tclass_datum, &avd->allowed);
260 * Remove any permissions prohibited by a constraint.
262 constraint = tclass_datum->constraints;
263 while (constraint) {
264 if ((constraint->permissions & (avd->allowed)) &&
265 !constraint_expr_eval(scontext, tcontext,
266 constraint->expr)) {
267 avd->allowed = (avd->allowed) & ~(constraint->permissions);
269 constraint = constraint->next;
273 * If checking process transition permission and the
274 * role is changing, then check the (current_role, new_role)
275 * pair.
277 if (tclass == SECCLASS_PROCESS &&
278 (avd->allowed & PROCESS__TRANSITION) &&
279 scontext->role != tcontext->role) {
280 for (ra = policydb.role_allow; ra; ra = ra->next) {
281 if (scontext->role == ra->role &&
282 tcontext->role == ra->new_role)
283 break;
285 if (!ra)
286 avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION);
289 return 0;
293 * security_compute_av - Compute access vector decisions.
294 * @ssid: source security identifier
295 * @tsid: target security identifier
296 * @tclass: target security class
297 * @requested: requested permissions
298 * @avd: access vector decisions
300 * Compute a set of access vector decisions based on the
301 * SID pair (@ssid, @tsid) for the permissions in @tclass.
302 * Return -%EINVAL if any of the parameters are invalid or %0
303 * if the access vector decisions were computed successfully.
305 int security_compute_av(u32 ssid,
306 u32 tsid,
307 u16 tclass,
308 u32 requested,
309 struct av_decision *avd)
311 struct context *scontext = NULL, *tcontext = NULL;
312 int rc = 0;
314 if (!ss_initialized) {
315 avd->allowed = requested;
316 avd->decided = requested;
317 avd->auditallow = 0;
318 avd->auditdeny = 0xffffffff;
319 avd->seqno = latest_granting;
320 return 0;
323 POLICY_RDLOCK;
325 scontext = sidtab_search(&sidtab, ssid);
326 if (!scontext) {
327 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
328 ssid);
329 rc = -EINVAL;
330 goto out;
332 tcontext = sidtab_search(&sidtab, tsid);
333 if (!tcontext) {
334 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
335 tsid);
336 rc = -EINVAL;
337 goto out;
340 rc = context_struct_compute_av(scontext, tcontext, tclass,
341 requested, avd);
342 out:
343 POLICY_RDUNLOCK;
344 return rc;
348 * Write the security context string representation of
349 * the context structure `context' into a dynamically
350 * allocated string of the correct size. Set `*scontext'
351 * to point to this string and set `*scontext_len' to
352 * the length of the string.
354 int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
356 char *scontextp;
358 *scontext = NULL;
359 *scontext_len = 0;
361 /* Compute the size of the context. */
362 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
363 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
364 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
365 *scontext_len += mls_compute_context_len(context);
367 /* Allocate space for the context; caller must free this space. */
368 scontextp = kmalloc(*scontext_len+1,GFP_ATOMIC);
369 if (!scontextp) {
370 return -ENOMEM;
372 *scontext = scontextp;
375 * Copy the user name, role name and type name into the context.
377 sprintf(scontextp, "%s:%s:%s:",
378 policydb.p_user_val_to_name[context->user - 1],
379 policydb.p_role_val_to_name[context->role - 1],
380 policydb.p_type_val_to_name[context->type - 1]);
381 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
382 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
383 1 + strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
385 mls_sid_to_context(context, &scontextp);
387 scontextp--;
388 *scontextp = 0;
390 return 0;
393 #include "initial_sid_to_string.h"
396 * security_sid_to_context - Obtain a context for a given SID.
397 * @sid: security identifier, SID
398 * @scontext: security context
399 * @scontext_len: length in bytes
401 * Write the string representation of the context associated with @sid
402 * into a dynamically allocated string of the correct size. Set @scontext
403 * to point to this string and set @scontext_len to the length of the string.
405 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
407 struct context *context;
408 int rc = 0;
410 if (!ss_initialized) {
411 if (sid <= SECINITSID_NUM) {
412 char *scontextp;
414 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
415 scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
416 strcpy(scontextp, initial_sid_to_string[sid]);
417 *scontext = scontextp;
418 goto out;
420 printk(KERN_ERR "security_sid_to_context: called before initial "
421 "load_policy on unknown SID %d\n", sid);
422 rc = -EINVAL;
423 goto out;
425 POLICY_RDLOCK;
426 context = sidtab_search(&sidtab, sid);
427 if (!context) {
428 printk(KERN_ERR "security_sid_to_context: unrecognized SID "
429 "%d\n", sid);
430 rc = -EINVAL;
431 goto out_unlock;
433 rc = context_struct_to_string(context, scontext, scontext_len);
434 out_unlock:
435 POLICY_RDUNLOCK;
436 out:
437 return rc;
442 * security_context_to_sid - Obtain a SID for a given security context.
443 * @scontext: security context
444 * @scontext_len: length in bytes
445 * @sid: security identifier, SID
447 * Obtains a SID associated with the security context that
448 * has the string representation specified by @scontext.
449 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
450 * memory is available, or 0 on success.
452 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
454 char *scontext2;
455 struct context context;
456 struct role_datum *role;
457 struct type_datum *typdatum;
458 struct user_datum *usrdatum;
459 char *scontextp, *p, oldc;
460 int rc = 0;
462 if (!ss_initialized) {
463 int i;
465 for (i = 1; i < SECINITSID_NUM; i++) {
466 if (!strcmp(initial_sid_to_string[i], scontext)) {
467 *sid = i;
468 goto out;
471 *sid = SECINITSID_KERNEL;
472 goto out;
474 *sid = SECSID_NULL;
476 /* Copy the string so that we can modify the copy as we parse it.
477 The string should already by null terminated, but we append a
478 null suffix to the copy to avoid problems with the existing
479 attr package, which doesn't view the null terminator as part
480 of the attribute value. */
481 scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
482 if (!scontext2) {
483 rc = -ENOMEM;
484 goto out;
486 memcpy(scontext2, scontext, scontext_len);
487 scontext2[scontext_len] = 0;
489 context_init(&context);
490 *sid = SECSID_NULL;
492 POLICY_RDLOCK;
494 /* Parse the security context. */
496 rc = -EINVAL;
497 scontextp = (char *) scontext2;
499 /* Extract the user. */
500 p = scontextp;
501 while (*p && *p != ':')
502 p++;
504 if (*p == 0)
505 goto out_unlock;
507 *p++ = 0;
509 usrdatum = hashtab_search(policydb.p_users.table, scontextp);
510 if (!usrdatum)
511 goto out_unlock;
513 context.user = usrdatum->value;
515 /* Extract role. */
516 scontextp = p;
517 while (*p && *p != ':')
518 p++;
520 if (*p == 0)
521 goto out_unlock;
523 *p++ = 0;
525 role = hashtab_search(policydb.p_roles.table, scontextp);
526 if (!role)
527 goto out_unlock;
528 context.role = role->value;
530 /* Extract type. */
531 scontextp = p;
532 while (*p && *p != ':')
533 p++;
534 oldc = *p;
535 *p++ = 0;
537 typdatum = hashtab_search(policydb.p_types.table, scontextp);
538 if (!typdatum)
539 goto out_unlock;
541 context.type = typdatum->value;
543 rc = mls_context_to_sid(oldc, &p, &context);
544 if (rc)
545 goto out_unlock;
547 if ((p - scontext2) < scontext_len) {
548 rc = -EINVAL;
549 goto out_unlock;
552 /* Check the validity of the new context. */
553 if (!policydb_context_isvalid(&policydb, &context)) {
554 rc = -EINVAL;
555 goto out_unlock;
557 /* Obtain the new sid. */
558 rc = sidtab_context_to_sid(&sidtab, &context, sid);
559 out_unlock:
560 POLICY_RDUNLOCK;
561 context_destroy(&context);
562 kfree(scontext2);
563 out:
564 return rc;
567 static int compute_sid_handle_invalid_context(
568 struct context *scontext,
569 struct context *tcontext,
570 u16 tclass,
571 struct context *newcontext)
573 char *s = NULL, *t = NULL, *n = NULL;
574 u32 slen, tlen, nlen;
576 if (context_struct_to_string(scontext, &s, &slen) < 0)
577 goto out;
578 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
579 goto out;
580 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
581 goto out;
582 audit_log(current->audit_context,
583 "security_compute_sid: invalid context %s"
584 " for scontext=%s"
585 " tcontext=%s"
586 " tclass=%s",
587 n, s, t, policydb.p_class_val_to_name[tclass-1]);
588 out:
589 kfree(s);
590 kfree(t);
591 kfree(n);
592 if (!selinux_enforcing)
593 return 0;
594 return -EACCES;
597 static int security_compute_sid(u32 ssid,
598 u32 tsid,
599 u16 tclass,
600 u32 specified,
601 u32 *out_sid)
603 struct context *scontext = NULL, *tcontext = NULL, newcontext;
604 struct role_trans *roletr = NULL;
605 struct avtab_key avkey;
606 struct avtab_datum *avdatum;
607 struct avtab_node *node;
608 unsigned int type_change = 0;
609 int rc = 0;
611 if (!ss_initialized) {
612 switch (tclass) {
613 case SECCLASS_PROCESS:
614 *out_sid = ssid;
615 break;
616 default:
617 *out_sid = tsid;
618 break;
620 goto out;
623 POLICY_RDLOCK;
625 scontext = sidtab_search(&sidtab, ssid);
626 if (!scontext) {
627 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
628 ssid);
629 rc = -EINVAL;
630 goto out_unlock;
632 tcontext = sidtab_search(&sidtab, tsid);
633 if (!tcontext) {
634 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
635 tsid);
636 rc = -EINVAL;
637 goto out_unlock;
640 context_init(&newcontext);
642 /* Set the user identity. */
643 switch (specified) {
644 case AVTAB_TRANSITION:
645 case AVTAB_CHANGE:
646 /* Use the process user identity. */
647 newcontext.user = scontext->user;
648 break;
649 case AVTAB_MEMBER:
650 /* Use the related object owner. */
651 newcontext.user = tcontext->user;
652 break;
655 /* Set the role and type to default values. */
656 switch (tclass) {
657 case SECCLASS_PROCESS:
658 /* Use the current role and type of process. */
659 newcontext.role = scontext->role;
660 newcontext.type = scontext->type;
661 break;
662 default:
663 /* Use the well-defined object role. */
664 newcontext.role = OBJECT_R_VAL;
665 /* Use the type of the related object. */
666 newcontext.type = tcontext->type;
669 /* Look for a type transition/member/change rule. */
670 avkey.source_type = scontext->type;
671 avkey.target_type = tcontext->type;
672 avkey.target_class = tclass;
673 avdatum = avtab_search(&policydb.te_avtab, &avkey, AVTAB_TYPE);
675 /* If no permanent rule, also check for enabled conditional rules */
676 if(!avdatum) {
677 node = avtab_search_node(&policydb.te_cond_avtab, &avkey, specified);
678 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
679 if (node->datum.specified & AVTAB_ENABLED) {
680 avdatum = &node->datum;
681 break;
686 type_change = (avdatum && (avdatum->specified & specified));
687 if (type_change) {
688 /* Use the type from the type transition/member/change rule. */
689 switch (specified) {
690 case AVTAB_TRANSITION:
691 newcontext.type = avtab_transition(avdatum);
692 break;
693 case AVTAB_MEMBER:
694 newcontext.type = avtab_member(avdatum);
695 break;
696 case AVTAB_CHANGE:
697 newcontext.type = avtab_change(avdatum);
698 break;
702 /* Check for class-specific changes. */
703 switch (tclass) {
704 case SECCLASS_PROCESS:
705 if (specified & AVTAB_TRANSITION) {
706 /* Look for a role transition rule. */
707 for (roletr = policydb.role_tr; roletr;
708 roletr = roletr->next) {
709 if (roletr->role == scontext->role &&
710 roletr->type == tcontext->type) {
711 /* Use the role transition rule. */
712 newcontext.role = roletr->new_role;
713 break;
718 if (!type_change && !roletr) {
719 /* No change in process role or type. */
720 *out_sid = ssid;
721 goto out_unlock;
724 break;
725 default:
726 if (!type_change &&
727 (newcontext.user == tcontext->user) &&
728 mls_context_cmp(scontext, tcontext)) {
729 /* No change in object type, owner,
730 or MLS attributes. */
731 *out_sid = tsid;
732 goto out_unlock;
734 break;
737 /* Set the MLS attributes.
738 This is done last because it may allocate memory. */
739 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
740 if (rc)
741 goto out_unlock;
743 /* Check the validity of the context. */
744 if (!policydb_context_isvalid(&policydb, &newcontext)) {
745 rc = compute_sid_handle_invalid_context(scontext,
746 tcontext,
747 tclass,
748 &newcontext);
749 if (rc)
750 goto out_unlock;
752 /* Obtain the sid for the context. */
753 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
754 out_unlock:
755 POLICY_RDUNLOCK;
756 context_destroy(&newcontext);
757 out:
758 return rc;
762 * security_transition_sid - Compute the SID for a new subject/object.
763 * @ssid: source security identifier
764 * @tsid: target security identifier
765 * @tclass: target security class
766 * @out_sid: security identifier for new subject/object
768 * Compute a SID to use for labeling a new subject or object in the
769 * class @tclass based on a SID pair (@ssid, @tsid).
770 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
771 * if insufficient memory is available, or %0 if the new SID was
772 * computed successfully.
774 int security_transition_sid(u32 ssid,
775 u32 tsid,
776 u16 tclass,
777 u32 *out_sid)
779 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
783 * security_member_sid - Compute the SID for member selection.
784 * @ssid: source security identifier
785 * @tsid: target security identifier
786 * @tclass: target security class
787 * @out_sid: security identifier for selected member
789 * Compute a SID to use when selecting a member of a polyinstantiated
790 * object of class @tclass based on a SID pair (@ssid, @tsid).
791 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
792 * if insufficient memory is available, or %0 if the SID was
793 * computed successfully.
795 int security_member_sid(u32 ssid,
796 u32 tsid,
797 u16 tclass,
798 u32 *out_sid)
800 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
804 * security_change_sid - Compute the SID for object relabeling.
805 * @ssid: source security identifier
806 * @tsid: target security identifier
807 * @tclass: target security class
808 * @out_sid: security identifier for selected member
810 * Compute a SID to use for relabeling an object of class @tclass
811 * based on a SID pair (@ssid, @tsid).
812 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
813 * if insufficient memory is available, or %0 if the SID was
814 * computed successfully.
816 int security_change_sid(u32 ssid,
817 u32 tsid,
818 u16 tclass,
819 u32 *out_sid)
821 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
825 * Verify that each permission that is defined under the
826 * existing policy is still defined with the same value
827 * in the new policy.
829 static int validate_perm(void *key, void *datum, void *p)
831 struct hashtab *h;
832 struct perm_datum *perdatum, *perdatum2;
833 int rc = 0;
836 h = p;
837 perdatum = datum;
839 perdatum2 = hashtab_search(h, key);
840 if (!perdatum2) {
841 printk(KERN_ERR "security: permission %s disappeared",
842 (char *)key);
843 rc = -ENOENT;
844 goto out;
846 if (perdatum->value != perdatum2->value) {
847 printk(KERN_ERR "security: the value of permission %s changed",
848 (char *)key);
849 rc = -EINVAL;
851 out:
852 return rc;
856 * Verify that each class that is defined under the
857 * existing policy is still defined with the same
858 * attributes in the new policy.
860 static int validate_class(void *key, void *datum, void *p)
862 struct policydb *newp;
863 struct class_datum *cladatum, *cladatum2;
864 int rc;
866 newp = p;
867 cladatum = datum;
869 cladatum2 = hashtab_search(newp->p_classes.table, key);
870 if (!cladatum2) {
871 printk(KERN_ERR "security: class %s disappeared\n",
872 (char *)key);
873 rc = -ENOENT;
874 goto out;
876 if (cladatum->value != cladatum2->value) {
877 printk(KERN_ERR "security: the value of class %s changed\n",
878 (char *)key);
879 rc = -EINVAL;
880 goto out;
882 if ((cladatum->comdatum && !cladatum2->comdatum) ||
883 (!cladatum->comdatum && cladatum2->comdatum)) {
884 printk(KERN_ERR "security: the inherits clause for the access "
885 "vector definition for class %s changed\n", (char *)key);
886 rc = -EINVAL;
887 goto out;
889 if (cladatum->comdatum) {
890 rc = hashtab_map(cladatum->comdatum->permissions.table, validate_perm,
891 cladatum2->comdatum->permissions.table);
892 if (rc) {
893 printk(" in the access vector definition for class "
894 "%s\n", (char *)key);
895 goto out;
898 rc = hashtab_map(cladatum->permissions.table, validate_perm,
899 cladatum2->permissions.table);
900 if (rc)
901 printk(" in access vector definition for class %s\n",
902 (char *)key);
903 out:
904 return rc;
907 /* Clone the SID into the new SID table. */
908 static int clone_sid(u32 sid,
909 struct context *context,
910 void *arg)
912 struct sidtab *s = arg;
914 return sidtab_insert(s, sid, context);
917 static inline int convert_context_handle_invalid_context(struct context *context)
919 int rc = 0;
921 if (selinux_enforcing) {
922 rc = -EINVAL;
923 } else {
924 char *s;
925 u32 len;
927 context_struct_to_string(context, &s, &len);
928 printk(KERN_ERR "security: context %s is invalid\n", s);
929 kfree(s);
931 return rc;
934 struct convert_context_args {
935 struct policydb *oldp;
936 struct policydb *newp;
940 * Convert the values in the security context
941 * structure `c' from the values specified
942 * in the policy `p->oldp' to the values specified
943 * in the policy `p->newp'. Verify that the
944 * context is valid under the new policy.
946 static int convert_context(u32 key,
947 struct context *c,
948 void *p)
950 struct convert_context_args *args;
951 struct context oldc;
952 struct role_datum *role;
953 struct type_datum *typdatum;
954 struct user_datum *usrdatum;
955 char *s;
956 u32 len;
957 int rc;
959 args = p;
961 rc = context_cpy(&oldc, c);
962 if (rc)
963 goto out;
965 rc = -EINVAL;
967 /* Convert the user. */
968 usrdatum = hashtab_search(args->newp->p_users.table,
969 args->oldp->p_user_val_to_name[c->user - 1]);
970 if (!usrdatum) {
971 goto bad;
973 c->user = usrdatum->value;
975 /* Convert the role. */
976 role = hashtab_search(args->newp->p_roles.table,
977 args->oldp->p_role_val_to_name[c->role - 1]);
978 if (!role) {
979 goto bad;
981 c->role = role->value;
983 /* Convert the type. */
984 typdatum = hashtab_search(args->newp->p_types.table,
985 args->oldp->p_type_val_to_name[c->type - 1]);
986 if (!typdatum) {
987 goto bad;
989 c->type = typdatum->value;
991 rc = mls_convert_context(args->oldp, args->newp, c);
992 if (rc)
993 goto bad;
995 /* Check the validity of the new context. */
996 if (!policydb_context_isvalid(args->newp, c)) {
997 rc = convert_context_handle_invalid_context(&oldc);
998 if (rc)
999 goto bad;
1002 context_destroy(&oldc);
1003 out:
1004 return rc;
1005 bad:
1006 context_struct_to_string(&oldc, &s, &len);
1007 context_destroy(&oldc);
1008 printk(KERN_ERR "security: invalidating context %s\n", s);
1009 kfree(s);
1010 goto out;
1013 extern void selinux_complete_init(void);
1016 * security_load_policy - Load a security policy configuration.
1017 * @data: binary policy data
1018 * @len: length of data in bytes
1020 * Load a new set of security policy configuration data,
1021 * validate it and convert the SID table as necessary.
1022 * This function will flush the access vector cache after
1023 * loading the new policy.
1025 int security_load_policy(void *data, size_t len)
1027 struct policydb oldpolicydb, newpolicydb;
1028 struct sidtab oldsidtab, newsidtab;
1029 struct convert_context_args args;
1030 u32 seqno;
1031 int rc = 0;
1032 struct policy_file file = { data, len }, *fp = &file;
1034 LOAD_LOCK;
1036 if (!ss_initialized) {
1037 avtab_cache_init();
1038 if (policydb_read(&policydb, fp)) {
1039 LOAD_UNLOCK;
1040 return -EINVAL;
1042 if (policydb_load_isids(&policydb, &sidtab)) {
1043 LOAD_UNLOCK;
1044 policydb_destroy(&policydb);
1045 return -EINVAL;
1047 ss_initialized = 1;
1049 LOAD_UNLOCK;
1050 selinux_complete_init();
1051 return 0;
1054 #if 0
1055 sidtab_hash_eval(&sidtab, "sids");
1056 #endif
1058 if (policydb_read(&newpolicydb, fp)) {
1059 LOAD_UNLOCK;
1060 return -EINVAL;
1063 sidtab_init(&newsidtab);
1065 /* Verify that the existing classes did not change. */
1066 if (hashtab_map(policydb.p_classes.table, validate_class, &newpolicydb)) {
1067 printk(KERN_ERR "security: the definition of an existing "
1068 "class changed\n");
1069 rc = -EINVAL;
1070 goto err;
1073 /* Clone the SID table. */
1074 sidtab_shutdown(&sidtab);
1075 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1076 rc = -ENOMEM;
1077 goto err;
1080 /* Convert the internal representations of contexts
1081 in the new SID table and remove invalid SIDs. */
1082 args.oldp = &policydb;
1083 args.newp = &newpolicydb;
1084 sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1086 /* Save the old policydb and SID table to free later. */
1087 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1088 sidtab_set(&oldsidtab, &sidtab);
1090 /* Install the new policydb and SID table. */
1091 POLICY_WRLOCK;
1092 memcpy(&policydb, &newpolicydb, sizeof policydb);
1093 sidtab_set(&sidtab, &newsidtab);
1094 seqno = ++latest_granting;
1096 POLICY_WRUNLOCK;
1097 LOAD_UNLOCK;
1099 /* Free the old policydb and SID table. */
1100 policydb_destroy(&oldpolicydb);
1101 sidtab_destroy(&oldsidtab);
1103 avc_ss_reset(seqno);
1104 selnl_notify_policyload(seqno);
1106 return 0;
1108 err:
1109 LOAD_UNLOCK;
1110 sidtab_destroy(&newsidtab);
1111 policydb_destroy(&newpolicydb);
1112 return rc;
1117 * security_port_sid - Obtain the SID for a port.
1118 * @domain: communication domain aka address family
1119 * @type: socket type
1120 * @protocol: protocol number
1121 * @port: port number
1122 * @out_sid: security identifier
1124 int security_port_sid(u16 domain,
1125 u16 type,
1126 u8 protocol,
1127 u16 port,
1128 u32 *out_sid)
1130 struct ocontext *c;
1131 int rc = 0;
1133 POLICY_RDLOCK;
1135 c = policydb.ocontexts[OCON_PORT];
1136 while (c) {
1137 if (c->u.port.protocol == protocol &&
1138 c->u.port.low_port <= port &&
1139 c->u.port.high_port >= port)
1140 break;
1141 c = c->next;
1144 if (c) {
1145 if (!c->sid[0]) {
1146 rc = sidtab_context_to_sid(&sidtab,
1147 &c->context[0],
1148 &c->sid[0]);
1149 if (rc)
1150 goto out;
1152 *out_sid = c->sid[0];
1153 } else {
1154 *out_sid = SECINITSID_PORT;
1157 out:
1158 POLICY_RDUNLOCK;
1159 return rc;
1163 * security_netif_sid - Obtain the SID for a network interface.
1164 * @name: interface name
1165 * @if_sid: interface SID
1166 * @msg_sid: default SID for received packets
1168 int security_netif_sid(char *name,
1169 u32 *if_sid,
1170 u32 *msg_sid)
1172 int rc = 0;
1173 struct ocontext *c;
1175 POLICY_RDLOCK;
1177 c = policydb.ocontexts[OCON_NETIF];
1178 while (c) {
1179 if (strcmp(name, c->u.name) == 0)
1180 break;
1181 c = c->next;
1184 if (c) {
1185 if (!c->sid[0] || !c->sid[1]) {
1186 rc = sidtab_context_to_sid(&sidtab,
1187 &c->context[0],
1188 &c->sid[0]);
1189 if (rc)
1190 goto out;
1191 rc = sidtab_context_to_sid(&sidtab,
1192 &c->context[1],
1193 &c->sid[1]);
1194 if (rc)
1195 goto out;
1197 *if_sid = c->sid[0];
1198 *msg_sid = c->sid[1];
1199 } else {
1200 *if_sid = SECINITSID_NETIF;
1201 *msg_sid = SECINITSID_NETMSG;
1204 out:
1205 POLICY_RDUNLOCK;
1206 return rc;
1209 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1211 int i, fail = 0;
1213 for(i = 0; i < 4; i++)
1214 if(addr[i] != (input[i] & mask[i])) {
1215 fail = 1;
1216 break;
1219 return !fail;
1223 * security_node_sid - Obtain the SID for a node (host).
1224 * @domain: communication domain aka address family
1225 * @addrp: address
1226 * @addrlen: address length in bytes
1227 * @out_sid: security identifier
1229 int security_node_sid(u16 domain,
1230 void *addrp,
1231 u32 addrlen,
1232 u32 *out_sid)
1234 int rc = 0;
1235 struct ocontext *c;
1237 POLICY_RDLOCK;
1239 switch (domain) {
1240 case AF_INET: {
1241 u32 addr;
1243 if (addrlen != sizeof(u32)) {
1244 rc = -EINVAL;
1245 goto out;
1248 addr = *((u32 *)addrp);
1250 c = policydb.ocontexts[OCON_NODE];
1251 while (c) {
1252 if (c->u.node.addr == (addr & c->u.node.mask))
1253 break;
1254 c = c->next;
1256 break;
1259 case AF_INET6:
1260 if (addrlen != sizeof(u64) * 2) {
1261 rc = -EINVAL;
1262 goto out;
1264 c = policydb.ocontexts[OCON_NODE6];
1265 while (c) {
1266 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1267 c->u.node6.mask))
1268 break;
1269 c = c->next;
1271 break;
1273 default:
1274 *out_sid = SECINITSID_NODE;
1275 goto out;
1278 if (c) {
1279 if (!c->sid[0]) {
1280 rc = sidtab_context_to_sid(&sidtab,
1281 &c->context[0],
1282 &c->sid[0]);
1283 if (rc)
1284 goto out;
1286 *out_sid = c->sid[0];
1287 } else {
1288 *out_sid = SECINITSID_NODE;
1291 out:
1292 POLICY_RDUNLOCK;
1293 return rc;
1296 #define SIDS_NEL 25
1299 * security_get_user_sids - Obtain reachable SIDs for a user.
1300 * @fromsid: starting SID
1301 * @username: username
1302 * @sids: array of reachable SIDs for user
1303 * @nel: number of elements in @sids
1305 * Generate the set of SIDs for legal security contexts
1306 * for a given user that can be reached by @fromsid.
1307 * Set *@sids to point to a dynamically allocated
1308 * array containing the set of SIDs. Set *@nel to the
1309 * number of elements in the array.
1312 int security_get_user_sids(u32 fromsid,
1313 char *username,
1314 u32 **sids,
1315 u32 *nel)
1317 struct context *fromcon, usercon;
1318 u32 *mysids, *mysids2, sid;
1319 u32 mynel = 0, maxnel = SIDS_NEL;
1320 struct user_datum *user;
1321 struct role_datum *role;
1322 struct av_decision avd;
1323 int rc = 0, i, j;
1325 if (!ss_initialized) {
1326 *sids = NULL;
1327 *nel = 0;
1328 goto out;
1331 POLICY_RDLOCK;
1333 fromcon = sidtab_search(&sidtab, fromsid);
1334 if (!fromcon) {
1335 rc = -EINVAL;
1336 goto out_unlock;
1339 user = hashtab_search(policydb.p_users.table, username);
1340 if (!user) {
1341 rc = -EINVAL;
1342 goto out_unlock;
1344 usercon.user = user->value;
1346 mysids = kmalloc(maxnel*sizeof(*mysids), GFP_ATOMIC);
1347 if (!mysids) {
1348 rc = -ENOMEM;
1349 goto out_unlock;
1351 memset(mysids, 0, maxnel*sizeof(*mysids));
1353 for (i = ebitmap_startbit(&user->roles); i < ebitmap_length(&user->roles); i++) {
1354 if (!ebitmap_get_bit(&user->roles, i))
1355 continue;
1356 role = policydb.role_val_to_struct[i];
1357 usercon.role = i+1;
1358 for (j = ebitmap_startbit(&role->types); j < ebitmap_length(&role->types); j++) {
1359 if (!ebitmap_get_bit(&role->types, j))
1360 continue;
1361 usercon.type = j+1;
1362 mls_for_user_ranges(user,usercon) {
1363 rc = context_struct_compute_av(fromcon, &usercon,
1364 SECCLASS_PROCESS,
1365 PROCESS__TRANSITION,
1366 &avd);
1367 if (rc || !(avd.allowed & PROCESS__TRANSITION))
1368 continue;
1369 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1370 if (rc) {
1371 kfree(mysids);
1372 goto out_unlock;
1374 if (mynel < maxnel) {
1375 mysids[mynel++] = sid;
1376 } else {
1377 maxnel += SIDS_NEL;
1378 mysids2 = kmalloc(maxnel*sizeof(*mysids2), GFP_ATOMIC);
1379 if (!mysids2) {
1380 rc = -ENOMEM;
1381 kfree(mysids);
1382 goto out_unlock;
1384 memset(mysids2, 0, maxnel*sizeof(*mysids2));
1385 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1386 kfree(mysids);
1387 mysids = mysids2;
1388 mysids[mynel++] = sid;
1391 mls_end_user_ranges;
1395 *sids = mysids;
1396 *nel = mynel;
1398 out_unlock:
1399 POLICY_RDUNLOCK;
1400 out:
1401 return rc;
1405 * security_genfs_sid - Obtain a SID for a file in a filesystem
1406 * @fstype: filesystem type
1407 * @path: path from root of mount
1408 * @sclass: file security class
1409 * @sid: SID for path
1411 * Obtain a SID to use for a file in a filesystem that
1412 * cannot support xattr or use a fixed labeling behavior like
1413 * transition SIDs or task SIDs.
1415 int security_genfs_sid(const char *fstype,
1416 char *path,
1417 u16 sclass,
1418 u32 *sid)
1420 int len;
1421 struct genfs *genfs;
1422 struct ocontext *c;
1423 int rc = 0, cmp = 0;
1425 POLICY_RDLOCK;
1427 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1428 cmp = strcmp(fstype, genfs->fstype);
1429 if (cmp <= 0)
1430 break;
1433 if (!genfs || cmp) {
1434 *sid = SECINITSID_UNLABELED;
1435 rc = -ENOENT;
1436 goto out;
1439 for (c = genfs->head; c; c = c->next) {
1440 len = strlen(c->u.name);
1441 if ((!c->v.sclass || sclass == c->v.sclass) &&
1442 (strncmp(c->u.name, path, len) == 0))
1443 break;
1446 if (!c) {
1447 *sid = SECINITSID_UNLABELED;
1448 rc = -ENOENT;
1449 goto out;
1452 if (!c->sid[0]) {
1453 rc = sidtab_context_to_sid(&sidtab,
1454 &c->context[0],
1455 &c->sid[0]);
1456 if (rc)
1457 goto out;
1460 *sid = c->sid[0];
1461 out:
1462 POLICY_RDUNLOCK;
1463 return rc;
1467 * security_fs_use - Determine how to handle labeling for a filesystem.
1468 * @fstype: filesystem type
1469 * @behavior: labeling behavior
1470 * @sid: SID for filesystem (superblock)
1472 int security_fs_use(
1473 const char *fstype,
1474 unsigned int *behavior,
1475 u32 *sid)
1477 int rc = 0;
1478 struct ocontext *c;
1480 POLICY_RDLOCK;
1482 c = policydb.ocontexts[OCON_FSUSE];
1483 while (c) {
1484 if (strcmp(fstype, c->u.name) == 0)
1485 break;
1486 c = c->next;
1489 if (c) {
1490 *behavior = c->v.behavior;
1491 if (!c->sid[0]) {
1492 rc = sidtab_context_to_sid(&sidtab,
1493 &c->context[0],
1494 &c->sid[0]);
1495 if (rc)
1496 goto out;
1498 *sid = c->sid[0];
1499 } else {
1500 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1501 if (rc) {
1502 *behavior = SECURITY_FS_USE_NONE;
1503 rc = 0;
1504 } else {
1505 *behavior = SECURITY_FS_USE_GENFS;
1509 out:
1510 POLICY_RDUNLOCK;
1511 return rc;
1514 int security_get_bools(int *len, char ***names, int **values)
1516 int i, rc = -ENOMEM;
1518 POLICY_RDLOCK;
1519 *names = NULL;
1520 *values = NULL;
1522 *len = policydb.p_bools.nprim;
1523 if (!*len) {
1524 rc = 0;
1525 goto out;
1528 *names = (char**)kmalloc(sizeof(char*) * *len, GFP_ATOMIC);
1529 if (!*names)
1530 goto err;
1531 memset(*names, 0, sizeof(char*) * *len);
1533 *values = (int*)kmalloc(sizeof(int) * *len, GFP_ATOMIC);
1534 if (!*values)
1535 goto err;
1537 for (i = 0; i < *len; i++) {
1538 size_t name_len;
1539 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1540 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1541 (*names)[i] = (char*)kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1542 if (!(*names)[i])
1543 goto err;
1544 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1545 (*names)[i][name_len - 1] = 0;
1547 rc = 0;
1548 out:
1549 POLICY_RDUNLOCK;
1550 return rc;
1551 err:
1552 if (*names) {
1553 for (i = 0; i < *len; i++)
1554 if ((*names)[i])
1555 kfree((*names)[i]);
1557 if (*values)
1558 kfree(*values);
1559 goto out;
1563 int security_set_bools(int len, int *values)
1565 int i, rc = 0;
1566 int lenp, seqno = 0;
1567 struct cond_node *cur;
1569 POLICY_WRLOCK;
1571 lenp = policydb.p_bools.nprim;
1572 if (len != lenp) {
1573 rc = -EFAULT;
1574 goto out;
1577 printk(KERN_INFO "security: committed booleans { ");
1578 for (i = 0; i < len; i++) {
1579 if (values[i]) {
1580 policydb.bool_val_to_struct[i]->state = 1;
1581 } else {
1582 policydb.bool_val_to_struct[i]->state = 0;
1584 if (i != 0)
1585 printk(", ");
1586 printk("%s:%d", policydb.p_bool_val_to_name[i],
1587 policydb.bool_val_to_struct[i]->state);
1589 printk(" }\n");
1591 for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1592 rc = evaluate_cond_node(&policydb, cur);
1593 if (rc)
1594 goto out;
1597 seqno = ++latest_granting;
1599 out:
1600 POLICY_WRUNLOCK;
1601 if (!rc) {
1602 avc_ss_reset(seqno);
1603 selnl_notify_policyload(seqno);
1605 return rc;
1608 int security_get_bool_value(int bool)
1610 int rc = 0;
1611 int len;
1613 POLICY_RDLOCK;
1615 len = policydb.p_bools.nprim;
1616 if (bool >= len) {
1617 rc = -EFAULT;
1618 goto out;
1621 rc = policydb.bool_val_to_struct[bool]->state;
1622 out:
1623 POLICY_RDUNLOCK;
1624 return rc;