initial commit with v2.6.9
[linux-2.6.9-moxart.git] / net / sched / sch_sfq.c
blobac668b08ebe9bf49ff55328e7a25576ff6a60fdf
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <asm/uaccess.h>
15 #include <asm/system.h>
16 #include <asm/bitops.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/jiffies.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/socket.h>
23 #include <linux/sockios.h>
24 #include <linux/in.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/if_ether.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
33 #include <net/ip.h>
34 #include <linux/ipv6.h>
35 #include <net/route.h>
36 #include <linux/skbuff.h>
37 #include <net/sock.h>
38 #include <net/pkt_sched.h>
41 /* Stochastic Fairness Queuing algorithm.
42 =======================================
44 Source:
45 Paul E. McKenney "Stochastic Fairness Queuing",
46 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
48 Paul E. McKenney "Stochastic Fairness Queuing",
49 "Interworking: Research and Experience", v.2, 1991, p.113-131.
52 See also:
53 M. Shreedhar and George Varghese "Efficient Fair
54 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
57 This is not the thing that is usually called (W)FQ nowadays.
58 It does not use any timestamp mechanism, but instead
59 processes queues in round-robin order.
61 ADVANTAGE:
63 - It is very cheap. Both CPU and memory requirements are minimal.
65 DRAWBACKS:
67 - "Stochastic" -> It is not 100% fair.
68 When hash collisions occur, several flows are considered as one.
70 - "Round-robin" -> It introduces larger delays than virtual clock
71 based schemes, and should not be used for isolating interactive
72 traffic from non-interactive. It means, that this scheduler
73 should be used as leaf of CBQ or P3, which put interactive traffic
74 to higher priority band.
76 We still need true WFQ for top level CSZ, but using WFQ
77 for the best effort traffic is absolutely pointless:
78 SFQ is superior for this purpose.
80 IMPLEMENTATION:
81 This implementation limits maximal queue length to 128;
82 maximal mtu to 2^15-1; number of hash buckets to 1024.
83 The only goal of this restrictions was that all data
84 fit into one 4K page :-). Struct sfq_sched_data is
85 organized in anti-cache manner: all the data for a bucket
86 are scattered over different locations. This is not good,
87 but it allowed me to put it into 4K.
89 It is easy to increase these values, but not in flight. */
91 #define SFQ_DEPTH 128
92 #define SFQ_HASH_DIVISOR 1024
94 /* This type should contain at least SFQ_DEPTH*2 values */
95 typedef unsigned char sfq_index;
97 struct sfq_head
99 sfq_index next;
100 sfq_index prev;
103 struct sfq_sched_data
105 /* Parameters */
106 int perturb_period;
107 unsigned quantum; /* Allotment per round: MUST BE >= MTU */
108 int limit;
110 /* Variables */
111 struct timer_list perturb_timer;
112 int perturbation;
113 sfq_index tail; /* Index of current slot in round */
114 sfq_index max_depth; /* Maximal depth */
116 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
117 sfq_index next[SFQ_DEPTH]; /* Active slots link */
118 short allot[SFQ_DEPTH]; /* Current allotment per slot */
119 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */
120 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */
121 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */
124 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
126 int pert = q->perturbation;
128 /* Have we any rotation primitives? If not, WHY? */
129 h ^= (h1<<pert) ^ (h1>>(0x1F - pert));
130 h ^= h>>10;
131 return h & 0x3FF;
134 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
136 u32 h, h2;
138 switch (skb->protocol) {
139 case __constant_htons(ETH_P_IP):
141 struct iphdr *iph = skb->nh.iph;
142 h = iph->daddr;
143 h2 = iph->saddr^iph->protocol;
144 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
145 (iph->protocol == IPPROTO_TCP ||
146 iph->protocol == IPPROTO_UDP ||
147 iph->protocol == IPPROTO_ESP))
148 h2 ^= *(((u32*)iph) + iph->ihl);
149 break;
151 case __constant_htons(ETH_P_IPV6):
153 struct ipv6hdr *iph = skb->nh.ipv6h;
154 h = iph->daddr.s6_addr32[3];
155 h2 = iph->saddr.s6_addr32[3]^iph->nexthdr;
156 if (iph->nexthdr == IPPROTO_TCP ||
157 iph->nexthdr == IPPROTO_UDP ||
158 iph->nexthdr == IPPROTO_ESP)
159 h2 ^= *(u32*)&iph[1];
160 break;
162 default:
163 h = (u32)(unsigned long)skb->dst^skb->protocol;
164 h2 = (u32)(unsigned long)skb->sk;
166 return sfq_fold_hash(q, h, h2);
169 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
171 sfq_index p, n;
172 int d = q->qs[x].qlen + SFQ_DEPTH;
174 p = d;
175 n = q->dep[d].next;
176 q->dep[x].next = n;
177 q->dep[x].prev = p;
178 q->dep[p].next = q->dep[n].prev = x;
181 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
183 sfq_index p, n;
185 n = q->dep[x].next;
186 p = q->dep[x].prev;
187 q->dep[p].next = n;
188 q->dep[n].prev = p;
190 if (n == p && q->max_depth == q->qs[x].qlen + 1)
191 q->max_depth--;
193 sfq_link(q, x);
196 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
198 sfq_index p, n;
199 int d;
201 n = q->dep[x].next;
202 p = q->dep[x].prev;
203 q->dep[p].next = n;
204 q->dep[n].prev = p;
205 d = q->qs[x].qlen;
206 if (q->max_depth < d)
207 q->max_depth = d;
209 sfq_link(q, x);
212 static unsigned int sfq_drop(struct Qdisc *sch)
214 struct sfq_sched_data *q = qdisc_priv(sch);
215 sfq_index d = q->max_depth;
216 struct sk_buff *skb;
217 unsigned int len;
219 /* Queue is full! Find the longest slot and
220 drop a packet from it */
222 if (d > 1) {
223 sfq_index x = q->dep[d+SFQ_DEPTH].next;
224 skb = q->qs[x].prev;
225 len = skb->len;
226 __skb_unlink(skb, &q->qs[x]);
227 kfree_skb(skb);
228 sfq_dec(q, x);
229 sch->q.qlen--;
230 sch->stats.drops++;
231 return len;
234 if (d == 1) {
235 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
236 d = q->next[q->tail];
237 q->next[q->tail] = q->next[d];
238 q->allot[q->next[d]] += q->quantum;
239 skb = q->qs[d].prev;
240 len = skb->len;
241 __skb_unlink(skb, &q->qs[d]);
242 kfree_skb(skb);
243 sfq_dec(q, d);
244 sch->q.qlen--;
245 q->ht[q->hash[d]] = SFQ_DEPTH;
246 sch->stats.drops++;
247 return len;
250 return 0;
253 static int
254 sfq_enqueue(struct sk_buff *skb, struct Qdisc* sch)
256 struct sfq_sched_data *q = qdisc_priv(sch);
257 unsigned hash = sfq_hash(q, skb);
258 sfq_index x;
260 x = q->ht[hash];
261 if (x == SFQ_DEPTH) {
262 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
263 q->hash[x] = hash;
265 __skb_queue_tail(&q->qs[x], skb);
266 sfq_inc(q, x);
267 if (q->qs[x].qlen == 1) { /* The flow is new */
268 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
269 q->tail = x;
270 q->next[x] = x;
271 q->allot[x] = q->quantum;
272 } else {
273 q->next[x] = q->next[q->tail];
274 q->next[q->tail] = x;
275 q->tail = x;
278 if (++sch->q.qlen < q->limit-1) {
279 sch->stats.bytes += skb->len;
280 sch->stats.packets++;
281 return 0;
284 sfq_drop(sch);
285 return NET_XMIT_CN;
288 static int
289 sfq_requeue(struct sk_buff *skb, struct Qdisc* sch)
291 struct sfq_sched_data *q = qdisc_priv(sch);
292 unsigned hash = sfq_hash(q, skb);
293 sfq_index x;
295 x = q->ht[hash];
296 if (x == SFQ_DEPTH) {
297 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
298 q->hash[x] = hash;
300 __skb_queue_head(&q->qs[x], skb);
301 sfq_inc(q, x);
302 if (q->qs[x].qlen == 1) { /* The flow is new */
303 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
304 q->tail = x;
305 q->next[x] = x;
306 q->allot[x] = q->quantum;
307 } else {
308 q->next[x] = q->next[q->tail];
309 q->next[q->tail] = x;
310 q->tail = x;
313 if (++sch->q.qlen < q->limit - 1)
314 return 0;
316 sch->stats.drops++;
317 sfq_drop(sch);
318 return NET_XMIT_CN;
324 static struct sk_buff *
325 sfq_dequeue(struct Qdisc* sch)
327 struct sfq_sched_data *q = qdisc_priv(sch);
328 struct sk_buff *skb;
329 sfq_index a, old_a;
331 /* No active slots */
332 if (q->tail == SFQ_DEPTH)
333 return NULL;
335 a = old_a = q->next[q->tail];
337 /* Grab packet */
338 skb = __skb_dequeue(&q->qs[a]);
339 sfq_dec(q, a);
340 sch->q.qlen--;
342 /* Is the slot empty? */
343 if (q->qs[a].qlen == 0) {
344 q->ht[q->hash[a]] = SFQ_DEPTH;
345 a = q->next[a];
346 if (a == old_a) {
347 q->tail = SFQ_DEPTH;
348 return skb;
350 q->next[q->tail] = a;
351 q->allot[a] += q->quantum;
352 } else if ((q->allot[a] -= skb->len) <= 0) {
353 q->tail = a;
354 a = q->next[a];
355 q->allot[a] += q->quantum;
357 return skb;
360 static void
361 sfq_reset(struct Qdisc* sch)
363 struct sk_buff *skb;
365 while ((skb = sfq_dequeue(sch)) != NULL)
366 kfree_skb(skb);
369 static void sfq_perturbation(unsigned long arg)
371 struct Qdisc *sch = (struct Qdisc*)arg;
372 struct sfq_sched_data *q = qdisc_priv(sch);
374 q->perturbation = net_random()&0x1F;
376 if (q->perturb_period) {
377 q->perturb_timer.expires = jiffies + q->perturb_period;
378 add_timer(&q->perturb_timer);
382 static int sfq_change(struct Qdisc *sch, struct rtattr *opt)
384 struct sfq_sched_data *q = qdisc_priv(sch);
385 struct tc_sfq_qopt *ctl = RTA_DATA(opt);
387 if (opt->rta_len < RTA_LENGTH(sizeof(*ctl)))
388 return -EINVAL;
390 sch_tree_lock(sch);
391 q->quantum = ctl->quantum ? : psched_mtu(sch->dev);
392 q->perturb_period = ctl->perturb_period*HZ;
393 if (ctl->limit)
394 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH);
396 while (sch->q.qlen >= q->limit-1)
397 sfq_drop(sch);
399 del_timer(&q->perturb_timer);
400 if (q->perturb_period) {
401 q->perturb_timer.expires = jiffies + q->perturb_period;
402 add_timer(&q->perturb_timer);
404 sch_tree_unlock(sch);
405 return 0;
408 static int sfq_init(struct Qdisc *sch, struct rtattr *opt)
410 struct sfq_sched_data *q = qdisc_priv(sch);
411 int i;
413 init_timer(&q->perturb_timer);
414 q->perturb_timer.data = (unsigned long)sch;
415 q->perturb_timer.function = sfq_perturbation;
417 for (i=0; i<SFQ_HASH_DIVISOR; i++)
418 q->ht[i] = SFQ_DEPTH;
419 for (i=0; i<SFQ_DEPTH; i++) {
420 skb_queue_head_init(&q->qs[i]);
421 q->dep[i+SFQ_DEPTH].next = i+SFQ_DEPTH;
422 q->dep[i+SFQ_DEPTH].prev = i+SFQ_DEPTH;
424 q->limit = SFQ_DEPTH;
425 q->max_depth = 0;
426 q->tail = SFQ_DEPTH;
427 if (opt == NULL) {
428 q->quantum = psched_mtu(sch->dev);
429 q->perturb_period = 0;
430 } else {
431 int err = sfq_change(sch, opt);
432 if (err)
433 return err;
435 for (i=0; i<SFQ_DEPTH; i++)
436 sfq_link(q, i);
437 return 0;
440 static void sfq_destroy(struct Qdisc *sch)
442 struct sfq_sched_data *q = qdisc_priv(sch);
443 del_timer(&q->perturb_timer);
446 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
448 struct sfq_sched_data *q = qdisc_priv(sch);
449 unsigned char *b = skb->tail;
450 struct tc_sfq_qopt opt;
452 opt.quantum = q->quantum;
453 opt.perturb_period = q->perturb_period/HZ;
455 opt.limit = q->limit;
456 opt.divisor = SFQ_HASH_DIVISOR;
457 opt.flows = q->limit;
459 RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
461 return skb->len;
463 rtattr_failure:
464 skb_trim(skb, b - skb->data);
465 return -1;
468 static struct Qdisc_ops sfq_qdisc_ops = {
469 .next = NULL,
470 .cl_ops = NULL,
471 .id = "sfq",
472 .priv_size = sizeof(struct sfq_sched_data),
473 .enqueue = sfq_enqueue,
474 .dequeue = sfq_dequeue,
475 .requeue = sfq_requeue,
476 .drop = sfq_drop,
477 .init = sfq_init,
478 .reset = sfq_reset,
479 .destroy = sfq_destroy,
480 .change = NULL,
481 .dump = sfq_dump,
482 .owner = THIS_MODULE,
485 static int __init sfq_module_init(void)
487 return register_qdisc(&sfq_qdisc_ops);
489 static void __exit sfq_module_exit(void)
491 unregister_qdisc(&sfq_qdisc_ops);
493 module_init(sfq_module_init)
494 module_exit(sfq_module_exit)
495 MODULE_LICENSE("GPL");