initial commit with v2.6.9
[linux-2.6.9-moxart.git] / net / irda / irttp.c
blob093c362e00299bdd17a9094a3445427d55567dee
1 /*********************************************************************
2 *
3 * Filename: irttp.c
4 * Version: 1.2
5 * Description: Tiny Transport Protocol (TTP) implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Aug 31 20:14:31 1997
9 * Modified at: Wed Jan 5 11:31:27 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
12 * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13 * All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
21 * Neither Dag Brattli nor University of Tromsø admit liability nor
22 * provide warranty for any of this software. This material is
23 * provided "AS-IS" and at no charge.
25 ********************************************************************/
27 #include <linux/config.h>
28 #include <linux/skbuff.h>
29 #include <linux/init.h>
30 #include <linux/seq_file.h>
32 #include <asm/byteorder.h>
33 #include <asm/unaligned.h>
35 #include <net/irda/irda.h>
36 #include <net/irda/irlap.h>
37 #include <net/irda/irlmp.h>
38 #include <net/irda/parameters.h>
39 #include <net/irda/irttp.h>
41 static struct irttp_cb *irttp = NULL;
43 static void __irttp_close_tsap(struct tsap_cb *self);
45 static int irttp_data_indication(void *instance, void *sap,
46 struct sk_buff *skb);
47 static int irttp_udata_indication(void *instance, void *sap,
48 struct sk_buff *skb);
49 static void irttp_disconnect_indication(void *instance, void *sap,
50 LM_REASON reason, struct sk_buff *);
51 static void irttp_connect_indication(void *instance, void *sap,
52 struct qos_info *qos, __u32 max_sdu_size,
53 __u8 header_size, struct sk_buff *skb);
54 static void irttp_connect_confirm(void *instance, void *sap,
55 struct qos_info *qos, __u32 max_sdu_size,
56 __u8 header_size, struct sk_buff *skb);
57 static void irttp_run_tx_queue(struct tsap_cb *self);
58 static void irttp_run_rx_queue(struct tsap_cb *self);
60 static void irttp_flush_queues(struct tsap_cb *self);
61 static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
62 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
63 static void irttp_todo_expired(unsigned long data);
64 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
65 int get);
67 /* Information for parsing parameters in IrTTP */
68 static pi_minor_info_t pi_minor_call_table[] = {
69 { NULL, 0 }, /* 0x00 */
70 { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
72 static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
73 static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
75 /************************ GLOBAL PROCEDURES ************************/
78 * Function irttp_init (void)
80 * Initialize the IrTTP layer. Called by module initialization code
83 int __init irttp_init(void)
85 /* Initialize the irttp structure. */
86 if (irttp == NULL) {
87 irttp = kmalloc(sizeof(struct irttp_cb), GFP_KERNEL);
88 if (irttp == NULL)
89 return -ENOMEM;
91 memset(irttp, 0, sizeof(struct irttp_cb));
93 irttp->magic = TTP_MAGIC;
95 irttp->tsaps = hashbin_new(HB_LOCK);
96 if (!irttp->tsaps) {
97 ERROR("%s: can't allocate IrTTP hashbin!\n", __FUNCTION__);
98 return -ENOMEM;
101 return 0;
105 * Function irttp_cleanup (void)
107 * Called by module destruction/cleanup code
110 void __exit irttp_cleanup(void)
112 /* Check for main structure */
113 ASSERT(irttp != NULL, return;);
114 ASSERT(irttp->magic == TTP_MAGIC, return;);
117 * Delete hashbin and close all TSAP instances in it
119 hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
121 irttp->magic = 0;
123 /* De-allocate main structure */
124 kfree(irttp);
126 irttp = NULL;
129 /*************************** SUBROUTINES ***************************/
132 * Function irttp_start_todo_timer (self, timeout)
134 * Start todo timer.
136 * Made it more effient and unsensitive to race conditions - Jean II
138 static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
140 /* Set new value for timer */
141 mod_timer(&self->todo_timer, jiffies + timeout);
145 * Function irttp_todo_expired (data)
147 * Todo timer has expired!
149 * One of the restriction of the timer is that it is run only on the timer
150 * interrupt which run every 10ms. This mean that even if you set the timer
151 * with a delay of 0, it may take up to 10ms before it's run.
152 * So, to minimise latency and keep cache fresh, we try to avoid using
153 * it as much as possible.
154 * Note : we can't use tasklets, because they can't be asynchronously
155 * killed (need user context), and we can't guarantee that here...
156 * Jean II
158 static void irttp_todo_expired(unsigned long data)
160 struct tsap_cb *self = (struct tsap_cb *) data;
162 /* Check that we still exist */
163 if (!self || self->magic != TTP_TSAP_MAGIC)
164 return;
166 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
168 /* Try to make some progress, especially on Tx side - Jean II */
169 irttp_run_rx_queue(self);
170 irttp_run_tx_queue(self);
172 /* Check if time for disconnect */
173 if (test_bit(0, &self->disconnect_pend)) {
174 /* Check if it's possible to disconnect yet */
175 if (skb_queue_empty(&self->tx_queue)) {
176 /* Make sure disconnect is not pending anymore */
177 clear_bit(0, &self->disconnect_pend); /* FALSE */
179 /* Note : self->disconnect_skb may be NULL */
180 irttp_disconnect_request(self, self->disconnect_skb,
181 P_NORMAL);
182 self->disconnect_skb = NULL;
183 } else {
184 /* Try again later */
185 irttp_start_todo_timer(self, HZ/10);
187 /* No reason to try and close now */
188 return;
192 /* Check if it's closing time */
193 if (self->close_pend)
194 /* Finish cleanup */
195 irttp_close_tsap(self);
199 * Function irttp_flush_queues (self)
201 * Flushes (removes all frames) in transitt-buffer (tx_list)
203 void irttp_flush_queues(struct tsap_cb *self)
205 struct sk_buff* skb;
207 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
209 ASSERT(self != NULL, return;);
210 ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
212 /* Deallocate frames waiting to be sent */
213 while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
214 dev_kfree_skb(skb);
216 /* Deallocate received frames */
217 while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
218 dev_kfree_skb(skb);
220 /* Deallocate received fragments */
221 while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
222 dev_kfree_skb(skb);
226 * Function irttp_reassemble (self)
228 * Makes a new (continuous) skb of all the fragments in the fragment
229 * queue
232 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
234 struct sk_buff *skb, *frag;
235 int n = 0; /* Fragment index */
237 ASSERT(self != NULL, return NULL;);
238 ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
240 IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__,
241 self->rx_sdu_size);
243 skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
244 if (!skb)
245 return NULL;
248 * Need to reserve space for TTP header in case this skb needs to
249 * be requeued in case delivery failes
251 skb_reserve(skb, TTP_HEADER);
252 skb_put(skb, self->rx_sdu_size);
255 * Copy all fragments to a new buffer
257 while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
258 memcpy(skb->data+n, frag->data, frag->len);
259 n += frag->len;
261 dev_kfree_skb(frag);
264 IRDA_DEBUG(2,
265 "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
266 __FUNCTION__, n, self->rx_sdu_size, self->rx_max_sdu_size);
267 /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
268 * by summing the size of all fragments, so we should always
269 * have n == self->rx_sdu_size, except in cases where we
270 * droped the last fragment (when self->rx_sdu_size exceed
271 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
272 * Jean II */
273 ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
275 /* Set the new length */
276 skb_trim(skb, n);
278 self->rx_sdu_size = 0;
280 return skb;
284 * Function irttp_fragment_skb (skb)
286 * Fragments a frame and queues all the fragments for transmission
289 static inline void irttp_fragment_skb(struct tsap_cb *self,
290 struct sk_buff *skb)
292 struct sk_buff *frag;
293 __u8 *frame;
295 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
297 ASSERT(self != NULL, return;);
298 ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
299 ASSERT(skb != NULL, return;);
302 * Split frame into a number of segments
304 while (skb->len > self->max_seg_size) {
305 IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__);
307 /* Make new segment */
308 frag = dev_alloc_skb(self->max_seg_size+self->max_header_size);
309 if (!frag)
310 return;
312 skb_reserve(frag, self->max_header_size);
314 /* Copy data from the original skb into this fragment. */
315 memcpy(skb_put(frag, self->max_seg_size), skb->data,
316 self->max_seg_size);
318 /* Insert TTP header, with the more bit set */
319 frame = skb_push(frag, TTP_HEADER);
320 frame[0] = TTP_MORE;
322 /* Hide the copied data from the original skb */
323 skb_pull(skb, self->max_seg_size);
325 /* Queue fragment */
326 skb_queue_tail(&self->tx_queue, frag);
328 /* Queue what is left of the original skb */
329 IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__);
331 frame = skb_push(skb, TTP_HEADER);
332 frame[0] = 0x00; /* Clear more bit */
334 /* Queue fragment */
335 skb_queue_tail(&self->tx_queue, skb);
339 * Function irttp_param_max_sdu_size (self, param)
341 * Handle the MaxSduSize parameter in the connect frames, this function
342 * will be called both when this parameter needs to be inserted into, and
343 * extracted from the connect frames
345 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
346 int get)
348 struct tsap_cb *self;
350 self = (struct tsap_cb *) instance;
352 ASSERT(self != NULL, return -1;);
353 ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
355 if (get)
356 param->pv.i = self->tx_max_sdu_size;
357 else
358 self->tx_max_sdu_size = param->pv.i;
360 IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__, param->pv.i);
362 return 0;
365 /*************************** CLIENT CALLS ***************************/
366 /************************** LMP CALLBACKS **************************/
367 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
370 * Function irttp_open_tsap (stsap, notify)
372 * Create TSAP connection endpoint,
374 struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
376 struct tsap_cb *self;
377 struct lsap_cb *lsap;
378 notify_t ttp_notify;
380 ASSERT(irttp != NULL, return NULL;);
381 ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
383 /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
384 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
385 * JeanII */
386 if((stsap_sel != LSAP_ANY) &&
387 ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
388 IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__);
389 return NULL;
392 self = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
393 if (self == NULL) {
394 IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__);
395 return NULL;
397 memset(self, 0, sizeof(struct tsap_cb));
398 spin_lock_init(&self->lock);
400 /* Initialise todo timer */
401 init_timer(&self->todo_timer);
402 self->todo_timer.data = (unsigned long) self;
403 self->todo_timer.function = &irttp_todo_expired;
405 /* Initialize callbacks for IrLMP to use */
406 irda_notify_init(&ttp_notify);
407 ttp_notify.connect_confirm = irttp_connect_confirm;
408 ttp_notify.connect_indication = irttp_connect_indication;
409 ttp_notify.disconnect_indication = irttp_disconnect_indication;
410 ttp_notify.data_indication = irttp_data_indication;
411 ttp_notify.udata_indication = irttp_udata_indication;
412 ttp_notify.flow_indication = irttp_flow_indication;
413 if(notify->status_indication != NULL)
414 ttp_notify.status_indication = irttp_status_indication;
415 ttp_notify.instance = self;
416 strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
418 self->magic = TTP_TSAP_MAGIC;
419 self->connected = FALSE;
421 skb_queue_head_init(&self->rx_queue);
422 skb_queue_head_init(&self->tx_queue);
423 skb_queue_head_init(&self->rx_fragments);
425 * Create LSAP at IrLMP layer
427 lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
428 if (lsap == NULL) {
429 WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__);
430 return NULL;
434 * If user specified LSAP_ANY as source TSAP selector, then IrLMP
435 * will replace it with whatever source selector which is free, so
436 * the stsap_sel we have might not be valid anymore
438 self->stsap_sel = lsap->slsap_sel;
439 IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__, self->stsap_sel);
441 self->notify = *notify;
442 self->lsap = lsap;
444 hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
446 if (credit > TTP_RX_MAX_CREDIT)
447 self->initial_credit = TTP_RX_MAX_CREDIT;
448 else
449 self->initial_credit = credit;
451 return self;
453 EXPORT_SYMBOL(irttp_open_tsap);
456 * Function irttp_close (handle)
458 * Remove an instance of a TSAP. This function should only deal with the
459 * deallocation of the TSAP, and resetting of the TSAPs values;
462 static void __irttp_close_tsap(struct tsap_cb *self)
464 /* First make sure we're connected. */
465 ASSERT(self != NULL, return;);
466 ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
468 irttp_flush_queues(self);
470 del_timer(&self->todo_timer);
472 /* This one won't be cleaned up if we are disconnect_pend + close_pend
473 * and we receive a disconnect_indication */
474 if (self->disconnect_skb)
475 dev_kfree_skb(self->disconnect_skb);
477 self->connected = FALSE;
478 self->magic = ~TTP_TSAP_MAGIC;
480 kfree(self);
484 * Function irttp_close (self)
486 * Remove TSAP from list of all TSAPs and then deallocate all resources
487 * associated with this TSAP
489 * Note : because we *free* the tsap structure, it is the responsibility
490 * of the caller to make sure we are called only once and to deal with
491 * possible race conditions. - Jean II
493 int irttp_close_tsap(struct tsap_cb *self)
495 struct tsap_cb *tsap;
497 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
499 ASSERT(self != NULL, return -1;);
500 ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
502 /* Make sure tsap has been disconnected */
503 if (self->connected) {
504 /* Check if disconnect is not pending */
505 if (!test_bit(0, &self->disconnect_pend)) {
506 WARNING("%s: TSAP still connected!\n", __FUNCTION__);
507 irttp_disconnect_request(self, NULL, P_NORMAL);
509 self->close_pend = TRUE;
510 irttp_start_todo_timer(self, HZ/10);
512 return 0; /* Will be back! */
515 tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
517 ASSERT(tsap == self, return -1;);
519 /* Close corresponding LSAP */
520 if (self->lsap) {
521 irlmp_close_lsap(self->lsap);
522 self->lsap = NULL;
525 __irttp_close_tsap(self);
527 return 0;
529 EXPORT_SYMBOL(irttp_close_tsap);
532 * Function irttp_udata_request (self, skb)
534 * Send unreliable data on this TSAP
537 int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
539 ASSERT(self != NULL, return -1;);
540 ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
541 ASSERT(skb != NULL, return -1;);
543 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
545 /* Check that nothing bad happens */
546 if ((skb->len == 0) || (!self->connected)) {
547 IRDA_DEBUG(1, "%s(), No data, or not connected\n",
548 __FUNCTION__);
549 goto err;
552 if (skb->len > self->max_seg_size) {
553 IRDA_DEBUG(1, "%s(), UData is to large for IrLAP!\n",
554 __FUNCTION__);
555 goto err;
558 irlmp_udata_request(self->lsap, skb);
559 self->stats.tx_packets++;
561 return 0;
563 err:
564 dev_kfree_skb(skb);
565 return -1;
567 EXPORT_SYMBOL(irttp_udata_request);
571 * Function irttp_data_request (handle, skb)
573 * Queue frame for transmission. If SAR is enabled, fragement the frame
574 * and queue the fragments for transmission
576 int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
578 __u8 *frame;
579 int ret;
581 ASSERT(self != NULL, return -1;);
582 ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
583 ASSERT(skb != NULL, return -1;);
585 IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__,
586 skb_queue_len(&self->tx_queue));
588 /* Check that nothing bad happens */
589 if ((skb->len == 0) || (!self->connected)) {
590 WARNING("%s: No data, or not connected\n", __FUNCTION__);
591 ret = -ENOTCONN;
592 goto err;
596 * Check if SAR is disabled, and the frame is larger than what fits
597 * inside an IrLAP frame
599 if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
600 ERROR("%s: SAR disabled, and data is to large for IrLAP!\n",
601 __FUNCTION__);
602 ret = -EMSGSIZE;
603 goto err;
607 * Check if SAR is enabled, and the frame is larger than the
608 * TxMaxSduSize
610 if ((self->tx_max_sdu_size != 0) &&
611 (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
612 (skb->len > self->tx_max_sdu_size))
614 ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
615 __FUNCTION__);
616 ret = -EMSGSIZE;
617 goto err;
620 * Check if transmit queue is full
622 if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
624 * Give it a chance to empty itself
626 irttp_run_tx_queue(self);
628 /* Drop packet. This error code should trigger the caller
629 * to resend the data in the client code - Jean II */
630 ret = -ENOBUFS;
631 goto err;
634 /* Queue frame, or queue frame segments */
635 if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
636 /* Queue frame */
637 ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
638 frame = skb_push(skb, TTP_HEADER);
639 frame[0] = 0x00; /* Clear more bit */
641 skb_queue_tail(&self->tx_queue, skb);
642 } else {
644 * Fragment the frame, this function will also queue the
645 * fragments, we don't care about the fact the transmit
646 * queue may be overfilled by all the segments for a little
647 * while
649 irttp_fragment_skb(self, skb);
652 /* Check if we can accept more data from client */
653 if ((!self->tx_sdu_busy) &&
654 (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
655 /* Tx queue filling up, so stop client. */
656 if (self->notify.flow_indication) {
657 self->notify.flow_indication(self->notify.instance,
658 self, FLOW_STOP);
660 /* self->tx_sdu_busy is the state of the client.
661 * Update state after notifying client to avoid
662 * race condition with irttp_flow_indication().
663 * If the queue empty itself after our test but before
664 * we set the flag, we will fix ourselves below in
665 * irttp_run_tx_queue().
666 * Jean II */
667 self->tx_sdu_busy = TRUE;
670 /* Try to make some progress */
671 irttp_run_tx_queue(self);
673 return 0;
675 err:
676 dev_kfree_skb(skb);
677 return ret;
679 EXPORT_SYMBOL(irttp_data_request);
682 * Function irttp_run_tx_queue (self)
684 * Transmit packets queued for transmission (if possible)
687 static void irttp_run_tx_queue(struct tsap_cb *self)
689 struct sk_buff *skb;
690 unsigned long flags;
691 int n;
693 IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
694 __FUNCTION__,
695 self->send_credit, skb_queue_len(&self->tx_queue));
697 /* Get exclusive access to the tx queue, otherwise don't touch it */
698 if (irda_lock(&self->tx_queue_lock) == FALSE)
699 return;
701 /* Try to send out frames as long as we have credits
702 * and as long as LAP is not full. If LAP is full, it will
703 * poll us through irttp_flow_indication() - Jean II */
704 while ((self->send_credit > 0) &&
705 (!irlmp_lap_tx_queue_full(self->lsap)) &&
706 (skb = skb_dequeue(&self->tx_queue)))
709 * Since we can transmit and receive frames concurrently,
710 * the code below is a critical region and we must assure that
711 * nobody messes with the credits while we update them.
713 spin_lock_irqsave(&self->lock, flags);
715 n = self->avail_credit;
716 self->avail_credit = 0;
718 /* Only room for 127 credits in frame */
719 if (n > 127) {
720 self->avail_credit = n-127;
721 n = 127;
723 self->remote_credit += n;
724 self->send_credit--;
726 spin_unlock_irqrestore(&self->lock, flags);
729 * More bit must be set by the data_request() or fragment()
730 * functions
732 skb->data[0] |= (n & 0x7f);
734 /* Detach from socket.
735 * The current skb has a reference to the socket that sent
736 * it (skb->sk). When we pass it to IrLMP, the skb will be
737 * stored in in IrLAP (self->wx_list). When we are within
738 * IrLAP, we lose the notion of socket, so we should not
739 * have a reference to a socket. So, we drop it here.
741 * Why does it matter ?
742 * When the skb is freed (kfree_skb), if it is associated
743 * with a socket, it release buffer space on the socket
744 * (through sock_wfree() and sock_def_write_space()).
745 * If the socket no longer exist, we may crash. Hard.
746 * When we close a socket, we make sure that associated packets
747 * in IrTTP are freed. However, we have no way to cancel
748 * the packet that we have passed to IrLAP. So, if a packet
749 * remains in IrLAP (retry on the link or else) after we
750 * close the socket, we are dead !
751 * Jean II */
752 if (skb->sk != NULL) {
753 /* IrSOCK application, IrOBEX, ... */
754 skb_orphan(skb);
756 /* IrCOMM over IrTTP, IrLAN, ... */
758 /* Pass the skb to IrLMP - done */
759 irlmp_data_request(self->lsap, skb);
760 self->stats.tx_packets++;
763 /* Check if we can accept more frames from client.
764 * We don't want to wait until the todo timer to do that, and we
765 * can't use tasklets (grr...), so we are obliged to give control
766 * to client. That's ok, this test will be true not too often
767 * (max once per LAP window) and we are called from places
768 * where we can spend a bit of time doing stuff. - Jean II */
769 if ((self->tx_sdu_busy) &&
770 (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
771 (!self->close_pend))
773 if (self->notify.flow_indication)
774 self->notify.flow_indication(self->notify.instance,
775 self, FLOW_START);
777 /* self->tx_sdu_busy is the state of the client.
778 * We don't really have a race here, but it's always safer
779 * to update our state after the client - Jean II */
780 self->tx_sdu_busy = FALSE;
783 /* Reset lock */
784 self->tx_queue_lock = 0;
788 * Function irttp_give_credit (self)
790 * Send a dataless flowdata TTP-PDU and give available credit to peer
791 * TSAP
793 static inline void irttp_give_credit(struct tsap_cb *self)
795 struct sk_buff *tx_skb = NULL;
796 unsigned long flags;
797 int n;
799 ASSERT(self != NULL, return;);
800 ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
802 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
803 __FUNCTION__,
804 self->send_credit, self->avail_credit, self->remote_credit);
806 /* Give credit to peer */
807 tx_skb = dev_alloc_skb(64);
808 if (!tx_skb)
809 return;
811 /* Reserve space for LMP, and LAP header */
812 skb_reserve(tx_skb, self->max_header_size);
815 * Since we can transmit and receive frames concurrently,
816 * the code below is a critical region and we must assure that
817 * nobody messes with the credits while we update them.
819 spin_lock_irqsave(&self->lock, flags);
821 n = self->avail_credit;
822 self->avail_credit = 0;
824 /* Only space for 127 credits in frame */
825 if (n > 127) {
826 self->avail_credit = n - 127;
827 n = 127;
829 self->remote_credit += n;
831 spin_unlock_irqrestore(&self->lock, flags);
833 skb_put(tx_skb, 1);
834 tx_skb->data[0] = (__u8) (n & 0x7f);
836 irlmp_data_request(self->lsap, tx_skb);
837 self->stats.tx_packets++;
841 * Function irttp_udata_indication (instance, sap, skb)
843 * Received some unit-data (unreliable)
846 static int irttp_udata_indication(void *instance, void *sap,
847 struct sk_buff *skb)
849 struct tsap_cb *self;
850 int err;
852 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
854 self = (struct tsap_cb *) instance;
856 ASSERT(self != NULL, return -1;);
857 ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
858 ASSERT(skb != NULL, return -1;);
860 self->stats.rx_packets++;
862 /* Just pass data to layer above */
863 if (self->notify.udata_indication) {
864 err = self->notify.udata_indication(self->notify.instance,
865 self,skb);
866 /* Same comment as in irttp_do_data_indication() */
867 if (!err)
868 return 0;
870 /* Either no handler, or handler returns an error */
871 dev_kfree_skb(skb);
873 return 0;
877 * Function irttp_data_indication (instance, sap, skb)
879 * Receive segment from IrLMP.
882 static int irttp_data_indication(void *instance, void *sap,
883 struct sk_buff *skb)
885 struct tsap_cb *self;
886 unsigned long flags;
887 int n;
889 self = (struct tsap_cb *) instance;
891 n = skb->data[0] & 0x7f; /* Extract the credits */
893 self->stats.rx_packets++;
895 /* Deal with inbound credit
896 * Since we can transmit and receive frames concurrently,
897 * the code below is a critical region and we must assure that
898 * nobody messes with the credits while we update them.
900 spin_lock_irqsave(&self->lock, flags);
901 self->send_credit += n;
902 if (skb->len > 1)
903 self->remote_credit--;
904 spin_unlock_irqrestore(&self->lock, flags);
907 * Data or dataless packet? Dataless frames contains only the
908 * TTP_HEADER.
910 if (skb->len > 1) {
912 * We don't remove the TTP header, since we must preserve the
913 * more bit, so the defragment routing knows what to do
915 skb_queue_tail(&self->rx_queue, skb);
916 } else {
917 /* Dataless flowdata TTP-PDU */
918 dev_kfree_skb(skb);
922 /* Push data to the higher layer.
923 * We do it synchronously because running the todo timer for each
924 * receive packet would be too much overhead and latency.
925 * By passing control to the higher layer, we run the risk that
926 * it may take time or grab a lock. Most often, the higher layer
927 * will only put packet in a queue.
928 * Anyway, packets are only dripping through the IrDA, so we can
929 * have time before the next packet.
930 * Further, we are run from NET_BH, so the worse that can happen is
931 * us missing the optimal time to send back the PF bit in LAP.
932 * Jean II */
933 irttp_run_rx_queue(self);
935 /* We now give credits to peer in irttp_run_rx_queue().
936 * We need to send credit *NOW*, otherwise we are going
937 * to miss the next Tx window. The todo timer may take
938 * a while before it's run... - Jean II */
941 * If the peer device has given us some credits and we didn't have
942 * anyone from before, then we need to shedule the tx queue.
943 * We need to do that because our Tx have stopped (so we may not
944 * get any LAP flow indication) and the user may be stopped as
945 * well. - Jean II
947 if (self->send_credit == n) {
948 /* Restart pushing stuff to LAP */
949 irttp_run_tx_queue(self);
950 /* Note : we don't want to schedule the todo timer
951 * because it has horrible latency. No tasklets
952 * because the tasklet API is broken. - Jean II */
955 return 0;
959 * Function irttp_status_indication (self, reason)
961 * Status_indication, just pass to the higher layer...
964 void irttp_status_indication(void *instance,
965 LINK_STATUS link, LOCK_STATUS lock)
967 struct tsap_cb *self;
969 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
971 self = (struct tsap_cb *) instance;
973 ASSERT(self != NULL, return;);
974 ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
976 /* Check if client has already closed the TSAP and gone away */
977 if (self->close_pend)
978 return;
981 * Inform service user if he has requested it
983 if (self->notify.status_indication != NULL)
984 self->notify.status_indication(self->notify.instance,
985 link, lock);
986 else
987 IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__);
991 * Function irttp_flow_indication (self, reason)
993 * Flow_indication : IrLAP tells us to send more data.
996 void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
998 struct tsap_cb *self;
1000 self = (struct tsap_cb *) instance;
1002 ASSERT(self != NULL, return;);
1003 ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1005 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
1007 /* We are "polled" directly from LAP, and the LAP want to fill
1008 * its Tx window. We want to do our best to send it data, so that
1009 * we maximise the window. On the other hand, we want to limit the
1010 * amount of work here so that LAP doesn't hang forever waiting
1011 * for packets. - Jean II */
1013 /* Try to send some packets. Currently, LAP calls us every time
1014 * there is one free slot, so we will send only one packet.
1015 * This allow the scheduler to do its round robin - Jean II */
1016 irttp_run_tx_queue(self);
1018 /* Note regarding the interraction with higher layer.
1019 * irttp_run_tx_queue() may call the client when its queue
1020 * start to empty, via notify.flow_indication(). Initially.
1021 * I wanted this to happen in a tasklet, to avoid client
1022 * grabbing the CPU, but we can't use tasklets safely. And timer
1023 * is definitely too slow.
1024 * This will happen only once per LAP window, and usually at
1025 * the third packet (unless window is smaller). LAP is still
1026 * doing mtt and sending first packet so it's sort of OK
1027 * to do that. Jean II */
1029 /* If we need to send disconnect. try to do it now */
1030 if(self->disconnect_pend)
1031 irttp_start_todo_timer(self, 0);
1035 * Function irttp_flow_request (self, command)
1037 * This function could be used by the upper layers to tell IrTTP to stop
1038 * delivering frames if the receive queues are starting to get full, or
1039 * to tell IrTTP to start delivering frames again.
1041 void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1043 IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
1045 ASSERT(self != NULL, return;);
1046 ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1048 switch (flow) {
1049 case FLOW_STOP:
1050 IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__);
1051 self->rx_sdu_busy = TRUE;
1052 break;
1053 case FLOW_START:
1054 IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__);
1055 self->rx_sdu_busy = FALSE;
1057 /* Client say he can accept more data, try to free our
1058 * queues ASAP - Jean II */
1059 irttp_run_rx_queue(self);
1061 break;
1062 default:
1063 IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__);
1066 EXPORT_SYMBOL(irttp_flow_request);
1069 * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1071 * Try to connect to remote destination TSAP selector
1074 int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1075 __u32 saddr, __u32 daddr,
1076 struct qos_info *qos, __u32 max_sdu_size,
1077 struct sk_buff *userdata)
1079 struct sk_buff *tx_skb;
1080 __u8 *frame;
1081 __u8 n;
1083 IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__, max_sdu_size);
1085 ASSERT(self != NULL, return -EBADR;);
1086 ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1088 if (self->connected) {
1089 if(userdata)
1090 dev_kfree_skb(userdata);
1091 return -EISCONN;
1094 /* Any userdata supplied? */
1095 if (userdata == NULL) {
1096 tx_skb = dev_alloc_skb(64);
1097 if (!tx_skb)
1098 return -ENOMEM;
1100 /* Reserve space for MUX_CONTROL and LAP header */
1101 skb_reserve(tx_skb, TTP_MAX_HEADER);
1102 } else {
1103 tx_skb = userdata;
1105 * Check that the client has reserved enough space for
1106 * headers
1108 ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1109 { dev_kfree_skb(userdata); return -1; } );
1112 /* Initialize connection parameters */
1113 self->connected = FALSE;
1114 self->avail_credit = 0;
1115 self->rx_max_sdu_size = max_sdu_size;
1116 self->rx_sdu_size = 0;
1117 self->rx_sdu_busy = FALSE;
1118 self->dtsap_sel = dtsap_sel;
1120 n = self->initial_credit;
1122 self->remote_credit = 0;
1123 self->send_credit = 0;
1126 * Give away max 127 credits for now
1128 if (n > 127) {
1129 self->avail_credit=n-127;
1130 n = 127;
1133 self->remote_credit = n;
1135 /* SAR enabled? */
1136 if (max_sdu_size > 0) {
1137 ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1138 { dev_kfree_skb(tx_skb); return -1; } );
1140 /* Insert SAR parameters */
1141 frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1143 frame[0] = TTP_PARAMETERS | n;
1144 frame[1] = 0x04; /* Length */
1145 frame[2] = 0x01; /* MaxSduSize */
1146 frame[3] = 0x02; /* Value length */
1148 put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1149 (__u16 *)(frame+4));
1150 } else {
1151 /* Insert plain TTP header */
1152 frame = skb_push(tx_skb, TTP_HEADER);
1154 /* Insert initial credit in frame */
1155 frame[0] = n & 0x7f;
1158 /* Connect with IrLMP. No QoS parameters for now */
1159 return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1160 tx_skb);
1162 EXPORT_SYMBOL(irttp_connect_request);
1165 * Function irttp_connect_confirm (handle, qos, skb)
1167 * Sevice user confirms TSAP connection with peer.
1170 static void irttp_connect_confirm(void *instance, void *sap,
1171 struct qos_info *qos, __u32 max_seg_size,
1172 __u8 max_header_size, struct sk_buff *skb)
1174 struct tsap_cb *self;
1175 int parameters;
1176 int ret;
1177 __u8 plen;
1178 __u8 n;
1180 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1182 self = (struct tsap_cb *) instance;
1184 ASSERT(self != NULL, return;);
1185 ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1186 ASSERT(skb != NULL, return;);
1188 self->max_seg_size = max_seg_size - TTP_HEADER;
1189 self->max_header_size = max_header_size + TTP_HEADER;
1192 * Check if we have got some QoS parameters back! This should be the
1193 * negotiated QoS for the link.
1195 if (qos) {
1196 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1197 qos->baud_rate.bits);
1198 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1199 qos->baud_rate.value);
1202 n = skb->data[0] & 0x7f;
1204 IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__, n);
1206 self->send_credit = n;
1207 self->tx_max_sdu_size = 0;
1208 self->connected = TRUE;
1210 parameters = skb->data[0] & 0x80;
1212 ASSERT(skb->len >= TTP_HEADER, return;);
1213 skb_pull(skb, TTP_HEADER);
1215 if (parameters) {
1216 plen = skb->data[0];
1218 ret = irda_param_extract_all(self, skb->data+1,
1219 IRDA_MIN(skb->len-1, plen),
1220 &param_info);
1222 /* Any errors in the parameter list? */
1223 if (ret < 0) {
1224 WARNING("%s: error extracting parameters\n",
1225 __FUNCTION__);
1226 dev_kfree_skb(skb);
1228 /* Do not accept this connection attempt */
1229 return;
1231 /* Remove parameters */
1232 skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1235 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
1236 self->send_credit, self->avail_credit, self->remote_credit);
1238 IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__,
1239 self->tx_max_sdu_size);
1241 if (self->notify.connect_confirm) {
1242 self->notify.connect_confirm(self->notify.instance, self, qos,
1243 self->tx_max_sdu_size,
1244 self->max_header_size, skb);
1245 } else
1246 dev_kfree_skb(skb);
1250 * Function irttp_connect_indication (handle, skb)
1252 * Some other device is connecting to this TSAP
1255 void irttp_connect_indication(void *instance, void *sap, struct qos_info *qos,
1256 __u32 max_seg_size, __u8 max_header_size,
1257 struct sk_buff *skb)
1259 struct tsap_cb *self;
1260 struct lsap_cb *lsap;
1261 int parameters;
1262 int ret;
1263 __u8 plen;
1264 __u8 n;
1266 self = (struct tsap_cb *) instance;
1268 ASSERT(self != NULL, return;);
1269 ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1270 ASSERT(skb != NULL, return;);
1272 lsap = (struct lsap_cb *) sap;
1274 self->max_seg_size = max_seg_size - TTP_HEADER;
1275 self->max_header_size = max_header_size+TTP_HEADER;
1277 IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__, self->stsap_sel);
1279 /* Need to update dtsap_sel if its equal to LSAP_ANY */
1280 self->dtsap_sel = lsap->dlsap_sel;
1282 n = skb->data[0] & 0x7f;
1284 self->send_credit = n;
1285 self->tx_max_sdu_size = 0;
1287 parameters = skb->data[0] & 0x80;
1289 ASSERT(skb->len >= TTP_HEADER, return;);
1290 skb_pull(skb, TTP_HEADER);
1292 if (parameters) {
1293 plen = skb->data[0];
1295 ret = irda_param_extract_all(self, skb->data+1,
1296 IRDA_MIN(skb->len-1, plen),
1297 &param_info);
1299 /* Any errors in the parameter list? */
1300 if (ret < 0) {
1301 WARNING("%s: error extracting parameters\n",
1302 __FUNCTION__);
1303 dev_kfree_skb(skb);
1305 /* Do not accept this connection attempt */
1306 return;
1309 /* Remove parameters */
1310 skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1313 if (self->notify.connect_indication) {
1314 self->notify.connect_indication(self->notify.instance, self,
1315 qos, self->tx_max_sdu_size,
1316 self->max_header_size, skb);
1317 } else
1318 dev_kfree_skb(skb);
1322 * Function irttp_connect_response (handle, userdata)
1324 * Service user is accepting the connection, just pass it down to
1325 * IrLMP!
1328 int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1329 struct sk_buff *userdata)
1331 struct sk_buff *tx_skb;
1332 __u8 *frame;
1333 int ret;
1334 __u8 n;
1336 ASSERT(self != NULL, return -1;);
1337 ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1339 IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__,
1340 self->stsap_sel);
1342 /* Any userdata supplied? */
1343 if (userdata == NULL) {
1344 tx_skb = dev_alloc_skb(64);
1345 if (!tx_skb)
1346 return -ENOMEM;
1348 /* Reserve space for MUX_CONTROL and LAP header */
1349 skb_reserve(tx_skb, TTP_MAX_HEADER);
1350 } else {
1351 tx_skb = userdata;
1353 * Check that the client has reserved enough space for
1354 * headers
1356 ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1357 { dev_kfree_skb(userdata); return -1; } );
1360 self->avail_credit = 0;
1361 self->remote_credit = 0;
1362 self->rx_max_sdu_size = max_sdu_size;
1363 self->rx_sdu_size = 0;
1364 self->rx_sdu_busy = FALSE;
1366 n = self->initial_credit;
1368 /* Frame has only space for max 127 credits (7 bits) */
1369 if (n > 127) {
1370 self->avail_credit = n - 127;
1371 n = 127;
1374 self->remote_credit = n;
1375 self->connected = TRUE;
1377 /* SAR enabled? */
1378 if (max_sdu_size > 0) {
1379 ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1380 { dev_kfree_skb(tx_skb); return -1; } );
1382 /* Insert TTP header with SAR parameters */
1383 frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1385 frame[0] = TTP_PARAMETERS | n;
1386 frame[1] = 0x04; /* Length */
1388 /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
1389 /* TTP_SAR_HEADER, &param_info) */
1391 frame[2] = 0x01; /* MaxSduSize */
1392 frame[3] = 0x02; /* Value length */
1394 put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1395 (__u16 *)(frame+4));
1396 } else {
1397 /* Insert TTP header */
1398 frame = skb_push(tx_skb, TTP_HEADER);
1400 frame[0] = n & 0x7f;
1403 ret = irlmp_connect_response(self->lsap, tx_skb);
1405 return ret;
1407 EXPORT_SYMBOL(irttp_connect_response);
1410 * Function irttp_dup (self, instance)
1412 * Duplicate TSAP, can be used by servers to confirm a connection on a
1413 * new TSAP so it can keep listening on the old one.
1415 struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1417 struct tsap_cb *new;
1418 unsigned long flags;
1420 IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
1422 /* Protect our access to the old tsap instance */
1423 spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1425 /* Find the old instance */
1426 if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1427 IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__);
1428 spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1429 return NULL;
1432 /* Allocate a new instance */
1433 new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
1434 if (!new) {
1435 IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__);
1436 spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1437 return NULL;
1439 /* Dup */
1440 memcpy(new, orig, sizeof(struct tsap_cb));
1442 /* We don't need the old instance any more */
1443 spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1445 /* Try to dup the LSAP (may fail if we were too slow) */
1446 new->lsap = irlmp_dup(orig->lsap, new);
1447 if (!new->lsap) {
1448 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
1449 kfree(new);
1450 return NULL;
1453 /* Not everything should be copied */
1454 new->notify.instance = instance;
1455 init_timer(&new->todo_timer);
1457 skb_queue_head_init(&new->rx_queue);
1458 skb_queue_head_init(&new->tx_queue);
1459 skb_queue_head_init(&new->rx_fragments);
1461 /* This is locked */
1462 hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1464 return new;
1466 EXPORT_SYMBOL(irttp_dup);
1469 * Function irttp_disconnect_request (self)
1471 * Close this connection please! If priority is high, the queued data
1472 * segments, if any, will be deallocated first
1475 int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1476 int priority)
1478 int ret;
1480 ASSERT(self != NULL, return -1;);
1481 ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1483 /* Already disconnected? */
1484 if (!self->connected) {
1485 IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__);
1486 if (userdata)
1487 dev_kfree_skb(userdata);
1488 return -1;
1491 /* Disconnect already pending ?
1492 * We need to use an atomic operation to prevent reentry. This
1493 * function may be called from various context, like user, timer
1494 * for following a disconnect_indication() (i.e. net_bh).
1495 * Jean II */
1496 if(test_and_set_bit(0, &self->disconnect_pend)) {
1497 IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1498 __FUNCTION__);
1499 if (userdata)
1500 dev_kfree_skb(userdata);
1502 /* Try to make some progress */
1503 irttp_run_tx_queue(self);
1504 return -1;
1508 * Check if there is still data segments in the transmit queue
1510 if (skb_queue_len(&self->tx_queue) > 0) {
1511 if (priority == P_HIGH) {
1513 * No need to send the queued data, if we are
1514 * disconnecting right now since the data will
1515 * not have any usable connection to be sent on
1517 IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__);
1518 irttp_flush_queues(self);
1519 } else if (priority == P_NORMAL) {
1521 * Must delay disconnect until after all data segments
1522 * have been sent and the tx_queue is empty
1524 /* We'll reuse this one later for the disconnect */
1525 self->disconnect_skb = userdata; /* May be NULL */
1527 irttp_run_tx_queue(self);
1529 irttp_start_todo_timer(self, HZ/10);
1530 return -1;
1533 /* Note : we don't need to check if self->rx_queue is full and the
1534 * state of self->rx_sdu_busy because the disconnect response will
1535 * be sent at the LMP level (so even if the peer has its Tx queue
1536 * full of data). - Jean II */
1538 IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__);
1539 self->connected = FALSE;
1541 if (!userdata) {
1542 struct sk_buff *tx_skb;
1543 tx_skb = dev_alloc_skb(64);
1544 if (!tx_skb)
1545 return -ENOMEM;
1548 * Reserve space for MUX and LAP header
1550 skb_reserve(tx_skb, TTP_MAX_HEADER);
1552 userdata = tx_skb;
1554 ret = irlmp_disconnect_request(self->lsap, userdata);
1556 /* The disconnect is no longer pending */
1557 clear_bit(0, &self->disconnect_pend); /* FALSE */
1559 return ret;
1561 EXPORT_SYMBOL(irttp_disconnect_request);
1564 * Function irttp_disconnect_indication (self, reason)
1566 * Disconnect indication, TSAP disconnected by peer?
1569 void irttp_disconnect_indication(void *instance, void *sap, LM_REASON reason,
1570 struct sk_buff *skb)
1572 struct tsap_cb *self;
1574 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1576 self = (struct tsap_cb *) instance;
1578 ASSERT(self != NULL, return;);
1579 ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1581 /* Prevent higher layer to send more data */
1582 self->connected = FALSE;
1584 /* Check if client has already tried to close the TSAP */
1585 if (self->close_pend) {
1586 /* In this case, the higher layer is probably gone. Don't
1587 * bother it and clean up the remains - Jean II */
1588 if (skb)
1589 dev_kfree_skb(skb);
1590 irttp_close_tsap(self);
1591 return;
1594 /* If we are here, we assume that is the higher layer is still
1595 * waiting for the disconnect notification and able to process it,
1596 * even if he tried to disconnect. Otherwise, it would have already
1597 * attempted to close the tsap and self->close_pend would be TRUE.
1598 * Jean II */
1600 /* No need to notify the client if has already tried to disconnect */
1601 if(self->notify.disconnect_indication)
1602 self->notify.disconnect_indication(self->notify.instance, self,
1603 reason, skb);
1604 else
1605 if (skb)
1606 dev_kfree_skb(skb);
1610 * Function irttp_do_data_indication (self, skb)
1612 * Try to deliver reassembled skb to layer above, and requeue it if that
1613 * for some reason should fail. We mark rx sdu as busy to apply back
1614 * pressure is necessary.
1616 void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1618 int err;
1620 /* Check if client has already closed the TSAP and gone away */
1621 if (self->close_pend) {
1622 dev_kfree_skb(skb);
1623 return;
1626 err = self->notify.data_indication(self->notify.instance, self, skb);
1628 /* Usually the layer above will notify that it's input queue is
1629 * starting to get filled by using the flow request, but this may
1630 * be difficult, so it can instead just refuse to eat it and just
1631 * give an error back
1633 if (err) {
1634 IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__);
1636 /* Make sure we take a break */
1637 self->rx_sdu_busy = TRUE;
1639 /* Need to push the header in again */
1640 skb_push(skb, TTP_HEADER);
1641 skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1643 /* Put skb back on queue */
1644 skb_queue_head(&self->rx_queue, skb);
1649 * Function irttp_run_rx_queue (self)
1651 * Check if we have any frames to be transmitted, or if we have any
1652 * available credit to give away.
1654 void irttp_run_rx_queue(struct tsap_cb *self)
1656 struct sk_buff *skb;
1657 int more = 0;
1659 IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
1660 self->send_credit, self->avail_credit, self->remote_credit);
1662 /* Get exclusive access to the rx queue, otherwise don't touch it */
1663 if (irda_lock(&self->rx_queue_lock) == FALSE)
1664 return;
1667 * Reassemble all frames in receive queue and deliver them
1669 while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1670 /* This bit will tell us if it's the last fragment or not */
1671 more = skb->data[0] & 0x80;
1673 /* Remove TTP header */
1674 skb_pull(skb, TTP_HEADER);
1676 /* Add the length of the remaining data */
1677 self->rx_sdu_size += skb->len;
1680 * If SAR is disabled, or user has requested no reassembly
1681 * of received fragments then we just deliver them
1682 * immediately. This can be requested by clients that
1683 * implements byte streams without any message boundaries
1685 if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1686 irttp_do_data_indication(self, skb);
1687 self->rx_sdu_size = 0;
1689 continue;
1692 /* Check if this is a fragment, and not the last fragment */
1693 if (more) {
1695 * Queue the fragment if we still are within the
1696 * limits of the maximum size of the rx_sdu
1698 if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1699 IRDA_DEBUG(4, "%s(), queueing frag\n",
1700 __FUNCTION__);
1701 skb_queue_tail(&self->rx_fragments, skb);
1702 } else {
1703 /* Free the part of the SDU that is too big */
1704 dev_kfree_skb(skb);
1706 continue;
1709 * This is the last fragment, so time to reassemble!
1711 if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1712 (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1715 * A little optimizing. Only queue the fragment if
1716 * there are other fragments. Since if this is the
1717 * last and only fragment, there is no need to
1718 * reassemble :-)
1720 if (!skb_queue_empty(&self->rx_fragments)) {
1721 skb_queue_tail(&self->rx_fragments,
1722 skb);
1724 skb = irttp_reassemble_skb(self);
1727 /* Now we can deliver the reassembled skb */
1728 irttp_do_data_indication(self, skb);
1729 } else {
1730 IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__);
1732 /* Free the part of the SDU that is too big */
1733 dev_kfree_skb(skb);
1735 /* Deliver only the valid but truncated part of SDU */
1736 skb = irttp_reassemble_skb(self);
1738 irttp_do_data_indication(self, skb);
1740 self->rx_sdu_size = 0;
1744 * It's not trivial to keep track of how many credits are available
1745 * by incrementing at each packet, because delivery may fail
1746 * (irttp_do_data_indication() may requeue the frame) and because
1747 * we need to take care of fragmentation.
1748 * We want the other side to send up to initial_credit packets.
1749 * We have some frames in our queues, and we have already allowed it
1750 * to send remote_credit.
1751 * No need to spinlock, write is atomic and self correcting...
1752 * Jean II
1754 self->avail_credit = (self->initial_credit -
1755 (self->remote_credit +
1756 skb_queue_len(&self->rx_queue) +
1757 skb_queue_len(&self->rx_fragments)));
1759 /* Do we have too much credits to send to peer ? */
1760 if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1761 (self->avail_credit > 0)) {
1762 /* Send explicit credit frame */
1763 irttp_give_credit(self);
1764 /* Note : do *NOT* check if tx_queue is non-empty, that
1765 * will produce deadlocks. I repeat : send a credit frame
1766 * even if we have something to send in our Tx queue.
1767 * If we have credits, it means that our Tx queue is blocked.
1769 * Let's suppose the peer can't keep up with our Tx. He will
1770 * flow control us by not sending us any credits, and we
1771 * will stop Tx and start accumulating credits here.
1772 * Up to the point where the peer will stop its Tx queue,
1773 * for lack of credits.
1774 * Let's assume the peer application is single threaded.
1775 * It will block on Tx and never consume any Rx buffer.
1776 * Deadlock. Guaranteed. - Jean II
1780 /* Reset lock */
1781 self->rx_queue_lock = 0;
1784 #ifdef CONFIG_PROC_FS
1785 struct irttp_iter_state {
1786 int id;
1789 static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1791 struct irttp_iter_state *iter = seq->private;
1792 struct tsap_cb *self;
1794 /* Protect our access to the tsap list */
1795 spin_lock_irq(&irttp->tsaps->hb_spinlock);
1796 iter->id = 0;
1798 for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1799 self != NULL;
1800 self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1801 if (iter->id == *pos)
1802 break;
1803 ++iter->id;
1806 return self;
1809 static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1811 struct irttp_iter_state *iter = seq->private;
1813 ++*pos;
1814 ++iter->id;
1815 return (void *) hashbin_get_next(irttp->tsaps);
1818 static void irttp_seq_stop(struct seq_file *seq, void *v)
1820 spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1823 static int irttp_seq_show(struct seq_file *seq, void *v)
1825 const struct irttp_iter_state *iter = seq->private;
1826 const struct tsap_cb *self = v;
1828 seq_printf(seq, "TSAP %d, ", iter->id);
1829 seq_printf(seq, "stsap_sel: %02x, ",
1830 self->stsap_sel);
1831 seq_printf(seq, "dtsap_sel: %02x\n",
1832 self->dtsap_sel);
1833 seq_printf(seq, " connected: %s, ",
1834 self->connected? "TRUE":"FALSE");
1835 seq_printf(seq, "avail credit: %d, ",
1836 self->avail_credit);
1837 seq_printf(seq, "remote credit: %d, ",
1838 self->remote_credit);
1839 seq_printf(seq, "send credit: %d\n",
1840 self->send_credit);
1841 seq_printf(seq, " tx packets: %ld, ",
1842 self->stats.tx_packets);
1843 seq_printf(seq, "rx packets: %ld, ",
1844 self->stats.rx_packets);
1845 seq_printf(seq, "tx_queue len: %d ",
1846 skb_queue_len(&self->tx_queue));
1847 seq_printf(seq, "rx_queue len: %d\n",
1848 skb_queue_len(&self->rx_queue));
1849 seq_printf(seq, " tx_sdu_busy: %s, ",
1850 self->tx_sdu_busy? "TRUE":"FALSE");
1851 seq_printf(seq, "rx_sdu_busy: %s\n",
1852 self->rx_sdu_busy? "TRUE":"FALSE");
1853 seq_printf(seq, " max_seg_size: %d, ",
1854 self->max_seg_size);
1855 seq_printf(seq, "tx_max_sdu_size: %d, ",
1856 self->tx_max_sdu_size);
1857 seq_printf(seq, "rx_max_sdu_size: %d\n",
1858 self->rx_max_sdu_size);
1860 seq_printf(seq, " Used by (%s)\n\n",
1861 self->notify.name);
1862 return 0;
1865 static struct seq_operations irttp_seq_ops = {
1866 .start = irttp_seq_start,
1867 .next = irttp_seq_next,
1868 .stop = irttp_seq_stop,
1869 .show = irttp_seq_show,
1872 static int irttp_seq_open(struct inode *inode, struct file *file)
1874 struct seq_file *seq;
1875 int rc = -ENOMEM;
1876 struct irttp_iter_state *s;
1878 ASSERT(irttp != NULL, return -EINVAL;);
1880 s = kmalloc(sizeof(*s), GFP_KERNEL);
1881 if (!s)
1882 goto out;
1884 rc = seq_open(file, &irttp_seq_ops);
1885 if (rc)
1886 goto out_kfree;
1888 seq = file->private_data;
1889 seq->private = s;
1890 memset(s, 0, sizeof(*s));
1891 out:
1892 return rc;
1893 out_kfree:
1894 kfree(s);
1895 goto out;
1898 struct file_operations irttp_seq_fops = {
1899 .owner = THIS_MODULE,
1900 .open = irttp_seq_open,
1901 .read = seq_read,
1902 .llseek = seq_lseek,
1903 .release = seq_release_private,
1906 #endif /* PROC_FS */