initial commit with v2.6.9
[linux-2.6.9-moxart.git] / net / irda / af_irda.c
blobf415a4e0645e9837e885891ac5ba03d69db5ae75
1 /*********************************************************************
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 * MA 02111-1307 USA
32 * Linux-IrDA now supports four different types of IrDA sockets:
34 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
35 * max SDU size is 0 for conn. of this type
36 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
37 * fragment the messages, but will preserve
38 * the message boundaries
39 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
40 * (unreliable) transfers
41 * IRDAPROTO_ULTRA: Connectionless and unreliable data
43 ********************************************************************/
45 #include <linux/config.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/init.h>
51 #include <linux/net.h>
52 #include <linux/irda.h>
53 #include <linux/poll.h>
55 #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
56 #include <asm/uaccess.h>
58 #include <net/sock.h>
59 #include <net/tcp.h>
61 #include <net/irda/af_irda.h>
63 static int irda_create(struct socket *sock, int protocol);
65 static struct proto_ops irda_stream_ops;
66 static struct proto_ops irda_seqpacket_ops;
67 static struct proto_ops irda_dgram_ops;
69 #ifdef CONFIG_IRDA_ULTRA
70 static struct proto_ops irda_ultra_ops;
71 #define ULTRA_MAX_DATA 382
72 #endif /* CONFIG_IRDA_ULTRA */
74 #define IRDA_MAX_HEADER (TTP_MAX_HEADER)
77 * Function irda_data_indication (instance, sap, skb)
79 * Received some data from TinyTP. Just queue it on the receive queue
82 static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
84 struct irda_sock *self;
85 struct sock *sk;
86 int err;
88 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
90 self = (struct irda_sock *) instance;
91 ASSERT(self != NULL, return -1;);
93 sk = self->sk;
94 ASSERT(sk != NULL, return -1;);
96 err = sock_queue_rcv_skb(sk, skb);
97 if (err) {
98 IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__);
99 self->rx_flow = FLOW_STOP;
101 /* When we return error, TTP will need to requeue the skb */
102 return err;
105 return 0;
109 * Function irda_disconnect_indication (instance, sap, reason, skb)
111 * Connection has been closed. Check reason to find out why
114 static void irda_disconnect_indication(void *instance, void *sap,
115 LM_REASON reason, struct sk_buff *skb)
117 struct irda_sock *self;
118 struct sock *sk;
120 self = (struct irda_sock *) instance;
122 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
124 /* Don't care about it, but let's not leak it */
125 if(skb)
126 dev_kfree_skb(skb);
128 sk = self->sk;
129 if (sk == NULL) {
130 IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
131 __FUNCTION__, self);
132 return;
135 /* Prevent race conditions with irda_release() and irda_shutdown() */
136 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
137 sk->sk_state = TCP_CLOSE;
138 sk->sk_err = ECONNRESET;
139 sk->sk_shutdown |= SEND_SHUTDOWN;
141 sk->sk_state_change(sk);
142 /* Uh-oh... Should use sock_orphan ? */
143 sock_set_flag(sk, SOCK_DEAD);
145 /* Close our TSAP.
146 * If we leave it open, IrLMP put it back into the list of
147 * unconnected LSAPs. The problem is that any incoming request
148 * can then be matched to this socket (and it will be, because
149 * it is at the head of the list). This would prevent any
150 * listening socket waiting on the same TSAP to get those
151 * requests. Some apps forget to close sockets, or hang to it
152 * a bit too long, so we may stay in this dead state long
153 * enough to be noticed...
154 * Note : all socket function do check sk->sk_state, so we are
155 * safe...
156 * Jean II
158 if (self->tsap) {
159 irttp_close_tsap(self->tsap);
160 self->tsap = NULL;
164 /* Note : once we are there, there is not much you want to do
165 * with the socket anymore, apart from closing it.
166 * For example, bind() and connect() won't reset sk->sk_err,
167 * sk->sk_shutdown and sk->sk_flags to valid values...
168 * Jean II
173 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
175 * Connections has been confirmed by the remote device
178 static void irda_connect_confirm(void *instance, void *sap,
179 struct qos_info *qos,
180 __u32 max_sdu_size, __u8 max_header_size,
181 struct sk_buff *skb)
183 struct irda_sock *self;
184 struct sock *sk;
186 self = (struct irda_sock *) instance;
188 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
190 sk = self->sk;
191 if (sk == NULL) {
192 dev_kfree_skb(skb);
193 return;
196 dev_kfree_skb(skb);
197 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
199 /* How much header space do we need to reserve */
200 self->max_header_size = max_header_size;
202 /* IrTTP max SDU size in transmit direction */
203 self->max_sdu_size_tx = max_sdu_size;
205 /* Find out what the largest chunk of data that we can transmit is */
206 switch (sk->sk_type) {
207 case SOCK_STREAM:
208 if (max_sdu_size != 0) {
209 ERROR("%s: max_sdu_size must be 0\n", __FUNCTION__);
210 return;
212 self->max_data_size = irttp_get_max_seg_size(self->tsap);
213 break;
214 case SOCK_SEQPACKET:
215 if (max_sdu_size == 0) {
216 ERROR("%s: max_sdu_size cannot be 0\n", __FUNCTION__);
217 return;
219 self->max_data_size = max_sdu_size;
220 break;
221 default:
222 self->max_data_size = irttp_get_max_seg_size(self->tsap);
225 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
226 self->max_data_size);
228 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
230 /* We are now connected! */
231 sk->sk_state = TCP_ESTABLISHED;
232 sk->sk_state_change(sk);
236 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
238 * Incoming connection
241 static void irda_connect_indication(void *instance, void *sap,
242 struct qos_info *qos, __u32 max_sdu_size,
243 __u8 max_header_size, struct sk_buff *skb)
245 struct irda_sock *self;
246 struct sock *sk;
248 self = (struct irda_sock *) instance;
250 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
252 sk = self->sk;
253 if (sk == NULL) {
254 dev_kfree_skb(skb);
255 return;
258 /* How much header space do we need to reserve */
259 self->max_header_size = max_header_size;
261 /* IrTTP max SDU size in transmit direction */
262 self->max_sdu_size_tx = max_sdu_size;
264 /* Find out what the largest chunk of data that we can transmit is */
265 switch (sk->sk_type) {
266 case SOCK_STREAM:
267 if (max_sdu_size != 0) {
268 ERROR("%s: max_sdu_size must be 0\n", __FUNCTION__);
269 kfree_skb(skb);
270 return;
272 self->max_data_size = irttp_get_max_seg_size(self->tsap);
273 break;
274 case SOCK_SEQPACKET:
275 if (max_sdu_size == 0) {
276 ERROR("%s: max_sdu_size cannot be 0\n", __FUNCTION__);
277 kfree_skb(skb);
278 return;
280 self->max_data_size = max_sdu_size;
281 break;
282 default:
283 self->max_data_size = irttp_get_max_seg_size(self->tsap);
286 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
287 self->max_data_size);
289 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
291 skb_queue_tail(&sk->sk_receive_queue, skb);
292 sk->sk_state_change(sk);
296 * Function irda_connect_response (handle)
298 * Accept incoming connection
301 void irda_connect_response(struct irda_sock *self)
303 struct sk_buff *skb;
305 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
307 ASSERT(self != NULL, return;);
309 skb = dev_alloc_skb(64);
310 if (skb == NULL) {
311 IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
312 __FUNCTION__);
313 return;
316 /* Reserve space for MUX_CONTROL and LAP header */
317 skb_reserve(skb, IRDA_MAX_HEADER);
319 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
323 * Function irda_flow_indication (instance, sap, flow)
325 * Used by TinyTP to tell us if it can accept more data or not
328 static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
330 struct irda_sock *self;
331 struct sock *sk;
333 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
335 self = (struct irda_sock *) instance;
336 ASSERT(self != NULL, return;);
338 sk = self->sk;
339 ASSERT(sk != NULL, return;);
341 switch (flow) {
342 case FLOW_STOP:
343 IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
344 __FUNCTION__);
345 self->tx_flow = flow;
346 break;
347 case FLOW_START:
348 self->tx_flow = flow;
349 IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
350 __FUNCTION__);
351 wake_up_interruptible(sk->sk_sleep);
352 break;
353 default:
354 IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__);
355 /* Unknown flow command, better stop */
356 self->tx_flow = flow;
357 break;
362 * Function irda_getvalue_confirm (obj_id, value, priv)
364 * Got answer from remote LM-IAS, just pass object to requester...
366 * Note : duplicate from above, but we need our own version that
367 * doesn't touch the dtsap_sel and save the full value structure...
369 static void irda_getvalue_confirm(int result, __u16 obj_id,
370 struct ias_value *value, void *priv)
372 struct irda_sock *self;
374 self = (struct irda_sock *) priv;
375 if (!self) {
376 WARNING("%s: lost myself!\n", __FUNCTION__);
377 return;
380 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
382 /* We probably don't need to make any more queries */
383 iriap_close(self->iriap);
384 self->iriap = NULL;
386 /* Check if request succeeded */
387 if (result != IAS_SUCCESS) {
388 IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__,
389 result);
391 self->errno = result; /* We really need it later */
393 /* Wake up any processes waiting for result */
394 wake_up_interruptible(&self->query_wait);
396 return;
399 /* Pass the object to the caller (so the caller must delete it) */
400 self->ias_result = value;
401 self->errno = 0;
403 /* Wake up any processes waiting for result */
404 wake_up_interruptible(&self->query_wait);
408 * Function irda_selective_discovery_indication (discovery)
410 * Got a selective discovery indication from IrLMP.
412 * IrLMP is telling us that this node is new and matching our hint bit
413 * filter. Wake up any process waiting for answer...
415 static void irda_selective_discovery_indication(discinfo_t *discovery,
416 DISCOVERY_MODE mode,
417 void *priv)
419 struct irda_sock *self;
421 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
423 self = (struct irda_sock *) priv;
424 if (!self) {
425 WARNING("%s: lost myself!\n", __FUNCTION__);
426 return;
429 /* Pass parameter to the caller */
430 self->cachedaddr = discovery->daddr;
432 /* Wake up process if its waiting for device to be discovered */
433 wake_up_interruptible(&self->query_wait);
437 * Function irda_discovery_timeout (priv)
439 * Timeout in the selective discovery process
441 * We were waiting for a node to be discovered, but nothing has come up
442 * so far. Wake up the user and tell him that we failed...
444 static void irda_discovery_timeout(u_long priv)
446 struct irda_sock *self;
448 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
450 self = (struct irda_sock *) priv;
451 ASSERT(self != NULL, return;);
453 /* Nothing for the caller */
454 self->cachelog = NULL;
455 self->cachedaddr = 0;
456 self->errno = -ETIME;
458 /* Wake up process if its still waiting... */
459 wake_up_interruptible(&self->query_wait);
463 * Function irda_open_tsap (self)
465 * Open local Transport Service Access Point (TSAP)
468 static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
470 notify_t notify;
472 if (self->tsap) {
473 WARNING("%s: busy!\n", __FUNCTION__);
474 return -EBUSY;
477 /* Initialize callbacks to be used by the IrDA stack */
478 irda_notify_init(&notify);
479 notify.connect_confirm = irda_connect_confirm;
480 notify.connect_indication = irda_connect_indication;
481 notify.disconnect_indication = irda_disconnect_indication;
482 notify.data_indication = irda_data_indication;
483 notify.udata_indication = irda_data_indication;
484 notify.flow_indication = irda_flow_indication;
485 notify.instance = self;
486 strncpy(notify.name, name, NOTIFY_MAX_NAME);
488 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
489 &notify);
490 if (self->tsap == NULL) {
491 IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
492 __FUNCTION__);
493 return -ENOMEM;
495 /* Remember which TSAP selector we actually got */
496 self->stsap_sel = self->tsap->stsap_sel;
498 return 0;
502 * Function irda_open_lsap (self)
504 * Open local Link Service Access Point (LSAP). Used for opening Ultra
505 * sockets
507 #ifdef CONFIG_IRDA_ULTRA
508 static int irda_open_lsap(struct irda_sock *self, int pid)
510 notify_t notify;
512 if (self->lsap) {
513 WARNING("%s(), busy!\n", __FUNCTION__);
514 return -EBUSY;
517 /* Initialize callbacks to be used by the IrDA stack */
518 irda_notify_init(&notify);
519 notify.udata_indication = irda_data_indication;
520 notify.instance = self;
521 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
523 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
524 if (self->lsap == NULL) {
525 IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__);
526 return -ENOMEM;
529 return 0;
531 #endif /* CONFIG_IRDA_ULTRA */
534 * Function irda_find_lsap_sel (self, name)
536 * Try to lookup LSAP selector in remote LM-IAS
538 * Basically, we start a IAP query, and then go to sleep. When the query
539 * return, irda_getvalue_confirm will wake us up, and we can examine the
540 * result of the query...
541 * Note that in some case, the query fail even before we go to sleep,
542 * creating some races...
544 static int irda_find_lsap_sel(struct irda_sock *self, char *name)
546 IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name);
548 ASSERT(self != NULL, return -1;);
550 if (self->iriap) {
551 WARNING("%s(): busy with a previous query\n", __FUNCTION__);
552 return -EBUSY;
555 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
556 irda_getvalue_confirm);
557 if(self->iriap == NULL)
558 return -ENOMEM;
560 /* Treat unexpected wakeup as disconnect */
561 self->errno = -EHOSTUNREACH;
563 /* Query remote LM-IAS */
564 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
565 name, "IrDA:TinyTP:LsapSel");
567 /* Wait for answer, if not yet finished (or failed) */
568 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
569 /* Treat signals as disconnect */
570 return -EHOSTUNREACH;
572 /* Check what happened */
573 if (self->errno)
575 /* Requested object/attribute doesn't exist */
576 if((self->errno == IAS_CLASS_UNKNOWN) ||
577 (self->errno == IAS_ATTRIB_UNKNOWN))
578 return (-EADDRNOTAVAIL);
579 else
580 return (-EHOSTUNREACH);
583 /* Get the remote TSAP selector */
584 switch (self->ias_result->type) {
585 case IAS_INTEGER:
586 IRDA_DEBUG(4, "%s() int=%d\n",
587 __FUNCTION__, self->ias_result->t.integer);
589 if (self->ias_result->t.integer != -1)
590 self->dtsap_sel = self->ias_result->t.integer;
591 else
592 self->dtsap_sel = 0;
593 break;
594 default:
595 self->dtsap_sel = 0;
596 IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__);
597 break;
599 if (self->ias_result)
600 irias_delete_value(self->ias_result);
602 if (self->dtsap_sel)
603 return 0;
605 return -EADDRNOTAVAIL;
609 * Function irda_discover_daddr_and_lsap_sel (self, name)
611 * This try to find a device with the requested service.
613 * It basically look into the discovery log. For each address in the list,
614 * it queries the LM-IAS of the device to find if this device offer
615 * the requested service.
616 * If there is more than one node supporting the service, we complain
617 * to the user (it should move devices around).
618 * The, we set both the destination address and the lsap selector to point
619 * on the service on the unique device we have found.
621 * Note : this function fails if there is more than one device in range,
622 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
623 * Moreover, we would need to wait the LAP disconnection...
625 static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
627 discinfo_t *discoveries; /* Copy of the discovery log */
628 int number; /* Number of nodes in the log */
629 int i;
630 int err = -ENETUNREACH;
631 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
632 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
634 IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name);
636 ASSERT(self != NULL, return -1;);
638 /* Ask lmp for the current discovery log
639 * Note : we have to use irlmp_get_discoveries(), as opposed
640 * to play with the cachelog directly, because while we are
641 * making our ias query, le log might change... */
642 discoveries = irlmp_get_discoveries(&number, self->mask.word,
643 self->nslots);
644 /* Check if the we got some results */
645 if (discoveries == NULL)
646 return -ENETUNREACH; /* No nodes discovered */
649 * Now, check all discovered devices (if any), and connect
650 * client only about the services that the client is
651 * interested in...
653 for(i = 0; i < number; i++) {
654 /* Try the address in the log */
655 self->daddr = discoveries[i].daddr;
656 self->saddr = 0x0;
657 IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
658 __FUNCTION__, self->daddr);
660 /* Query remote LM-IAS for this service */
661 err = irda_find_lsap_sel(self, name);
662 switch (err) {
663 case 0:
664 /* We found the requested service */
665 if(daddr != DEV_ADDR_ANY) {
666 IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
667 __FUNCTION__, name);
668 self->daddr = DEV_ADDR_ANY;
669 kfree(discoveries);
670 return(-ENOTUNIQ);
672 /* First time we found that one, save it ! */
673 daddr = self->daddr;
674 dtsap_sel = self->dtsap_sel;
675 break;
676 case -EADDRNOTAVAIL:
677 /* Requested service simply doesn't exist on this node */
678 break;
679 default:
680 /* Something bad did happen :-( */
681 IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__);
682 self->daddr = DEV_ADDR_ANY;
683 kfree(discoveries);
684 return(-EHOSTUNREACH);
685 break;
688 /* Cleanup our copy of the discovery log */
689 kfree(discoveries);
691 /* Check out what we found */
692 if(daddr == DEV_ADDR_ANY) {
693 IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
694 __FUNCTION__, name);
695 self->daddr = DEV_ADDR_ANY;
696 return(-EADDRNOTAVAIL);
699 /* Revert back to discovered device & service */
700 self->daddr = daddr;
701 self->saddr = 0x0;
702 self->dtsap_sel = dtsap_sel;
704 IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
705 __FUNCTION__, name, self->daddr);
707 return 0;
711 * Function irda_getname (sock, uaddr, uaddr_len, peer)
713 * Return the our own, or peers socket address (sockaddr_irda)
716 static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
717 int *uaddr_len, int peer)
719 struct sockaddr_irda saddr;
720 struct sock *sk = sock->sk;
721 struct irda_sock *self = irda_sk(sk);
723 if (peer) {
724 if (sk->sk_state != TCP_ESTABLISHED)
725 return -ENOTCONN;
727 saddr.sir_family = AF_IRDA;
728 saddr.sir_lsap_sel = self->dtsap_sel;
729 saddr.sir_addr = self->daddr;
730 } else {
731 saddr.sir_family = AF_IRDA;
732 saddr.sir_lsap_sel = self->stsap_sel;
733 saddr.sir_addr = self->saddr;
736 IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel);
737 IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr);
739 /* uaddr_len come to us uninitialised */
740 *uaddr_len = sizeof (struct sockaddr_irda);
741 memcpy(uaddr, &saddr, *uaddr_len);
743 return 0;
747 * Function irda_listen (sock, backlog)
749 * Just move to the listen state
752 static int irda_listen(struct socket *sock, int backlog)
754 struct sock *sk = sock->sk;
756 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
758 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
759 (sk->sk_type != SOCK_DGRAM))
760 return -EOPNOTSUPP;
762 if (sk->sk_state != TCP_LISTEN) {
763 sk->sk_max_ack_backlog = backlog;
764 sk->sk_state = TCP_LISTEN;
766 return 0;
769 return -EOPNOTSUPP;
773 * Function irda_bind (sock, uaddr, addr_len)
775 * Used by servers to register their well known TSAP
778 static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
780 struct sock *sk = sock->sk;
781 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
782 struct irda_sock *self = irda_sk(sk);
783 int err;
785 ASSERT(self != NULL, return -1;);
787 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
789 if (addr_len != sizeof(struct sockaddr_irda))
790 return -EINVAL;
792 #ifdef CONFIG_IRDA_ULTRA
793 /* Special care for Ultra sockets */
794 if ((sk->sk_type == SOCK_DGRAM) &&
795 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
796 self->pid = addr->sir_lsap_sel;
797 if (self->pid & 0x80) {
798 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
799 return -EOPNOTSUPP;
801 err = irda_open_lsap(self, self->pid);
802 if (err < 0)
803 return err;
805 /* Pretend we are connected */
806 sock->state = SS_CONNECTED;
807 sk->sk_state = TCP_ESTABLISHED;
809 return 0;
811 #endif /* CONFIG_IRDA_ULTRA */
813 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
814 if (err < 0)
815 return err;
817 /* Register with LM-IAS */
818 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
819 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
820 self->stsap_sel, IAS_KERNEL_ATTR);
821 irias_insert_object(self->ias_obj);
823 return 0;
827 * Function irda_accept (sock, newsock, flags)
829 * Wait for incoming connection
832 static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
834 struct sock *sk = sock->sk;
835 struct irda_sock *new, *self = irda_sk(sk);
836 struct sock *newsk;
837 struct sk_buff *skb;
838 int err;
840 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
842 ASSERT(self != NULL, return -1;);
844 err = irda_create(newsock, sk->sk_protocol);
845 if (err)
846 return err;
848 if (sock->state != SS_UNCONNECTED)
849 return -EINVAL;
851 if ((sk = sock->sk) == NULL)
852 return -EINVAL;
854 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
855 (sk->sk_type != SOCK_DGRAM))
856 return -EOPNOTSUPP;
858 if (sk->sk_state != TCP_LISTEN)
859 return -EINVAL;
862 * The read queue this time is holding sockets ready to use
863 * hooked into the SABM we saved
867 * We can perform the accept only if there is incoming data
868 * on the listening socket.
869 * So, we will block the caller until we receive any data.
870 * If the caller was waiting on select() or poll() before
871 * calling us, the data is waiting for us ;-)
872 * Jean II
874 skb = skb_dequeue(&sk->sk_receive_queue);
875 if (skb == NULL) {
876 int ret = 0;
877 DECLARE_WAITQUEUE(waitq, current);
879 /* Non blocking operation */
880 if (flags & O_NONBLOCK)
881 return -EWOULDBLOCK;
883 /* The following code is a cut'n'paste of the
884 * wait_event_interruptible() macro.
885 * We don't us the macro because the condition has
886 * side effects : we want to make sure that only one
887 * skb get dequeued - Jean II */
888 add_wait_queue(sk->sk_sleep, &waitq);
889 for (;;) {
890 set_current_state(TASK_INTERRUPTIBLE);
891 skb = skb_dequeue(&sk->sk_receive_queue);
892 if (skb != NULL)
893 break;
894 if (!signal_pending(current)) {
895 schedule();
896 continue;
898 ret = -ERESTARTSYS;
899 break;
901 current->state = TASK_RUNNING;
902 remove_wait_queue(sk->sk_sleep, &waitq);
903 if(ret)
904 return -ERESTARTSYS;
907 newsk = newsock->sk;
908 newsk->sk_state = TCP_ESTABLISHED;
910 new = irda_sk(newsk);
911 ASSERT(new != NULL, return -1;);
913 /* Now attach up the new socket */
914 new->tsap = irttp_dup(self->tsap, new);
915 if (!new->tsap) {
916 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
917 kfree_skb(skb);
918 return -1;
921 new->stsap_sel = new->tsap->stsap_sel;
922 new->dtsap_sel = new->tsap->dtsap_sel;
923 new->saddr = irttp_get_saddr(new->tsap);
924 new->daddr = irttp_get_daddr(new->tsap);
926 new->max_sdu_size_tx = self->max_sdu_size_tx;
927 new->max_sdu_size_rx = self->max_sdu_size_rx;
928 new->max_data_size = self->max_data_size;
929 new->max_header_size = self->max_header_size;
931 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
933 /* Clean up the original one to keep it in listen state */
934 irttp_listen(self->tsap);
936 /* Wow ! What is that ? Jean II */
937 skb->sk = NULL;
938 skb->destructor = NULL;
939 kfree_skb(skb);
940 sk->sk_ack_backlog--;
942 newsock->state = SS_CONNECTED;
944 irda_connect_response(new);
946 return 0;
950 * Function irda_connect (sock, uaddr, addr_len, flags)
952 * Connect to a IrDA device
954 * The main difference with a "standard" connect is that with IrDA we need
955 * to resolve the service name into a TSAP selector (in TCP, port number
956 * doesn't have to be resolved).
957 * Because of this service name resoltion, we can offer "auto-connect",
958 * where we connect to a service without specifying a destination address.
960 * Note : by consulting "errno", the user space caller may learn the cause
961 * of the failure. Most of them are visible in the function, others may come
962 * from subroutines called and are listed here :
963 * o EBUSY : already processing a connect
964 * o EHOSTUNREACH : bad addr->sir_addr argument
965 * o EADDRNOTAVAIL : bad addr->sir_name argument
966 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
967 * o ENETUNREACH : no node found on the network (auto-connect)
969 static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
970 int addr_len, int flags)
972 struct sock *sk = sock->sk;
973 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
974 struct irda_sock *self = irda_sk(sk);
975 int err;
977 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
979 /* Don't allow connect for Ultra sockets */
980 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
981 return -ESOCKTNOSUPPORT;
983 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
984 sock->state = SS_CONNECTED;
985 return 0; /* Connect completed during a ERESTARTSYS event */
988 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
989 sock->state = SS_UNCONNECTED;
990 return -ECONNREFUSED;
993 if (sk->sk_state == TCP_ESTABLISHED)
994 return -EISCONN; /* No reconnect on a seqpacket socket */
996 sk->sk_state = TCP_CLOSE;
997 sock->state = SS_UNCONNECTED;
999 if (addr_len != sizeof(struct sockaddr_irda))
1000 return -EINVAL;
1002 /* Check if user supplied any destination device address */
1003 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
1004 /* Try to find one suitable */
1005 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
1006 if (err) {
1007 IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__);
1008 return err;
1010 } else {
1011 /* Use the one provided by the user */
1012 self->daddr = addr->sir_addr;
1013 IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr);
1015 /* Query remote LM-IAS */
1016 err = irda_find_lsap_sel(self, addr->sir_name);
1017 if (err) {
1018 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1019 return err;
1023 /* Check if we have opened a local TSAP */
1024 if (!self->tsap)
1025 irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1027 /* Move to connecting socket, start sending Connect Requests */
1028 sock->state = SS_CONNECTING;
1029 sk->sk_state = TCP_SYN_SENT;
1031 /* Connect to remote device */
1032 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1033 self->saddr, self->daddr, NULL,
1034 self->max_sdu_size_rx, NULL);
1035 if (err) {
1036 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1037 return err;
1040 /* Now the loop */
1041 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1042 return -EINPROGRESS;
1044 if (wait_event_interruptible(*(sk->sk_sleep),
1045 (sk->sk_state != TCP_SYN_SENT)))
1046 return -ERESTARTSYS;
1048 if (sk->sk_state != TCP_ESTABLISHED) {
1049 sock->state = SS_UNCONNECTED;
1050 return sock_error(sk); /* Always set at this point */
1053 sock->state = SS_CONNECTED;
1055 /* At this point, IrLMP has assigned our source address */
1056 self->saddr = irttp_get_saddr(self->tsap);
1058 return 0;
1062 * Function irda_create (sock, protocol)
1064 * Create IrDA socket
1067 static int irda_create(struct socket *sock, int protocol)
1069 struct sock *sk;
1070 struct irda_sock *self;
1072 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1074 /* Check for valid socket type */
1075 switch (sock->type) {
1076 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1077 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1078 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1079 break;
1080 default:
1081 return -ESOCKTNOSUPPORT;
1084 /* Allocate networking socket */
1085 if ((sk = sk_alloc(PF_IRDA, GFP_ATOMIC, 1, NULL)) == NULL)
1086 return -ENOMEM;
1088 /* Allocate IrDA socket */
1089 self = sk->sk_protinfo = kmalloc(sizeof(struct irda_sock), GFP_ATOMIC);
1090 if (self == NULL) {
1091 sk_free(sk);
1092 return -ENOMEM;
1094 memset(self, 0, sizeof(struct irda_sock));
1096 IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self);
1098 init_waitqueue_head(&self->query_wait);
1100 /* Initialise networking socket struct */
1101 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1102 sk_set_owner(sk, THIS_MODULE);
1103 sk->sk_family = PF_IRDA;
1104 sk->sk_protocol = protocol;
1105 /* Link networking socket and IrDA socket structs together */
1106 self->sk = sk;
1108 switch (sock->type) {
1109 case SOCK_STREAM:
1110 sock->ops = &irda_stream_ops;
1111 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1112 break;
1113 case SOCK_SEQPACKET:
1114 sock->ops = &irda_seqpacket_ops;
1115 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1116 break;
1117 case SOCK_DGRAM:
1118 switch (protocol) {
1119 #ifdef CONFIG_IRDA_ULTRA
1120 case IRDAPROTO_ULTRA:
1121 sock->ops = &irda_ultra_ops;
1122 /* Initialise now, because we may send on unbound
1123 * sockets. Jean II */
1124 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1125 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1126 break;
1127 #endif /* CONFIG_IRDA_ULTRA */
1128 case IRDAPROTO_UNITDATA:
1129 sock->ops = &irda_dgram_ops;
1130 /* We let Unitdata conn. be like seqpack conn. */
1131 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1132 break;
1133 default:
1134 ERROR("%s: protocol not supported!\n", __FUNCTION__);
1135 return -ESOCKTNOSUPPORT;
1137 break;
1138 default:
1139 return -ESOCKTNOSUPPORT;
1142 /* Register as a client with IrLMP */
1143 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1144 self->mask.word = 0xffff;
1145 self->rx_flow = self->tx_flow = FLOW_START;
1146 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1147 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1148 self->saddr = 0x0; /* so IrLMP assign us any link */
1149 return 0;
1153 * Function irda_destroy_socket (self)
1155 * Destroy socket
1158 void irda_destroy_socket(struct irda_sock *self)
1160 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1162 ASSERT(self != NULL, return;);
1164 /* Unregister with IrLMP */
1165 irlmp_unregister_client(self->ckey);
1166 irlmp_unregister_service(self->skey);
1168 /* Unregister with LM-IAS */
1169 if (self->ias_obj) {
1170 irias_delete_object(self->ias_obj);
1171 self->ias_obj = NULL;
1174 if (self->iriap) {
1175 iriap_close(self->iriap);
1176 self->iriap = NULL;
1179 if (self->tsap) {
1180 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1181 irttp_close_tsap(self->tsap);
1182 self->tsap = NULL;
1184 #ifdef CONFIG_IRDA_ULTRA
1185 if (self->lsap) {
1186 irlmp_close_lsap(self->lsap);
1187 self->lsap = NULL;
1189 #endif /* CONFIG_IRDA_ULTRA */
1190 kfree(self);
1194 * Function irda_release (sock)
1196 static int irda_release(struct socket *sock)
1198 struct sock *sk = sock->sk;
1200 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1202 if (sk == NULL)
1203 return 0;
1205 sk->sk_state = TCP_CLOSE;
1206 sk->sk_shutdown |= SEND_SHUTDOWN;
1207 sk->sk_state_change(sk);
1209 /* Destroy IrDA socket */
1210 irda_destroy_socket(irda_sk(sk));
1211 /* Prevent sock_def_destruct() to create havoc */
1212 sk->sk_protinfo = NULL;
1214 sock_orphan(sk);
1215 sock->sk = NULL;
1217 /* Purge queues (see sock_init_data()) */
1218 skb_queue_purge(&sk->sk_receive_queue);
1220 /* Destroy networking socket if we are the last reference on it,
1221 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1222 sock_put(sk);
1224 /* Notes on socket locking and deallocation... - Jean II
1225 * In theory we should put pairs of sock_hold() / sock_put() to
1226 * prevent the socket to be destroyed whenever there is an
1227 * outstanding request or outstanding incoming packet or event.
1229 * 1) This may include IAS request, both in connect and getsockopt.
1230 * Unfortunately, the situation is a bit more messy than it looks,
1231 * because we close iriap and kfree(self) above.
1233 * 2) This may include selective discovery in getsockopt.
1234 * Same stuff as above, irlmp registration and self are gone.
1236 * Probably 1 and 2 may not matter, because it's all triggered
1237 * by a process and the socket layer already prevent the
1238 * socket to go away while a process is holding it, through
1239 * sockfd_put() and fput()...
1241 * 3) This may include deferred TSAP closure. In particular,
1242 * we may receive a late irda_disconnect_indication()
1243 * Fortunately, (tsap_cb *)->close_pend should protect us
1244 * from that.
1246 * I did some testing on SMP, and it looks solid. And the socket
1247 * memory leak is now gone... - Jean II
1250 return 0;
1254 * Function irda_sendmsg (iocb, sock, msg, len)
1256 * Send message down to TinyTP. This function is used for both STREAM and
1257 * SEQPACK services. This is possible since it forces the client to
1258 * fragment the message if necessary
1260 static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
1261 struct msghdr *msg, size_t len)
1263 struct sock *sk = sock->sk;
1264 struct irda_sock *self;
1265 struct sk_buff *skb;
1266 unsigned char *asmptr;
1267 int err;
1269 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1271 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1272 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1273 return -EINVAL;
1275 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1276 send_sig(SIGPIPE, current, 0);
1277 return -EPIPE;
1280 if (sk->sk_state != TCP_ESTABLISHED)
1281 return -ENOTCONN;
1283 self = irda_sk(sk);
1284 ASSERT(self != NULL, return -1;);
1286 /* Check if IrTTP is wants us to slow down */
1288 if (wait_event_interruptible(*(sk->sk_sleep),
1289 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED)))
1290 return -ERESTARTSYS;
1292 /* Check if we are still connected */
1293 if (sk->sk_state != TCP_ESTABLISHED)
1294 return -ENOTCONN;
1296 /* Check that we don't send out to big frames */
1297 if (len > self->max_data_size) {
1298 IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
1299 __FUNCTION__, len, self->max_data_size);
1300 len = self->max_data_size;
1303 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1304 msg->msg_flags & MSG_DONTWAIT, &err);
1305 if (!skb)
1306 return -ENOBUFS;
1308 skb_reserve(skb, self->max_header_size + 16);
1310 asmptr = skb->h.raw = skb_put(skb, len);
1311 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1312 if (err) {
1313 kfree_skb(skb);
1314 return err;
1318 * Just send the message to TinyTP, and let it deal with possible
1319 * errors. No need to duplicate all that here
1321 err = irttp_data_request(self->tsap, skb);
1322 if (err) {
1323 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1324 return err;
1326 /* Tell client how much data we actually sent */
1327 return len;
1331 * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
1333 * Try to receive message and copy it to user. The frame is discarded
1334 * after being read, regardless of how much the user actually read
1336 static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
1337 struct msghdr *msg, size_t size, int flags)
1339 struct sock *sk = sock->sk;
1340 struct irda_sock *self = irda_sk(sk);
1341 struct sk_buff *skb;
1342 size_t copied;
1343 int err;
1345 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1347 ASSERT(self != NULL, return -1;);
1349 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1350 flags & MSG_DONTWAIT, &err);
1351 if (!skb)
1352 return err;
1354 skb->h.raw = skb->data;
1355 copied = skb->len;
1357 if (copied > size) {
1358 IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
1359 __FUNCTION__, copied, size);
1360 copied = size;
1361 msg->msg_flags |= MSG_TRUNC;
1363 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1365 skb_free_datagram(sk, skb);
1368 * Check if we have previously stopped IrTTP and we know
1369 * have more free space in our rx_queue. If so tell IrTTP
1370 * to start delivering frames again before our rx_queue gets
1371 * empty
1373 if (self->rx_flow == FLOW_STOP) {
1374 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1375 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1376 self->rx_flow = FLOW_START;
1377 irttp_flow_request(self->tsap, FLOW_START);
1381 return copied;
1385 * Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
1387 static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
1388 struct msghdr *msg, size_t size, int flags)
1390 struct sock *sk = sock->sk;
1391 struct irda_sock *self = irda_sk(sk);
1392 int noblock = flags & MSG_DONTWAIT;
1393 size_t copied = 0;
1394 int target = 1;
1395 DECLARE_WAITQUEUE(waitq, current);
1397 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
1399 ASSERT(self != NULL, return -1;);
1401 if (sock->flags & __SO_ACCEPTCON)
1402 return(-EINVAL);
1404 if (flags & MSG_OOB)
1405 return -EOPNOTSUPP;
1407 if (flags & MSG_WAITALL)
1408 target = size;
1410 msg->msg_namelen = 0;
1412 do {
1413 int chunk;
1414 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1416 if (skb==NULL) {
1417 int ret = 0;
1419 if (copied >= target)
1420 break;
1422 /* The following code is a cut'n'paste of the
1423 * wait_event_interruptible() macro.
1424 * We don't us the macro because the test condition
1425 * is messy. - Jean II */
1426 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1427 add_wait_queue(sk->sk_sleep, &waitq);
1428 set_current_state(TASK_INTERRUPTIBLE);
1431 * POSIX 1003.1g mandates this order.
1433 if (sk->sk_err)
1434 ret = sock_error(sk);
1435 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1437 else if (noblock)
1438 ret = -EAGAIN;
1439 else if (signal_pending(current))
1440 ret = -ERESTARTSYS;
1441 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1442 /* Wait process until data arrives */
1443 schedule();
1445 current->state = TASK_RUNNING;
1446 remove_wait_queue(sk->sk_sleep, &waitq);
1447 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1449 if(ret)
1450 return(ret);
1451 if (sk->sk_shutdown & RCV_SHUTDOWN)
1452 break;
1454 continue;
1457 chunk = min_t(unsigned int, skb->len, size);
1458 if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
1459 skb_queue_head(&sk->sk_receive_queue, skb);
1460 if (copied == 0)
1461 copied = -EFAULT;
1462 break;
1464 copied += chunk;
1465 size -= chunk;
1467 /* Mark read part of skb as used */
1468 if (!(flags & MSG_PEEK)) {
1469 skb_pull(skb, chunk);
1471 /* put the skb back if we didn't use it up.. */
1472 if (skb->len) {
1473 IRDA_DEBUG(1, "%s(), back on q!\n",
1474 __FUNCTION__);
1475 skb_queue_head(&sk->sk_receive_queue, skb);
1476 break;
1479 kfree_skb(skb);
1480 } else {
1481 IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__);
1483 /* put message back and return */
1484 skb_queue_head(&sk->sk_receive_queue, skb);
1485 break;
1487 } while (size);
1490 * Check if we have previously stopped IrTTP and we know
1491 * have more free space in our rx_queue. If so tell IrTTP
1492 * to start delivering frames again before our rx_queue gets
1493 * empty
1495 if (self->rx_flow == FLOW_STOP) {
1496 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1497 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1498 self->rx_flow = FLOW_START;
1499 irttp_flow_request(self->tsap, FLOW_START);
1503 return copied;
1507 * Function irda_sendmsg_dgram (iocb, sock, msg, len)
1509 * Send message down to TinyTP for the unreliable sequenced
1510 * packet service...
1513 static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
1514 struct msghdr *msg, size_t len)
1516 struct sock *sk = sock->sk;
1517 struct irda_sock *self;
1518 struct sk_buff *skb;
1519 unsigned char *asmptr;
1520 int err;
1522 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1524 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1525 return -EINVAL;
1527 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1528 send_sig(SIGPIPE, current, 0);
1529 return -EPIPE;
1532 if (sk->sk_state != TCP_ESTABLISHED)
1533 return -ENOTCONN;
1535 self = irda_sk(sk);
1536 ASSERT(self != NULL, return -1;);
1539 * Check that we don't send out to big frames. This is an unreliable
1540 * service, so we have no fragmentation and no coalescence
1542 if (len > self->max_data_size) {
1543 IRDA_DEBUG(0, "%s(), Warning to much data! "
1544 "Chopping frame from %zd to %d bytes!\n",
1545 __FUNCTION__, len, self->max_data_size);
1546 len = self->max_data_size;
1549 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1550 msg->msg_flags & MSG_DONTWAIT, &err);
1551 if (!skb)
1552 return -ENOBUFS;
1554 skb_reserve(skb, self->max_header_size);
1556 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1557 asmptr = skb->h.raw = skb_put(skb, len);
1558 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1559 if (err) {
1560 kfree_skb(skb);
1561 return err;
1565 * Just send the message to TinyTP, and let it deal with possible
1566 * errors. No need to duplicate all that here
1568 err = irttp_udata_request(self->tsap, skb);
1569 if (err) {
1570 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1571 return err;
1573 return len;
1577 * Function irda_sendmsg_ultra (iocb, sock, msg, len)
1579 * Send message down to IrLMP for the unreliable Ultra
1580 * packet service...
1582 #ifdef CONFIG_IRDA_ULTRA
1583 static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
1584 struct msghdr *msg, size_t len)
1586 struct sock *sk = sock->sk;
1587 struct irda_sock *self;
1588 __u8 pid = 0;
1589 int bound = 0;
1590 struct sk_buff *skb;
1591 unsigned char *asmptr;
1592 int err;
1594 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1596 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1597 return -EINVAL;
1599 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1600 send_sig(SIGPIPE, current, 0);
1601 return -EPIPE;
1604 self = irda_sk(sk);
1605 ASSERT(self != NULL, return -1;);
1607 /* Check if an address was specified with sendto. Jean II */
1608 if (msg->msg_name) {
1609 struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
1610 /* Check address, extract pid. Jean II */
1611 if (msg->msg_namelen < sizeof(*addr))
1612 return -EINVAL;
1613 if (addr->sir_family != AF_IRDA)
1614 return -EINVAL;
1616 pid = addr->sir_lsap_sel;
1617 if (pid & 0x80) {
1618 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
1619 return -EOPNOTSUPP;
1621 } else {
1622 /* Check that the socket is properly bound to an Ultra
1623 * port. Jean II */
1624 if ((self->lsap == NULL) ||
1625 (sk->sk_state != TCP_ESTABLISHED)) {
1626 IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
1627 __FUNCTION__);
1628 return -ENOTCONN;
1630 /* Use PID from socket */
1631 bound = 1;
1635 * Check that we don't send out to big frames. This is an unreliable
1636 * service, so we have no fragmentation and no coalescence
1638 if (len > self->max_data_size) {
1639 IRDA_DEBUG(0, "%s(), Warning to much data! "
1640 "Chopping frame from %zd to %d bytes!\n",
1641 __FUNCTION__, len, self->max_data_size);
1642 len = self->max_data_size;
1645 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1646 msg->msg_flags & MSG_DONTWAIT, &err);
1647 if (!skb)
1648 return -ENOBUFS;
1650 skb_reserve(skb, self->max_header_size);
1652 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1653 asmptr = skb->h.raw = skb_put(skb, len);
1654 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1655 if (err) {
1656 kfree_skb(skb);
1657 return err;
1660 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1661 skb, pid);
1662 if (err) {
1663 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1664 return err;
1666 return len;
1668 #endif /* CONFIG_IRDA_ULTRA */
1671 * Function irda_shutdown (sk, how)
1673 static int irda_shutdown(struct socket *sock, int how)
1675 struct sock *sk = sock->sk;
1676 struct irda_sock *self = irda_sk(sk);
1678 ASSERT(self != NULL, return -1;);
1680 IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self);
1682 sk->sk_state = TCP_CLOSE;
1683 sk->sk_shutdown |= SEND_SHUTDOWN;
1684 sk->sk_state_change(sk);
1686 if (self->iriap) {
1687 iriap_close(self->iriap);
1688 self->iriap = NULL;
1691 if (self->tsap) {
1692 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1693 irttp_close_tsap(self->tsap);
1694 self->tsap = NULL;
1697 /* A few cleanup so the socket look as good as new... */
1698 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1699 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1700 self->saddr = 0x0; /* so IrLMP assign us any link */
1702 return 0;
1706 * Function irda_poll (file, sock, wait)
1708 static unsigned int irda_poll(struct file * file, struct socket *sock,
1709 poll_table *wait)
1711 struct sock *sk = sock->sk;
1712 struct irda_sock *self = irda_sk(sk);
1713 unsigned int mask;
1715 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1717 poll_wait(file, sk->sk_sleep, wait);
1718 mask = 0;
1720 /* Exceptional events? */
1721 if (sk->sk_err)
1722 mask |= POLLERR;
1723 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1724 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1725 mask |= POLLHUP;
1728 /* Readable? */
1729 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1730 IRDA_DEBUG(4, "Socket is readable\n");
1731 mask |= POLLIN | POLLRDNORM;
1734 /* Connection-based need to check for termination and startup */
1735 switch (sk->sk_type) {
1736 case SOCK_STREAM:
1737 if (sk->sk_state == TCP_CLOSE) {
1738 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1739 mask |= POLLHUP;
1742 if (sk->sk_state == TCP_ESTABLISHED) {
1743 if ((self->tx_flow == FLOW_START) &&
1744 sock_writeable(sk))
1746 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1749 break;
1750 case SOCK_SEQPACKET:
1751 if ((self->tx_flow == FLOW_START) &&
1752 sock_writeable(sk))
1754 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1756 break;
1757 case SOCK_DGRAM:
1758 if (sock_writeable(sk))
1759 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1760 break;
1761 default:
1762 break;
1764 return mask;
1768 * Function irda_ioctl (sock, cmd, arg)
1770 static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1772 struct sock *sk = sock->sk;
1774 IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd);
1776 switch (cmd) {
1777 case TIOCOUTQ: {
1778 long amount;
1779 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1780 if (amount < 0)
1781 amount = 0;
1782 if (put_user(amount, (unsigned int __user *)arg))
1783 return -EFAULT;
1784 return 0;
1787 case TIOCINQ: {
1788 struct sk_buff *skb;
1789 long amount = 0L;
1790 /* These two are safe on a single CPU system as only user tasks fiddle here */
1791 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1792 amount = skb->len;
1793 if (put_user(amount, (unsigned int __user *)arg))
1794 return -EFAULT;
1795 return 0;
1798 case SIOCGSTAMP:
1799 if (sk != NULL)
1800 return sock_get_timestamp(sk, (struct timeval __user *)arg);
1801 return -EINVAL;
1803 case SIOCGIFADDR:
1804 case SIOCSIFADDR:
1805 case SIOCGIFDSTADDR:
1806 case SIOCSIFDSTADDR:
1807 case SIOCGIFBRDADDR:
1808 case SIOCSIFBRDADDR:
1809 case SIOCGIFNETMASK:
1810 case SIOCSIFNETMASK:
1811 case SIOCGIFMETRIC:
1812 case SIOCSIFMETRIC:
1813 return -EINVAL;
1814 default:
1815 IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__);
1816 return dev_ioctl(cmd, (void __user *) arg);
1819 /*NOTREACHED*/
1820 return 0;
1824 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1826 * Set some options for the socket
1829 static int irda_setsockopt(struct socket *sock, int level, int optname,
1830 char __user *optval, int optlen)
1832 struct sock *sk = sock->sk;
1833 struct irda_sock *self = irda_sk(sk);
1834 struct irda_ias_set *ias_opt;
1835 struct ias_object *ias_obj;
1836 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1837 int opt;
1839 ASSERT(self != NULL, return -1;);
1841 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1843 if (level != SOL_IRLMP)
1844 return -ENOPROTOOPT;
1846 switch (optname) {
1847 case IRLMP_IAS_SET:
1848 /* The user want to add an attribute to an existing IAS object
1849 * (in the IAS database) or to create a new object with this
1850 * attribute.
1851 * We first query IAS to know if the object exist, and then
1852 * create the right attribute...
1855 if (optlen != sizeof(struct irda_ias_set))
1856 return -EINVAL;
1858 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1859 if (ias_opt == NULL)
1860 return -ENOMEM;
1862 /* Copy query to the driver. */
1863 if (copy_from_user(ias_opt, optval, optlen)) {
1864 kfree(ias_opt);
1865 return -EFAULT;
1868 /* Find the object we target.
1869 * If the user gives us an empty string, we use the object
1870 * associated with this socket. This will workaround
1871 * duplicated class name - Jean II */
1872 if(ias_opt->irda_class_name[0] == '\0') {
1873 if(self->ias_obj == NULL) {
1874 kfree(ias_opt);
1875 return -EINVAL;
1877 ias_obj = self->ias_obj;
1878 } else
1879 ias_obj = irias_find_object(ias_opt->irda_class_name);
1881 /* Only ROOT can mess with the global IAS database.
1882 * Users can only add attributes to the object associated
1883 * with the socket they own - Jean II */
1884 if((!capable(CAP_NET_ADMIN)) &&
1885 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1886 kfree(ias_opt);
1887 return -EPERM;
1890 /* If the object doesn't exist, create it */
1891 if(ias_obj == (struct ias_object *) NULL) {
1892 /* Create a new object */
1893 ias_obj = irias_new_object(ias_opt->irda_class_name,
1894 jiffies);
1897 /* Do we have the attribute already ? */
1898 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1899 kfree(ias_opt);
1900 return -EINVAL;
1903 /* Look at the type */
1904 switch(ias_opt->irda_attrib_type) {
1905 case IAS_INTEGER:
1906 /* Add an integer attribute */
1907 irias_add_integer_attrib(
1908 ias_obj,
1909 ias_opt->irda_attrib_name,
1910 ias_opt->attribute.irda_attrib_int,
1911 IAS_USER_ATTR);
1912 break;
1913 case IAS_OCT_SEQ:
1914 /* Check length */
1915 if(ias_opt->attribute.irda_attrib_octet_seq.len >
1916 IAS_MAX_OCTET_STRING) {
1917 kfree(ias_opt);
1918 return -EINVAL;
1920 /* Add an octet sequence attribute */
1921 irias_add_octseq_attrib(
1922 ias_obj,
1923 ias_opt->irda_attrib_name,
1924 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
1925 ias_opt->attribute.irda_attrib_octet_seq.len,
1926 IAS_USER_ATTR);
1927 break;
1928 case IAS_STRING:
1929 /* Should check charset & co */
1930 /* Check length */
1931 /* The length is encoded in a __u8, and
1932 * IAS_MAX_STRING == 256, so there is no way
1933 * userspace can pass us a string too large.
1934 * Jean II */
1935 /* NULL terminate the string (avoid troubles) */
1936 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
1937 /* Add a string attribute */
1938 irias_add_string_attrib(
1939 ias_obj,
1940 ias_opt->irda_attrib_name,
1941 ias_opt->attribute.irda_attrib_string.string,
1942 IAS_USER_ATTR);
1943 break;
1944 default :
1945 kfree(ias_opt);
1946 return -EINVAL;
1948 irias_insert_object(ias_obj);
1949 kfree(ias_opt);
1950 break;
1951 case IRLMP_IAS_DEL:
1952 /* The user want to delete an object from our local IAS
1953 * database. We just need to query the IAS, check is the
1954 * object is not owned by the kernel and delete it.
1957 if (optlen != sizeof(struct irda_ias_set))
1958 return -EINVAL;
1960 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1961 if (ias_opt == NULL)
1962 return -ENOMEM;
1964 /* Copy query to the driver. */
1965 if (copy_from_user(ias_opt, optval, optlen)) {
1966 kfree(ias_opt);
1967 return -EFAULT;
1970 /* Find the object we target.
1971 * If the user gives us an empty string, we use the object
1972 * associated with this socket. This will workaround
1973 * duplicated class name - Jean II */
1974 if(ias_opt->irda_class_name[0] == '\0')
1975 ias_obj = self->ias_obj;
1976 else
1977 ias_obj = irias_find_object(ias_opt->irda_class_name);
1978 if(ias_obj == (struct ias_object *) NULL) {
1979 kfree(ias_opt);
1980 return -EINVAL;
1983 /* Only ROOT can mess with the global IAS database.
1984 * Users can only del attributes from the object associated
1985 * with the socket they own - Jean II */
1986 if((!capable(CAP_NET_ADMIN)) &&
1987 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1988 kfree(ias_opt);
1989 return -EPERM;
1992 /* Find the attribute (in the object) we target */
1993 ias_attr = irias_find_attrib(ias_obj,
1994 ias_opt->irda_attrib_name);
1995 if(ias_attr == (struct ias_attrib *) NULL) {
1996 kfree(ias_opt);
1997 return -EINVAL;
2000 /* Check is the user space own the object */
2001 if(ias_attr->value->owner != IAS_USER_ATTR) {
2002 IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__);
2003 kfree(ias_opt);
2004 return -EPERM;
2007 /* Remove the attribute (and maybe the object) */
2008 irias_delete_attrib(ias_obj, ias_attr);
2009 kfree(ias_opt);
2010 break;
2011 case IRLMP_MAX_SDU_SIZE:
2012 if (optlen < sizeof(int))
2013 return -EINVAL;
2015 if (get_user(opt, (int __user *)optval))
2016 return -EFAULT;
2018 /* Only possible for a seqpacket service (TTP with SAR) */
2019 if (sk->sk_type != SOCK_SEQPACKET) {
2020 IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
2021 __FUNCTION__, opt);
2022 self->max_sdu_size_rx = opt;
2023 } else {
2024 WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2025 __FUNCTION__);
2026 return -ENOPROTOOPT;
2028 break;
2029 case IRLMP_HINTS_SET:
2030 if (optlen < sizeof(int))
2031 return -EINVAL;
2033 /* The input is really a (__u8 hints[2]), easier as an int */
2034 if (get_user(opt, (int __user *)optval))
2035 return -EFAULT;
2037 /* Unregister any old registration */
2038 if (self->skey)
2039 irlmp_unregister_service(self->skey);
2041 self->skey = irlmp_register_service((__u16) opt);
2042 break;
2043 case IRLMP_HINT_MASK_SET:
2044 /* As opposed to the previous case which set the hint bits
2045 * that we advertise, this one set the filter we use when
2046 * making a discovery (nodes which don't match any hint
2047 * bit in the mask are not reported).
2049 if (optlen < sizeof(int))
2050 return -EINVAL;
2052 /* The input is really a (__u8 hints[2]), easier as an int */
2053 if (get_user(opt, (int __user *)optval))
2054 return -EFAULT;
2056 /* Set the new hint mask */
2057 self->mask.word = (__u16) opt;
2058 /* Mask out extension bits */
2059 self->mask.word &= 0x7f7f;
2060 /* Check if no bits */
2061 if(!self->mask.word)
2062 self->mask.word = 0xFFFF;
2064 break;
2065 default:
2066 return -ENOPROTOOPT;
2068 return 0;
2072 * Function irda_extract_ias_value(ias_opt, ias_value)
2074 * Translate internal IAS value structure to the user space representation
2076 * The external representation of IAS values, as we exchange them with
2077 * user space program is quite different from the internal representation,
2078 * as stored in the IAS database (because we need a flat structure for
2079 * crossing kernel boundary).
2080 * This function transform the former in the latter. We also check
2081 * that the value type is valid.
2083 static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2084 struct ias_value *ias_value)
2086 /* Look at the type */
2087 switch (ias_value->type) {
2088 case IAS_INTEGER:
2089 /* Copy the integer */
2090 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2091 break;
2092 case IAS_OCT_SEQ:
2093 /* Set length */
2094 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2095 /* Copy over */
2096 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2097 ias_value->t.oct_seq, ias_value->len);
2098 break;
2099 case IAS_STRING:
2100 /* Set length */
2101 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2102 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2103 /* Copy over */
2104 memcpy(ias_opt->attribute.irda_attrib_string.string,
2105 ias_value->t.string, ias_value->len);
2106 /* NULL terminate the string (avoid troubles) */
2107 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2108 break;
2109 case IAS_MISSING:
2110 default :
2111 return -EINVAL;
2114 /* Copy type over */
2115 ias_opt->irda_attrib_type = ias_value->type;
2117 return 0;
2121 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2123 static int irda_getsockopt(struct socket *sock, int level, int optname,
2124 char __user *optval, int __user *optlen)
2126 struct sock *sk = sock->sk;
2127 struct irda_sock *self = irda_sk(sk);
2128 struct irda_device_list list;
2129 struct irda_device_info *discoveries;
2130 struct irda_ias_set * ias_opt; /* IAS get/query params */
2131 struct ias_object * ias_obj; /* Object in IAS */
2132 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2133 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2134 int val = 0;
2135 int len = 0;
2136 int err;
2137 int offset, total;
2139 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
2141 if (level != SOL_IRLMP)
2142 return -ENOPROTOOPT;
2144 if (get_user(len, optlen))
2145 return -EFAULT;
2147 if(len < 0)
2148 return -EINVAL;
2150 switch (optname) {
2151 case IRLMP_ENUMDEVICES:
2152 /* Ask lmp for the current discovery log */
2153 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2154 self->nslots);
2155 /* Check if the we got some results */
2156 if (discoveries == NULL)
2157 return -EAGAIN; /* Didn't find any devices */
2158 err = 0;
2160 /* Write total list length back to client */
2161 if (copy_to_user(optval, &list,
2162 sizeof(struct irda_device_list) -
2163 sizeof(struct irda_device_info)))
2164 err = -EFAULT;
2166 /* Offset to first device entry */
2167 offset = sizeof(struct irda_device_list) -
2168 sizeof(struct irda_device_info);
2170 /* Copy the list itself - watch for overflow */
2171 if(list.len > 2048)
2173 err = -EINVAL;
2174 goto bed;
2176 total = offset + (list.len * sizeof(struct irda_device_info));
2177 if (total > len)
2178 total = len;
2179 if (copy_to_user(optval+offset, discoveries, total - offset))
2180 err = -EFAULT;
2182 /* Write total number of bytes used back to client */
2183 if (put_user(total, optlen))
2184 err = -EFAULT;
2185 bed:
2186 /* Free up our buffer */
2187 kfree(discoveries);
2188 if (err)
2189 return err;
2190 break;
2191 case IRLMP_MAX_SDU_SIZE:
2192 val = self->max_data_size;
2193 len = sizeof(int);
2194 if (put_user(len, optlen))
2195 return -EFAULT;
2197 if (copy_to_user(optval, &val, len))
2198 return -EFAULT;
2199 break;
2200 case IRLMP_IAS_GET:
2201 /* The user want an object from our local IAS database.
2202 * We just need to query the IAS and return the value
2203 * that we found */
2205 /* Check that the user has allocated the right space for us */
2206 if (len != sizeof(struct irda_ias_set))
2207 return -EINVAL;
2209 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2210 if (ias_opt == NULL)
2211 return -ENOMEM;
2213 /* Copy query to the driver. */
2214 if (copy_from_user(ias_opt, optval, len)) {
2215 kfree(ias_opt);
2216 return -EFAULT;
2219 /* Find the object we target.
2220 * If the user gives us an empty string, we use the object
2221 * associated with this socket. This will workaround
2222 * duplicated class name - Jean II */
2223 if(ias_opt->irda_class_name[0] == '\0')
2224 ias_obj = self->ias_obj;
2225 else
2226 ias_obj = irias_find_object(ias_opt->irda_class_name);
2227 if(ias_obj == (struct ias_object *) NULL) {
2228 kfree(ias_opt);
2229 return -EINVAL;
2232 /* Find the attribute (in the object) we target */
2233 ias_attr = irias_find_attrib(ias_obj,
2234 ias_opt->irda_attrib_name);
2235 if(ias_attr == (struct ias_attrib *) NULL) {
2236 kfree(ias_opt);
2237 return -EINVAL;
2240 /* Translate from internal to user structure */
2241 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2242 if(err) {
2243 kfree(ias_opt);
2244 return err;
2247 /* Copy reply to the user */
2248 if (copy_to_user(optval, ias_opt,
2249 sizeof(struct irda_ias_set))) {
2250 kfree(ias_opt);
2251 return -EFAULT;
2253 /* Note : don't need to put optlen, we checked it */
2254 kfree(ias_opt);
2255 break;
2256 case IRLMP_IAS_QUERY:
2257 /* The user want an object from a remote IAS database.
2258 * We need to use IAP to query the remote database and
2259 * then wait for the answer to come back. */
2261 /* Check that the user has allocated the right space for us */
2262 if (len != sizeof(struct irda_ias_set))
2263 return -EINVAL;
2265 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2266 if (ias_opt == NULL)
2267 return -ENOMEM;
2269 /* Copy query to the driver. */
2270 if (copy_from_user(ias_opt, optval, len)) {
2271 kfree(ias_opt);
2272 return -EFAULT;
2275 /* At this point, there are two cases...
2276 * 1) the socket is connected - that's the easy case, we
2277 * just query the device we are connected to...
2278 * 2) the socket is not connected - the user doesn't want
2279 * to connect and/or may not have a valid service name
2280 * (so can't create a fake connection). In this case,
2281 * we assume that the user pass us a valid destination
2282 * address in the requesting structure...
2284 if(self->daddr != DEV_ADDR_ANY) {
2285 /* We are connected - reuse known daddr */
2286 daddr = self->daddr;
2287 } else {
2288 /* We are not connected, we must specify a valid
2289 * destination address */
2290 daddr = ias_opt->daddr;
2291 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2292 kfree(ias_opt);
2293 return -EINVAL;
2297 /* Check that we can proceed with IAP */
2298 if (self->iriap) {
2299 WARNING("%s: busy with a previous query\n",
2300 __FUNCTION__);
2301 kfree(ias_opt);
2302 return -EBUSY;
2305 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2306 irda_getvalue_confirm);
2308 if (self->iriap == NULL) {
2309 kfree(ias_opt);
2310 return -ENOMEM;
2313 /* Treat unexpected wakeup as disconnect */
2314 self->errno = -EHOSTUNREACH;
2316 /* Query remote LM-IAS */
2317 iriap_getvaluebyclass_request(self->iriap,
2318 self->saddr, daddr,
2319 ias_opt->irda_class_name,
2320 ias_opt->irda_attrib_name);
2322 /* Wait for answer, if not yet finished (or failed) */
2323 if (wait_event_interruptible(self->query_wait,
2324 (self->iriap == NULL))) {
2325 /* pending request uses copy of ias_opt-content
2326 * we can free it regardless! */
2327 kfree(ias_opt);
2328 /* Treat signals as disconnect */
2329 return -EHOSTUNREACH;
2332 /* Check what happened */
2333 if (self->errno)
2335 kfree(ias_opt);
2336 /* Requested object/attribute doesn't exist */
2337 if((self->errno == IAS_CLASS_UNKNOWN) ||
2338 (self->errno == IAS_ATTRIB_UNKNOWN))
2339 return (-EADDRNOTAVAIL);
2340 else
2341 return (-EHOSTUNREACH);
2344 /* Translate from internal to user structure */
2345 err = irda_extract_ias_value(ias_opt, self->ias_result);
2346 if (self->ias_result)
2347 irias_delete_value(self->ias_result);
2348 if (err) {
2349 kfree(ias_opt);
2350 return err;
2353 /* Copy reply to the user */
2354 if (copy_to_user(optval, ias_opt,
2355 sizeof(struct irda_ias_set))) {
2356 kfree(ias_opt);
2357 return -EFAULT;
2359 /* Note : don't need to put optlen, we checked it */
2360 kfree(ias_opt);
2361 break;
2362 case IRLMP_WAITDEVICE:
2363 /* This function is just another way of seeing life ;-)
2364 * IRLMP_ENUMDEVICES assumes that you have a static network,
2365 * and that you just want to pick one of the devices present.
2366 * On the other hand, in here we assume that no device is
2367 * present and that at some point in the future a device will
2368 * come into range. When this device arrive, we just wake
2369 * up the caller, so that he has time to connect to it before
2370 * the device goes away...
2371 * Note : once the node has been discovered for more than a
2372 * few second, it won't trigger this function, unless it
2373 * goes away and come back changes its hint bits (so we
2374 * might call it IRLMP_WAITNEWDEVICE).
2377 /* Check that the user is passing us an int */
2378 if (len != sizeof(int))
2379 return -EINVAL;
2380 /* Get timeout in ms (max time we block the caller) */
2381 if (get_user(val, (int __user *)optval))
2382 return -EFAULT;
2384 /* Tell IrLMP we want to be notified */
2385 irlmp_update_client(self->ckey, self->mask.word,
2386 irda_selective_discovery_indication,
2387 NULL, (void *) self);
2389 /* Do some discovery (and also return cached results) */
2390 irlmp_discovery_request(self->nslots);
2392 /* Wait until a node is discovered */
2393 if (!self->cachedaddr) {
2394 int ret = 0;
2396 IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__);
2398 /* Set watchdog timer to expire in <val> ms. */
2399 self->errno = 0;
2400 init_timer(&self->watchdog);
2401 self->watchdog.function = irda_discovery_timeout;
2402 self->watchdog.data = (unsigned long) self;
2403 self->watchdog.expires = jiffies + (val * HZ/1000);
2404 add_timer(&(self->watchdog));
2406 /* Wait for IR-LMP to call us back */
2407 __wait_event_interruptible(self->query_wait,
2408 (self->cachedaddr != 0 || self->errno == -ETIME),
2409 ret);
2411 /* If watchdog is still activated, kill it! */
2412 if(timer_pending(&(self->watchdog)))
2413 del_timer(&(self->watchdog));
2415 IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__);
2417 if (ret != 0)
2418 return ret;
2420 else
2421 IRDA_DEBUG(1, "%s(), found immediately !\n",
2422 __FUNCTION__);
2424 /* Tell IrLMP that we have been notified */
2425 irlmp_update_client(self->ckey, self->mask.word,
2426 NULL, NULL, NULL);
2428 /* Check if the we got some results */
2429 if (!self->cachedaddr)
2430 return -EAGAIN; /* Didn't find any devices */
2431 daddr = self->cachedaddr;
2432 /* Cleanup */
2433 self->cachedaddr = 0;
2435 /* We return the daddr of the device that trigger the
2436 * wakeup. As irlmp pass us only the new devices, we
2437 * are sure that it's not an old device.
2438 * If the user want more details, he should query
2439 * the whole discovery log and pick one device...
2441 if (put_user(daddr, (int __user *)optval))
2442 return -EFAULT;
2444 break;
2445 default:
2446 return -ENOPROTOOPT;
2449 return 0;
2452 static struct net_proto_family irda_family_ops = {
2453 .family = PF_IRDA,
2454 .create = irda_create,
2455 .owner = THIS_MODULE,
2458 static struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = {
2459 .family = PF_IRDA,
2460 .owner = THIS_MODULE,
2461 .release = irda_release,
2462 .bind = irda_bind,
2463 .connect = irda_connect,
2464 .socketpair = sock_no_socketpair,
2465 .accept = irda_accept,
2466 .getname = irda_getname,
2467 .poll = irda_poll,
2468 .ioctl = irda_ioctl,
2469 .listen = irda_listen,
2470 .shutdown = irda_shutdown,
2471 .setsockopt = irda_setsockopt,
2472 .getsockopt = irda_getsockopt,
2473 .sendmsg = irda_sendmsg,
2474 .recvmsg = irda_recvmsg_stream,
2475 .mmap = sock_no_mmap,
2476 .sendpage = sock_no_sendpage,
2479 static struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = {
2480 .family = PF_IRDA,
2481 .owner = THIS_MODULE,
2482 .release = irda_release,
2483 .bind = irda_bind,
2484 .connect = irda_connect,
2485 .socketpair = sock_no_socketpair,
2486 .accept = irda_accept,
2487 .getname = irda_getname,
2488 .poll = datagram_poll,
2489 .ioctl = irda_ioctl,
2490 .listen = irda_listen,
2491 .shutdown = irda_shutdown,
2492 .setsockopt = irda_setsockopt,
2493 .getsockopt = irda_getsockopt,
2494 .sendmsg = irda_sendmsg,
2495 .recvmsg = irda_recvmsg_dgram,
2496 .mmap = sock_no_mmap,
2497 .sendpage = sock_no_sendpage,
2500 static struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = {
2501 .family = PF_IRDA,
2502 .owner = THIS_MODULE,
2503 .release = irda_release,
2504 .bind = irda_bind,
2505 .connect = irda_connect,
2506 .socketpair = sock_no_socketpair,
2507 .accept = irda_accept,
2508 .getname = irda_getname,
2509 .poll = datagram_poll,
2510 .ioctl = irda_ioctl,
2511 .listen = irda_listen,
2512 .shutdown = irda_shutdown,
2513 .setsockopt = irda_setsockopt,
2514 .getsockopt = irda_getsockopt,
2515 .sendmsg = irda_sendmsg_dgram,
2516 .recvmsg = irda_recvmsg_dgram,
2517 .mmap = sock_no_mmap,
2518 .sendpage = sock_no_sendpage,
2521 #ifdef CONFIG_IRDA_ULTRA
2522 static struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = {
2523 .family = PF_IRDA,
2524 .owner = THIS_MODULE,
2525 .release = irda_release,
2526 .bind = irda_bind,
2527 .connect = sock_no_connect,
2528 .socketpair = sock_no_socketpair,
2529 .accept = sock_no_accept,
2530 .getname = irda_getname,
2531 .poll = datagram_poll,
2532 .ioctl = irda_ioctl,
2533 .listen = sock_no_listen,
2534 .shutdown = irda_shutdown,
2535 .setsockopt = irda_setsockopt,
2536 .getsockopt = irda_getsockopt,
2537 .sendmsg = irda_sendmsg_ultra,
2538 .recvmsg = irda_recvmsg_dgram,
2539 .mmap = sock_no_mmap,
2540 .sendpage = sock_no_sendpage,
2542 #endif /* CONFIG_IRDA_ULTRA */
2544 #include <linux/smp_lock.h>
2545 SOCKOPS_WRAP(irda_stream, PF_IRDA);
2546 SOCKOPS_WRAP(irda_seqpacket, PF_IRDA);
2547 SOCKOPS_WRAP(irda_dgram, PF_IRDA);
2548 #ifdef CONFIG_IRDA_ULTRA
2549 SOCKOPS_WRAP(irda_ultra, PF_IRDA);
2550 #endif /* CONFIG_IRDA_ULTRA */
2553 * Function irsock_init (pro)
2555 * Initialize IrDA protocol
2558 int __init irsock_init(void)
2560 sock_register(&irda_family_ops);
2562 return 0;
2566 * Function irsock_cleanup (void)
2568 * Remove IrDA protocol
2571 void __exit irsock_cleanup(void)
2573 sock_unregister(PF_IRDA);
2575 return;