initial commit with v2.6.9
[linux-2.6.9-moxart.git] / net / ipv6 / ip6_fib.c
blob1816b81ae4543b9fc2e652484415f74015899901
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
17 * Changes:
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
20 * routing table.
22 #include <linux/config.h>
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
31 #ifdef CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
35 #include <net/ipv6.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
42 #define RT6_DEBUG 2
44 #if RT6_DEBUG >= 3
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #else
47 #define RT6_TRACE(x...) do { ; } while (0)
48 #endif
50 struct rt6_statistics rt6_stats;
52 static kmem_cache_t * fib6_node_kmem;
54 enum fib_walk_state_t
56 #ifdef CONFIG_IPV6_SUBTREES
57 FWS_S,
58 #endif
59 FWS_L,
60 FWS_R,
61 FWS_C,
62 FWS_U
65 struct fib6_cleaner_t
67 struct fib6_walker_t w;
68 int (*func)(struct rt6_info *, void *arg);
69 void *arg;
72 rwlock_t fib6_walker_lock = RW_LOCK_UNLOCKED;
75 #ifdef CONFIG_IPV6_SUBTREES
76 #define FWS_INIT FWS_S
77 #define SUBTREE(fn) ((fn)->subtree)
78 #else
79 #define FWS_INIT FWS_L
80 #define SUBTREE(fn) NULL
81 #endif
83 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
84 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
87 * A routing update causes an increase of the serial number on the
88 * affected subtree. This allows for cached routes to be asynchronously
89 * tested when modifications are made to the destination cache as a
90 * result of redirects, path MTU changes, etc.
93 static __u32 rt_sernum;
95 static struct timer_list ip6_fib_timer = TIMER_INITIALIZER(fib6_run_gc, 0, 0);
97 struct fib6_walker_t fib6_walker_list = {
98 .prev = &fib6_walker_list,
99 .next = &fib6_walker_list,
102 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
104 static __inline__ u32 fib6_new_sernum(void)
106 u32 n = ++rt_sernum;
107 if ((__s32)n <= 0)
108 rt_sernum = n = 1;
109 return n;
113 * Auxiliary address test functions for the radix tree.
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
120 * compare "prefix length" bits of an address
123 static __inline__ int addr_match(void *token1, void *token2, int prefixlen)
125 __u32 *a1 = token1;
126 __u32 *a2 = token2;
127 int pdw;
128 int pbi;
130 pdw = prefixlen >> 5; /* num of whole __u32 in prefix */
131 pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */
133 if (pdw)
134 if (memcmp(a1, a2, pdw << 2))
135 return 0;
137 if (pbi) {
138 __u32 mask;
140 mask = htonl((0xffffffff) << (32 - pbi));
142 if ((a1[pdw] ^ a2[pdw]) & mask)
143 return 0;
146 return 1;
150 * test bit
153 static __inline__ int addr_bit_set(void *token, int fn_bit)
155 __u32 *addr = token;
157 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
161 * find the first different bit between two addresses
162 * length of address must be a multiple of 32bits
165 static __inline__ int addr_diff(void *token1, void *token2, int addrlen)
167 __u32 *a1 = token1;
168 __u32 *a2 = token2;
169 int i;
171 addrlen >>= 2;
173 for (i = 0; i < addrlen; i++) {
174 __u32 xb;
176 xb = a1[i] ^ a2[i];
178 if (xb) {
179 int j = 31;
181 xb = ntohl(xb);
183 while ((xb & (1 << j)) == 0)
184 j--;
186 return (i * 32 + 31 - j);
191 * we should *never* get to this point since that
192 * would mean the addrs are equal
194 * However, we do get to it 8) And exacly, when
195 * addresses are equal 8)
197 * ip route add 1111::/128 via ...
198 * ip route add 1111::/64 via ...
199 * and we are here.
201 * Ideally, this function should stop comparison
202 * at prefix length. It does not, but it is still OK,
203 * if returned value is greater than prefix length.
204 * --ANK (980803)
207 return addrlen<<5;
210 static __inline__ struct fib6_node * node_alloc(void)
212 struct fib6_node *fn;
214 if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL)
215 memset(fn, 0, sizeof(struct fib6_node));
217 return fn;
220 static __inline__ void node_free(struct fib6_node * fn)
222 kmem_cache_free(fib6_node_kmem, fn);
225 static __inline__ void rt6_release(struct rt6_info *rt)
227 if (atomic_dec_and_test(&rt->rt6i_ref))
228 dst_free(&rt->u.dst);
233 * Routing Table
235 * return the appropriate node for a routing tree "add" operation
236 * by either creating and inserting or by returning an existing
237 * node.
240 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
241 int addrlen, int plen,
242 int offset)
244 struct fib6_node *fn, *in, *ln;
245 struct fib6_node *pn = NULL;
246 struct rt6key *key;
247 int bit;
248 int dir = 0;
249 __u32 sernum = fib6_new_sernum();
251 RT6_TRACE("fib6_add_1\n");
253 /* insert node in tree */
255 fn = root;
257 do {
258 key = (struct rt6key *)((u8 *)fn->leaf + offset);
261 * Prefix match
263 if (plen < fn->fn_bit ||
264 !addr_match(&key->addr, addr, fn->fn_bit))
265 goto insert_above;
268 * Exact match ?
271 if (plen == fn->fn_bit) {
272 /* clean up an intermediate node */
273 if ((fn->fn_flags & RTN_RTINFO) == 0) {
274 rt6_release(fn->leaf);
275 fn->leaf = NULL;
278 fn->fn_sernum = sernum;
280 return fn;
284 * We have more bits to go
287 /* Try to walk down on tree. */
288 fn->fn_sernum = sernum;
289 dir = addr_bit_set(addr, fn->fn_bit);
290 pn = fn;
291 fn = dir ? fn->right: fn->left;
292 } while (fn);
295 * We walked to the bottom of tree.
296 * Create new leaf node without children.
299 ln = node_alloc();
301 if (ln == NULL)
302 return NULL;
303 ln->fn_bit = plen;
305 ln->parent = pn;
306 ln->fn_sernum = sernum;
308 if (dir)
309 pn->right = ln;
310 else
311 pn->left = ln;
313 return ln;
316 insert_above:
318 * split since we don't have a common prefix anymore or
319 * we have a less significant route.
320 * we've to insert an intermediate node on the list
321 * this new node will point to the one we need to create
322 * and the current
325 pn = fn->parent;
327 /* find 1st bit in difference between the 2 addrs.
329 See comment in addr_diff: bit may be an invalid value,
330 but if it is >= plen, the value is ignored in any case.
333 bit = addr_diff(addr, &key->addr, addrlen);
336 * (intermediate)[in]
337 * / \
338 * (new leaf node)[ln] (old node)[fn]
340 if (plen > bit) {
341 in = node_alloc();
342 ln = node_alloc();
344 if (in == NULL || ln == NULL) {
345 if (in)
346 node_free(in);
347 if (ln)
348 node_free(ln);
349 return NULL;
353 * new intermediate node.
354 * RTN_RTINFO will
355 * be off since that an address that chooses one of
356 * the branches would not match less specific routes
357 * in the other branch
360 in->fn_bit = bit;
362 in->parent = pn;
363 in->leaf = fn->leaf;
364 atomic_inc(&in->leaf->rt6i_ref);
366 in->fn_sernum = sernum;
368 /* update parent pointer */
369 if (dir)
370 pn->right = in;
371 else
372 pn->left = in;
374 ln->fn_bit = plen;
376 ln->parent = in;
377 fn->parent = in;
379 ln->fn_sernum = sernum;
381 if (addr_bit_set(addr, bit)) {
382 in->right = ln;
383 in->left = fn;
384 } else {
385 in->left = ln;
386 in->right = fn;
388 } else { /* plen <= bit */
391 * (new leaf node)[ln]
392 * / \
393 * (old node)[fn] NULL
396 ln = node_alloc();
398 if (ln == NULL)
399 return NULL;
401 ln->fn_bit = plen;
403 ln->parent = pn;
405 ln->fn_sernum = sernum;
407 if (dir)
408 pn->right = ln;
409 else
410 pn->left = ln;
412 if (addr_bit_set(&key->addr, plen))
413 ln->right = fn;
414 else
415 ln->left = fn;
417 fn->parent = ln;
419 return ln;
423 * Insert routing information in a node.
426 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
427 struct nlmsghdr *nlh)
429 struct rt6_info *iter = NULL;
430 struct rt6_info **ins;
432 ins = &fn->leaf;
434 if (fn->fn_flags&RTN_TL_ROOT &&
435 fn->leaf == &ip6_null_entry &&
436 !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF | RTF_ALLONLINK)) ){
437 fn->leaf = rt;
438 rt->u.next = NULL;
439 goto out;
442 for (iter = fn->leaf; iter; iter=iter->u.next) {
444 * Search for duplicates
447 if (iter->rt6i_metric == rt->rt6i_metric) {
449 * Same priority level
452 if (iter->rt6i_dev == rt->rt6i_dev &&
453 iter->rt6i_idev == rt->rt6i_idev &&
454 ipv6_addr_cmp(&iter->rt6i_gateway,
455 &rt->rt6i_gateway) == 0) {
456 if (!(iter->rt6i_flags&RTF_EXPIRES))
457 return -EEXIST;
458 iter->rt6i_expires = rt->rt6i_expires;
459 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
460 iter->rt6i_flags &= ~RTF_EXPIRES;
461 iter->rt6i_expires = 0;
463 return -EEXIST;
467 if (iter->rt6i_metric > rt->rt6i_metric)
468 break;
470 ins = &iter->u.next;
474 * insert node
477 out:
478 rt->u.next = iter;
479 *ins = rt;
480 rt->rt6i_node = fn;
481 atomic_inc(&rt->rt6i_ref);
482 inet6_rt_notify(RTM_NEWROUTE, rt, nlh);
483 rt6_stats.fib_rt_entries++;
485 if ((fn->fn_flags & RTN_RTINFO) == 0) {
486 rt6_stats.fib_route_nodes++;
487 fn->fn_flags |= RTN_RTINFO;
490 return 0;
493 static __inline__ void fib6_start_gc(struct rt6_info *rt)
495 if (ip6_fib_timer.expires == 0 &&
496 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
497 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
500 void fib6_force_start_gc(void)
502 if (ip6_fib_timer.expires == 0)
503 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
507 * Add routing information to the routing tree.
508 * <destination addr>/<source addr>
509 * with source addr info in sub-trees
512 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nlmsghdr *nlh, void *_rtattr)
514 struct fib6_node *fn;
515 int err = -ENOMEM;
517 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
518 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
520 if (fn == NULL)
521 goto out;
523 #ifdef CONFIG_IPV6_SUBTREES
524 if (rt->rt6i_src.plen) {
525 struct fib6_node *sn;
527 if (fn->subtree == NULL) {
528 struct fib6_node *sfn;
531 * Create subtree.
533 * fn[main tree]
535 * sfn[subtree root]
537 * sn[new leaf node]
540 /* Create subtree root node */
541 sfn = node_alloc();
542 if (sfn == NULL)
543 goto st_failure;
545 sfn->leaf = &ip6_null_entry;
546 atomic_inc(&ip6_null_entry.rt6i_ref);
547 sfn->fn_flags = RTN_ROOT;
548 sfn->fn_sernum = fib6_new_sernum();
550 /* Now add the first leaf node to new subtree */
552 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
553 sizeof(struct in6_addr), rt->rt6i_src.plen,
554 offsetof(struct rt6_info, rt6i_src));
556 if (sn == NULL) {
557 /* If it is failed, discard just allocated
558 root, and then (in st_failure) stale node
559 in main tree.
561 node_free(sfn);
562 goto st_failure;
565 /* Now link new subtree to main tree */
566 sfn->parent = fn;
567 fn->subtree = sfn;
568 if (fn->leaf == NULL) {
569 fn->leaf = rt;
570 atomic_inc(&rt->rt6i_ref);
572 } else {
573 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
574 sizeof(struct in6_addr), rt->rt6i_src.plen,
575 offsetof(struct rt6_info, rt6i_src));
577 if (sn == NULL)
578 goto st_failure;
581 fn = sn;
583 #endif
585 err = fib6_add_rt2node(fn, rt, nlh);
587 if (err == 0) {
588 fib6_start_gc(rt);
589 if (!(rt->rt6i_flags&RTF_CACHE))
590 fib6_prune_clones(fn, rt);
593 out:
594 if (err)
595 dst_free(&rt->u.dst);
596 return err;
598 #ifdef CONFIG_IPV6_SUBTREES
599 /* Subtree creation failed, probably main tree node
600 is orphan. If it is, shoot it.
602 st_failure:
603 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
604 fib6_repair_tree(fn);
605 dst_free(&rt->u.dst);
606 return err;
607 #endif
611 * Routing tree lookup
615 struct lookup_args {
616 int offset; /* key offset on rt6_info */
617 struct in6_addr *addr; /* search key */
620 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
621 struct lookup_args *args)
623 struct fib6_node *fn;
624 int dir;
627 * Descend on a tree
630 fn = root;
632 for (;;) {
633 struct fib6_node *next;
635 dir = addr_bit_set(args->addr, fn->fn_bit);
637 next = dir ? fn->right : fn->left;
639 if (next) {
640 fn = next;
641 continue;
644 break;
647 while ((fn->fn_flags & RTN_ROOT) == 0) {
648 #ifdef CONFIG_IPV6_SUBTREES
649 if (fn->subtree) {
650 struct fib6_node *st;
651 struct lookup_args *narg;
653 narg = args + 1;
655 if (narg->addr) {
656 st = fib6_lookup_1(fn->subtree, narg);
658 if (st && !(st->fn_flags & RTN_ROOT))
659 return st;
662 #endif
664 if (fn->fn_flags & RTN_RTINFO) {
665 struct rt6key *key;
667 key = (struct rt6key *) ((u8 *) fn->leaf +
668 args->offset);
670 if (addr_match(&key->addr, args->addr, key->plen))
671 return fn;
674 fn = fn->parent;
677 return NULL;
680 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
681 struct in6_addr *saddr)
683 struct lookup_args args[2];
684 struct fib6_node *fn;
686 args[0].offset = offsetof(struct rt6_info, rt6i_dst);
687 args[0].addr = daddr;
689 #ifdef CONFIG_IPV6_SUBTREES
690 args[1].offset = offsetof(struct rt6_info, rt6i_src);
691 args[1].addr = saddr;
692 #endif
694 fn = fib6_lookup_1(root, args);
696 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
697 fn = root;
699 return fn;
703 * Get node with specified destination prefix (and source prefix,
704 * if subtrees are used)
708 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
709 struct in6_addr *addr,
710 int plen, int offset)
712 struct fib6_node *fn;
714 for (fn = root; fn ; ) {
715 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
718 * Prefix match
720 if (plen < fn->fn_bit ||
721 !addr_match(&key->addr, addr, fn->fn_bit))
722 return NULL;
724 if (plen == fn->fn_bit)
725 return fn;
728 * We have more bits to go
730 if (addr_bit_set(addr, fn->fn_bit))
731 fn = fn->right;
732 else
733 fn = fn->left;
735 return NULL;
738 struct fib6_node * fib6_locate(struct fib6_node *root,
739 struct in6_addr *daddr, int dst_len,
740 struct in6_addr *saddr, int src_len)
742 struct fib6_node *fn;
744 fn = fib6_locate_1(root, daddr, dst_len,
745 offsetof(struct rt6_info, rt6i_dst));
747 #ifdef CONFIG_IPV6_SUBTREES
748 if (src_len) {
749 BUG_TRAP(saddr!=NULL);
750 if (fn == NULL)
751 fn = fn->subtree;
752 if (fn)
753 fn = fib6_locate_1(fn, saddr, src_len,
754 offsetof(struct rt6_info, rt6i_src));
756 #endif
758 if (fn && fn->fn_flags&RTN_RTINFO)
759 return fn;
761 return NULL;
766 * Deletion
770 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
772 if (fn->fn_flags&RTN_ROOT)
773 return &ip6_null_entry;
775 while(fn) {
776 if(fn->left)
777 return fn->left->leaf;
779 if(fn->right)
780 return fn->right->leaf;
782 fn = SUBTREE(fn);
784 return NULL;
788 * Called to trim the tree of intermediate nodes when possible. "fn"
789 * is the node we want to try and remove.
792 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
794 int children;
795 int nstate;
796 struct fib6_node *child, *pn;
797 struct fib6_walker_t *w;
798 int iter = 0;
800 for (;;) {
801 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
802 iter++;
804 BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
805 BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
806 BUG_TRAP(fn->leaf==NULL);
808 children = 0;
809 child = NULL;
810 if (fn->right) child = fn->right, children |= 1;
811 if (fn->left) child = fn->left, children |= 2;
813 if (children == 3 || SUBTREE(fn)
814 #ifdef CONFIG_IPV6_SUBTREES
815 /* Subtree root (i.e. fn) may have one child */
816 || (children && fn->fn_flags&RTN_ROOT)
817 #endif
819 fn->leaf = fib6_find_prefix(fn);
820 #if RT6_DEBUG >= 2
821 if (fn->leaf==NULL) {
822 BUG_TRAP(fn->leaf);
823 fn->leaf = &ip6_null_entry;
825 #endif
826 atomic_inc(&fn->leaf->rt6i_ref);
827 return fn->parent;
830 pn = fn->parent;
831 #ifdef CONFIG_IPV6_SUBTREES
832 if (SUBTREE(pn) == fn) {
833 BUG_TRAP(fn->fn_flags&RTN_ROOT);
834 SUBTREE(pn) = NULL;
835 nstate = FWS_L;
836 } else {
837 BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
838 #endif
839 if (pn->right == fn) pn->right = child;
840 else if (pn->left == fn) pn->left = child;
841 #if RT6_DEBUG >= 2
842 else BUG_TRAP(0);
843 #endif
844 if (child)
845 child->parent = pn;
846 nstate = FWS_R;
847 #ifdef CONFIG_IPV6_SUBTREES
849 #endif
851 read_lock(&fib6_walker_lock);
852 FOR_WALKERS(w) {
853 if (child == NULL) {
854 if (w->root == fn) {
855 w->root = w->node = NULL;
856 RT6_TRACE("W %p adjusted by delroot 1\n", w);
857 } else if (w->node == fn) {
858 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
859 w->node = pn;
860 w->state = nstate;
862 } else {
863 if (w->root == fn) {
864 w->root = child;
865 RT6_TRACE("W %p adjusted by delroot 2\n", w);
867 if (w->node == fn) {
868 w->node = child;
869 if (children&2) {
870 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
871 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
872 } else {
873 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
874 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
879 read_unlock(&fib6_walker_lock);
881 node_free(fn);
882 if (pn->fn_flags&RTN_RTINFO || SUBTREE(pn))
883 return pn;
885 rt6_release(pn->leaf);
886 pn->leaf = NULL;
887 fn = pn;
891 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
892 struct nlmsghdr *nlh, void *_rtattr)
894 struct fib6_walker_t *w;
895 struct rt6_info *rt = *rtp;
897 RT6_TRACE("fib6_del_route\n");
899 /* Unlink it */
900 *rtp = rt->u.next;
901 rt->rt6i_node = NULL;
902 rt6_stats.fib_rt_entries--;
903 rt6_stats.fib_discarded_routes++;
905 /* Adjust walkers */
906 read_lock(&fib6_walker_lock);
907 FOR_WALKERS(w) {
908 if (w->state == FWS_C && w->leaf == rt) {
909 RT6_TRACE("walker %p adjusted by delroute\n", w);
910 w->leaf = rt->u.next;
911 if (w->leaf == NULL)
912 w->state = FWS_U;
915 read_unlock(&fib6_walker_lock);
917 rt->u.next = NULL;
919 if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
920 fn->leaf = &ip6_null_entry;
922 /* If it was last route, expunge its radix tree node */
923 if (fn->leaf == NULL) {
924 fn->fn_flags &= ~RTN_RTINFO;
925 rt6_stats.fib_route_nodes--;
926 fn = fib6_repair_tree(fn);
929 if (atomic_read(&rt->rt6i_ref) != 1) {
930 /* This route is used as dummy address holder in some split
931 * nodes. It is not leaked, but it still holds other resources,
932 * which must be released in time. So, scan ascendant nodes
933 * and replace dummy references to this route with references
934 * to still alive ones.
936 while (fn) {
937 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
938 fn->leaf = fib6_find_prefix(fn);
939 atomic_inc(&fn->leaf->rt6i_ref);
940 rt6_release(rt);
942 fn = fn->parent;
944 /* No more references are possible at this point. */
945 if (atomic_read(&rt->rt6i_ref) != 1) BUG();
948 inet6_rt_notify(RTM_DELROUTE, rt, nlh);
949 rt6_release(rt);
952 int fib6_del(struct rt6_info *rt, struct nlmsghdr *nlh, void *_rtattr)
954 struct fib6_node *fn = rt->rt6i_node;
955 struct rt6_info **rtp;
957 #if RT6_DEBUG >= 2
958 if (rt->u.dst.obsolete>0) {
959 BUG_TRAP(fn==NULL);
960 return -ENOENT;
962 #endif
963 if (fn == NULL || rt == &ip6_null_entry)
964 return -ENOENT;
966 BUG_TRAP(fn->fn_flags&RTN_RTINFO);
968 if (!(rt->rt6i_flags&RTF_CACHE))
969 fib6_prune_clones(fn, rt);
972 * Walk the leaf entries looking for ourself
975 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) {
976 if (*rtp == rt) {
977 fib6_del_route(fn, rtp, nlh, _rtattr);
978 return 0;
981 return -ENOENT;
985 * Tree traversal function.
987 * Certainly, it is not interrupt safe.
988 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
989 * It means, that we can modify tree during walking
990 * and use this function for garbage collection, clone pruning,
991 * cleaning tree when a device goes down etc. etc.
993 * It guarantees that every node will be traversed,
994 * and that it will be traversed only once.
996 * Callback function w->func may return:
997 * 0 -> continue walking.
998 * positive value -> walking is suspended (used by tree dumps,
999 * and probably by gc, if it will be split to several slices)
1000 * negative value -> terminate walking.
1002 * The function itself returns:
1003 * 0 -> walk is complete.
1004 * >0 -> walk is incomplete (i.e. suspended)
1005 * <0 -> walk is terminated by an error.
1008 int fib6_walk_continue(struct fib6_walker_t *w)
1010 struct fib6_node *fn, *pn;
1012 for (;;) {
1013 fn = w->node;
1014 if (fn == NULL)
1015 return 0;
1017 if (w->prune && fn != w->root &&
1018 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1019 w->state = FWS_C;
1020 w->leaf = fn->leaf;
1022 switch (w->state) {
1023 #ifdef CONFIG_IPV6_SUBTREES
1024 case FWS_S:
1025 if (SUBTREE(fn)) {
1026 w->node = SUBTREE(fn);
1027 continue;
1029 w->state = FWS_L;
1030 #endif
1031 case FWS_L:
1032 if (fn->left) {
1033 w->node = fn->left;
1034 w->state = FWS_INIT;
1035 continue;
1037 w->state = FWS_R;
1038 case FWS_R:
1039 if (fn->right) {
1040 w->node = fn->right;
1041 w->state = FWS_INIT;
1042 continue;
1044 w->state = FWS_C;
1045 w->leaf = fn->leaf;
1046 case FWS_C:
1047 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1048 int err = w->func(w);
1049 if (err)
1050 return err;
1051 continue;
1053 w->state = FWS_U;
1054 case FWS_U:
1055 if (fn == w->root)
1056 return 0;
1057 pn = fn->parent;
1058 w->node = pn;
1059 #ifdef CONFIG_IPV6_SUBTREES
1060 if (SUBTREE(pn) == fn) {
1061 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1062 w->state = FWS_L;
1063 continue;
1065 #endif
1066 if (pn->left == fn) {
1067 w->state = FWS_R;
1068 continue;
1070 if (pn->right == fn) {
1071 w->state = FWS_C;
1072 w->leaf = w->node->leaf;
1073 continue;
1075 #if RT6_DEBUG >= 2
1076 BUG_TRAP(0);
1077 #endif
1082 int fib6_walk(struct fib6_walker_t *w)
1084 int res;
1086 w->state = FWS_INIT;
1087 w->node = w->root;
1089 fib6_walker_link(w);
1090 res = fib6_walk_continue(w);
1091 if (res <= 0)
1092 fib6_walker_unlink(w);
1093 return res;
1096 static int fib6_clean_node(struct fib6_walker_t *w)
1098 int res;
1099 struct rt6_info *rt;
1100 struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
1102 for (rt = w->leaf; rt; rt = rt->u.next) {
1103 res = c->func(rt, c->arg);
1104 if (res < 0) {
1105 w->leaf = rt;
1106 res = fib6_del(rt, NULL, NULL);
1107 if (res) {
1108 #if RT6_DEBUG >= 2
1109 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1110 #endif
1111 continue;
1113 return 0;
1115 BUG_TRAP(res==0);
1117 w->leaf = rt;
1118 return 0;
1122 * Convenient frontend to tree walker.
1124 * func is called on each route.
1125 * It may return -1 -> delete this route.
1126 * 0 -> continue walking
1128 * prune==1 -> only immediate children of node (certainly,
1129 * ignoring pure split nodes) will be scanned.
1132 void fib6_clean_tree(struct fib6_node *root,
1133 int (*func)(struct rt6_info *, void *arg),
1134 int prune, void *arg)
1136 struct fib6_cleaner_t c;
1138 c.w.root = root;
1139 c.w.func = fib6_clean_node;
1140 c.w.prune = prune;
1141 c.func = func;
1142 c.arg = arg;
1144 fib6_walk(&c.w);
1147 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1149 if (rt->rt6i_flags & RTF_CACHE) {
1150 RT6_TRACE("pruning clone %p\n", rt);
1151 return -1;
1154 return 0;
1157 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1159 fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1163 * Garbage collection
1166 static struct fib6_gc_args
1168 int timeout;
1169 int more;
1170 } gc_args;
1172 static int fib6_age(struct rt6_info *rt, void *arg)
1174 unsigned long now = jiffies;
1177 * check addrconf expiration here.
1178 * Routes are expired even if they are in use.
1180 * Also age clones. Note, that clones are aged out
1181 * only if they are not in use now.
1184 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1185 if (time_after(now, rt->rt6i_expires)) {
1186 RT6_TRACE("expiring %p\n", rt);
1187 rt6_reset_dflt_pointer(rt);
1188 return -1;
1190 gc_args.more++;
1191 } else if (rt->rt6i_flags & RTF_CACHE) {
1192 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1193 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1194 RT6_TRACE("aging clone %p\n", rt);
1195 return -1;
1196 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1197 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1198 RT6_TRACE("purging route %p via non-router but gateway\n",
1199 rt);
1200 return -1;
1202 gc_args.more++;
1205 return 0;
1208 static spinlock_t fib6_gc_lock = SPIN_LOCK_UNLOCKED;
1210 void fib6_run_gc(unsigned long dummy)
1212 if (dummy != ~0UL) {
1213 spin_lock_bh(&fib6_gc_lock);
1214 gc_args.timeout = (int)dummy;
1215 } else {
1216 local_bh_disable();
1217 if (!spin_trylock(&fib6_gc_lock)) {
1218 mod_timer(&ip6_fib_timer, jiffies + HZ);
1219 local_bh_enable();
1220 return;
1222 gc_args.timeout = ip6_rt_gc_interval;
1224 gc_args.more = 0;
1227 write_lock_bh(&rt6_lock);
1228 ndisc_dst_gc(&gc_args.more);
1229 fib6_clean_tree(&ip6_routing_table, fib6_age, 0, NULL);
1230 write_unlock_bh(&rt6_lock);
1232 if (gc_args.more)
1233 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
1234 else {
1235 del_timer(&ip6_fib_timer);
1236 ip6_fib_timer.expires = 0;
1238 spin_unlock_bh(&fib6_gc_lock);
1241 void __init fib6_init(void)
1243 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1244 sizeof(struct fib6_node),
1245 0, SLAB_HWCACHE_ALIGN,
1246 NULL, NULL);
1247 if (!fib6_node_kmem)
1248 panic("cannot create fib6_nodes cache");
1251 void __exit fib6_gc_cleanup(void)
1253 del_timer(&ip6_fib_timer);
1254 kmem_cache_destroy(fib6_node_kmem);