2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro, <bir7@leland.Stanford.Edu>
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
25 * Pedro Roque : Fast Retransmit/Recovery.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
58 * J Hadi Salim: ECN support
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 * Angelo Dell'Aera: TCP Westwood+ support
67 #include <linux/config.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
72 #include <net/inet_common.h>
73 #include <linux/ipsec.h>
75 int sysctl_tcp_timestamps
= 1;
76 int sysctl_tcp_window_scaling
= 1;
77 int sysctl_tcp_sack
= 1;
78 int sysctl_tcp_fack
= 1;
79 int sysctl_tcp_reordering
= TCP_FASTRETRANS_THRESH
;
81 int sysctl_tcp_dsack
= 1;
82 int sysctl_tcp_app_win
= 31;
83 int sysctl_tcp_adv_win_scale
= 2;
85 int sysctl_tcp_stdurg
;
86 int sysctl_tcp_rfc1337
;
87 int sysctl_tcp_max_orphans
= NR_FILE
;
89 int sysctl_tcp_nometrics_save
;
90 int sysctl_tcp_westwood
;
91 int sysctl_tcp_vegas_cong_avoid
;
93 int sysctl_tcp_moderate_rcvbuf
= 1;
95 /* Default values of the Vegas variables, in fixed-point representation
96 * with V_PARAM_SHIFT bits to the right of the binary point.
98 #define V_PARAM_SHIFT 1
99 int sysctl_tcp_vegas_alpha
= 1<<V_PARAM_SHIFT
;
100 int sysctl_tcp_vegas_beta
= 3<<V_PARAM_SHIFT
;
101 int sysctl_tcp_vegas_gamma
= 1<<V_PARAM_SHIFT
;
102 int sysctl_tcp_bic
= 1;
103 int sysctl_tcp_bic_fast_convergence
= 1;
104 int sysctl_tcp_bic_low_window
= 14;
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
114 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define IsReno(tp) ((tp)->sack_ok == 0)
122 #define IsFack(tp) ((tp)->sack_ok & 2)
123 #define IsDSack(tp) ((tp)->sack_ok & 4)
125 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 /* Adapt the MSS value used to make delayed ack decision to the
130 static __inline__
void tcp_measure_rcv_mss(struct tcp_opt
*tp
, struct sk_buff
*skb
)
132 unsigned int len
, lss
;
134 lss
= tp
->ack
.last_seg_size
;
135 tp
->ack
.last_seg_size
= 0;
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
141 if (len
>= tp
->ack
.rcv_mss
) {
142 tp
->ack
.rcv_mss
= len
;
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
147 * "len" is invariant segment length, including TCP header.
149 len
+= skb
->data
- skb
->h
.raw
;
150 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
156 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
157 !(tcp_flag_word(skb
->h
.th
)&TCP_REMNANT
))) {
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
162 len
-= tp
->tcp_header_len
;
163 tp
->ack
.last_seg_size
= len
;
165 tp
->ack
.rcv_mss
= len
;
169 tp
->ack
.pending
|= TCP_ACK_PUSHED
;
173 static void tcp_incr_quickack(struct tcp_opt
*tp
)
175 unsigned quickacks
= tp
->rcv_wnd
/(2*tp
->ack
.rcv_mss
);
179 if (quickacks
> tp
->ack
.quick
)
180 tp
->ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
183 void tcp_enter_quickack_mode(struct tcp_opt
*tp
)
185 tcp_incr_quickack(tp
);
186 tp
->ack
.pingpong
= 0;
187 tp
->ack
.ato
= TCP_ATO_MIN
;
190 /* Send ACKs quickly, if "quick" count is not exhausted
191 * and the session is not interactive.
194 static __inline__
int tcp_in_quickack_mode(struct tcp_opt
*tp
)
196 return (tp
->ack
.quick
&& !tp
->ack
.pingpong
);
199 /* Buffer size and advertised window tuning.
201 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
204 static void tcp_fixup_sndbuf(struct sock
*sk
)
206 int sndmem
= tcp_sk(sk
)->mss_clamp
+ MAX_TCP_HEADER
+ 16 +
207 sizeof(struct sk_buff
);
209 if (sk
->sk_sndbuf
< 3 * sndmem
)
210 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
213 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
215 * All tcp_full_space() is split to two parts: "network" buffer, allocated
216 * forward and advertised in receiver window (tp->rcv_wnd) and
217 * "application buffer", required to isolate scheduling/application
218 * latencies from network.
219 * window_clamp is maximal advertised window. It can be less than
220 * tcp_full_space(), in this case tcp_full_space() - window_clamp
221 * is reserved for "application" buffer. The less window_clamp is
222 * the smoother our behaviour from viewpoint of network, but the lower
223 * throughput and the higher sensitivity of the connection to losses. 8)
225 * rcv_ssthresh is more strict window_clamp used at "slow start"
226 * phase to predict further behaviour of this connection.
227 * It is used for two goals:
228 * - to enforce header prediction at sender, even when application
229 * requires some significant "application buffer". It is check #1.
230 * - to prevent pruning of receive queue because of misprediction
231 * of receiver window. Check #2.
233 * The scheme does not work when sender sends good segments opening
234 * window and then starts to feed us spagetti. But it should work
235 * in common situations. Otherwise, we have to rely on queue collapsing.
238 /* Slow part of check#2. */
240 __tcp_grow_window(struct sock
*sk
, struct tcp_opt
*tp
, struct sk_buff
*skb
)
243 int truesize
= tcp_win_from_space(skb
->truesize
)/2;
244 int window
= tcp_full_space(sk
)/2;
246 while (tp
->rcv_ssthresh
<= window
) {
247 if (truesize
<= skb
->len
)
248 return 2*tp
->ack
.rcv_mss
;
256 static __inline__
void
257 tcp_grow_window(struct sock
*sk
, struct tcp_opt
*tp
, struct sk_buff
*skb
)
260 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
261 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
262 !tcp_memory_pressure
) {
265 /* Check #2. Increase window, if skb with such overhead
266 * will fit to rcvbuf in future.
268 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
271 incr
= __tcp_grow_window(sk
, tp
, skb
);
274 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
, tp
->window_clamp
);
280 /* 3. Tuning rcvbuf, when connection enters established state. */
282 static void tcp_fixup_rcvbuf(struct sock
*sk
)
284 struct tcp_opt
*tp
= tcp_sk(sk
);
285 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
287 /* Try to select rcvbuf so that 4 mss-sized segments
288 * will fit to window and correspoding skbs will fit to our rcvbuf.
289 * (was 3; 4 is minimum to allow fast retransmit to work.)
291 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
293 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
294 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
297 /* 4. Try to fixup all. It is made iimediately after connection enters
300 static void tcp_init_buffer_space(struct sock
*sk
)
302 struct tcp_opt
*tp
= tcp_sk(sk
);
305 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
306 tcp_fixup_rcvbuf(sk
);
307 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
308 tcp_fixup_sndbuf(sk
);
310 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
312 maxwin
= tcp_full_space(sk
);
314 if (tp
->window_clamp
>= maxwin
) {
315 tp
->window_clamp
= maxwin
;
317 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
318 tp
->window_clamp
= max(maxwin
-
319 (maxwin
>> sysctl_tcp_app_win
),
323 /* Force reservation of one segment. */
324 if (sysctl_tcp_app_win
&&
325 tp
->window_clamp
> 2 * tp
->advmss
&&
326 tp
->window_clamp
+ tp
->advmss
> maxwin
)
327 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
329 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
330 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
333 static void init_bictcp(struct tcp_opt
*tp
)
337 tp
->bictcp
.last_max_cwnd
= 0;
338 tp
->bictcp
.last_cwnd
= 0;
339 tp
->bictcp
.last_stamp
= 0;
342 /* 5. Recalculate window clamp after socket hit its memory bounds. */
343 static void tcp_clamp_window(struct sock
*sk
, struct tcp_opt
*tp
)
346 unsigned int app_win
= tp
->rcv_nxt
- tp
->copied_seq
;
351 skb_queue_walk(&tp
->out_of_order_queue
, skb
) {
355 /* If overcommit is due to out of order segments,
356 * do not clamp window. Try to expand rcvbuf instead.
359 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
360 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
361 !tcp_memory_pressure
&&
362 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0])
363 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
366 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
) {
368 if (atomic_read(&sk
->sk_rmem_alloc
) >= 2 * sk
->sk_rcvbuf
)
370 if (app_win
> tp
->ack
.rcv_mss
)
371 app_win
-= tp
->ack
.rcv_mss
;
372 app_win
= max(app_win
, 2U*tp
->advmss
);
375 tp
->window_clamp
= min(tp
->window_clamp
, app_win
);
376 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U*tp
->advmss
);
380 /* Receiver "autotuning" code.
382 * The algorithm for RTT estimation w/o timestamps is based on
383 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
384 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
386 * More detail on this code can be found at
387 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
388 * though this reference is out of date. A new paper
391 static void tcp_rcv_rtt_update(struct tcp_opt
*tp
, u32 sample
, int win_dep
)
393 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
399 if (new_sample
!= 0) {
400 /* If we sample in larger samples in the non-timestamp
401 * case, we could grossly overestimate the RTT especially
402 * with chatty applications or bulk transfer apps which
403 * are stalled on filesystem I/O.
405 * Also, since we are only going for a minimum in the
406 * non-timestamp case, we do not smoothe things out
407 * else with timestamps disabled convergance takes too
411 m
-= (new_sample
>> 3);
413 } else if (m
< new_sample
)
416 /* No previous mesaure. */
420 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
421 tp
->rcv_rtt_est
.rtt
= new_sample
;
424 static inline void tcp_rcv_rtt_measure(struct tcp_opt
*tp
)
426 if (tp
->rcv_rtt_est
.time
== 0)
428 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
430 tcp_rcv_rtt_update(tp
,
431 jiffies
- tp
->rcv_rtt_est
.time
,
435 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
436 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
439 static inline void tcp_rcv_rtt_measure_ts(struct tcp_opt
*tp
, struct sk_buff
*skb
)
442 (TCP_SKB_CB(skb
)->end_seq
-
443 TCP_SKB_CB(skb
)->seq
>= tp
->ack
.rcv_mss
))
444 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_tsecr
, 0);
448 * This function should be called every time data is copied to user space.
449 * It calculates the appropriate TCP receive buffer space.
451 void tcp_rcv_space_adjust(struct sock
*sk
)
453 struct tcp_opt
*tp
= tcp_sk(sk
);
457 if (tp
->rcvq_space
.time
== 0)
460 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
461 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) ||
462 tp
->rcv_rtt_est
.rtt
== 0)
465 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
467 space
= max(tp
->rcvq_space
.space
, space
);
469 if (tp
->rcvq_space
.space
!= space
) {
472 tp
->rcvq_space
.space
= space
;
474 if (sysctl_tcp_moderate_rcvbuf
) {
475 int new_clamp
= space
;
477 /* Receive space grows, normalize in order to
478 * take into account packet headers and sk_buff
479 * structure overhead.
484 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
485 16 + sizeof(struct sk_buff
));
486 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
489 space
= min(space
, sysctl_tcp_rmem
[2]);
490 if (space
> sk
->sk_rcvbuf
) {
491 sk
->sk_rcvbuf
= space
;
493 /* Make the window clamp follow along. */
494 tp
->window_clamp
= new_clamp
;
500 tp
->rcvq_space
.seq
= tp
->copied_seq
;
501 tp
->rcvq_space
.time
= tcp_time_stamp
;
504 /* There is something which you must keep in mind when you analyze the
505 * behavior of the tp->ato delayed ack timeout interval. When a
506 * connection starts up, we want to ack as quickly as possible. The
507 * problem is that "good" TCP's do slow start at the beginning of data
508 * transmission. The means that until we send the first few ACK's the
509 * sender will sit on his end and only queue most of his data, because
510 * he can only send snd_cwnd unacked packets at any given time. For
511 * each ACK we send, he increments snd_cwnd and transmits more of his
514 static void tcp_event_data_recv(struct sock
*sk
, struct tcp_opt
*tp
, struct sk_buff
*skb
)
518 tcp_schedule_ack(tp
);
520 tcp_measure_rcv_mss(tp
, skb
);
522 tcp_rcv_rtt_measure(tp
);
524 now
= tcp_time_stamp
;
527 /* The _first_ data packet received, initialize
528 * delayed ACK engine.
530 tcp_incr_quickack(tp
);
531 tp
->ack
.ato
= TCP_ATO_MIN
;
533 int m
= now
- tp
->ack
.lrcvtime
;
535 if (m
<= TCP_ATO_MIN
/2) {
536 /* The fastest case is the first. */
537 tp
->ack
.ato
= (tp
->ack
.ato
>>1) + TCP_ATO_MIN
/2;
538 } else if (m
< tp
->ack
.ato
) {
539 tp
->ack
.ato
= (tp
->ack
.ato
>>1) + m
;
540 if (tp
->ack
.ato
> tp
->rto
)
541 tp
->ack
.ato
= tp
->rto
;
542 } else if (m
> tp
->rto
) {
543 /* Too long gap. Apparently sender falled to
544 * restart window, so that we send ACKs quickly.
546 tcp_incr_quickack(tp
);
547 sk_stream_mem_reclaim(sk
);
550 tp
->ack
.lrcvtime
= now
;
552 TCP_ECN_check_ce(tp
, skb
);
555 tcp_grow_window(sk
, tp
, skb
);
558 /* When starting a new connection, pin down the current choice of
559 * congestion algorithm.
561 void tcp_ca_init(struct tcp_opt
*tp
)
563 if (sysctl_tcp_westwood
)
564 tp
->adv_cong
= TCP_WESTWOOD
;
565 else if (sysctl_tcp_bic
)
566 tp
->adv_cong
= TCP_BIC
;
567 else if (sysctl_tcp_vegas_cong_avoid
) {
568 tp
->adv_cong
= TCP_VEGAS
;
569 tp
->vegas
.baseRTT
= 0x7fffffff;
570 tcp_vegas_enable(tp
);
574 /* Do RTT sampling needed for Vegas.
576 * o min-filter RTT samples from within an RTT to get the current
577 * propagation delay + queuing delay (we are min-filtering to try to
578 * avoid the effects of delayed ACKs)
579 * o min-filter RTT samples from a much longer window (forever for now)
580 * to find the propagation delay (baseRTT)
582 static inline void vegas_rtt_calc(struct tcp_opt
*tp
, __u32 rtt
)
584 __u32 vrtt
= rtt
+ 1; /* Never allow zero rtt or baseRTT */
586 /* Filter to find propagation delay: */
587 if (vrtt
< tp
->vegas
.baseRTT
)
588 tp
->vegas
.baseRTT
= vrtt
;
590 /* Find the min RTT during the last RTT to find
591 * the current prop. delay + queuing delay:
593 tp
->vegas
.minRTT
= min(tp
->vegas
.minRTT
, vrtt
);
597 /* Called to compute a smoothed rtt estimate. The data fed to this
598 * routine either comes from timestamps, or from segments that were
599 * known _not_ to have been retransmitted [see Karn/Partridge
600 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
601 * piece by Van Jacobson.
602 * NOTE: the next three routines used to be one big routine.
603 * To save cycles in the RFC 1323 implementation it was better to break
604 * it up into three procedures. -- erics
606 static void tcp_rtt_estimator(struct tcp_opt
*tp
, __u32 mrtt
)
608 long m
= mrtt
; /* RTT */
610 if (tcp_vegas_enabled(tp
))
611 vegas_rtt_calc(tp
, mrtt
);
613 /* The following amusing code comes from Jacobson's
614 * article in SIGCOMM '88. Note that rtt and mdev
615 * are scaled versions of rtt and mean deviation.
616 * This is designed to be as fast as possible
617 * m stands for "measurement".
619 * On a 1990 paper the rto value is changed to:
620 * RTO = rtt + 4 * mdev
622 * Funny. This algorithm seems to be very broken.
623 * These formulae increase RTO, when it should be decreased, increase
624 * too slowly, when it should be incresed fastly, decrease too fastly
625 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
626 * does not matter how to _calculate_ it. Seems, it was trap
627 * that VJ failed to avoid. 8)
632 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
633 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
635 m
= -m
; /* m is now abs(error) */
636 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
637 /* This is similar to one of Eifel findings.
638 * Eifel blocks mdev updates when rtt decreases.
639 * This solution is a bit different: we use finer gain
640 * for mdev in this case (alpha*beta).
641 * Like Eifel it also prevents growth of rto,
642 * but also it limits too fast rto decreases,
643 * happening in pure Eifel.
648 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
650 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
651 if (tp
->mdev
> tp
->mdev_max
) {
652 tp
->mdev_max
= tp
->mdev
;
653 if (tp
->mdev_max
> tp
->rttvar
)
654 tp
->rttvar
= tp
->mdev_max
;
656 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
657 if (tp
->mdev_max
< tp
->rttvar
)
658 tp
->rttvar
-= (tp
->rttvar
-tp
->mdev_max
)>>2;
659 tp
->rtt_seq
= tp
->snd_nxt
;
660 tp
->mdev_max
= TCP_RTO_MIN
;
663 /* no previous measure. */
664 tp
->srtt
= m
<<3; /* take the measured time to be rtt */
665 tp
->mdev
= m
<<1; /* make sure rto = 3*rtt */
666 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, TCP_RTO_MIN
);
667 tp
->rtt_seq
= tp
->snd_nxt
;
670 tcp_westwood_update_rtt(tp
, tp
->srtt
>> 3);
673 /* Calculate rto without backoff. This is the second half of Van Jacobson's
674 * routine referred to above.
676 static __inline__
void tcp_set_rto(struct tcp_opt
*tp
)
678 /* Old crap is replaced with new one. 8)
681 * 1. If rtt variance happened to be less 50msec, it is hallucination.
682 * It cannot be less due to utterly erratic ACK generation made
683 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684 * to do with delayed acks, because at cwnd>2 true delack timeout
685 * is invisible. Actually, Linux-2.4 also generates erratic
686 * ACKs in some curcumstances.
688 tp
->rto
= (tp
->srtt
>> 3) + tp
->rttvar
;
690 /* 2. Fixups made earlier cannot be right.
691 * If we do not estimate RTO correctly without them,
692 * all the algo is pure shit and should be replaced
693 * with correct one. It is exaclty, which we pretend to do.
697 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
698 * guarantees that rto is higher.
700 static __inline__
void tcp_bound_rto(struct tcp_opt
*tp
)
702 if (tp
->rto
> TCP_RTO_MAX
)
703 tp
->rto
= TCP_RTO_MAX
;
706 /* Save metrics learned by this TCP session.
707 This function is called only, when TCP finishes successfully
708 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
710 void tcp_update_metrics(struct sock
*sk
)
712 struct tcp_opt
*tp
= tcp_sk(sk
);
713 struct dst_entry
*dst
= __sk_dst_get(sk
);
715 if (sysctl_tcp_nometrics_save
)
720 if (dst
&& (dst
->flags
&DST_HOST
)) {
723 if (tp
->backoff
|| !tp
->srtt
) {
724 /* This session failed to estimate rtt. Why?
725 * Probably, no packets returned in time.
728 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
729 dst
->metrics
[RTAX_RTT
-1] = 0;
733 m
= dst_metric(dst
, RTAX_RTT
) - tp
->srtt
;
735 /* If newly calculated rtt larger than stored one,
736 * store new one. Otherwise, use EWMA. Remember,
737 * rtt overestimation is always better than underestimation.
739 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
741 dst
->metrics
[RTAX_RTT
-1] = tp
->srtt
;
743 dst
->metrics
[RTAX_RTT
-1] -= (m
>>3);
746 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
750 /* Scale deviation to rttvar fixed point */
755 if (m
>= dst_metric(dst
, RTAX_RTTVAR
))
756 dst
->metrics
[RTAX_RTTVAR
-1] = m
;
758 dst
->metrics
[RTAX_RTTVAR
-1] -=
759 (dst
->metrics
[RTAX_RTTVAR
-1] - m
)>>2;
762 if (tp
->snd_ssthresh
>= 0xFFFF) {
763 /* Slow start still did not finish. */
764 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
765 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
766 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
767 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
768 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
769 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
770 dst
->metrics
[RTAX_CWND
-1] = tp
->snd_cwnd
;
771 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
772 tp
->ca_state
== TCP_CA_Open
) {
773 /* Cong. avoidance phase, cwnd is reliable. */
774 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
775 dst
->metrics
[RTAX_SSTHRESH
-1] =
776 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
777 if (!dst_metric_locked(dst
, RTAX_CWND
))
778 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_cwnd
) >> 1;
780 /* Else slow start did not finish, cwnd is non-sense,
781 ssthresh may be also invalid.
783 if (!dst_metric_locked(dst
, RTAX_CWND
))
784 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_ssthresh
) >> 1;
785 if (dst
->metrics
[RTAX_SSTHRESH
-1] &&
786 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
787 tp
->snd_ssthresh
> dst
->metrics
[RTAX_SSTHRESH
-1])
788 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
791 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
792 if (dst
->metrics
[RTAX_REORDERING
-1] < tp
->reordering
&&
793 tp
->reordering
!= sysctl_tcp_reordering
)
794 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
799 /* Numbers are taken from RFC2414. */
800 __u32
tcp_init_cwnd(struct tcp_opt
*tp
, struct dst_entry
*dst
)
802 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
805 if (tp
->mss_cache_std
> 1460)
808 cwnd
= (tp
->mss_cache_std
> 1095) ? 3 : 4;
810 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
813 /* Initialize metrics on socket. */
815 static void tcp_init_metrics(struct sock
*sk
)
817 struct tcp_opt
*tp
= tcp_sk(sk
);
818 struct dst_entry
*dst
= __sk_dst_get(sk
);
825 if (dst_metric_locked(dst
, RTAX_CWND
))
826 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
827 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
828 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
829 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
830 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
832 if (dst_metric(dst
, RTAX_REORDERING
) &&
833 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
835 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
838 if (dst_metric(dst
, RTAX_RTT
) == 0)
841 if (!tp
->srtt
&& dst_metric(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
844 /* Initial rtt is determined from SYN,SYN-ACK.
845 * The segment is small and rtt may appear much
846 * less than real one. Use per-dst memory
847 * to make it more realistic.
849 * A bit of theory. RTT is time passed after "normal" sized packet
850 * is sent until it is ACKed. In normal curcumstances sending small
851 * packets force peer to delay ACKs and calculation is correct too.
852 * The algorithm is adaptive and, provided we follow specs, it
853 * NEVER underestimate RTT. BUT! If peer tries to make some clever
854 * tricks sort of "quick acks" for time long enough to decrease RTT
855 * to low value, and then abruptly stops to do it and starts to delay
856 * ACKs, wait for troubles.
858 if (dst_metric(dst
, RTAX_RTT
) > tp
->srtt
) {
859 tp
->srtt
= dst_metric(dst
, RTAX_RTT
);
860 tp
->rtt_seq
= tp
->snd_nxt
;
862 if (dst_metric(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
863 tp
->mdev
= dst_metric(dst
, RTAX_RTTVAR
);
864 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, TCP_RTO_MIN
);
868 if (tp
->rto
< TCP_TIMEOUT_INIT
&& !tp
->saw_tstamp
)
870 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
871 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
875 /* Play conservative. If timestamps are not
876 * supported, TCP will fail to recalculate correct
877 * rtt, if initial rto is too small. FORGET ALL AND RESET!
879 if (!tp
->saw_tstamp
&& tp
->srtt
) {
881 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
882 tp
->rto
= TCP_TIMEOUT_INIT
;
886 static void tcp_update_reordering(struct tcp_opt
*tp
, int metric
, int ts
)
888 if (metric
> tp
->reordering
) {
889 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
891 /* This exciting event is worth to be remembered. 8) */
893 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER
);
895 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER
);
897 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER
);
899 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER
);
900 #if FASTRETRANS_DEBUG > 1
901 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
902 tp
->sack_ok
, tp
->ca_state
,
904 tcp_get_pcount(&tp
->fackets_out
),
905 tcp_get_pcount(&tp
->sacked_out
),
906 tp
->undo_marker
? tp
->undo_retrans
: 0);
908 /* Disable FACK yet. */
913 /* This procedure tags the retransmission queue when SACKs arrive.
915 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
916 * Packets in queue with these bits set are counted in variables
917 * sacked_out, retrans_out and lost_out, correspondingly.
919 * Valid combinations are:
920 * Tag InFlight Description
921 * 0 1 - orig segment is in flight.
922 * S 0 - nothing flies, orig reached receiver.
923 * L 0 - nothing flies, orig lost by net.
924 * R 2 - both orig and retransmit are in flight.
925 * L|R 1 - orig is lost, retransmit is in flight.
926 * S|R 1 - orig reached receiver, retrans is still in flight.
927 * (L|S|R is logically valid, it could occur when L|R is sacked,
928 * but it is equivalent to plain S and code short-curcuits it to S.
929 * L|S is logically invalid, it would mean -1 packet in flight 8))
931 * These 6 states form finite state machine, controlled by the following events:
932 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
933 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
934 * 3. Loss detection event of one of three flavors:
935 * A. Scoreboard estimator decided the packet is lost.
936 * A'. Reno "three dupacks" marks head of queue lost.
937 * A''. Its FACK modfication, head until snd.fack is lost.
938 * B. SACK arrives sacking data transmitted after never retransmitted
940 * C. SACK arrives sacking SND.NXT at the moment, when the
941 * segment was retransmitted.
942 * 4. D-SACK added new rule: D-SACK changes any tag to S.
944 * It is pleasant to note, that state diagram turns out to be commutative,
945 * so that we are allowed not to be bothered by order of our actions,
946 * when multiple events arrive simultaneously. (see the function below).
948 * Reordering detection.
949 * --------------------
950 * Reordering metric is maximal distance, which a packet can be displaced
951 * in packet stream. With SACKs we can estimate it:
953 * 1. SACK fills old hole and the corresponding segment was not
954 * ever retransmitted -> reordering. Alas, we cannot use it
955 * when segment was retransmitted.
956 * 2. The last flaw is solved with D-SACK. D-SACK arrives
957 * for retransmitted and already SACKed segment -> reordering..
958 * Both of these heuristics are not used in Loss state, when we cannot
959 * account for retransmits accurately.
962 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
, u32 prior_snd_una
)
964 struct tcp_opt
*tp
= tcp_sk(sk
);
965 unsigned char *ptr
= ack_skb
->h
.raw
+ TCP_SKB_CB(ack_skb
)->sacked
;
966 struct tcp_sack_block
*sp
= (struct tcp_sack_block
*)(ptr
+2);
967 int num_sacks
= (ptr
[1] - TCPOLEN_SACK_BASE
)>>3;
968 int reord
= tcp_get_pcount(&tp
->packets_out
);
970 u32 lost_retrans
= 0;
974 /* So, SACKs for already sent large segments will be lost.
975 * Not good, but alternative is to resegment the queue. */
976 if (sk
->sk_route_caps
& NETIF_F_TSO
) {
977 sk
->sk_route_caps
&= ~NETIF_F_TSO
;
978 sk
->sk_no_largesend
= 1;
979 tp
->mss_cache
= tp
->mss_cache_std
;
982 if (!tcp_get_pcount(&tp
->sacked_out
))
983 tcp_set_pcount(&tp
->fackets_out
, 0);
984 prior_fackets
= tcp_get_pcount(&tp
->fackets_out
);
986 for (i
=0; i
<num_sacks
; i
++, sp
++) {
988 __u32 start_seq
= ntohl(sp
->start_seq
);
989 __u32 end_seq
= ntohl(sp
->end_seq
);
993 /* Check for D-SACK. */
995 u32 ack
= TCP_SKB_CB(ack_skb
)->ack_seq
;
997 if (before(start_seq
, ack
)) {
1000 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV
);
1001 } else if (num_sacks
> 1 &&
1002 !after(end_seq
, ntohl(sp
[1].end_seq
)) &&
1003 !before(start_seq
, ntohl(sp
[1].start_seq
))) {
1006 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV
);
1009 /* D-SACK for already forgotten data...
1010 * Do dumb counting. */
1012 !after(end_seq
, prior_snd_una
) &&
1013 after(end_seq
, tp
->undo_marker
))
1016 /* Eliminate too old ACKs, but take into
1017 * account more or less fresh ones, they can
1018 * contain valid SACK info.
1020 if (before(ack
, prior_snd_una
- tp
->max_window
))
1024 /* Event "B" in the comment above. */
1025 if (after(end_seq
, tp
->high_seq
))
1026 flag
|= FLAG_DATA_LOST
;
1028 sk_stream_for_retrans_queue(skb
, sk
) {
1029 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1032 /* The retransmission queue is always in order, so
1033 * we can short-circuit the walk early.
1035 if(!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1038 fack_count
+= tcp_skb_pcount(skb
);
1040 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1041 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1043 /* Account D-SACK for retransmitted packet. */
1044 if ((dup_sack
&& in_sack
) &&
1045 (sacked
& TCPCB_RETRANS
) &&
1046 after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1049 /* The frame is ACKed. */
1050 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
)) {
1051 if (sacked
&TCPCB_RETRANS
) {
1052 if ((dup_sack
&& in_sack
) &&
1053 (sacked
&TCPCB_SACKED_ACKED
))
1054 reord
= min(fack_count
, reord
);
1056 /* If it was in a hole, we detected reordering. */
1057 if (fack_count
< prior_fackets
&&
1058 !(sacked
&TCPCB_SACKED_ACKED
))
1059 reord
= min(fack_count
, reord
);
1062 /* Nothing to do; acked frame is about to be dropped. */
1066 if ((sacked
&TCPCB_SACKED_RETRANS
) &&
1067 after(end_seq
, TCP_SKB_CB(skb
)->ack_seq
) &&
1068 (!lost_retrans
|| after(end_seq
, lost_retrans
)))
1069 lost_retrans
= end_seq
;
1074 if (!(sacked
&TCPCB_SACKED_ACKED
)) {
1075 if (sacked
& TCPCB_SACKED_RETRANS
) {
1076 /* If the segment is not tagged as lost,
1077 * we do not clear RETRANS, believing
1078 * that retransmission is still in flight.
1080 if (sacked
& TCPCB_LOST
) {
1081 TCP_SKB_CB(skb
)->sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1082 tcp_dec_pcount(&tp
->lost_out
, skb
);
1083 tcp_dec_pcount(&tp
->retrans_out
, skb
);
1086 /* New sack for not retransmitted frame,
1087 * which was in hole. It is reordering.
1089 if (!(sacked
& TCPCB_RETRANS
) &&
1090 fack_count
< prior_fackets
)
1091 reord
= min(fack_count
, reord
);
1093 if (sacked
& TCPCB_LOST
) {
1094 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1095 tcp_dec_pcount(&tp
->lost_out
, skb
);
1099 TCP_SKB_CB(skb
)->sacked
|= TCPCB_SACKED_ACKED
;
1100 flag
|= FLAG_DATA_SACKED
;
1101 tcp_inc_pcount(&tp
->sacked_out
, skb
);
1103 if (fack_count
> tcp_get_pcount(&tp
->fackets_out
))
1104 tcp_set_pcount(&tp
->fackets_out
, fack_count
);
1106 if (dup_sack
&& (sacked
&TCPCB_RETRANS
))
1107 reord
= min(fack_count
, reord
);
1110 /* D-SACK. We can detect redundant retransmission
1111 * in S|R and plain R frames and clear it.
1112 * undo_retrans is decreased above, L|R frames
1113 * are accounted above as well.
1116 (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
)) {
1117 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1118 tcp_dec_pcount(&tp
->retrans_out
, skb
);
1123 /* Check for lost retransmit. This superb idea is
1124 * borrowed from "ratehalving". Event "C".
1125 * Later note: FACK people cheated me again 8),
1126 * we have to account for reordering! Ugly,
1129 if (lost_retrans
&& tp
->ca_state
== TCP_CA_Recovery
) {
1130 struct sk_buff
*skb
;
1132 sk_stream_for_retrans_queue(skb
, sk
) {
1133 if (after(TCP_SKB_CB(skb
)->seq
, lost_retrans
))
1135 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1137 if ((TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) &&
1138 after(lost_retrans
, TCP_SKB_CB(skb
)->ack_seq
) &&
1140 !before(lost_retrans
,
1141 TCP_SKB_CB(skb
)->ack_seq
+ tp
->reordering
*
1142 tp
->mss_cache_std
))) {
1143 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1144 tcp_dec_pcount(&tp
->retrans_out
, skb
);
1146 if (!(TCP_SKB_CB(skb
)->sacked
&(TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1147 tcp_inc_pcount(&tp
->lost_out
, skb
);
1148 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1149 flag
|= FLAG_DATA_SACKED
;
1150 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT
);
1156 tcp_set_pcount(&tp
->left_out
,
1157 (tcp_get_pcount(&tp
->sacked_out
) +
1158 tcp_get_pcount(&tp
->lost_out
)));
1160 if ((reord
< tcp_get_pcount(&tp
->fackets_out
)) &&
1161 tp
->ca_state
!= TCP_CA_Loss
)
1162 tcp_update_reordering(tp
,
1163 ((tcp_get_pcount(&tp
->fackets_out
) + 1) -
1166 #if FASTRETRANS_DEBUG > 0
1167 BUG_TRAP((int)tcp_get_pcount(&tp
->sacked_out
) >= 0);
1168 BUG_TRAP((int)tcp_get_pcount(&tp
->lost_out
) >= 0);
1169 BUG_TRAP((int)tcp_get_pcount(&tp
->retrans_out
) >= 0);
1170 BUG_TRAP((int)tcp_packets_in_flight(tp
) >= 0);
1175 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1176 * segments to see from the next ACKs whether any data was really missing.
1177 * If the RTO was spurious, new ACKs should arrive.
1179 void tcp_enter_frto(struct sock
*sk
)
1181 struct tcp_opt
*tp
= tcp_sk(sk
);
1182 struct sk_buff
*skb
;
1184 tp
->frto_counter
= 1;
1186 if (tp
->ca_state
<= TCP_CA_Disorder
||
1187 tp
->snd_una
== tp
->high_seq
||
1188 (tp
->ca_state
== TCP_CA_Loss
&& !tp
->retransmits
)) {
1189 tp
->prior_ssthresh
= tcp_current_ssthresh(tp
);
1190 if (!tcp_westwood_ssthresh(tp
))
1191 tp
->snd_ssthresh
= tcp_recalc_ssthresh(tp
);
1194 /* Have to clear retransmission markers here to keep the bookkeeping
1195 * in shape, even though we are not yet in Loss state.
1196 * If something was really lost, it is eventually caught up
1197 * in tcp_enter_frto_loss.
1199 tcp_set_pcount(&tp
->retrans_out
, 0);
1200 tp
->undo_marker
= tp
->snd_una
;
1201 tp
->undo_retrans
= 0;
1203 sk_stream_for_retrans_queue(skb
, sk
) {
1204 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_RETRANS
;
1206 tcp_sync_left_out(tp
);
1208 tcp_set_ca_state(tp
, TCP_CA_Open
);
1209 tp
->frto_highmark
= tp
->snd_nxt
;
1212 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1213 * which indicates that we should follow the traditional RTO recovery,
1214 * i.e. mark everything lost and do go-back-N retransmission.
1216 static void tcp_enter_frto_loss(struct sock
*sk
)
1218 struct tcp_opt
*tp
= tcp_sk(sk
);
1219 struct sk_buff
*skb
;
1222 tcp_set_pcount(&tp
->sacked_out
, 0);
1223 tcp_set_pcount(&tp
->lost_out
, 0);
1224 tcp_set_pcount(&tp
->fackets_out
, 0);
1226 sk_stream_for_retrans_queue(skb
, sk
) {
1227 cnt
+= tcp_skb_pcount(skb
);
1228 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1229 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
)) {
1231 /* Do not mark those segments lost that were
1232 * forward transmitted after RTO
1234 if (!after(TCP_SKB_CB(skb
)->end_seq
,
1235 tp
->frto_highmark
)) {
1236 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1237 tcp_inc_pcount(&tp
->lost_out
, skb
);
1240 tcp_inc_pcount(&tp
->sacked_out
, skb
);
1241 tcp_set_pcount(&tp
->fackets_out
, cnt
);
1244 tcp_sync_left_out(tp
);
1246 tp
->snd_cwnd
= tp
->frto_counter
+ tcp_packets_in_flight(tp
)+1;
1247 tp
->snd_cwnd_cnt
= 0;
1248 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1249 tp
->undo_marker
= 0;
1250 tp
->frto_counter
= 0;
1252 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1253 sysctl_tcp_reordering
);
1254 tcp_set_ca_state(tp
, TCP_CA_Loss
);
1255 tp
->high_seq
= tp
->frto_highmark
;
1256 TCP_ECN_queue_cwr(tp
);
1261 void tcp_clear_retrans(struct tcp_opt
*tp
)
1263 tcp_set_pcount(&tp
->left_out
, 0);
1264 tcp_set_pcount(&tp
->retrans_out
, 0);
1266 tcp_set_pcount(&tp
->fackets_out
, 0);
1267 tcp_set_pcount(&tp
->sacked_out
, 0);
1268 tcp_set_pcount(&tp
->lost_out
, 0);
1270 tp
->undo_marker
= 0;
1271 tp
->undo_retrans
= 0;
1274 /* Enter Loss state. If "how" is not zero, forget all SACK information
1275 * and reset tags completely, otherwise preserve SACKs. If receiver
1276 * dropped its ofo queue, we will know this due to reneging detection.
1278 void tcp_enter_loss(struct sock
*sk
, int how
)
1280 struct tcp_opt
*tp
= tcp_sk(sk
);
1281 struct sk_buff
*skb
;
1284 /* Reduce ssthresh if it has not yet been made inside this window. */
1285 if (tp
->ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
1286 (tp
->ca_state
== TCP_CA_Loss
&& !tp
->retransmits
)) {
1287 tp
->prior_ssthresh
= tcp_current_ssthresh(tp
);
1288 tp
->snd_ssthresh
= tcp_recalc_ssthresh(tp
);
1291 tp
->snd_cwnd_cnt
= 0;
1292 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1294 tcp_clear_retrans(tp
);
1296 /* Push undo marker, if it was plain RTO and nothing
1297 * was retransmitted. */
1299 tp
->undo_marker
= tp
->snd_una
;
1301 sk_stream_for_retrans_queue(skb
, sk
) {
1302 cnt
+= tcp_skb_pcount(skb
);
1303 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_RETRANS
)
1304 tp
->undo_marker
= 0;
1305 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1306 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
1307 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1308 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1309 tcp_inc_pcount(&tp
->lost_out
, skb
);
1311 tcp_inc_pcount(&tp
->sacked_out
, skb
);
1312 tcp_set_pcount(&tp
->fackets_out
, cnt
);
1315 tcp_sync_left_out(tp
);
1317 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1318 sysctl_tcp_reordering
);
1319 tcp_set_ca_state(tp
, TCP_CA_Loss
);
1320 tp
->high_seq
= tp
->snd_nxt
;
1321 TCP_ECN_queue_cwr(tp
);
1324 static int tcp_check_sack_reneging(struct sock
*sk
, struct tcp_opt
*tp
)
1326 struct sk_buff
*skb
;
1328 /* If ACK arrived pointing to a remembered SACK,
1329 * it means that our remembered SACKs do not reflect
1330 * real state of receiver i.e.
1331 * receiver _host_ is heavily congested (or buggy).
1332 * Do processing similar to RTO timeout.
1334 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
&&
1335 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
1336 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING
);
1338 tcp_enter_loss(sk
, 1);
1340 tcp_retransmit_skb(sk
, skb_peek(&sk
->sk_write_queue
));
1341 tcp_reset_xmit_timer(sk
, TCP_TIME_RETRANS
, tp
->rto
);
1347 static inline int tcp_fackets_out(struct tcp_opt
*tp
)
1349 return IsReno(tp
) ? tcp_get_pcount(&tp
->sacked_out
)+1 :
1350 tcp_get_pcount(&tp
->fackets_out
);
1353 static inline int tcp_skb_timedout(struct tcp_opt
*tp
, struct sk_buff
*skb
)
1355 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> tp
->rto
);
1358 static inline int tcp_head_timedout(struct sock
*sk
, struct tcp_opt
*tp
)
1360 return tcp_get_pcount(&tp
->packets_out
) &&
1361 tcp_skb_timedout(tp
, skb_peek(&sk
->sk_write_queue
));
1364 /* Linux NewReno/SACK/FACK/ECN state machine.
1365 * --------------------------------------
1367 * "Open" Normal state, no dubious events, fast path.
1368 * "Disorder" In all the respects it is "Open",
1369 * but requires a bit more attention. It is entered when
1370 * we see some SACKs or dupacks. It is split of "Open"
1371 * mainly to move some processing from fast path to slow one.
1372 * "CWR" CWND was reduced due to some Congestion Notification event.
1373 * It can be ECN, ICMP source quench, local device congestion.
1374 * "Recovery" CWND was reduced, we are fast-retransmitting.
1375 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1377 * tcp_fastretrans_alert() is entered:
1378 * - each incoming ACK, if state is not "Open"
1379 * - when arrived ACK is unusual, namely:
1384 * Counting packets in flight is pretty simple.
1386 * in_flight = packets_out - left_out + retrans_out
1388 * packets_out is SND.NXT-SND.UNA counted in packets.
1390 * retrans_out is number of retransmitted segments.
1392 * left_out is number of segments left network, but not ACKed yet.
1394 * left_out = sacked_out + lost_out
1396 * sacked_out: Packets, which arrived to receiver out of order
1397 * and hence not ACKed. With SACKs this number is simply
1398 * amount of SACKed data. Even without SACKs
1399 * it is easy to give pretty reliable estimate of this number,
1400 * counting duplicate ACKs.
1402 * lost_out: Packets lost by network. TCP has no explicit
1403 * "loss notification" feedback from network (for now).
1404 * It means that this number can be only _guessed_.
1405 * Actually, it is the heuristics to predict lossage that
1406 * distinguishes different algorithms.
1408 * F.e. after RTO, when all the queue is considered as lost,
1409 * lost_out = packets_out and in_flight = retrans_out.
1411 * Essentially, we have now two algorithms counting
1414 * FACK: It is the simplest heuristics. As soon as we decided
1415 * that something is lost, we decide that _all_ not SACKed
1416 * packets until the most forward SACK are lost. I.e.
1417 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1418 * It is absolutely correct estimate, if network does not reorder
1419 * packets. And it loses any connection to reality when reordering
1420 * takes place. We use FACK by default until reordering
1421 * is suspected on the path to this destination.
1423 * NewReno: when Recovery is entered, we assume that one segment
1424 * is lost (classic Reno). While we are in Recovery and
1425 * a partial ACK arrives, we assume that one more packet
1426 * is lost (NewReno). This heuristics are the same in NewReno
1429 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1430 * deflation etc. CWND is real congestion window, never inflated, changes
1431 * only according to classic VJ rules.
1433 * Really tricky (and requiring careful tuning) part of algorithm
1434 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1435 * The first determines the moment _when_ we should reduce CWND and,
1436 * hence, slow down forward transmission. In fact, it determines the moment
1437 * when we decide that hole is caused by loss, rather than by a reorder.
1439 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1440 * holes, caused by lost packets.
1442 * And the most logically complicated part of algorithm is undo
1443 * heuristics. We detect false retransmits due to both too early
1444 * fast retransmit (reordering) and underestimated RTO, analyzing
1445 * timestamps and D-SACKs. When we detect that some segments were
1446 * retransmitted by mistake and CWND reduction was wrong, we undo
1447 * window reduction and abort recovery phase. This logic is hidden
1448 * inside several functions named tcp_try_undo_<something>.
1451 /* This function decides, when we should leave Disordered state
1452 * and enter Recovery phase, reducing congestion window.
1454 * Main question: may we further continue forward transmission
1455 * with the same cwnd?
1458 tcp_time_to_recover(struct sock
*sk
, struct tcp_opt
*tp
)
1462 /* Trick#1: The loss is proven. */
1463 if (tcp_get_pcount(&tp
->lost_out
))
1466 /* Not-A-Trick#2 : Classic rule... */
1467 if (tcp_fackets_out(tp
) > tp
->reordering
)
1470 /* Trick#3 : when we use RFC2988 timer restart, fast
1471 * retransmit can be triggered by timeout of queue head.
1473 if (tcp_head_timedout(sk
, tp
))
1476 /* Trick#4: It is still not OK... But will it be useful to delay
1479 packets_out
= tcp_get_pcount(&tp
->packets_out
);
1480 if (packets_out
<= tp
->reordering
&&
1481 tcp_get_pcount(&tp
->sacked_out
) >= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
1482 !tcp_may_send_now(sk
, tp
)) {
1483 /* We have nothing to send. This connection is limited
1484 * either by receiver window or by application.
1492 /* If we receive more dupacks than we expected counting segments
1493 * in assumption of absent reordering, interpret this as reordering.
1494 * The only another reason could be bug in receiver TCP.
1496 static void tcp_check_reno_reordering(struct tcp_opt
*tp
, int addend
)
1500 holes
= max(tcp_get_pcount(&tp
->lost_out
), 1U);
1501 holes
= min(holes
, tcp_get_pcount(&tp
->packets_out
));
1503 if ((tcp_get_pcount(&tp
->sacked_out
) + holes
) >
1504 tcp_get_pcount(&tp
->packets_out
)) {
1505 tcp_set_pcount(&tp
->sacked_out
,
1506 (tcp_get_pcount(&tp
->packets_out
) - holes
));
1507 tcp_update_reordering(tp
,
1508 tcp_get_pcount(&tp
->packets_out
)+addend
,
1513 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1515 static void tcp_add_reno_sack(struct tcp_opt
*tp
)
1517 tcp_inc_pcount_explicit(&tp
->sacked_out
, 1);
1518 tcp_check_reno_reordering(tp
, 0);
1519 tcp_sync_left_out(tp
);
1522 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1524 static void tcp_remove_reno_sacks(struct sock
*sk
, struct tcp_opt
*tp
, int acked
)
1527 /* One ACK acked hole. The rest eat duplicate ACKs. */
1528 if (acked
-1 >= tcp_get_pcount(&tp
->sacked_out
))
1529 tcp_set_pcount(&tp
->sacked_out
, 0);
1531 tcp_dec_pcount_explicit(&tp
->sacked_out
, acked
-1);
1533 tcp_check_reno_reordering(tp
, acked
);
1534 tcp_sync_left_out(tp
);
1537 static inline void tcp_reset_reno_sack(struct tcp_opt
*tp
)
1539 tcp_set_pcount(&tp
->sacked_out
, 0);
1540 tcp_set_pcount(&tp
->left_out
, tcp_get_pcount(&tp
->lost_out
));
1543 /* Mark head of queue up as lost. */
1545 tcp_mark_head_lost(struct sock
*sk
, struct tcp_opt
*tp
, int packets
, u32 high_seq
)
1547 struct sk_buff
*skb
;
1550 BUG_TRAP(cnt
<= tcp_get_pcount(&tp
->packets_out
));
1552 sk_stream_for_retrans_queue(skb
, sk
) {
1553 cnt
-= tcp_skb_pcount(skb
);
1554 if (cnt
< 0 || after(TCP_SKB_CB(skb
)->end_seq
, high_seq
))
1556 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_TAGBITS
)) {
1557 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1558 tcp_inc_pcount(&tp
->lost_out
, skb
);
1561 tcp_sync_left_out(tp
);
1564 /* Account newly detected lost packet(s) */
1566 static void tcp_update_scoreboard(struct sock
*sk
, struct tcp_opt
*tp
)
1569 int lost
= tcp_get_pcount(&tp
->fackets_out
) - tp
->reordering
;
1572 tcp_mark_head_lost(sk
, tp
, lost
, tp
->high_seq
);
1574 tcp_mark_head_lost(sk
, tp
, 1, tp
->high_seq
);
1577 /* New heuristics: it is possible only after we switched
1578 * to restart timer each time when something is ACKed.
1579 * Hence, we can detect timed out packets during fast
1580 * retransmit without falling to slow start.
1582 if (tcp_head_timedout(sk
, tp
)) {
1583 struct sk_buff
*skb
;
1585 sk_stream_for_retrans_queue(skb
, sk
) {
1586 if (tcp_skb_timedout(tp
, skb
) &&
1587 !(TCP_SKB_CB(skb
)->sacked
&TCPCB_TAGBITS
)) {
1588 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1589 tcp_inc_pcount(&tp
->lost_out
, skb
);
1592 tcp_sync_left_out(tp
);
1596 /* CWND moderation, preventing bursts due to too big ACKs
1597 * in dubious situations.
1599 static __inline__
void tcp_moderate_cwnd(struct tcp_opt
*tp
)
1601 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
1602 tcp_packets_in_flight(tp
)+tcp_max_burst(tp
));
1603 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1606 /* Decrease cwnd each second ack. */
1608 static void tcp_cwnd_down(struct tcp_opt
*tp
)
1610 int decr
= tp
->snd_cwnd_cnt
+ 1;
1615 * Here limit is evaluated as BWestimation*RTTmin (for obtaining it
1616 * in packets we use mss_cache). If sysctl_tcp_westwood is off
1617 * tcp_westwood_bw_rttmin() returns 0. In such case snd_ssthresh is
1618 * still used as usual. It prevents other strange cases in which
1619 * BWE*RTTmin could assume value 0. It should not happen but...
1622 if (!(limit
= tcp_westwood_bw_rttmin(tp
)))
1623 limit
= tp
->snd_ssthresh
/2;
1625 tp
->snd_cwnd_cnt
= decr
&1;
1628 if (decr
&& tp
->snd_cwnd
> limit
)
1629 tp
->snd_cwnd
-= decr
;
1631 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
)+1);
1632 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1635 /* Nothing was retransmitted or returned timestamp is less
1636 * than timestamp of the first retransmission.
1638 static __inline__
int tcp_packet_delayed(struct tcp_opt
*tp
)
1640 return !tp
->retrans_stamp
||
1641 (tp
->saw_tstamp
&& tp
->rcv_tsecr
&&
1642 (__s32
)(tp
->rcv_tsecr
- tp
->retrans_stamp
) < 0);
1645 /* Undo procedures. */
1647 #if FASTRETRANS_DEBUG > 1
1648 static void DBGUNDO(struct sock
*sk
, struct tcp_opt
*tp
, const char *msg
)
1650 struct inet_opt
*inet
= inet_sk(sk
);
1651 printk(KERN_DEBUG
"Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1653 NIPQUAD(inet
->daddr
), ntohs(inet
->dport
),
1654 tp
->snd_cwnd
, tcp_get_pcount(&tp
->left_out
),
1655 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
1656 tcp_get_pcount(&tp
->packets_out
));
1659 #define DBGUNDO(x...) do { } while (0)
1662 static void tcp_undo_cwr(struct tcp_opt
*tp
, int undo
)
1664 if (tp
->prior_ssthresh
) {
1665 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<<1);
1667 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
1668 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
1669 TCP_ECN_withdraw_cwr(tp
);
1672 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
1674 tcp_moderate_cwnd(tp
);
1675 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1678 static inline int tcp_may_undo(struct tcp_opt
*tp
)
1680 return tp
->undo_marker
&&
1681 (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
1684 /* People celebrate: "We love our President!" */
1685 static int tcp_try_undo_recovery(struct sock
*sk
, struct tcp_opt
*tp
)
1687 if (tcp_may_undo(tp
)) {
1688 /* Happy end! We did not retransmit anything
1689 * or our original transmission succeeded.
1691 DBGUNDO(sk
, tp
, tp
->ca_state
== TCP_CA_Loss
? "loss" : "retrans");
1692 tcp_undo_cwr(tp
, 1);
1693 if (tp
->ca_state
== TCP_CA_Loss
)
1694 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
1696 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO
);
1697 tp
->undo_marker
= 0;
1699 if (tp
->snd_una
== tp
->high_seq
&& IsReno(tp
)) {
1700 /* Hold old state until something *above* high_seq
1701 * is ACKed. For Reno it is MUST to prevent false
1702 * fast retransmits (RFC2582). SACK TCP is safe. */
1703 tcp_moderate_cwnd(tp
);
1706 tcp_set_ca_state(tp
, TCP_CA_Open
);
1710 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1711 static void tcp_try_undo_dsack(struct sock
*sk
, struct tcp_opt
*tp
)
1713 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
1714 DBGUNDO(sk
, tp
, "D-SACK");
1715 tcp_undo_cwr(tp
, 1);
1716 tp
->undo_marker
= 0;
1717 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO
);
1721 /* Undo during fast recovery after partial ACK. */
1723 static int tcp_try_undo_partial(struct sock
*sk
, struct tcp_opt
*tp
, int acked
)
1725 /* Partial ACK arrived. Force Hoe's retransmit. */
1726 int failed
= IsReno(tp
) || tcp_get_pcount(&tp
->fackets_out
)>tp
->reordering
;
1728 if (tcp_may_undo(tp
)) {
1729 /* Plain luck! Hole if filled with delayed
1730 * packet, rather than with a retransmit.
1732 if (tcp_get_pcount(&tp
->retrans_out
) == 0)
1733 tp
->retrans_stamp
= 0;
1735 tcp_update_reordering(tp
, tcp_fackets_out(tp
)+acked
, 1);
1737 DBGUNDO(sk
, tp
, "Hoe");
1738 tcp_undo_cwr(tp
, 0);
1739 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO
);
1741 /* So... Do not make Hoe's retransmit yet.
1742 * If the first packet was delayed, the rest
1743 * ones are most probably delayed as well.
1750 /* Undo during loss recovery after partial ACK. */
1751 static int tcp_try_undo_loss(struct sock
*sk
, struct tcp_opt
*tp
)
1753 if (tcp_may_undo(tp
)) {
1754 struct sk_buff
*skb
;
1755 sk_stream_for_retrans_queue(skb
, sk
) {
1756 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1758 DBGUNDO(sk
, tp
, "partial loss");
1759 tcp_set_pcount(&tp
->lost_out
, 0);
1760 tcp_set_pcount(&tp
->left_out
, tcp_get_pcount(&tp
->sacked_out
));
1761 tcp_undo_cwr(tp
, 1);
1762 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
1763 tp
->retransmits
= 0;
1764 tp
->undo_marker
= 0;
1766 tcp_set_ca_state(tp
, TCP_CA_Open
);
1772 static __inline__
void tcp_complete_cwr(struct tcp_opt
*tp
)
1774 if (tcp_westwood_cwnd(tp
))
1775 tp
->snd_ssthresh
= tp
->snd_cwnd
;
1777 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
1778 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1781 static void tcp_try_to_open(struct sock
*sk
, struct tcp_opt
*tp
, int flag
)
1783 tcp_set_pcount(&tp
->left_out
, tcp_get_pcount(&tp
->sacked_out
));
1785 if (tcp_get_pcount(&tp
->retrans_out
) == 0)
1786 tp
->retrans_stamp
= 0;
1791 if (tp
->ca_state
!= TCP_CA_CWR
) {
1792 int state
= TCP_CA_Open
;
1794 if (tcp_get_pcount(&tp
->left_out
) ||
1795 tcp_get_pcount(&tp
->retrans_out
) ||
1797 state
= TCP_CA_Disorder
;
1799 if (tp
->ca_state
!= state
) {
1800 tcp_set_ca_state(tp
, state
);
1801 tp
->high_seq
= tp
->snd_nxt
;
1803 tcp_moderate_cwnd(tp
);
1809 /* Process an event, which can update packets-in-flight not trivially.
1810 * Main goal of this function is to calculate new estimate for left_out,
1811 * taking into account both packets sitting in receiver's buffer and
1812 * packets lost by network.
1814 * Besides that it does CWND reduction, when packet loss is detected
1815 * and changes state of machine.
1817 * It does _not_ decide what to send, it is made in function
1818 * tcp_xmit_retransmit_queue().
1821 tcp_fastretrans_alert(struct sock
*sk
, u32 prior_snd_una
,
1822 int prior_packets
, int flag
)
1824 struct tcp_opt
*tp
= tcp_sk(sk
);
1825 int is_dupack
= (tp
->snd_una
== prior_snd_una
&& !(flag
&FLAG_NOT_DUP
));
1827 /* Some technical things:
1828 * 1. Reno does not count dupacks (sacked_out) automatically. */
1829 if (!tcp_get_pcount(&tp
->packets_out
))
1830 tcp_set_pcount(&tp
->sacked_out
, 0);
1831 /* 2. SACK counts snd_fack in packets inaccurately. */
1832 if (tcp_get_pcount(&tp
->sacked_out
) == 0)
1833 tcp_set_pcount(&tp
->fackets_out
, 0);
1835 /* Now state machine starts.
1836 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1838 tp
->prior_ssthresh
= 0;
1840 /* B. In all the states check for reneging SACKs. */
1841 if (tcp_get_pcount(&tp
->sacked_out
) && tcp_check_sack_reneging(sk
, tp
))
1844 /* C. Process data loss notification, provided it is valid. */
1845 if ((flag
&FLAG_DATA_LOST
) &&
1846 before(tp
->snd_una
, tp
->high_seq
) &&
1847 tp
->ca_state
!= TCP_CA_Open
&&
1848 tcp_get_pcount(&tp
->fackets_out
) > tp
->reordering
) {
1849 tcp_mark_head_lost(sk
, tp
, tcp_get_pcount(&tp
->fackets_out
)-tp
->reordering
, tp
->high_seq
);
1850 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS
);
1853 /* D. Synchronize left_out to current state. */
1854 tcp_sync_left_out(tp
);
1856 /* E. Check state exit conditions. State can be terminated
1857 * when high_seq is ACKed. */
1858 if (tp
->ca_state
== TCP_CA_Open
) {
1859 if (!sysctl_tcp_frto
)
1860 BUG_TRAP(tcp_get_pcount(&tp
->retrans_out
) == 0);
1861 tp
->retrans_stamp
= 0;
1862 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
1863 switch (tp
->ca_state
) {
1865 tp
->retransmits
= 0;
1866 if (tcp_try_undo_recovery(sk
, tp
))
1871 /* CWR is to be held something *above* high_seq
1872 * is ACKed for CWR bit to reach receiver. */
1873 if (tp
->snd_una
!= tp
->high_seq
) {
1874 tcp_complete_cwr(tp
);
1875 tcp_set_ca_state(tp
, TCP_CA_Open
);
1879 case TCP_CA_Disorder
:
1880 tcp_try_undo_dsack(sk
, tp
);
1881 if (!tp
->undo_marker
||
1882 /* For SACK case do not Open to allow to undo
1883 * catching for all duplicate ACKs. */
1884 IsReno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
1885 tp
->undo_marker
= 0;
1886 tcp_set_ca_state(tp
, TCP_CA_Open
);
1890 case TCP_CA_Recovery
:
1892 tcp_reset_reno_sack(tp
);
1893 if (tcp_try_undo_recovery(sk
, tp
))
1895 tcp_complete_cwr(tp
);
1900 /* F. Process state. */
1901 switch (tp
->ca_state
) {
1902 case TCP_CA_Recovery
:
1903 if (prior_snd_una
== tp
->snd_una
) {
1904 if (IsReno(tp
) && is_dupack
)
1905 tcp_add_reno_sack(tp
);
1907 int acked
= prior_packets
-
1908 tcp_get_pcount(&tp
->packets_out
);
1910 tcp_remove_reno_sacks(sk
, tp
, acked
);
1911 is_dupack
= tcp_try_undo_partial(sk
, tp
, acked
);
1915 if (flag
&FLAG_DATA_ACKED
)
1916 tp
->retransmits
= 0;
1917 if (!tcp_try_undo_loss(sk
, tp
)) {
1918 tcp_moderate_cwnd(tp
);
1919 tcp_xmit_retransmit_queue(sk
);
1922 if (tp
->ca_state
!= TCP_CA_Open
)
1924 /* Loss is undone; fall through to processing in Open state. */
1927 if (tp
->snd_una
!= prior_snd_una
)
1928 tcp_reset_reno_sack(tp
);
1930 tcp_add_reno_sack(tp
);
1933 if (tp
->ca_state
== TCP_CA_Disorder
)
1934 tcp_try_undo_dsack(sk
, tp
);
1936 if (!tcp_time_to_recover(sk
, tp
)) {
1937 tcp_try_to_open(sk
, tp
, flag
);
1941 /* Otherwise enter Recovery state */
1944 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY
);
1946 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY
);
1948 tp
->high_seq
= tp
->snd_nxt
;
1949 tp
->prior_ssthresh
= 0;
1950 tp
->undo_marker
= tp
->snd_una
;
1951 tp
->undo_retrans
= tcp_get_pcount(&tp
->retrans_out
);
1953 if (tp
->ca_state
< TCP_CA_CWR
) {
1954 if (!(flag
&FLAG_ECE
))
1955 tp
->prior_ssthresh
= tcp_current_ssthresh(tp
);
1956 tp
->snd_ssthresh
= tcp_recalc_ssthresh(tp
);
1957 TCP_ECN_queue_cwr(tp
);
1960 tp
->snd_cwnd_cnt
= 0;
1961 tcp_set_ca_state(tp
, TCP_CA_Recovery
);
1964 if (is_dupack
|| tcp_head_timedout(sk
, tp
))
1965 tcp_update_scoreboard(sk
, tp
);
1967 tcp_xmit_retransmit_queue(sk
);
1970 /* Read draft-ietf-tcplw-high-performance before mucking
1971 * with this code. (Superceeds RFC1323)
1973 static void tcp_ack_saw_tstamp(struct tcp_opt
*tp
, int flag
)
1977 /* RTTM Rule: A TSecr value received in a segment is used to
1978 * update the averaged RTT measurement only if the segment
1979 * acknowledges some new data, i.e., only if it advances the
1980 * left edge of the send window.
1982 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1983 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1985 * Changed: reset backoff as soon as we see the first valid sample.
1986 * If we do not, we get strongly overstimated rto. With timestamps
1987 * samples are accepted even from very old segments: f.e., when rtt=1
1988 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1989 * answer arrives rto becomes 120 seconds! If at least one of segments
1990 * in window is lost... Voila. --ANK (010210)
1992 seq_rtt
= tcp_time_stamp
- tp
->rcv_tsecr
;
1993 tcp_rtt_estimator(tp
, seq_rtt
);
1999 static void tcp_ack_no_tstamp(struct tcp_opt
*tp
, u32 seq_rtt
, int flag
)
2001 /* We don't have a timestamp. Can only use
2002 * packets that are not retransmitted to determine
2003 * rtt estimates. Also, we must not reset the
2004 * backoff for rto until we get a non-retransmitted
2005 * packet. This allows us to deal with a situation
2006 * where the network delay has increased suddenly.
2007 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2010 if (flag
& FLAG_RETRANS_DATA_ACKED
)
2013 tcp_rtt_estimator(tp
, seq_rtt
);
2019 static __inline__
void
2020 tcp_ack_update_rtt(struct tcp_opt
*tp
, int flag
, s32 seq_rtt
)
2022 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2023 if (tp
->saw_tstamp
&& tp
->rcv_tsecr
)
2024 tcp_ack_saw_tstamp(tp
, flag
);
2025 else if (seq_rtt
>= 0)
2026 tcp_ack_no_tstamp(tp
, seq_rtt
, flag
);
2030 * Compute congestion window to use.
2032 * This is from the implementation of BICTCP in
2033 * Lison-Xu, Kahaled Harfoush, and Injog Rhee.
2034 * "Binary Increase Congestion Control for Fast, Long Distance
2035 * Networks" in InfoComm 2004
2037 * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf
2039 * Unless BIC is enabled and congestion window is large
2040 * this behaves the same as the original Reno.
2042 static inline __u32
bictcp_cwnd(struct tcp_opt
*tp
)
2044 /* orignal Reno behaviour */
2045 if (!tcp_is_bic(tp
))
2046 return tp
->snd_cwnd
;
2048 if (tp
->bictcp
.last_cwnd
== tp
->snd_cwnd
&&
2049 (s32
)(tcp_time_stamp
- tp
->bictcp
.last_stamp
) <= (HZ
>>5))
2050 return tp
->bictcp
.cnt
;
2052 tp
->bictcp
.last_cwnd
= tp
->snd_cwnd
;
2053 tp
->bictcp
.last_stamp
= tcp_time_stamp
;
2055 /* start off normal */
2056 if (tp
->snd_cwnd
<= sysctl_tcp_bic_low_window
)
2057 tp
->bictcp
.cnt
= tp
->snd_cwnd
;
2059 /* binary increase */
2060 else if (tp
->snd_cwnd
< tp
->bictcp
.last_max_cwnd
) {
2061 __u32 dist
= (tp
->bictcp
.last_max_cwnd
- tp
->snd_cwnd
)
2064 if (dist
> BICTCP_MAX_INCREMENT
)
2065 /* linear increase */
2066 tp
->bictcp
.cnt
= tp
->snd_cwnd
/ BICTCP_MAX_INCREMENT
;
2067 else if (dist
<= 1U)
2068 /* binary search increase */
2069 tp
->bictcp
.cnt
= tp
->snd_cwnd
* BICTCP_FUNC_OF_MIN_INCR
2072 /* binary search increase */
2073 tp
->bictcp
.cnt
= tp
->snd_cwnd
/ dist
;
2075 /* slow start amd linear increase */
2076 if (tp
->snd_cwnd
< tp
->bictcp
.last_max_cwnd
+ BICTCP_B
)
2078 tp
->bictcp
.cnt
= tp
->snd_cwnd
* BICTCP_FUNC_OF_MIN_INCR
2080 else if (tp
->snd_cwnd
< tp
->bictcp
.last_max_cwnd
2081 + BICTCP_MAX_INCREMENT
*(BICTCP_B
-1))
2083 tp
->bictcp
.cnt
= tp
->snd_cwnd
* (BICTCP_B
-1)
2084 / (tp
->snd_cwnd
-tp
->bictcp
.last_max_cwnd
);
2086 /* linear increase */
2087 tp
->bictcp
.cnt
= tp
->snd_cwnd
/ BICTCP_MAX_INCREMENT
;
2089 return tp
->bictcp
.cnt
;
2092 /* This is Jacobson's slow start and congestion avoidance.
2093 * SIGCOMM '88, p. 328.
2095 static __inline__
void reno_cong_avoid(struct tcp_opt
*tp
)
2097 if (tp
->snd_cwnd
<= tp
->snd_ssthresh
) {
2098 /* In "safe" area, increase. */
2099 if (tp
->snd_cwnd
< tp
->snd_cwnd_clamp
)
2102 /* In dangerous area, increase slowly.
2103 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
2105 if (tp
->snd_cwnd_cnt
>= bictcp_cwnd(tp
)) {
2106 if (tp
->snd_cwnd
< tp
->snd_cwnd_clamp
)
2112 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2115 /* This is based on the congestion detection/avoidance scheme described in
2116 * Lawrence S. Brakmo and Larry L. Peterson.
2117 * "TCP Vegas: End to end congestion avoidance on a global internet."
2118 * IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
2119 * October 1995. Available from:
2120 * ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
2122 * See http://www.cs.arizona.edu/xkernel/ for their implementation.
2123 * The main aspects that distinguish this implementation from the
2124 * Arizona Vegas implementation are:
2125 * o We do not change the loss detection or recovery mechanisms of
2126 * Linux in any way. Linux already recovers from losses quite well,
2127 * using fine-grained timers, NewReno, and FACK.
2128 * o To avoid the performance penalty imposed by increasing cwnd
2129 * only every-other RTT during slow start, we increase during
2130 * every RTT during slow start, just like Reno.
2131 * o Largely to allow continuous cwnd growth during slow start,
2132 * we use the rate at which ACKs come back as the "actual"
2133 * rate, rather than the rate at which data is sent.
2134 * o To speed convergence to the right rate, we set the cwnd
2135 * to achieve the right ("actual") rate when we exit slow start.
2136 * o To filter out the noise caused by delayed ACKs, we use the
2137 * minimum RTT sample observed during the last RTT to calculate
2139 * o When the sender re-starts from idle, it waits until it has
2140 * received ACKs for an entire flight of new data before making
2141 * a cwnd adjustment decision. The original Vegas implementation
2142 * assumed senders never went idle.
2144 static void vegas_cong_avoid(struct tcp_opt
*tp
, u32 ack
, u32 seq_rtt
)
2146 /* The key players are v_beg_snd_una and v_beg_snd_nxt.
2148 * These are so named because they represent the approximate values
2149 * of snd_una and snd_nxt at the beginning of the current RTT. More
2150 * precisely, they represent the amount of data sent during the RTT.
2151 * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
2152 * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
2153 * bytes of data have been ACKed during the course of the RTT, giving
2154 * an "actual" rate of:
2156 * (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
2158 * Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
2159 * because delayed ACKs can cover more than one segment, so they
2160 * don't line up nicely with the boundaries of RTTs.
2162 * Another unfortunate fact of life is that delayed ACKs delay the
2163 * advance of the left edge of our send window, so that the number
2164 * of bytes we send in an RTT is often less than our cwnd will allow.
2165 * So we keep track of our cwnd separately, in v_beg_snd_cwnd.
2168 if (after(ack
, tp
->vegas
.beg_snd_nxt
)) {
2169 /* Do the Vegas once-per-RTT cwnd adjustment. */
2170 u32 old_wnd
, old_snd_cwnd
;
2173 /* Here old_wnd is essentially the window of data that was
2174 * sent during the previous RTT, and has all
2175 * been acknowledged in the course of the RTT that ended
2176 * with the ACK we just received. Likewise, old_snd_cwnd
2177 * is the cwnd during the previous RTT.
2179 old_wnd
= (tp
->vegas
.beg_snd_nxt
- tp
->vegas
.beg_snd_una
) /
2181 old_snd_cwnd
= tp
->vegas
.beg_snd_cwnd
;
2183 /* Save the extent of the current window so we can use this
2184 * at the end of the next RTT.
2186 tp
->vegas
.beg_snd_una
= tp
->vegas
.beg_snd_nxt
;
2187 tp
->vegas
.beg_snd_nxt
= tp
->snd_nxt
;
2188 tp
->vegas
.beg_snd_cwnd
= tp
->snd_cwnd
;
2190 /* Take into account the current RTT sample too, to
2191 * decrease the impact of delayed acks. This double counts
2192 * this sample since we count it for the next window as well,
2193 * but that's not too awful, since we're taking the min,
2194 * rather than averaging.
2196 vegas_rtt_calc(tp
, seq_rtt
);
2198 /* We do the Vegas calculations only if we got enough RTT
2199 * samples that we can be reasonably sure that we got
2200 * at least one RTT sample that wasn't from a delayed ACK.
2201 * If we only had 2 samples total,
2202 * then that means we're getting only 1 ACK per RTT, which
2203 * means they're almost certainly delayed ACKs.
2204 * If we have 3 samples, we should be OK.
2207 if (tp
->vegas
.cntRTT
<= 2) {
2208 /* We don't have enough RTT samples to do the Vegas
2209 * calculation, so we'll behave like Reno.
2211 if (tp
->snd_cwnd
> tp
->snd_ssthresh
)
2214 u32 rtt
, target_cwnd
, diff
;
2216 /* We have enough RTT samples, so, using the Vegas
2217 * algorithm, we determine if we should increase or
2218 * decrease cwnd, and by how much.
2221 /* Pluck out the RTT we are using for the Vegas
2222 * calculations. This is the min RTT seen during the
2223 * last RTT. Taking the min filters out the effects
2224 * of delayed ACKs, at the cost of noticing congestion
2227 rtt
= tp
->vegas
.minRTT
;
2229 /* Calculate the cwnd we should have, if we weren't
2233 * (actual rate in segments) * baseRTT
2234 * We keep it as a fixed point number with
2235 * V_PARAM_SHIFT bits to the right of the binary point.
2237 target_cwnd
= ((old_wnd
* tp
->vegas
.baseRTT
)
2238 << V_PARAM_SHIFT
) / rtt
;
2240 /* Calculate the difference between the window we had,
2241 * and the window we would like to have. This quantity
2242 * is the "Diff" from the Arizona Vegas papers.
2244 * Again, this is a fixed point number with
2245 * V_PARAM_SHIFT bits to the right of the binary
2248 diff
= (old_wnd
<< V_PARAM_SHIFT
) - target_cwnd
;
2250 if (tp
->snd_cwnd
< tp
->snd_ssthresh
) {
2252 if (diff
> sysctl_tcp_vegas_gamma
) {
2253 /* Going too fast. Time to slow down
2254 * and switch to congestion avoidance.
2256 tp
->snd_ssthresh
= 2;
2258 /* Set cwnd to match the actual rate
2260 * cwnd = (actual rate) * baseRTT
2261 * Then we add 1 because the integer
2262 * truncation robs us of full link
2265 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2271 /* Congestion avoidance. */
2274 /* Figure out where we would like cwnd
2277 if (diff
> sysctl_tcp_vegas_beta
) {
2278 /* The old window was too fast, so
2281 next_snd_cwnd
= old_snd_cwnd
- 1;
2282 } else if (diff
< sysctl_tcp_vegas_alpha
) {
2283 /* We don't have enough extra packets
2284 * in the network, so speed up.
2286 next_snd_cwnd
= old_snd_cwnd
+ 1;
2288 /* Sending just as fast as we
2291 next_snd_cwnd
= old_snd_cwnd
;
2294 /* Adjust cwnd upward or downward, toward the
2297 if (next_snd_cwnd
> tp
->snd_cwnd
)
2299 else if (next_snd_cwnd
< tp
->snd_cwnd
)
2304 /* Wipe the slate clean for the next RTT. */
2305 tp
->vegas
.cntRTT
= 0;
2306 tp
->vegas
.minRTT
= 0x7fffffff;
2309 /* The following code is executed for every ack we receive,
2310 * except for conditions checked in should_advance_cwnd()
2311 * before the call to tcp_cong_avoid(). Mainly this means that
2312 * we only execute this code if the ack actually acked some
2316 /* If we are in slow start, increase our cwnd in response to this ACK.
2317 * (If we are not in slow start then we are in congestion avoidance,
2318 * and adjust our congestion window only once per RTT. See the code
2321 if (tp
->snd_cwnd
<= tp
->snd_ssthresh
)
2324 /* to keep cwnd from growing without bound */
2325 tp
->snd_cwnd
= min_t(u32
, tp
->snd_cwnd
, tp
->snd_cwnd_clamp
);
2327 /* Make sure that we are never so timid as to reduce our cwnd below
2330 * Going below 2 MSS would risk huge delayed ACKs from our receiver.
2332 tp
->snd_cwnd
= max(tp
->snd_cwnd
, 2U);
2334 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2337 static inline void tcp_cong_avoid(struct tcp_opt
*tp
, u32 ack
, u32 seq_rtt
)
2339 if (tcp_vegas_enabled(tp
))
2340 vegas_cong_avoid(tp
, ack
, seq_rtt
);
2342 reno_cong_avoid(tp
);
2345 /* Restart timer after forward progress on connection.
2346 * RFC2988 recommends to restart timer to now+rto.
2349 static __inline__
void tcp_ack_packets_out(struct sock
*sk
, struct tcp_opt
*tp
)
2351 if (!tcp_get_pcount(&tp
->packets_out
)) {
2352 tcp_clear_xmit_timer(sk
, TCP_TIME_RETRANS
);
2354 tcp_reset_xmit_timer(sk
, TCP_TIME_RETRANS
, tp
->rto
);
2358 /* There is one downside to this scheme. Although we keep the
2359 * ACK clock ticking, adjusting packet counters and advancing
2360 * congestion window, we do not liberate socket send buffer
2363 * Mucking with skb->truesize and sk->sk_wmem_alloc et al.
2364 * then making a write space wakeup callback is a possible
2365 * future enhancement. WARNING: it is not trivial to make.
2367 static int tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
,
2368 __u32 now
, __s32
*seq_rtt
)
2370 struct tcp_opt
*tp
= tcp_sk(sk
);
2371 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2372 __u32 mss
= tcp_skb_mss(skb
);
2373 __u32 snd_una
= tp
->snd_una
;
2374 __u32 orig_seq
, seq
;
2375 __u32 packets_acked
= 0;
2378 /* If we get here, the whole TSO packet has not been
2381 BUG_ON(!after(scb
->end_seq
, snd_una
));
2383 seq
= orig_seq
= scb
->seq
;
2384 while (!after(seq
+ mss
, snd_una
)) {
2389 if (tcp_trim_head(sk
, skb
, (seq
- orig_seq
)))
2392 if (packets_acked
) {
2393 __u8 sacked
= scb
->sacked
;
2395 acked
|= FLAG_DATA_ACKED
;
2397 if (sacked
& TCPCB_RETRANS
) {
2398 if (sacked
& TCPCB_SACKED_RETRANS
)
2399 tcp_dec_pcount_explicit(&tp
->retrans_out
,
2401 acked
|= FLAG_RETRANS_DATA_ACKED
;
2403 } else if (*seq_rtt
< 0)
2404 *seq_rtt
= now
- scb
->when
;
2405 if (sacked
& TCPCB_SACKED_ACKED
)
2406 tcp_dec_pcount_explicit(&tp
->sacked_out
,
2408 if (sacked
& TCPCB_LOST
)
2409 tcp_dec_pcount_explicit(&tp
->lost_out
,
2411 if (sacked
& TCPCB_URG
) {
2413 !before(seq
, tp
->snd_up
))
2416 } else if (*seq_rtt
< 0)
2417 *seq_rtt
= now
- scb
->when
;
2419 if (tcp_get_pcount(&tp
->fackets_out
)) {
2420 __u32 dval
= min(tcp_get_pcount(&tp
->fackets_out
),
2422 tcp_dec_pcount_explicit(&tp
->fackets_out
, dval
);
2424 tcp_dec_pcount_explicit(&tp
->packets_out
, packets_acked
);
2426 BUG_ON(tcp_skb_pcount(skb
) == 0);
2427 BUG_ON(!before(scb
->seq
, scb
->end_seq
));
2434 /* Remove acknowledged frames from the retransmission queue. */
2435 static int tcp_clean_rtx_queue(struct sock
*sk
, __s32
*seq_rtt_p
)
2437 struct tcp_opt
*tp
= tcp_sk(sk
);
2438 struct sk_buff
*skb
;
2439 __u32 now
= tcp_time_stamp
;
2443 while ((skb
= skb_peek(&sk
->sk_write_queue
)) &&
2444 skb
!= sk
->sk_send_head
) {
2445 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2446 __u8 sacked
= scb
->sacked
;
2448 /* If our packet is before the ack sequence we can
2449 * discard it as it's confirmed to have arrived at
2452 if (after(scb
->end_seq
, tp
->snd_una
)) {
2453 if (tcp_skb_pcount(skb
) > 1)
2454 acked
|= tcp_tso_acked(sk
, skb
,
2459 /* Initial outgoing SYN's get put onto the write_queue
2460 * just like anything else we transmit. It is not
2461 * true data, and if we misinform our callers that
2462 * this ACK acks real data, we will erroneously exit
2463 * connection startup slow start one packet too
2464 * quickly. This is severely frowned upon behavior.
2466 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
2467 acked
|= FLAG_DATA_ACKED
;
2469 acked
|= FLAG_SYN_ACKED
;
2470 tp
->retrans_stamp
= 0;
2474 if (sacked
& TCPCB_RETRANS
) {
2475 if(sacked
& TCPCB_SACKED_RETRANS
)
2476 tcp_dec_pcount(&tp
->retrans_out
, skb
);
2477 acked
|= FLAG_RETRANS_DATA_ACKED
;
2479 } else if (seq_rtt
< 0)
2480 seq_rtt
= now
- scb
->when
;
2481 if (sacked
& TCPCB_SACKED_ACKED
)
2482 tcp_dec_pcount(&tp
->sacked_out
, skb
);
2483 if (sacked
& TCPCB_LOST
)
2484 tcp_dec_pcount(&tp
->lost_out
, skb
);
2485 if (sacked
& TCPCB_URG
) {
2487 !before(scb
->end_seq
, tp
->snd_up
))
2490 } else if (seq_rtt
< 0)
2491 seq_rtt
= now
- scb
->when
;
2492 tcp_dec_pcount_approx(&tp
->fackets_out
, skb
);
2493 tcp_packets_out_dec(tp
, skb
);
2494 __skb_unlink(skb
, skb
->list
);
2495 sk_stream_free_skb(sk
, skb
);
2498 if (acked
&FLAG_ACKED
) {
2499 tcp_ack_update_rtt(tp
, acked
, seq_rtt
);
2500 tcp_ack_packets_out(sk
, tp
);
2503 #if FASTRETRANS_DEBUG > 0
2504 BUG_TRAP((int)tcp_get_pcount(&tp
->sacked_out
) >= 0);
2505 BUG_TRAP((int)tcp_get_pcount(&tp
->lost_out
) >= 0);
2506 BUG_TRAP((int)tcp_get_pcount(&tp
->retrans_out
) >= 0);
2507 if (!tcp_get_pcount(&tp
->packets_out
) && tp
->sack_ok
) {
2508 if (tcp_get_pcount(&tp
->lost_out
)) {
2509 printk(KERN_DEBUG
"Leak l=%u %d\n",
2510 tcp_get_pcount(&tp
->lost_out
),
2512 tcp_set_pcount(&tp
->lost_out
, 0);
2514 if (tcp_get_pcount(&tp
->sacked_out
)) {
2515 printk(KERN_DEBUG
"Leak s=%u %d\n",
2516 tcp_get_pcount(&tp
->sacked_out
),
2518 tcp_set_pcount(&tp
->sacked_out
, 0);
2520 if (tcp_get_pcount(&tp
->retrans_out
)) {
2521 printk(KERN_DEBUG
"Leak r=%u %d\n",
2522 tcp_get_pcount(&tp
->retrans_out
),
2524 tcp_set_pcount(&tp
->retrans_out
, 0);
2528 *seq_rtt_p
= seq_rtt
;
2532 static void tcp_ack_probe(struct sock
*sk
)
2534 struct tcp_opt
*tp
= tcp_sk(sk
);
2536 /* Was it a usable window open? */
2538 if (!after(TCP_SKB_CB(sk
->sk_send_head
)->end_seq
,
2539 tp
->snd_una
+ tp
->snd_wnd
)) {
2541 tcp_clear_xmit_timer(sk
, TCP_TIME_PROBE0
);
2542 /* Socket must be waked up by subsequent tcp_data_snd_check().
2543 * This function is not for random using!
2546 tcp_reset_xmit_timer(sk
, TCP_TIME_PROBE0
,
2547 min(tp
->rto
<< tp
->backoff
, TCP_RTO_MAX
));
2551 static __inline__
int tcp_ack_is_dubious(struct tcp_opt
*tp
, int flag
)
2553 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
2554 tp
->ca_state
!= TCP_CA_Open
);
2557 static __inline__
int tcp_may_raise_cwnd(struct tcp_opt
*tp
, int flag
)
2559 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
2560 !((1<<tp
->ca_state
)&(TCPF_CA_Recovery
|TCPF_CA_CWR
));
2563 /* Check that window update is acceptable.
2564 * The function assumes that snd_una<=ack<=snd_next.
2566 static __inline__
int
2567 tcp_may_update_window(struct tcp_opt
*tp
, u32 ack
, u32 ack_seq
, u32 nwin
)
2569 return (after(ack
, tp
->snd_una
) ||
2570 after(ack_seq
, tp
->snd_wl1
) ||
2571 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
2574 /* Update our send window.
2576 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2577 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2579 static int tcp_ack_update_window(struct sock
*sk
, struct tcp_opt
*tp
,
2580 struct sk_buff
*skb
, u32 ack
, u32 ack_seq
)
2583 u32 nwin
= ntohs(skb
->h
.th
->window
);
2585 if (likely(!skb
->h
.th
->syn
))
2586 nwin
<<= tp
->snd_wscale
;
2588 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
2589 flag
|= FLAG_WIN_UPDATE
;
2590 tcp_update_wl(tp
, ack
, ack_seq
);
2592 if (tp
->snd_wnd
!= nwin
) {
2595 /* Note, it is the only place, where
2596 * fast path is recovered for sending TCP.
2598 tcp_fast_path_check(sk
, tp
);
2600 if (nwin
> tp
->max_window
) {
2601 tp
->max_window
= nwin
;
2602 tcp_sync_mss(sk
, tp
->pmtu_cookie
);
2612 static void tcp_process_frto(struct sock
*sk
, u32 prior_snd_una
)
2614 struct tcp_opt
*tp
= tcp_sk(sk
);
2616 tcp_sync_left_out(tp
);
2618 if (tp
->snd_una
== prior_snd_una
||
2619 !before(tp
->snd_una
, tp
->frto_highmark
)) {
2620 /* RTO was caused by loss, start retransmitting in
2621 * go-back-N slow start
2623 tcp_enter_frto_loss(sk
);
2627 if (tp
->frto_counter
== 1) {
2628 /* First ACK after RTO advances the window: allow two new
2631 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
2633 /* Also the second ACK after RTO advances the window.
2634 * The RTO was likely spurious. Reduce cwnd and continue
2635 * in congestion avoidance
2637 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2638 tcp_moderate_cwnd(tp
);
2641 /* F-RTO affects on two new ACKs following RTO.
2642 * At latest on third ACK the TCP behavor is back to normal.
2644 tp
->frto_counter
= (tp
->frto_counter
+ 1) % 3;
2653 * This function initializes fields used in TCP Westwood+. We can't
2654 * get no information about RTTmin at this time so we simply set it to
2655 * TCP_WESTWOOD_INIT_RTT. This value was chosen to be too conservative
2656 * since in this way we're sure it will be updated in a consistent
2657 * way as soon as possible. It will reasonably happen within the first
2658 * RTT period of the connection lifetime.
2661 static void init_westwood(struct sock
*sk
)
2663 struct tcp_opt
*tp
= tcp_sk(sk
);
2665 tp
->westwood
.bw_ns_est
= 0;
2666 tp
->westwood
.bw_est
= 0;
2667 tp
->westwood
.accounted
= 0;
2668 tp
->westwood
.cumul_ack
= 0;
2669 tp
->westwood
.rtt_win_sx
= tcp_time_stamp
;
2670 tp
->westwood
.rtt
= TCP_WESTWOOD_INIT_RTT
;
2671 tp
->westwood
.rtt_min
= TCP_WESTWOOD_INIT_RTT
;
2672 tp
->westwood
.snd_una
= tp
->snd_una
;
2676 * @westwood_do_filter
2677 * Low-pass filter. Implemented using constant coeffients.
2680 static inline __u32
westwood_do_filter(__u32 a
, __u32 b
)
2682 return (((7 * a
) + b
) >> 3);
2685 static void westwood_filter(struct sock
*sk
, __u32 delta
)
2687 struct tcp_opt
*tp
= tcp_sk(sk
);
2689 tp
->westwood
.bw_ns_est
=
2690 westwood_do_filter(tp
->westwood
.bw_ns_est
,
2691 tp
->westwood
.bk
/ delta
);
2692 tp
->westwood
.bw_est
=
2693 westwood_do_filter(tp
->westwood
.bw_est
,
2694 tp
->westwood
.bw_ns_est
);
2698 * @westwood_update_rttmin
2699 * It is used to update RTTmin. In this case we MUST NOT use
2700 * WESTWOOD_RTT_MIN minimum bound since we could be on a LAN!
2703 static inline __u32
westwood_update_rttmin(const struct sock
*sk
)
2705 const struct tcp_opt
*tp
= tcp_sk(sk
);
2706 __u32 rttmin
= tp
->westwood
.rtt_min
;
2708 if (tp
->westwood
.rtt
!= 0 &&
2709 (tp
->westwood
.rtt
< tp
->westwood
.rtt_min
|| !rttmin
))
2710 rttmin
= tp
->westwood
.rtt
;
2717 * Evaluate increases for dk.
2720 static inline __u32
westwood_acked(const struct sock
*sk
)
2722 const struct tcp_opt
*tp
= tcp_sk(sk
);
2724 return tp
->snd_una
- tp
->westwood
.snd_una
;
2728 * @westwood_new_window
2729 * It evaluates if we are receiving data inside the same RTT window as
2732 * It returns 0 if we are still evaluating samples in the same RTT
2733 * window, 1 if the sample has to be considered in the next window.
2736 static int westwood_new_window(const struct sock
*sk
)
2738 const struct tcp_opt
*tp
= tcp_sk(sk
);
2743 left_bound
= tp
->westwood
.rtt_win_sx
;
2744 rtt
= max(tp
->westwood
.rtt
, (u32
) TCP_WESTWOOD_RTT_MIN
);
2747 * A RTT-window has passed. Be careful since if RTT is less than
2748 * 50ms we don't filter but we continue 'building the sample'.
2749 * This minimum limit was choosen since an estimation on small
2750 * time intervals is better to avoid...
2751 * Obvioulsy on a LAN we reasonably will always have
2752 * right_bound = left_bound + WESTWOOD_RTT_MIN
2755 if ((left_bound
+ rtt
) < tcp_time_stamp
)
2762 * @westwood_update_window
2763 * It updates RTT evaluation window if it is the right moment to do
2764 * it. If so it calls filter for evaluating bandwidth.
2767 static void __westwood_update_window(struct sock
*sk
, __u32 now
)
2769 struct tcp_opt
*tp
= tcp_sk(sk
);
2770 __u32 delta
= now
- tp
->westwood
.rtt_win_sx
;
2773 if (tp
->westwood
.rtt
)
2774 westwood_filter(sk
, delta
);
2776 tp
->westwood
.bk
= 0;
2777 tp
->westwood
.rtt_win_sx
= tcp_time_stamp
;
2782 static void westwood_update_window(struct sock
*sk
, __u32 now
)
2784 if (westwood_new_window(sk
))
2785 __westwood_update_window(sk
, now
);
2789 * @__tcp_westwood_fast_bw
2790 * It is called when we are in fast path. In particular it is called when
2791 * header prediction is successfull. In such case infact update is
2792 * straight forward and doesn't need any particular care.
2795 void __tcp_westwood_fast_bw(struct sock
*sk
, struct sk_buff
*skb
)
2797 struct tcp_opt
*tp
= tcp_sk(sk
);
2799 westwood_update_window(sk
, tcp_time_stamp
);
2801 tp
->westwood
.bk
+= westwood_acked(sk
);
2802 tp
->westwood
.snd_una
= tp
->snd_una
;
2803 tp
->westwood
.rtt_min
= westwood_update_rttmin(sk
);
2808 * @westwood_dupack_update
2809 * It updates accounted and cumul_ack when receiving a dupack.
2812 static void westwood_dupack_update(struct sock
*sk
)
2814 struct tcp_opt
*tp
= tcp_sk(sk
);
2816 tp
->westwood
.accounted
+= tp
->mss_cache_std
;
2817 tp
->westwood
.cumul_ack
= tp
->mss_cache_std
;
2820 static inline int westwood_may_change_cumul(struct tcp_opt
*tp
)
2822 return (tp
->westwood
.cumul_ack
> tp
->mss_cache_std
);
2825 static inline void westwood_partial_update(struct tcp_opt
*tp
)
2827 tp
->westwood
.accounted
-= tp
->westwood
.cumul_ack
;
2828 tp
->westwood
.cumul_ack
= tp
->mss_cache_std
;
2831 static inline void westwood_complete_update(struct tcp_opt
*tp
)
2833 tp
->westwood
.cumul_ack
-= tp
->westwood
.accounted
;
2834 tp
->westwood
.accounted
= 0;
2838 * @westwood_acked_count
2839 * This function evaluates cumul_ack for evaluating dk in case of
2840 * delayed or partial acks.
2843 static inline __u32
westwood_acked_count(struct sock
*sk
)
2845 struct tcp_opt
*tp
= tcp_sk(sk
);
2847 tp
->westwood
.cumul_ack
= westwood_acked(sk
);
2849 /* If cumul_ack is 0 this is a dupack since it's not moving
2852 if (!(tp
->westwood
.cumul_ack
))
2853 westwood_dupack_update(sk
);
2855 if (westwood_may_change_cumul(tp
)) {
2856 /* Partial or delayed ack */
2857 if (tp
->westwood
.accounted
>= tp
->westwood
.cumul_ack
)
2858 westwood_partial_update(tp
);
2860 westwood_complete_update(tp
);
2863 tp
->westwood
.snd_una
= tp
->snd_una
;
2865 return tp
->westwood
.cumul_ack
;
2870 * @__tcp_westwood_slow_bw
2871 * It is called when something is going wrong..even if there could
2872 * be no problems! Infact a simple delayed packet may trigger a
2873 * dupack. But we need to be careful in such case.
2876 void __tcp_westwood_slow_bw(struct sock
*sk
, struct sk_buff
*skb
)
2878 struct tcp_opt
*tp
= tcp_sk(sk
);
2880 westwood_update_window(sk
, tcp_time_stamp
);
2882 tp
->westwood
.bk
+= westwood_acked_count(sk
);
2883 tp
->westwood
.rtt_min
= westwood_update_rttmin(sk
);
2886 /* This routine deals with incoming acks, but not outgoing ones. */
2887 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
2889 struct tcp_opt
*tp
= tcp_sk(sk
);
2890 u32 prior_snd_una
= tp
->snd_una
;
2891 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
2892 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
2893 u32 prior_in_flight
;
2897 /* If the ack is newer than sent or older than previous acks
2898 * then we can probably ignore it.
2900 if (after(ack
, tp
->snd_nxt
))
2901 goto uninteresting_ack
;
2903 if (before(ack
, prior_snd_una
))
2906 if (!(flag
&FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
2907 /* Window is constant, pure forward advance.
2908 * No more checks are required.
2909 * Note, we use the fact that SND.UNA>=SND.WL2.
2911 tcp_update_wl(tp
, ack
, ack_seq
);
2913 tcp_westwood_fast_bw(sk
, skb
);
2914 flag
|= FLAG_WIN_UPDATE
;
2916 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS
);
2918 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
2921 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS
);
2923 flag
|= tcp_ack_update_window(sk
, tp
, skb
, ack
, ack_seq
);
2925 if (TCP_SKB_CB(skb
)->sacked
)
2926 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
2928 if (TCP_ECN_rcv_ecn_echo(tp
, skb
->h
.th
))
2931 tcp_westwood_slow_bw(sk
,skb
);
2934 /* We passed data and got it acked, remove any soft error
2935 * log. Something worked...
2937 sk
->sk_err_soft
= 0;
2938 tp
->rcv_tstamp
= tcp_time_stamp
;
2939 prior_packets
= tcp_get_pcount(&tp
->packets_out
);
2943 prior_in_flight
= tcp_packets_in_flight(tp
);
2945 /* See if we can take anything off of the retransmit queue. */
2946 flag
|= tcp_clean_rtx_queue(sk
, &seq_rtt
);
2948 if (tp
->frto_counter
)
2949 tcp_process_frto(sk
, prior_snd_una
);
2951 if (tcp_ack_is_dubious(tp
, flag
)) {
2952 /* Advanve CWND, if state allows this. */
2953 if ((flag
& FLAG_DATA_ACKED
) &&
2954 (tcp_vegas_enabled(tp
) || prior_in_flight
>= tp
->snd_cwnd
) &&
2955 tcp_may_raise_cwnd(tp
, flag
))
2956 tcp_cong_avoid(tp
, ack
, seq_rtt
);
2957 tcp_fastretrans_alert(sk
, prior_snd_una
, prior_packets
, flag
);
2959 if ((flag
& FLAG_DATA_ACKED
) &&
2960 (tcp_vegas_enabled(tp
) || prior_in_flight
>= tp
->snd_cwnd
))
2961 tcp_cong_avoid(tp
, ack
, seq_rtt
);
2964 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
&FLAG_NOT_DUP
))
2965 dst_confirm(sk
->sk_dst_cache
);
2972 /* If this ack opens up a zero window, clear backoff. It was
2973 * being used to time the probes, and is probably far higher than
2974 * it needs to be for normal retransmission.
2976 if (sk
->sk_send_head
)
2981 if (TCP_SKB_CB(skb
)->sacked
)
2982 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
2985 SOCK_DEBUG(sk
, "Ack %u out of %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
2990 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2991 * But, this can also be called on packets in the established flow when
2992 * the fast version below fails.
2994 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_opt
*tp
, int estab
)
2997 struct tcphdr
*th
= skb
->h
.th
;
2998 int length
=(th
->doff
*4)-sizeof(struct tcphdr
);
3000 ptr
= (unsigned char *)(th
+ 1);
3010 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3015 if (opsize
< 2) /* "silly options" */
3017 if (opsize
> length
)
3018 return; /* don't parse partial options */
3021 if(opsize
==TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3022 u16 in_mss
= ntohs(*(__u16
*)ptr
);
3024 if (tp
->user_mss
&& tp
->user_mss
< in_mss
)
3025 in_mss
= tp
->user_mss
;
3026 tp
->mss_clamp
= in_mss
;
3031 if(opsize
==TCPOLEN_WINDOW
&& th
->syn
&& !estab
)
3032 if (sysctl_tcp_window_scaling
) {
3034 tp
->snd_wscale
= *(__u8
*)ptr
;
3035 if(tp
->snd_wscale
> 14) {
3037 printk("tcp_parse_options: Illegal window "
3038 "scaling value %d >14 received.",
3040 tp
->snd_wscale
= 14;
3044 case TCPOPT_TIMESTAMP
:
3045 if(opsize
==TCPOLEN_TIMESTAMP
) {
3046 if ((estab
&& tp
->tstamp_ok
) ||
3047 (!estab
&& sysctl_tcp_timestamps
)) {
3049 tp
->rcv_tsval
= ntohl(*(__u32
*)ptr
);
3050 tp
->rcv_tsecr
= ntohl(*(__u32
*)(ptr
+4));
3054 case TCPOPT_SACK_PERM
:
3055 if(opsize
==TCPOLEN_SACK_PERM
&& th
->syn
&& !estab
) {
3056 if (sysctl_tcp_sack
) {
3064 if((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3065 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3067 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3076 /* Fast parse options. This hopes to only see timestamps.
3077 * If it is wrong it falls back on tcp_parse_options().
3079 static __inline__
int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
, struct tcp_opt
*tp
)
3081 if (th
->doff
== sizeof(struct tcphdr
)>>2) {
3084 } else if (tp
->tstamp_ok
&&
3085 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
3086 __u32
*ptr
= (__u32
*)(th
+ 1);
3087 if (*ptr
== ntohl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3088 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3091 tp
->rcv_tsval
= ntohl(*ptr
);
3093 tp
->rcv_tsecr
= ntohl(*ptr
);
3097 tcp_parse_options(skb
, tp
, 1);
3101 static __inline__
void
3102 tcp_store_ts_recent(struct tcp_opt
*tp
)
3104 tp
->ts_recent
= tp
->rcv_tsval
;
3105 tp
->ts_recent_stamp
= xtime
.tv_sec
;
3108 static __inline__
void
3109 tcp_replace_ts_recent(struct tcp_opt
*tp
, u32 seq
)
3111 if (tp
->saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3112 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3113 * extra check below makes sure this can only happen
3114 * for pure ACK frames. -DaveM
3116 * Not only, also it occurs for expired timestamps.
3119 if((s32
)(tp
->rcv_tsval
- tp
->ts_recent
) >= 0 ||
3120 xtime
.tv_sec
>= tp
->ts_recent_stamp
+ TCP_PAWS_24DAYS
)
3121 tcp_store_ts_recent(tp
);
3125 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3127 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3128 * it can pass through stack. So, the following predicate verifies that
3129 * this segment is not used for anything but congestion avoidance or
3130 * fast retransmit. Moreover, we even are able to eliminate most of such
3131 * second order effects, if we apply some small "replay" window (~RTO)
3132 * to timestamp space.
3134 * All these measures still do not guarantee that we reject wrapped ACKs
3135 * on networks with high bandwidth, when sequence space is recycled fastly,
3136 * but it guarantees that such events will be very rare and do not affect
3137 * connection seriously. This doesn't look nice, but alas, PAWS is really
3140 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3141 * states that events when retransmit arrives after original data are rare.
3142 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3143 * the biggest problem on large power networks even with minor reordering.
3144 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3145 * up to bandwidth of 18Gigabit/sec. 8) ]
3148 static int tcp_disordered_ack(struct tcp_opt
*tp
, struct sk_buff
*skb
)
3150 struct tcphdr
*th
= skb
->h
.th
;
3151 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3152 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3154 return (/* 1. Pure ACK with correct sequence number. */
3155 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3157 /* 2. ... and duplicate ACK. */
3158 ack
== tp
->snd_una
&&
3160 /* 3. ... and does not update window. */
3161 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
)<<tp
->snd_wscale
) &&
3163 /* 4. ... and sits in replay window. */
3164 (s32
)(tp
->ts_recent
- tp
->rcv_tsval
) <= (tp
->rto
*1024)/HZ
);
3167 static __inline__
int tcp_paws_discard(struct tcp_opt
*tp
, struct sk_buff
*skb
)
3169 return ((s32
)(tp
->ts_recent
- tp
->rcv_tsval
) > TCP_PAWS_WINDOW
&&
3170 xtime
.tv_sec
< tp
->ts_recent_stamp
+ TCP_PAWS_24DAYS
&&
3171 !tcp_disordered_ack(tp
, skb
));
3174 /* Check segment sequence number for validity.
3176 * Segment controls are considered valid, if the segment
3177 * fits to the window after truncation to the window. Acceptability
3178 * of data (and SYN, FIN, of course) is checked separately.
3179 * See tcp_data_queue(), for example.
3181 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3182 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3183 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3184 * (borrowed from freebsd)
3187 static inline int tcp_sequence(struct tcp_opt
*tp
, u32 seq
, u32 end_seq
)
3189 return !before(end_seq
, tp
->rcv_wup
) &&
3190 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3193 /* When we get a reset we do this. */
3194 static void tcp_reset(struct sock
*sk
)
3196 /* We want the right error as BSD sees it (and indeed as we do). */
3197 switch (sk
->sk_state
) {
3199 sk
->sk_err
= ECONNREFUSED
;
3201 case TCP_CLOSE_WAIT
:
3207 sk
->sk_err
= ECONNRESET
;
3210 if (!sock_flag(sk
, SOCK_DEAD
))
3211 sk
->sk_error_report(sk
);
3217 * Process the FIN bit. This now behaves as it is supposed to work
3218 * and the FIN takes effect when it is validly part of sequence
3219 * space. Not before when we get holes.
3221 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3222 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3225 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3226 * close and we go into CLOSING (and later onto TIME-WAIT)
3228 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3230 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
3232 struct tcp_opt
*tp
= tcp_sk(sk
);
3234 tcp_schedule_ack(tp
);
3236 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
3237 sock_set_flag(sk
, SOCK_DONE
);
3239 switch (sk
->sk_state
) {
3241 case TCP_ESTABLISHED
:
3242 /* Move to CLOSE_WAIT */
3243 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
3244 tp
->ack
.pingpong
= 1;
3247 case TCP_CLOSE_WAIT
:
3249 /* Received a retransmission of the FIN, do
3254 /* RFC793: Remain in the LAST-ACK state. */
3258 /* This case occurs when a simultaneous close
3259 * happens, we must ack the received FIN and
3260 * enter the CLOSING state.
3263 tcp_set_state(sk
, TCP_CLOSING
);
3266 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3268 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
3271 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3272 * cases we should never reach this piece of code.
3274 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
3275 __FUNCTION__
, sk
->sk_state
);
3279 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3280 * Probably, we should reset in this case. For now drop them.
3282 __skb_queue_purge(&tp
->out_of_order_queue
);
3285 sk_stream_mem_reclaim(sk
);
3287 if (!sock_flag(sk
, SOCK_DEAD
)) {
3288 sk
->sk_state_change(sk
);
3290 /* Do not send POLL_HUP for half duplex close. */
3291 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
3292 sk
->sk_state
== TCP_CLOSE
)
3293 sk_wake_async(sk
, 1, POLL_HUP
);
3295 sk_wake_async(sk
, 1, POLL_IN
);
3299 static __inline__
int
3300 tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
, u32 end_seq
)
3302 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
3303 if (before(seq
, sp
->start_seq
))
3304 sp
->start_seq
= seq
;
3305 if (after(end_seq
, sp
->end_seq
))
3306 sp
->end_seq
= end_seq
;
3312 static __inline__
void tcp_dsack_set(struct tcp_opt
*tp
, u32 seq
, u32 end_seq
)
3314 if (tp
->sack_ok
&& sysctl_tcp_dsack
) {
3315 if (before(seq
, tp
->rcv_nxt
))
3316 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT
);
3318 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT
);
3321 tp
->duplicate_sack
[0].start_seq
= seq
;
3322 tp
->duplicate_sack
[0].end_seq
= end_seq
;
3323 tp
->eff_sacks
= min(tp
->num_sacks
+1, 4-tp
->tstamp_ok
);
3327 static __inline__
void tcp_dsack_extend(struct tcp_opt
*tp
, u32 seq
, u32 end_seq
)
3330 tcp_dsack_set(tp
, seq
, end_seq
);
3332 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
3335 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
3337 struct tcp_opt
*tp
= tcp_sk(sk
);
3339 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
3340 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3341 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
3342 tcp_enter_quickack_mode(tp
);
3344 if (tp
->sack_ok
&& sysctl_tcp_dsack
) {
3345 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3347 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
3348 end_seq
= tp
->rcv_nxt
;
3349 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, end_seq
);
3356 /* These routines update the SACK block as out-of-order packets arrive or
3357 * in-order packets close up the sequence space.
3359 static void tcp_sack_maybe_coalesce(struct tcp_opt
*tp
)
3362 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3363 struct tcp_sack_block
*swalk
= sp
+1;
3365 /* See if the recent change to the first SACK eats into
3366 * or hits the sequence space of other SACK blocks, if so coalesce.
3368 for (this_sack
= 1; this_sack
< tp
->num_sacks
; ) {
3369 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
3372 /* Zap SWALK, by moving every further SACK up by one slot.
3373 * Decrease num_sacks.
3376 tp
->eff_sacks
= min(tp
->num_sacks
+tp
->dsack
, 4-tp
->tstamp_ok
);
3377 for(i
=this_sack
; i
< tp
->num_sacks
; i
++)
3381 this_sack
++, swalk
++;
3385 static __inline__
void tcp_sack_swap(struct tcp_sack_block
*sack1
, struct tcp_sack_block
*sack2
)
3389 tmp
= sack1
->start_seq
;
3390 sack1
->start_seq
= sack2
->start_seq
;
3391 sack2
->start_seq
= tmp
;
3393 tmp
= sack1
->end_seq
;
3394 sack1
->end_seq
= sack2
->end_seq
;
3395 sack2
->end_seq
= tmp
;
3398 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
3400 struct tcp_opt
*tp
= tcp_sk(sk
);
3401 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3402 int cur_sacks
= tp
->num_sacks
;
3408 for (this_sack
=0; this_sack
<cur_sacks
; this_sack
++, sp
++) {
3409 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
3410 /* Rotate this_sack to the first one. */
3411 for (; this_sack
>0; this_sack
--, sp
--)
3412 tcp_sack_swap(sp
, sp
-1);
3414 tcp_sack_maybe_coalesce(tp
);
3419 /* Could not find an adjacent existing SACK, build a new one,
3420 * put it at the front, and shift everyone else down. We
3421 * always know there is at least one SACK present already here.
3423 * If the sack array is full, forget about the last one.
3425 if (this_sack
>= 4) {
3430 for(; this_sack
> 0; this_sack
--, sp
--)
3434 /* Build the new head SACK, and we're done. */
3435 sp
->start_seq
= seq
;
3436 sp
->end_seq
= end_seq
;
3438 tp
->eff_sacks
= min(tp
->num_sacks
+ tp
->dsack
, 4 - tp
->tstamp_ok
);
3441 /* RCV.NXT advances, some SACKs should be eaten. */
3443 static void tcp_sack_remove(struct tcp_opt
*tp
)
3445 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3446 int num_sacks
= tp
->num_sacks
;
3449 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3450 if (skb_queue_len(&tp
->out_of_order_queue
) == 0) {
3452 tp
->eff_sacks
= tp
->dsack
;
3456 for(this_sack
= 0; this_sack
< num_sacks
; ) {
3457 /* Check if the start of the sack is covered by RCV.NXT. */
3458 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
3461 /* RCV.NXT must cover all the block! */
3462 BUG_TRAP(!before(tp
->rcv_nxt
, sp
->end_seq
));
3464 /* Zap this SACK, by moving forward any other SACKS. */
3465 for (i
=this_sack
+1; i
< num_sacks
; i
++)
3466 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
3473 if (num_sacks
!= tp
->num_sacks
) {
3474 tp
->num_sacks
= num_sacks
;
3475 tp
->eff_sacks
= min(tp
->num_sacks
+tp
->dsack
, 4-tp
->tstamp_ok
);
3479 /* This one checks to see if we can put data from the
3480 * out_of_order queue into the receive_queue.
3482 static void tcp_ofo_queue(struct sock
*sk
)
3484 struct tcp_opt
*tp
= tcp_sk(sk
);
3485 __u32 dsack_high
= tp
->rcv_nxt
;
3486 struct sk_buff
*skb
;
3488 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
3489 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
3492 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
3493 __u32 dsack
= dsack_high
;
3494 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
3495 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
3496 tcp_dsack_extend(tp
, TCP_SKB_CB(skb
)->seq
, dsack
);
3499 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3500 SOCK_DEBUG(sk
, "ofo packet was already received \n");
3501 __skb_unlink(skb
, skb
->list
);
3505 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
3506 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3507 TCP_SKB_CB(skb
)->end_seq
);
3509 __skb_unlink(skb
, skb
->list
);
3510 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3511 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3513 tcp_fin(skb
, sk
, skb
->h
.th
);
3517 static int tcp_prune_queue(struct sock
*sk
);
3519 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
3521 struct tcphdr
*th
= skb
->h
.th
;
3522 struct tcp_opt
*tp
= tcp_sk(sk
);
3525 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
3529 __skb_pull(skb
, th
->doff
*4);
3531 TCP_ECN_accept_cwr(tp
, skb
);
3535 tp
->eff_sacks
= min_t(unsigned int, tp
->num_sacks
,
3539 /* Queue data for delivery to the user.
3540 * Packets in sequence go to the receive queue.
3541 * Out of sequence packets to the out_of_order_queue.
3543 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
3544 if (tcp_receive_window(tp
) == 0)
3547 /* Ok. In sequence. In window. */
3548 if (tp
->ucopy
.task
== current
&&
3549 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
3550 sock_owned_by_user(sk
) && !tp
->urg_data
) {
3551 int chunk
= min_t(unsigned int, skb
->len
,
3554 __set_current_state(TASK_RUNNING
);
3557 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
3558 tp
->ucopy
.len
-= chunk
;
3559 tp
->copied_seq
+= chunk
;
3560 eaten
= (chunk
== skb
->len
&& !th
->fin
);
3561 tcp_rcv_space_adjust(sk
);
3569 (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3570 !sk_stream_rmem_schedule(sk
, skb
))) {
3571 if (tcp_prune_queue(sk
) < 0 ||
3572 !sk_stream_rmem_schedule(sk
, skb
))
3575 sk_stream_set_owner_r(skb
, sk
);
3576 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3578 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3580 tcp_event_data_recv(sk
, tp
, skb
);
3582 tcp_fin(skb
, sk
, th
);
3584 if (skb_queue_len(&tp
->out_of_order_queue
)) {
3587 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3588 * gap in queue is filled.
3590 if (!skb_queue_len(&tp
->out_of_order_queue
))
3591 tp
->ack
.pingpong
= 0;
3595 tcp_sack_remove(tp
);
3597 tcp_fast_path_check(sk
, tp
);
3601 else if (!sock_flag(sk
, SOCK_DEAD
))
3602 sk
->sk_data_ready(sk
, 0);
3606 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3607 /* A retransmit, 2nd most common case. Force an immediate ack. */
3608 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
3609 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3612 tcp_enter_quickack_mode(tp
);
3613 tcp_schedule_ack(tp
);
3619 /* Out of window. F.e. zero window probe. */
3620 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
3623 tcp_enter_quickack_mode(tp
);
3625 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3626 /* Partial packet, seq < rcv_next < end_seq */
3627 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
3628 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3629 TCP_SKB_CB(skb
)->end_seq
);
3631 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
3633 /* If window is closed, drop tail of packet. But after
3634 * remembering D-SACK for its head made in previous line.
3636 if (!tcp_receive_window(tp
))
3641 TCP_ECN_check_ce(tp
, skb
);
3643 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3644 !sk_stream_rmem_schedule(sk
, skb
)) {
3645 if (tcp_prune_queue(sk
) < 0 ||
3646 !sk_stream_rmem_schedule(sk
, skb
))
3650 /* Disable header prediction. */
3652 tcp_schedule_ack(tp
);
3654 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
3655 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3657 sk_stream_set_owner_r(skb
, sk
);
3659 if (!skb_peek(&tp
->out_of_order_queue
)) {
3660 /* Initial out of order segment, build 1 SACK. */
3665 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
3666 tp
->selective_acks
[0].end_seq
=
3667 TCP_SKB_CB(skb
)->end_seq
;
3669 __skb_queue_head(&tp
->out_of_order_queue
,skb
);
3671 struct sk_buff
*skb1
= tp
->out_of_order_queue
.prev
;
3672 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3673 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3675 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
3676 __skb_append(skb1
, skb
);
3678 if (!tp
->num_sacks
||
3679 tp
->selective_acks
[0].end_seq
!= seq
)
3682 /* Common case: data arrive in order after hole. */
3683 tp
->selective_acks
[0].end_seq
= end_seq
;
3687 /* Find place to insert this segment. */
3689 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
3691 } while ((skb1
= skb1
->prev
) !=
3692 (struct sk_buff
*)&tp
->out_of_order_queue
);
3694 /* Do skb overlap to previous one? */
3695 if (skb1
!= (struct sk_buff
*)&tp
->out_of_order_queue
&&
3696 before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3697 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3698 /* All the bits are present. Drop. */
3700 tcp_dsack_set(tp
, seq
, end_seq
);
3703 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
3704 /* Partial overlap. */
3705 tcp_dsack_set(tp
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
3710 __skb_insert(skb
, skb1
, skb1
->next
, &tp
->out_of_order_queue
);
3712 /* And clean segments covered by new one as whole. */
3713 while ((skb1
= skb
->next
) !=
3714 (struct sk_buff
*)&tp
->out_of_order_queue
&&
3715 after(end_seq
, TCP_SKB_CB(skb1
)->seq
)) {
3716 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3717 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, end_seq
);
3720 __skb_unlink(skb1
, skb1
->list
);
3721 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, TCP_SKB_CB(skb1
)->end_seq
);
3727 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
3731 /* Collapse contiguous sequence of skbs head..tail with
3732 * sequence numbers start..end.
3733 * Segments with FIN/SYN are not collapsed (only because this
3737 tcp_collapse(struct sock
*sk
, struct sk_buff
*head
,
3738 struct sk_buff
*tail
, u32 start
, u32 end
)
3740 struct sk_buff
*skb
;
3742 /* First, check that queue is collapsable and find
3743 * the point where collapsing can be useful. */
3744 for (skb
= head
; skb
!= tail
; ) {
3745 /* No new bits? It is possible on ofo queue. */
3746 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3747 struct sk_buff
*next
= skb
->next
;
3748 __skb_unlink(skb
, skb
->list
);
3750 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3755 /* The first skb to collapse is:
3757 * - bloated or contains data before "start" or
3758 * overlaps to the next one.
3760 if (!skb
->h
.th
->syn
&& !skb
->h
.th
->fin
&&
3761 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
3762 before(TCP_SKB_CB(skb
)->seq
, start
) ||
3763 (skb
->next
!= tail
&&
3764 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
->next
)->seq
)))
3767 /* Decided to skip this, advance start seq. */
3768 start
= TCP_SKB_CB(skb
)->end_seq
;
3771 if (skb
== tail
|| skb
->h
.th
->syn
|| skb
->h
.th
->fin
)
3774 while (before(start
, end
)) {
3775 struct sk_buff
*nskb
;
3776 int header
= skb_headroom(skb
);
3777 int copy
= (PAGE_SIZE
- sizeof(struct sk_buff
) -
3778 sizeof(struct skb_shared_info
) - header
- 31)&~15;
3780 /* Too big header? This can happen with IPv6. */
3783 if (end
-start
< copy
)
3785 nskb
= alloc_skb(copy
+header
, GFP_ATOMIC
);
3788 skb_reserve(nskb
, header
);
3789 memcpy(nskb
->head
, skb
->head
, header
);
3790 nskb
->nh
.raw
= nskb
->head
+ (skb
->nh
.raw
-skb
->head
);
3791 nskb
->h
.raw
= nskb
->head
+ (skb
->h
.raw
-skb
->head
);
3792 nskb
->mac
.raw
= nskb
->head
+ (skb
->mac
.raw
-skb
->head
);
3793 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
3794 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
3795 __skb_insert(nskb
, skb
->prev
, skb
, skb
->list
);
3796 sk_stream_set_owner_r(nskb
, sk
);
3798 /* Copy data, releasing collapsed skbs. */
3800 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
3801 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
3803 if (offset
< 0) BUG();
3805 size
= min(copy
, size
);
3806 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
3808 TCP_SKB_CB(nskb
)->end_seq
+= size
;
3812 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3813 struct sk_buff
*next
= skb
->next
;
3814 __skb_unlink(skb
, skb
->list
);
3816 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3818 if (skb
== tail
|| skb
->h
.th
->syn
|| skb
->h
.th
->fin
)
3825 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3826 * and tcp_collapse() them until all the queue is collapsed.
3828 static void tcp_collapse_ofo_queue(struct sock
*sk
)
3830 struct tcp_opt
*tp
= tcp_sk(sk
);
3831 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
3832 struct sk_buff
*head
;
3838 start
= TCP_SKB_CB(skb
)->seq
;
3839 end
= TCP_SKB_CB(skb
)->end_seq
;
3845 /* Segment is terminated when we see gap or when
3846 * we are at the end of all the queue. */
3847 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
||
3848 after(TCP_SKB_CB(skb
)->seq
, end
) ||
3849 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
3850 tcp_collapse(sk
, head
, skb
, start
, end
);
3852 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
)
3854 /* Start new segment */
3855 start
= TCP_SKB_CB(skb
)->seq
;
3856 end
= TCP_SKB_CB(skb
)->end_seq
;
3858 if (before(TCP_SKB_CB(skb
)->seq
, start
))
3859 start
= TCP_SKB_CB(skb
)->seq
;
3860 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
3861 end
= TCP_SKB_CB(skb
)->end_seq
;
3866 /* Reduce allocated memory if we can, trying to get
3867 * the socket within its memory limits again.
3869 * Return less than zero if we should start dropping frames
3870 * until the socket owning process reads some of the data
3871 * to stabilize the situation.
3873 static int tcp_prune_queue(struct sock
*sk
)
3875 struct tcp_opt
*tp
= tcp_sk(sk
);
3877 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
3879 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED
);
3881 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
3882 tcp_clamp_window(sk
, tp
);
3883 else if (tcp_memory_pressure
)
3884 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
3886 tcp_collapse_ofo_queue(sk
);
3887 tcp_collapse(sk
, sk
->sk_receive_queue
.next
,
3888 (struct sk_buff
*)&sk
->sk_receive_queue
,
3889 tp
->copied_seq
, tp
->rcv_nxt
);
3890 sk_stream_mem_reclaim(sk
);
3892 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
3895 /* Collapsing did not help, destructive actions follow.
3896 * This must not ever occur. */
3898 /* First, purge the out_of_order queue. */
3899 if (skb_queue_len(&tp
->out_of_order_queue
)) {
3900 NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED
,
3901 skb_queue_len(&tp
->out_of_order_queue
));
3902 __skb_queue_purge(&tp
->out_of_order_queue
);
3904 /* Reset SACK state. A conforming SACK implementation will
3905 * do the same at a timeout based retransmit. When a connection
3906 * is in a sad state like this, we care only about integrity
3907 * of the connection not performance.
3911 sk_stream_mem_reclaim(sk
);
3914 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
3917 /* If we are really being abused, tell the caller to silently
3918 * drop receive data on the floor. It will get retransmitted
3919 * and hopefully then we'll have sufficient space.
3921 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED
);
3923 /* Massive buffer overcommit. */
3929 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3930 * As additional protections, we do not touch cwnd in retransmission phases,
3931 * and if application hit its sndbuf limit recently.
3933 void tcp_cwnd_application_limited(struct sock
*sk
)
3935 struct tcp_opt
*tp
= tcp_sk(sk
);
3937 if (tp
->ca_state
== TCP_CA_Open
&&
3938 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
3939 /* Limited by application or receiver window. */
3940 u32 win_used
= max(tp
->snd_cwnd_used
, 2U);
3941 if (win_used
< tp
->snd_cwnd
) {
3942 tp
->snd_ssthresh
= tcp_current_ssthresh(tp
);
3943 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
3945 tp
->snd_cwnd_used
= 0;
3947 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
3951 /* When incoming ACK allowed to free some skb from write_queue,
3952 * we remember this event in flag sk->sk_queue_shrunk and wake up socket
3953 * on the exit from tcp input handler.
3955 * PROBLEM: sndbuf expansion does not work well with largesend.
3957 static void tcp_new_space(struct sock
*sk
)
3959 struct tcp_opt
*tp
= tcp_sk(sk
);
3961 if (tcp_get_pcount(&tp
->packets_out
) < tp
->snd_cwnd
&&
3962 !(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
) &&
3963 !tcp_memory_pressure
&&
3964 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
3965 int sndmem
= max_t(u32
, tp
->mss_clamp
, tp
->mss_cache_std
) +
3966 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
),
3967 demanded
= max_t(unsigned int, tp
->snd_cwnd
,
3968 tp
->reordering
+ 1);
3969 sndmem
*= 2*demanded
;
3970 if (sndmem
> sk
->sk_sndbuf
)
3971 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
3972 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
3975 sk
->sk_write_space(sk
);
3978 static inline void tcp_check_space(struct sock
*sk
)
3980 if (sk
->sk_queue_shrunk
) {
3981 sk
->sk_queue_shrunk
= 0;
3982 if (sk
->sk_socket
&&
3983 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
3988 static void __tcp_data_snd_check(struct sock
*sk
, struct sk_buff
*skb
)
3990 struct tcp_opt
*tp
= tcp_sk(sk
);
3992 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
+ tp
->snd_wnd
) ||
3993 tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
||
3994 tcp_write_xmit(sk
, tp
->nonagle
))
3995 tcp_check_probe_timer(sk
, tp
);
3998 static __inline__
void tcp_data_snd_check(struct sock
*sk
)
4000 struct sk_buff
*skb
= sk
->sk_send_head
;
4003 __tcp_data_snd_check(sk
, skb
);
4004 tcp_check_space(sk
);
4008 * Check if sending an ack is needed.
4010 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4012 struct tcp_opt
*tp
= tcp_sk(sk
);
4014 /* More than one full frame received... */
4015 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > tp
->ack
.rcv_mss
4016 /* ... and right edge of window advances far enough.
4017 * (tcp_recvmsg() will send ACK otherwise). Or...
4019 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4020 /* We ACK each frame or... */
4021 tcp_in_quickack_mode(tp
) ||
4022 /* We have out of order data. */
4024 skb_peek(&tp
->out_of_order_queue
))) {
4025 /* Then ack it now */
4028 /* Else, send delayed ack. */
4029 tcp_send_delayed_ack(sk
);
4033 static __inline__
void tcp_ack_snd_check(struct sock
*sk
)
4035 struct tcp_opt
*tp
= tcp_sk(sk
);
4036 if (!tcp_ack_scheduled(tp
)) {
4037 /* We sent a data segment already. */
4040 __tcp_ack_snd_check(sk
, 1);
4044 * This routine is only called when we have urgent data
4045 * signalled. Its the 'slow' part of tcp_urg. It could be
4046 * moved inline now as tcp_urg is only called from one
4047 * place. We handle URGent data wrong. We have to - as
4048 * BSD still doesn't use the correction from RFC961.
4049 * For 1003.1g we should support a new option TCP_STDURG to permit
4050 * either form (or just set the sysctl tcp_stdurg).
4053 static void tcp_check_urg(struct sock
* sk
, struct tcphdr
* th
)
4055 struct tcp_opt
*tp
= tcp_sk(sk
);
4056 u32 ptr
= ntohs(th
->urg_ptr
);
4058 if (ptr
&& !sysctl_tcp_stdurg
)
4060 ptr
+= ntohl(th
->seq
);
4062 /* Ignore urgent data that we've already seen and read. */
4063 if (after(tp
->copied_seq
, ptr
))
4066 /* Do not replay urg ptr.
4068 * NOTE: interesting situation not covered by specs.
4069 * Misbehaving sender may send urg ptr, pointing to segment,
4070 * which we already have in ofo queue. We are not able to fetch
4071 * such data and will stay in TCP_URG_NOTYET until will be eaten
4072 * by recvmsg(). Seems, we are not obliged to handle such wicked
4073 * situations. But it is worth to think about possibility of some
4074 * DoSes using some hypothetical application level deadlock.
4076 if (before(ptr
, tp
->rcv_nxt
))
4079 /* Do we already have a newer (or duplicate) urgent pointer? */
4080 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4083 /* Tell the world about our new urgent pointer. */
4086 /* We may be adding urgent data when the last byte read was
4087 * urgent. To do this requires some care. We cannot just ignore
4088 * tp->copied_seq since we would read the last urgent byte again
4089 * as data, nor can we alter copied_seq until this data arrives
4090 * or we break the sematics of SIOCATMARK (and thus sockatmark())
4092 * NOTE. Double Dutch. Rendering to plain English: author of comment
4093 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4094 * and expect that both A and B disappear from stream. This is _wrong_.
4095 * Though this happens in BSD with high probability, this is occasional.
4096 * Any application relying on this is buggy. Note also, that fix "works"
4097 * only in this artificial test. Insert some normal data between A and B and we will
4098 * decline of BSD again. Verdict: it is better to remove to trap
4101 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
4102 !sock_flag(sk
, SOCK_URGINLINE
) &&
4103 tp
->copied_seq
!= tp
->rcv_nxt
) {
4104 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
4106 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4107 __skb_unlink(skb
, skb
->list
);
4112 tp
->urg_data
= TCP_URG_NOTYET
;
4115 /* Disable header prediction. */
4119 /* This is the 'fast' part of urgent handling. */
4120 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
4122 struct tcp_opt
*tp
= tcp_sk(sk
);
4124 /* Check if we get a new urgent pointer - normally not. */
4126 tcp_check_urg(sk
,th
);
4128 /* Do we wait for any urgent data? - normally not... */
4129 if (tp
->urg_data
== TCP_URG_NOTYET
) {
4130 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
4133 /* Is the urgent pointer pointing into this packet? */
4134 if (ptr
< skb
->len
) {
4136 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
4138 tp
->urg_data
= TCP_URG_VALID
| tmp
;
4139 if (!sock_flag(sk
, SOCK_DEAD
))
4140 sk
->sk_data_ready(sk
, 0);
4145 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4147 struct tcp_opt
*tp
= tcp_sk(sk
);
4148 int chunk
= skb
->len
- hlen
;
4152 if (skb
->ip_summed
==CHECKSUM_UNNECESSARY
)
4153 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
4155 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
4159 tp
->ucopy
.len
-= chunk
;
4160 tp
->copied_seq
+= chunk
;
4161 tcp_rcv_space_adjust(sk
);
4168 static int __tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
4172 if (sock_owned_by_user(sk
)) {
4174 result
= __tcp_checksum_complete(skb
);
4177 result
= __tcp_checksum_complete(skb
);
4182 static __inline__
int
4183 tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
4185 return skb
->ip_summed
!= CHECKSUM_UNNECESSARY
&&
4186 __tcp_checksum_complete_user(sk
, skb
);
4190 * TCP receive function for the ESTABLISHED state.
4192 * It is split into a fast path and a slow path. The fast path is
4194 * - A zero window was announced from us - zero window probing
4195 * is only handled properly in the slow path.
4196 * - Out of order segments arrived.
4197 * - Urgent data is expected.
4198 * - There is no buffer space left
4199 * - Unexpected TCP flags/window values/header lengths are received
4200 * (detected by checking the TCP header against pred_flags)
4201 * - Data is sent in both directions. Fast path only supports pure senders
4202 * or pure receivers (this means either the sequence number or the ack
4203 * value must stay constant)
4204 * - Unexpected TCP option.
4206 * When these conditions are not satisfied it drops into a standard
4207 * receive procedure patterned after RFC793 to handle all cases.
4208 * The first three cases are guaranteed by proper pred_flags setting,
4209 * the rest is checked inline. Fast processing is turned on in
4210 * tcp_data_queue when everything is OK.
4212 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
4213 struct tcphdr
*th
, unsigned len
)
4215 struct tcp_opt
*tp
= tcp_sk(sk
);
4218 * Header prediction.
4219 * The code loosely follows the one in the famous
4220 * "30 instruction TCP receive" Van Jacobson mail.
4222 * Van's trick is to deposit buffers into socket queue
4223 * on a device interrupt, to call tcp_recv function
4224 * on the receive process context and checksum and copy
4225 * the buffer to user space. smart...
4227 * Our current scheme is not silly either but we take the
4228 * extra cost of the net_bh soft interrupt processing...
4229 * We do checksum and copy also but from device to kernel.
4234 /* pred_flags is 0xS?10 << 16 + snd_wnd
4235 * if header_predition is to be made
4236 * 'S' will always be tp->tcp_header_len >> 2
4237 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4238 * turn it off (when there are holes in the receive
4239 * space for instance)
4240 * PSH flag is ignored.
4243 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
4244 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4245 int tcp_header_len
= tp
->tcp_header_len
;
4247 /* Timestamp header prediction: tcp_header_len
4248 * is automatically equal to th->doff*4 due to pred_flags
4252 /* Check timestamp */
4253 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
4254 __u32
*ptr
= (__u32
*)(th
+ 1);
4256 /* No? Slow path! */
4257 if (*ptr
!= ntohl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
4258 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
))
4263 tp
->rcv_tsval
= ntohl(*ptr
);
4265 tp
->rcv_tsecr
= ntohl(*ptr
);
4267 /* If PAWS failed, check it more carefully in slow path */
4268 if ((s32
)(tp
->rcv_tsval
- tp
->ts_recent
) < 0)
4271 /* DO NOT update ts_recent here, if checksum fails
4272 * and timestamp was corrupted part, it will result
4273 * in a hung connection since we will drop all
4274 * future packets due to the PAWS test.
4278 if (len
<= tcp_header_len
) {
4279 /* Bulk data transfer: sender */
4280 if (len
== tcp_header_len
) {
4281 /* Predicted packet is in window by definition.
4282 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4283 * Hence, check seq<=rcv_wup reduces to:
4285 if (tcp_header_len
==
4286 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
4287 tp
->rcv_nxt
== tp
->rcv_wup
)
4288 tcp_store_ts_recent(tp
);
4290 tcp_rcv_rtt_measure_ts(tp
, skb
);
4292 /* We know that such packets are checksummed
4295 tcp_ack(sk
, skb
, 0);
4297 tcp_data_snd_check(sk
);
4299 } else { /* Header too small */
4300 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4306 if (tp
->ucopy
.task
== current
&&
4307 tp
->copied_seq
== tp
->rcv_nxt
&&
4308 len
- tcp_header_len
<= tp
->ucopy
.len
&&
4309 sock_owned_by_user(sk
)) {
4310 __set_current_state(TASK_RUNNING
);
4312 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
4313 /* Predicted packet is in window by definition.
4314 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4315 * Hence, check seq<=rcv_wup reduces to:
4317 if (tcp_header_len
==
4318 (sizeof(struct tcphdr
) +
4319 TCPOLEN_TSTAMP_ALIGNED
) &&
4320 tp
->rcv_nxt
== tp
->rcv_wup
)
4321 tcp_store_ts_recent(tp
);
4323 tcp_rcv_rtt_measure_ts(tp
, skb
);
4325 __skb_pull(skb
, tcp_header_len
);
4326 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4327 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER
);
4332 if (tcp_checksum_complete_user(sk
, skb
))
4335 /* Predicted packet is in window by definition.
4336 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4337 * Hence, check seq<=rcv_wup reduces to:
4339 if (tcp_header_len
==
4340 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
4341 tp
->rcv_nxt
== tp
->rcv_wup
)
4342 tcp_store_ts_recent(tp
);
4344 tcp_rcv_rtt_measure_ts(tp
, skb
);
4346 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
4349 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS
);
4351 /* Bulk data transfer: receiver */
4352 __skb_pull(skb
,tcp_header_len
);
4353 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4354 sk_stream_set_owner_r(skb
, sk
);
4355 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4358 tcp_event_data_recv(sk
, tp
, skb
);
4360 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
4361 /* Well, only one small jumplet in fast path... */
4362 tcp_ack(sk
, skb
, FLAG_DATA
);
4363 tcp_data_snd_check(sk
);
4364 if (!tcp_ack_scheduled(tp
))
4369 if (tcp_in_quickack_mode(tp
)) {
4372 tcp_send_delayed_ack(sk
);
4375 __tcp_ack_snd_check(sk
, 0);
4382 sk
->sk_data_ready(sk
, 0);
4388 if (len
< (th
->doff
<<2) || tcp_checksum_complete_user(sk
, skb
))
4392 * RFC1323: H1. Apply PAWS check first.
4394 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->saw_tstamp
&&
4395 tcp_paws_discard(tp
, skb
)) {
4397 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4398 tcp_send_dupack(sk
, skb
);
4401 /* Resets are accepted even if PAWS failed.
4403 ts_recent update must be made after we are sure
4404 that the packet is in window.
4409 * Standard slow path.
4412 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4413 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4414 * (RST) segments are validated by checking their SEQ-fields."
4415 * And page 69: "If an incoming segment is not acceptable,
4416 * an acknowledgment should be sent in reply (unless the RST bit
4417 * is set, if so drop the segment and return)".
4420 tcp_send_dupack(sk
, skb
);
4429 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4431 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4432 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4433 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4440 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4442 tcp_rcv_rtt_measure_ts(tp
, skb
);
4444 /* Process urgent data. */
4445 tcp_urg(sk
, skb
, th
);
4447 /* step 7: process the segment text */
4448 tcp_data_queue(sk
, skb
);
4450 tcp_data_snd_check(sk
);
4451 tcp_ack_snd_check(sk
);
4455 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4462 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4463 struct tcphdr
*th
, unsigned len
)
4465 struct tcp_opt
*tp
= tcp_sk(sk
);
4466 int saved_clamp
= tp
->mss_clamp
;
4468 tcp_parse_options(skb
, tp
, 0);
4472 * "If the state is SYN-SENT then
4473 * first check the ACK bit
4474 * If the ACK bit is set
4475 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4476 * a reset (unless the RST bit is set, if so drop
4477 * the segment and return)"
4479 * We do not send data with SYN, so that RFC-correct
4482 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
4483 goto reset_and_undo
;
4485 if (tp
->saw_tstamp
&& tp
->rcv_tsecr
&&
4486 !between(tp
->rcv_tsecr
, tp
->retrans_stamp
,
4488 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED
);
4489 goto reset_and_undo
;
4492 /* Now ACK is acceptable.
4494 * "If the RST bit is set
4495 * If the ACK was acceptable then signal the user "error:
4496 * connection reset", drop the segment, enter CLOSED state,
4497 * delete TCB, and return."
4506 * "fifth, if neither of the SYN or RST bits is set then
4507 * drop the segment and return."
4513 goto discard_and_undo
;
4516 * "If the SYN bit is on ...
4517 * are acceptable then ...
4518 * (our SYN has been ACKed), change the connection
4519 * state to ESTABLISHED..."
4522 TCP_ECN_rcv_synack(tp
, th
);
4523 if (tp
->ecn_flags
&TCP_ECN_OK
)
4524 sk
->sk_no_largesend
= 1;
4526 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4527 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4529 /* Ok.. it's good. Set up sequence numbers and
4530 * move to established.
4532 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4533 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4535 /* RFC1323: The window in SYN & SYN/ACK segments is
4538 tp
->snd_wnd
= ntohs(th
->window
);
4539 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
, TCP_SKB_CB(skb
)->seq
);
4541 if (!tp
->wscale_ok
) {
4542 tp
->snd_wscale
= tp
->rcv_wscale
= 0;
4543 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
4546 if (tp
->saw_tstamp
) {
4548 tp
->tcp_header_len
=
4549 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4550 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
4551 tcp_store_ts_recent(tp
);
4553 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4556 if (tp
->sack_ok
&& sysctl_tcp_fack
)
4559 tcp_sync_mss(sk
, tp
->pmtu_cookie
);
4560 tcp_initialize_rcv_mss(sk
);
4562 /* Remember, tcp_poll() does not lock socket!
4563 * Change state from SYN-SENT only after copied_seq
4564 * is initialized. */
4565 tp
->copied_seq
= tp
->rcv_nxt
;
4567 tcp_set_state(sk
, TCP_ESTABLISHED
);
4569 /* Make sure socket is routed, for correct metrics. */
4570 tp
->af_specific
->rebuild_header(sk
);
4572 tcp_init_metrics(sk
);
4574 /* Prevent spurious tcp_cwnd_restart() on first data
4577 tp
->lsndtime
= tcp_time_stamp
;
4579 tcp_init_buffer_space(sk
);
4581 if (sock_flag(sk
, SOCK_KEEPOPEN
))
4582 tcp_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
4584 if (!tp
->snd_wscale
)
4585 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
4589 if (!sock_flag(sk
, SOCK_DEAD
)) {
4590 sk
->sk_state_change(sk
);
4591 sk_wake_async(sk
, 0, POLL_OUT
);
4594 if (sk
->sk_write_pending
|| tp
->defer_accept
|| tp
->ack
.pingpong
) {
4595 /* Save one ACK. Data will be ready after
4596 * several ticks, if write_pending is set.
4598 * It may be deleted, but with this feature tcpdumps
4599 * look so _wonderfully_ clever, that I was not able
4600 * to stand against the temptation 8) --ANK
4602 tcp_schedule_ack(tp
);
4603 tp
->ack
.lrcvtime
= tcp_time_stamp
;
4604 tp
->ack
.ato
= TCP_ATO_MIN
;
4605 tcp_incr_quickack(tp
);
4606 tcp_enter_quickack_mode(tp
);
4607 tcp_reset_xmit_timer(sk
, TCP_TIME_DACK
, TCP_DELACK_MAX
);
4618 /* No ACK in the segment */
4622 * "If the RST bit is set
4624 * Otherwise (no ACK) drop the segment and return."
4627 goto discard_and_undo
;
4631 if (tp
->ts_recent_stamp
&& tp
->saw_tstamp
&& tcp_paws_check(tp
, 0))
4632 goto discard_and_undo
;
4635 /* We see SYN without ACK. It is attempt of
4636 * simultaneous connect with crossed SYNs.
4637 * Particularly, it can be connect to self.
4639 tcp_set_state(sk
, TCP_SYN_RECV
);
4641 if (tp
->saw_tstamp
) {
4643 tcp_store_ts_recent(tp
);
4644 tp
->tcp_header_len
=
4645 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4647 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4650 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4651 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4653 /* RFC1323: The window in SYN & SYN/ACK segments is
4656 tp
->snd_wnd
= ntohs(th
->window
);
4657 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4658 tp
->max_window
= tp
->snd_wnd
;
4660 TCP_ECN_rcv_syn(tp
, th
);
4661 if (tp
->ecn_flags
&TCP_ECN_OK
)
4662 sk
->sk_no_largesend
= 1;
4664 tcp_sync_mss(sk
, tp
->pmtu_cookie
);
4665 tcp_initialize_rcv_mss(sk
);
4668 tcp_send_synack(sk
);
4670 /* Note, we could accept data and URG from this segment.
4671 * There are no obstacles to make this.
4673 * However, if we ignore data in ACKless segments sometimes,
4674 * we have no reasons to accept it sometimes.
4675 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4676 * is not flawless. So, discard packet for sanity.
4677 * Uncomment this return to process the data.
4684 /* "fifth, if neither of the SYN or RST bits is set then
4685 * drop the segment and return."
4689 tcp_clear_options(tp
);
4690 tp
->mss_clamp
= saved_clamp
;
4694 tcp_clear_options(tp
);
4695 tp
->mss_clamp
= saved_clamp
;
4701 * This function implements the receiving procedure of RFC 793 for
4702 * all states except ESTABLISHED and TIME_WAIT.
4703 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4704 * address independent.
4707 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4708 struct tcphdr
*th
, unsigned len
)
4710 struct tcp_opt
*tp
= tcp_sk(sk
);
4715 switch (sk
->sk_state
) {
4727 if(tp
->af_specific
->conn_request(sk
, skb
) < 0)
4733 /* Now we have several options: In theory there is
4734 * nothing else in the frame. KA9Q has an option to
4735 * send data with the syn, BSD accepts data with the
4736 * syn up to the [to be] advertised window and
4737 * Solaris 2.1 gives you a protocol error. For now
4738 * we just ignore it, that fits the spec precisely
4739 * and avoids incompatibilities. It would be nice in
4740 * future to drop through and process the data.
4742 * Now that TTCP is starting to be used we ought to
4744 * But, this leaves one open to an easy denial of
4745 * service attack, and SYN cookies can't defend
4746 * against this problem. So, we drop the data
4747 * in the interest of security over speed.
4757 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
4761 /* Do step6 onward by hand. */
4762 tcp_urg(sk
, skb
, th
);
4764 tcp_data_snd_check(sk
);
4768 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->saw_tstamp
&&
4769 tcp_paws_discard(tp
, skb
)) {
4771 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4772 tcp_send_dupack(sk
, skb
);
4775 /* Reset is accepted even if it did not pass PAWS. */
4778 /* step 1: check sequence number */
4779 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4781 tcp_send_dupack(sk
, skb
);
4785 /* step 2: check RST bit */
4791 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4793 /* step 3: check security and precedence [ignored] */
4797 * Check for a SYN in window.
4799 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4800 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4805 /* step 5: check the ACK field */
4807 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4809 switch(sk
->sk_state
) {
4812 tp
->copied_seq
= tp
->rcv_nxt
;
4814 tcp_set_state(sk
, TCP_ESTABLISHED
);
4815 sk
->sk_state_change(sk
);
4817 /* Note, that this wakeup is only for marginal
4818 * crossed SYN case. Passively open sockets
4819 * are not waked up, because sk->sk_sleep ==
4820 * NULL and sk->sk_socket == NULL.
4822 if (sk
->sk_socket
) {
4823 sk_wake_async(sk
,0,POLL_OUT
);
4826 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
4827 tp
->snd_wnd
= ntohs(th
->window
) <<
4829 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
,
4830 TCP_SKB_CB(skb
)->seq
);
4832 /* tcp_ack considers this ACK as duplicate
4833 * and does not calculate rtt.
4834 * Fix it at least with timestamps.
4836 if (tp
->saw_tstamp
&& tp
->rcv_tsecr
&&
4838 tcp_ack_saw_tstamp(tp
, 0);
4841 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
4843 /* Make sure socket is routed, for
4846 tp
->af_specific
->rebuild_header(sk
);
4848 tcp_init_metrics(sk
);
4850 /* Prevent spurious tcp_cwnd_restart() on
4851 * first data packet.
4853 tp
->lsndtime
= tcp_time_stamp
;
4855 tcp_initialize_rcv_mss(sk
);
4856 tcp_init_buffer_space(sk
);
4857 tcp_fast_path_on(tp
);
4864 if (tp
->snd_una
== tp
->write_seq
) {
4865 tcp_set_state(sk
, TCP_FIN_WAIT2
);
4866 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
4867 dst_confirm(sk
->sk_dst_cache
);
4869 if (!sock_flag(sk
, SOCK_DEAD
))
4870 /* Wake up lingering close() */
4871 sk
->sk_state_change(sk
);
4875 if (tp
->linger2
< 0 ||
4876 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4877 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
4879 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
4883 tmo
= tcp_fin_time(tp
);
4884 if (tmo
> TCP_TIMEWAIT_LEN
) {
4885 tcp_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
4886 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
4887 /* Bad case. We could lose such FIN otherwise.
4888 * It is not a big problem, but it looks confusing
4889 * and not so rare event. We still can lose it now,
4890 * if it spins in bh_lock_sock(), but it is really
4893 tcp_reset_keepalive_timer(sk
, tmo
);
4895 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
4903 if (tp
->snd_una
== tp
->write_seq
) {
4904 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4910 if (tp
->snd_una
== tp
->write_seq
) {
4911 tcp_update_metrics(sk
);
4920 /* step 6: check the URG bit */
4921 tcp_urg(sk
, skb
, th
);
4923 /* step 7: process the segment text */
4924 switch (sk
->sk_state
) {
4925 case TCP_CLOSE_WAIT
:
4928 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4932 /* RFC 793 says to queue data in these states,
4933 * RFC 1122 says we MUST send a reset.
4934 * BSD 4.4 also does reset.
4936 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
4937 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4938 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
4939 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
4945 case TCP_ESTABLISHED
:
4946 tcp_data_queue(sk
, skb
);
4951 /* tcp_data could move socket to TIME-WAIT */
4952 if (sk
->sk_state
!= TCP_CLOSE
) {
4953 tcp_data_snd_check(sk
);
4954 tcp_ack_snd_check(sk
);
4964 EXPORT_SYMBOL(sysctl_tcp_ecn
);
4965 EXPORT_SYMBOL(sysctl_tcp_reordering
);
4966 EXPORT_SYMBOL(tcp_cwnd_application_limited
);
4967 EXPORT_SYMBOL(tcp_parse_options
);
4968 EXPORT_SYMBOL(tcp_rcv_established
);
4969 EXPORT_SYMBOL(tcp_rcv_state_process
);