initial commit with v2.6.9
[linux-2.6.9-moxart.git] / net / ipv4 / ip_output.c
blob8ef2b82630a28a6d8029b3c08c8785e677794bd5
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
10 * Authors: Ross Biro, <bir7@leland.Stanford.Edu>
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
14 * Richard Underwood
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
20 * See ip_input.c for original log
22 * Fixes:
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
26 * no route is found.
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * datagrams.
44 * Hirokazu Takahashi: sendfile() on UDP works now.
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
53 #include <linux/mm.h>
54 #include <linux/string.h>
55 #include <linux/errno.h>
56 #include <linux/config.h>
58 #include <linux/socket.h>
59 #include <linux/sockios.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/stat.h>
66 #include <linux/init.h>
68 #include <net/snmp.h>
69 #include <net/ip.h>
70 #include <net/protocol.h>
71 #include <net/route.h>
72 #include <net/tcp.h>
73 #include <net/udp.h>
74 #include <linux/skbuff.h>
75 #include <net/sock.h>
76 #include <net/arp.h>
77 #include <net/icmp.h>
78 #include <net/raw.h>
79 #include <net/checksum.h>
80 #include <net/inetpeer.h>
81 #include <net/checksum.h>
82 #include <linux/igmp.h>
83 #include <linux/netfilter_ipv4.h>
84 #include <linux/netfilter_bridge.h>
85 #include <linux/mroute.h>
86 #include <linux/netlink.h>
89 * Shall we try to damage output packets if routing dev changes?
92 int sysctl_ip_dynaddr;
93 int sysctl_ip_default_ttl = IPDEFTTL;
95 /* Generate a checksum for an outgoing IP datagram. */
96 __inline__ void ip_send_check(struct iphdr *iph)
98 iph->check = 0;
99 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
102 /* dev_loopback_xmit for use with netfilter. */
103 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
105 newskb->mac.raw = newskb->data;
106 __skb_pull(newskb, newskb->nh.raw - newskb->data);
107 newskb->pkt_type = PACKET_LOOPBACK;
108 newskb->ip_summed = CHECKSUM_UNNECESSARY;
109 BUG_TRAP(newskb->dst);
111 #ifdef CONFIG_NETFILTER_DEBUG
112 nf_debug_ip_loopback_xmit(newskb);
113 #endif
114 netif_rx(newskb);
115 return 0;
118 static inline int ip_select_ttl(struct inet_opt *inet, struct dst_entry *dst)
120 int ttl = inet->uc_ttl;
122 if (ttl < 0)
123 ttl = dst_metric(dst, RTAX_HOPLIMIT);
124 return ttl;
128 * Add an ip header to a skbuff and send it out.
131 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
132 u32 saddr, u32 daddr, struct ip_options *opt)
134 struct inet_opt *inet = inet_sk(sk);
135 struct rtable *rt = (struct rtable *)skb->dst;
136 struct iphdr *iph;
138 /* Build the IP header. */
139 if (opt)
140 iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr) + opt->optlen);
141 else
142 iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr));
144 iph->version = 4;
145 iph->ihl = 5;
146 iph->tos = inet->tos;
147 if (ip_dont_fragment(sk, &rt->u.dst))
148 iph->frag_off = htons(IP_DF);
149 else
150 iph->frag_off = 0;
151 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
152 iph->daddr = rt->rt_dst;
153 iph->saddr = rt->rt_src;
154 iph->protocol = sk->sk_protocol;
155 iph->tot_len = htons(skb->len);
156 ip_select_ident(iph, &rt->u.dst, sk);
157 skb->nh.iph = iph;
159 if (opt && opt->optlen) {
160 iph->ihl += opt->optlen>>2;
161 ip_options_build(skb, opt, daddr, rt, 0);
163 ip_send_check(iph);
165 skb->priority = sk->sk_priority;
167 /* Send it out. */
168 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
169 dst_output);
172 static inline int ip_finish_output2(struct sk_buff *skb)
174 struct dst_entry *dst = skb->dst;
175 struct hh_cache *hh = dst->hh;
176 struct net_device *dev = dst->dev;
177 int hh_len = LL_RESERVED_SPACE(dev);
179 /* Be paranoid, rather than too clever. */
180 if (unlikely(skb_headroom(skb) < hh_len && dev->hard_header)) {
181 struct sk_buff *skb2;
183 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
184 if (skb2 == NULL) {
185 kfree_skb(skb);
186 return -ENOMEM;
188 if (skb->sk)
189 skb_set_owner_w(skb2, skb->sk);
190 kfree_skb(skb);
191 skb = skb2;
194 #ifdef CONFIG_NETFILTER_DEBUG
195 nf_debug_ip_finish_output2(skb);
196 #endif /*CONFIG_NETFILTER_DEBUG*/
198 if (hh) {
199 int hh_alen;
201 read_lock_bh(&hh->hh_lock);
202 hh_alen = HH_DATA_ALIGN(hh->hh_len);
203 memcpy(skb->data - hh_alen, hh->hh_data, hh_alen);
204 read_unlock_bh(&hh->hh_lock);
205 skb_push(skb, hh->hh_len);
206 return hh->hh_output(skb);
207 } else if (dst->neighbour)
208 return dst->neighbour->output(skb);
210 if (net_ratelimit())
211 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
212 kfree_skb(skb);
213 return -EINVAL;
216 int ip_finish_output(struct sk_buff *skb)
218 struct net_device *dev = skb->dst->dev;
220 skb->dev = dev;
221 skb->protocol = htons(ETH_P_IP);
223 return NF_HOOK(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
224 ip_finish_output2);
227 int ip_mc_output(struct sk_buff **pskb)
229 struct sk_buff *skb = *pskb;
230 struct sock *sk = skb->sk;
231 struct rtable *rt = (struct rtable*)skb->dst;
232 struct net_device *dev = rt->u.dst.dev;
235 * If the indicated interface is up and running, send the packet.
237 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
239 skb->dev = dev;
240 skb->protocol = htons(ETH_P_IP);
243 * Multicasts are looped back for other local users
246 if (rt->rt_flags&RTCF_MULTICAST) {
247 if ((!sk || inet_sk(sk)->mc_loop)
248 #ifdef CONFIG_IP_MROUTE
249 /* Small optimization: do not loopback not local frames,
250 which returned after forwarding; they will be dropped
251 by ip_mr_input in any case.
252 Note, that local frames are looped back to be delivered
253 to local recipients.
255 This check is duplicated in ip_mr_input at the moment.
257 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
258 #endif
260 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
261 if (newskb)
262 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
263 newskb->dev,
264 ip_dev_loopback_xmit);
267 /* Multicasts with ttl 0 must not go beyond the host */
269 if (skb->nh.iph->ttl == 0) {
270 kfree_skb(skb);
271 return 0;
275 if (rt->rt_flags&RTCF_BROADCAST) {
276 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
277 if (newskb)
278 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
279 newskb->dev, ip_dev_loopback_xmit);
282 if (skb->len > dst_pmtu(&rt->u.dst) || skb_shinfo(skb)->frag_list)
283 return ip_fragment(skb, ip_finish_output);
284 else
285 return ip_finish_output(skb);
288 int ip_output(struct sk_buff **pskb)
290 struct sk_buff *skb = *pskb;
292 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
294 if ((skb->len > dst_pmtu(skb->dst) || skb_shinfo(skb)->frag_list) &&
295 !skb_shinfo(skb)->tso_size)
296 return ip_fragment(skb, ip_finish_output);
297 else
298 return ip_finish_output(skb);
301 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
303 struct sock *sk = skb->sk;
304 struct inet_opt *inet = inet_sk(sk);
305 struct ip_options *opt = inet->opt;
306 struct rtable *rt;
307 struct iphdr *iph;
309 /* Skip all of this if the packet is already routed,
310 * f.e. by something like SCTP.
312 rt = (struct rtable *) skb->dst;
313 if (rt != NULL)
314 goto packet_routed;
316 /* Make sure we can route this packet. */
317 rt = (struct rtable *)__sk_dst_check(sk, 0);
318 if (rt == NULL) {
319 u32 daddr;
321 /* Use correct destination address if we have options. */
322 daddr = inet->daddr;
323 if(opt && opt->srr)
324 daddr = opt->faddr;
327 struct flowi fl = { .oif = sk->sk_bound_dev_if,
328 .nl_u = { .ip4_u =
329 { .daddr = daddr,
330 .saddr = inet->saddr,
331 .tos = RT_CONN_FLAGS(sk) } },
332 .proto = sk->sk_protocol,
333 .uli_u = { .ports =
334 { .sport = inet->sport,
335 .dport = inet->dport } } };
337 /* If this fails, retransmit mechanism of transport layer will
338 * keep trying until route appears or the connection times
339 * itself out.
341 if (ip_route_output_flow(&rt, &fl, sk, 0))
342 goto no_route;
344 __sk_dst_set(sk, &rt->u.dst);
345 tcp_v4_setup_caps(sk, &rt->u.dst);
347 skb->dst = dst_clone(&rt->u.dst);
349 packet_routed:
350 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
351 goto no_route;
353 /* OK, we know where to send it, allocate and build IP header. */
354 iph = (struct iphdr *) skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
355 *((__u16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
356 iph->tot_len = htons(skb->len);
357 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
358 iph->frag_off = htons(IP_DF);
359 else
360 iph->frag_off = 0;
361 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
362 iph->protocol = sk->sk_protocol;
363 iph->saddr = rt->rt_src;
364 iph->daddr = rt->rt_dst;
365 skb->nh.iph = iph;
366 /* Transport layer set skb->h.foo itself. */
368 if (opt && opt->optlen) {
369 iph->ihl += opt->optlen >> 2;
370 ip_options_build(skb, opt, inet->daddr, rt, 0);
373 ip_select_ident_more(iph, &rt->u.dst, sk, skb_shinfo(skb)->tso_segs);
375 /* Add an IP checksum. */
376 ip_send_check(iph);
378 skb->priority = sk->sk_priority;
380 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
381 dst_output);
383 no_route:
384 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
385 kfree_skb(skb);
386 return -EHOSTUNREACH;
390 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
392 to->pkt_type = from->pkt_type;
393 to->priority = from->priority;
394 to->protocol = from->protocol;
395 to->security = from->security;
396 to->dst = dst_clone(from->dst);
397 to->dev = from->dev;
399 /* Copy the flags to each fragment. */
400 IPCB(to)->flags = IPCB(from)->flags;
402 #ifdef CONFIG_NET_SCHED
403 to->tc_index = from->tc_index;
404 #endif
405 #ifdef CONFIG_NETFILTER
406 to->nfmark = from->nfmark;
407 to->nfcache = from->nfcache;
408 /* Connection association is same as pre-frag packet */
409 nf_conntrack_put(to->nfct);
410 to->nfct = from->nfct;
411 nf_conntrack_get(to->nfct);
412 to->nfctinfo = from->nfctinfo;
413 #ifdef CONFIG_BRIDGE_NETFILTER
414 nf_bridge_put(to->nf_bridge);
415 to->nf_bridge = from->nf_bridge;
416 nf_bridge_get(to->nf_bridge);
417 #endif
418 #ifdef CONFIG_NETFILTER_DEBUG
419 to->nf_debug = from->nf_debug;
420 #endif
421 #endif
425 * This IP datagram is too large to be sent in one piece. Break it up into
426 * smaller pieces (each of size equal to IP header plus
427 * a block of the data of the original IP data part) that will yet fit in a
428 * single device frame, and queue such a frame for sending.
431 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
433 struct iphdr *iph;
434 int raw = 0;
435 int ptr;
436 struct net_device *dev;
437 struct sk_buff *skb2;
438 unsigned int mtu, hlen, left, len, ll_rs;
439 int offset;
440 int not_last_frag;
441 struct rtable *rt = (struct rtable*)skb->dst;
442 int err = 0;
444 dev = rt->u.dst.dev;
447 * Point into the IP datagram header.
450 iph = skb->nh.iph;
452 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
453 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
454 htonl(dst_pmtu(&rt->u.dst)));
455 kfree_skb(skb);
456 return -EMSGSIZE;
460 * Setup starting values.
463 hlen = iph->ihl * 4;
464 mtu = dst_pmtu(&rt->u.dst) - hlen; /* Size of data space */
466 /* When frag_list is given, use it. First, check its validity:
467 * some transformers could create wrong frag_list or break existing
468 * one, it is not prohibited. In this case fall back to copying.
470 * LATER: this step can be merged to real generation of fragments,
471 * we can switch to copy when see the first bad fragment.
473 if (skb_shinfo(skb)->frag_list) {
474 struct sk_buff *frag;
475 int first_len = skb_pagelen(skb);
477 if (first_len - hlen > mtu ||
478 ((first_len - hlen) & 7) ||
479 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
480 skb_cloned(skb))
481 goto slow_path;
483 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
484 /* Correct geometry. */
485 if (frag->len > mtu ||
486 ((frag->len & 7) && frag->next) ||
487 skb_headroom(frag) < hlen)
488 goto slow_path;
490 /* Partially cloned skb? */
491 if (skb_shared(frag))
492 goto slow_path;
495 /* Everything is OK. Generate! */
497 err = 0;
498 offset = 0;
499 frag = skb_shinfo(skb)->frag_list;
500 skb_shinfo(skb)->frag_list = NULL;
501 skb->data_len = first_len - skb_headlen(skb);
502 skb->len = first_len;
503 iph->tot_len = htons(first_len);
504 iph->frag_off |= htons(IP_MF);
505 ip_send_check(iph);
507 for (;;) {
508 /* Prepare header of the next frame,
509 * before previous one went down. */
510 if (frag) {
511 frag->h.raw = frag->data;
512 frag->nh.raw = __skb_push(frag, hlen);
513 memcpy(frag->nh.raw, iph, hlen);
514 iph = frag->nh.iph;
515 iph->tot_len = htons(frag->len);
516 ip_copy_metadata(frag, skb);
517 if (offset == 0)
518 ip_options_fragment(frag);
519 offset += skb->len - hlen;
520 iph->frag_off = htons(offset>>3);
521 if (frag->next != NULL)
522 iph->frag_off |= htons(IP_MF);
523 /* Ready, complete checksum */
524 ip_send_check(iph);
527 err = output(skb);
529 if (err || !frag)
530 break;
532 skb = frag;
533 frag = skb->next;
534 skb->next = NULL;
537 if (err == 0) {
538 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
539 return 0;
542 while (frag) {
543 skb = frag->next;
544 kfree_skb(frag);
545 frag = skb;
547 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
548 return err;
551 slow_path:
552 left = skb->len - hlen; /* Space per frame */
553 ptr = raw + hlen; /* Where to start from */
555 #ifdef CONFIG_BRIDGE_NETFILTER
556 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
557 * we need to make room for the encapsulating header */
558 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, nf_bridge_pad(skb));
559 mtu -= nf_bridge_pad(skb);
560 #else
561 ll_rs = LL_RESERVED_SPACE(rt->u.dst.dev);
562 #endif
564 * Fragment the datagram.
567 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
568 not_last_frag = iph->frag_off & htons(IP_MF);
571 * Keep copying data until we run out.
574 while(left > 0) {
575 len = left;
576 /* IF: it doesn't fit, use 'mtu' - the data space left */
577 if (len > mtu)
578 len = mtu;
579 /* IF: we are not sending upto and including the packet end
580 then align the next start on an eight byte boundary */
581 if (len < left) {
582 len &= ~7;
585 * Allocate buffer.
588 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
589 NETDEBUG(printk(KERN_INFO "IP: frag: no memory for new fragment!\n"));
590 err = -ENOMEM;
591 goto fail;
595 * Set up data on packet
598 ip_copy_metadata(skb2, skb);
599 skb_reserve(skb2, ll_rs);
600 skb_put(skb2, len + hlen);
601 skb2->nh.raw = skb2->data;
602 skb2->h.raw = skb2->data + hlen;
605 * Charge the memory for the fragment to any owner
606 * it might possess
609 if (skb->sk)
610 skb_set_owner_w(skb2, skb->sk);
613 * Copy the packet header into the new buffer.
616 memcpy(skb2->nh.raw, skb->data, hlen);
619 * Copy a block of the IP datagram.
621 if (skb_copy_bits(skb, ptr, skb2->h.raw, len))
622 BUG();
623 left -= len;
626 * Fill in the new header fields.
628 iph = skb2->nh.iph;
629 iph->frag_off = htons((offset >> 3));
631 /* ANK: dirty, but effective trick. Upgrade options only if
632 * the segment to be fragmented was THE FIRST (otherwise,
633 * options are already fixed) and make it ONCE
634 * on the initial skb, so that all the following fragments
635 * will inherit fixed options.
637 if (offset == 0)
638 ip_options_fragment(skb);
641 * Added AC : If we are fragmenting a fragment that's not the
642 * last fragment then keep MF on each bit
644 if (left > 0 || not_last_frag)
645 iph->frag_off |= htons(IP_MF);
646 ptr += len;
647 offset += len;
650 * Put this fragment into the sending queue.
653 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
655 iph->tot_len = htons(len + hlen);
657 ip_send_check(iph);
659 err = output(skb2);
660 if (err)
661 goto fail;
663 kfree_skb(skb);
664 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
665 return err;
667 fail:
668 kfree_skb(skb);
669 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
670 return err;
674 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
676 struct iovec *iov = from;
678 if (skb->ip_summed == CHECKSUM_HW) {
679 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
680 return -EFAULT;
681 } else {
682 unsigned int csum = 0;
683 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
684 return -EFAULT;
685 skb->csum = csum_block_add(skb->csum, csum, odd);
687 return 0;
690 static inline unsigned int
691 csum_page(struct page *page, int offset, int copy)
693 char *kaddr;
694 unsigned int csum;
695 kaddr = kmap(page);
696 csum = csum_partial(kaddr + offset, copy, 0);
697 kunmap(page);
698 return csum;
702 * ip_append_data() and ip_append_page() can make one large IP datagram
703 * from many pieces of data. Each pieces will be holded on the socket
704 * until ip_push_pending_frames() is called. Each piece can be a page
705 * or non-page data.
707 * Not only UDP, other transport protocols - e.g. raw sockets - can use
708 * this interface potentially.
710 * LATER: length must be adjusted by pad at tail, when it is required.
712 int ip_append_data(struct sock *sk,
713 int getfrag(void *from, char *to, int offset, int len,
714 int odd, struct sk_buff *skb),
715 void *from, int length, int transhdrlen,
716 struct ipcm_cookie *ipc, struct rtable *rt,
717 unsigned int flags)
719 struct inet_opt *inet = inet_sk(sk);
720 struct sk_buff *skb;
722 struct ip_options *opt = NULL;
723 int hh_len;
724 int exthdrlen;
725 int mtu;
726 int copy;
727 int err;
728 int offset = 0;
729 unsigned int maxfraglen, fragheaderlen;
730 int csummode = CHECKSUM_NONE;
732 if (flags&MSG_PROBE)
733 return 0;
735 if (skb_queue_empty(&sk->sk_write_queue)) {
737 * setup for corking.
739 opt = ipc->opt;
740 if (opt) {
741 if (inet->cork.opt == NULL) {
742 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
743 if (unlikely(inet->cork.opt == NULL))
744 return -ENOBUFS;
746 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
747 inet->cork.flags |= IPCORK_OPT;
748 inet->cork.addr = ipc->addr;
750 dst_hold(&rt->u.dst);
751 inet->cork.fragsize = mtu = dst_pmtu(&rt->u.dst);
752 inet->cork.rt = rt;
753 inet->cork.length = 0;
754 sk->sk_sndmsg_page = NULL;
755 sk->sk_sndmsg_off = 0;
756 if ((exthdrlen = rt->u.dst.header_len) != 0) {
757 length += exthdrlen;
758 transhdrlen += exthdrlen;
760 } else {
761 rt = inet->cork.rt;
762 if (inet->cork.flags & IPCORK_OPT)
763 opt = inet->cork.opt;
765 transhdrlen = 0;
766 exthdrlen = 0;
767 mtu = inet->cork.fragsize;
769 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
771 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
772 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
774 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
775 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
776 return -EMSGSIZE;
780 * transhdrlen > 0 means that this is the first fragment and we wish
781 * it won't be fragmented in the future.
783 if (transhdrlen &&
784 length + fragheaderlen <= mtu &&
785 rt->u.dst.dev->features&(NETIF_F_IP_CSUM|NETIF_F_NO_CSUM|NETIF_F_HW_CSUM) &&
786 !exthdrlen)
787 csummode = CHECKSUM_HW;
789 inet->cork.length += length;
791 /* So, what's going on in the loop below?
793 * We use calculated fragment length to generate chained skb,
794 * each of segments is IP fragment ready for sending to network after
795 * adding appropriate IP header.
798 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
799 goto alloc_new_skb;
801 while (length > 0) {
802 /* Check if the remaining data fits into current packet. */
803 copy = mtu - skb->len;
804 if (copy < length)
805 copy = maxfraglen - skb->len;
806 if (copy <= 0) {
807 char *data;
808 unsigned int datalen;
809 unsigned int fraglen;
810 unsigned int fraggap;
811 unsigned int alloclen;
812 struct sk_buff *skb_prev;
813 alloc_new_skb:
814 skb_prev = skb;
815 if (skb_prev)
816 fraggap = skb_prev->len - maxfraglen;
817 else
818 fraggap = 0;
821 * If remaining data exceeds the mtu,
822 * we know we need more fragment(s).
824 datalen = length + fraggap;
825 if (datalen > mtu - fragheaderlen)
826 datalen = maxfraglen - fragheaderlen;
827 fraglen = datalen + fragheaderlen;
829 if ((flags & MSG_MORE) &&
830 !(rt->u.dst.dev->features&NETIF_F_SG))
831 alloclen = mtu;
832 else
833 alloclen = datalen + fragheaderlen;
835 /* The last fragment gets additional space at tail.
836 * Note, with MSG_MORE we overallocate on fragments,
837 * because we have no idea what fragment will be
838 * the last.
840 if (datalen == length)
841 alloclen += rt->u.dst.trailer_len;
843 if (transhdrlen) {
844 skb = sock_alloc_send_skb(sk,
845 alloclen + hh_len + 15,
846 (flags & MSG_DONTWAIT), &err);
847 } else {
848 skb = NULL;
849 if (atomic_read(&sk->sk_wmem_alloc) <=
850 2 * sk->sk_sndbuf)
851 skb = sock_wmalloc(sk,
852 alloclen + hh_len + 15, 1,
853 sk->sk_allocation);
854 if (unlikely(skb == NULL))
855 err = -ENOBUFS;
857 if (skb == NULL)
858 goto error;
861 * Fill in the control structures
863 skb->ip_summed = csummode;
864 skb->csum = 0;
865 skb_reserve(skb, hh_len);
868 * Find where to start putting bytes.
870 data = skb_put(skb, fraglen);
871 skb->nh.raw = data + exthdrlen;
872 data += fragheaderlen;
873 skb->h.raw = data + exthdrlen;
875 if (fraggap) {
876 skb->csum = skb_copy_and_csum_bits(
877 skb_prev, maxfraglen,
878 data + transhdrlen, fraggap, 0);
879 skb_prev->csum = csum_sub(skb_prev->csum,
880 skb->csum);
881 data += fraggap;
882 skb_trim(skb_prev, maxfraglen);
885 copy = datalen - transhdrlen - fraggap;
886 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
887 err = -EFAULT;
888 kfree_skb(skb);
889 goto error;
892 offset += copy;
893 length -= datalen - fraggap;
894 transhdrlen = 0;
895 exthdrlen = 0;
896 csummode = CHECKSUM_NONE;
899 * Put the packet on the pending queue.
901 __skb_queue_tail(&sk->sk_write_queue, skb);
902 continue;
905 if (copy > length)
906 copy = length;
908 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
909 unsigned int off;
911 off = skb->len;
912 if (getfrag(from, skb_put(skb, copy),
913 offset, copy, off, skb) < 0) {
914 __skb_trim(skb, off);
915 err = -EFAULT;
916 goto error;
918 } else {
919 int i = skb_shinfo(skb)->nr_frags;
920 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
921 struct page *page = sk->sk_sndmsg_page;
922 int off = sk->sk_sndmsg_off;
923 unsigned int left;
925 if (page && (left = PAGE_SIZE - off) > 0) {
926 if (copy >= left)
927 copy = left;
928 if (page != frag->page) {
929 if (i == MAX_SKB_FRAGS) {
930 err = -EMSGSIZE;
931 goto error;
933 get_page(page);
934 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
935 frag = &skb_shinfo(skb)->frags[i];
937 } else if (i < MAX_SKB_FRAGS) {
938 if (copy > PAGE_SIZE)
939 copy = PAGE_SIZE;
940 page = alloc_pages(sk->sk_allocation, 0);
941 if (page == NULL) {
942 err = -ENOMEM;
943 goto error;
945 sk->sk_sndmsg_page = page;
946 sk->sk_sndmsg_off = 0;
948 skb_fill_page_desc(skb, i, page, 0, 0);
949 frag = &skb_shinfo(skb)->frags[i];
950 skb->truesize += PAGE_SIZE;
951 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
952 } else {
953 err = -EMSGSIZE;
954 goto error;
956 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
957 err = -EFAULT;
958 goto error;
960 sk->sk_sndmsg_off += copy;
961 frag->size += copy;
962 skb->len += copy;
963 skb->data_len += copy;
965 offset += copy;
966 length -= copy;
969 return 0;
971 error:
972 inet->cork.length -= length;
973 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
974 return err;
977 ssize_t ip_append_page(struct sock *sk, struct page *page,
978 int offset, size_t size, int flags)
980 struct inet_opt *inet = inet_sk(sk);
981 struct sk_buff *skb;
982 struct rtable *rt;
983 struct ip_options *opt = NULL;
984 int hh_len;
985 int mtu;
986 int len;
987 int err;
988 unsigned int maxfraglen, fragheaderlen, fraggap;
990 if (inet->hdrincl)
991 return -EPERM;
993 if (flags&MSG_PROBE)
994 return 0;
996 if (skb_queue_empty(&sk->sk_write_queue))
997 return -EINVAL;
999 rt = inet->cork.rt;
1000 if (inet->cork.flags & IPCORK_OPT)
1001 opt = inet->cork.opt;
1003 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1004 return -EOPNOTSUPP;
1006 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1007 mtu = inet->cork.fragsize;
1009 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1010 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1012 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1013 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1014 return -EMSGSIZE;
1017 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1018 return -EINVAL;
1020 inet->cork.length += size;
1022 while (size > 0) {
1023 int i;
1025 /* Check if the remaining data fits into current packet. */
1026 len = mtu - skb->len;
1027 if (len < size)
1028 len = maxfraglen - skb->len;
1029 if (len <= 0) {
1030 struct sk_buff *skb_prev;
1031 char *data;
1032 struct iphdr *iph;
1033 int alloclen;
1035 skb_prev = skb;
1036 if (skb_prev)
1037 fraggap = skb_prev->len - maxfraglen;
1038 else
1039 fraggap = 0;
1041 alloclen = fragheaderlen + hh_len + fraggap + 15;
1042 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1043 if (unlikely(!skb)) {
1044 err = -ENOBUFS;
1045 goto error;
1049 * Fill in the control structures
1051 skb->ip_summed = CHECKSUM_NONE;
1052 skb->csum = 0;
1053 skb_reserve(skb, hh_len);
1056 * Find where to start putting bytes.
1058 data = skb_put(skb, fragheaderlen + fraggap);
1059 skb->nh.iph = iph = (struct iphdr *)data;
1060 data += fragheaderlen;
1061 skb->h.raw = data;
1063 if (fraggap) {
1064 skb->csum = skb_copy_and_csum_bits(
1065 skb_prev, maxfraglen,
1066 data, fraggap, 0);
1067 skb_prev->csum = csum_sub(skb_prev->csum,
1068 skb->csum);
1069 skb_trim(skb_prev, maxfraglen);
1073 * Put the packet on the pending queue.
1075 __skb_queue_tail(&sk->sk_write_queue, skb);
1076 continue;
1079 i = skb_shinfo(skb)->nr_frags;
1080 if (len > size)
1081 len = size;
1082 if (skb_can_coalesce(skb, i, page, offset)) {
1083 skb_shinfo(skb)->frags[i-1].size += len;
1084 } else if (i < MAX_SKB_FRAGS) {
1085 get_page(page);
1086 skb_fill_page_desc(skb, i, page, offset, len);
1087 } else {
1088 err = -EMSGSIZE;
1089 goto error;
1092 if (skb->ip_summed == CHECKSUM_NONE) {
1093 unsigned int csum;
1094 csum = csum_page(page, offset, len);
1095 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1098 skb->len += len;
1099 skb->data_len += len;
1100 offset += len;
1101 size -= len;
1103 return 0;
1105 error:
1106 inet->cork.length -= size;
1107 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1108 return err;
1112 * Combined all pending IP fragments on the socket as one IP datagram
1113 * and push them out.
1115 int ip_push_pending_frames(struct sock *sk)
1117 struct sk_buff *skb, *tmp_skb;
1118 struct sk_buff **tail_skb;
1119 struct inet_opt *inet = inet_sk(sk);
1120 struct ip_options *opt = NULL;
1121 struct rtable *rt = inet->cork.rt;
1122 struct iphdr *iph;
1123 int df = 0;
1124 __u8 ttl;
1125 int err = 0;
1127 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1128 goto out;
1129 tail_skb = &(skb_shinfo(skb)->frag_list);
1131 /* move skb->data to ip header from ext header */
1132 if (skb->data < skb->nh.raw)
1133 __skb_pull(skb, skb->nh.raw - skb->data);
1134 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1135 __skb_pull(tmp_skb, skb->h.raw - skb->nh.raw);
1136 *tail_skb = tmp_skb;
1137 tail_skb = &(tmp_skb->next);
1138 skb->len += tmp_skb->len;
1139 skb->data_len += tmp_skb->len;
1140 skb->truesize += tmp_skb->truesize;
1141 __sock_put(tmp_skb->sk);
1142 tmp_skb->destructor = NULL;
1143 tmp_skb->sk = NULL;
1146 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1147 * to fragment the frame generated here. No matter, what transforms
1148 * how transforms change size of the packet, it will come out.
1150 if (inet->pmtudisc != IP_PMTUDISC_DO)
1151 skb->local_df = 1;
1153 /* DF bit is set when we want to see DF on outgoing frames.
1154 * If local_df is set too, we still allow to fragment this frame
1155 * locally. */
1156 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1157 (!skb_shinfo(skb)->frag_list && ip_dont_fragment(sk, &rt->u.dst)))
1158 df = htons(IP_DF);
1160 if (inet->cork.flags & IPCORK_OPT)
1161 opt = inet->cork.opt;
1163 if (rt->rt_type == RTN_MULTICAST)
1164 ttl = inet->mc_ttl;
1165 else
1166 ttl = ip_select_ttl(inet, &rt->u.dst);
1168 iph = (struct iphdr *)skb->data;
1169 iph->version = 4;
1170 iph->ihl = 5;
1171 if (opt) {
1172 iph->ihl += opt->optlen>>2;
1173 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1175 iph->tos = inet->tos;
1176 iph->tot_len = htons(skb->len);
1177 iph->frag_off = df;
1178 if (!df) {
1179 __ip_select_ident(iph, &rt->u.dst, 0);
1180 } else {
1181 iph->id = htons(inet->id++);
1183 iph->ttl = ttl;
1184 iph->protocol = sk->sk_protocol;
1185 iph->saddr = rt->rt_src;
1186 iph->daddr = rt->rt_dst;
1187 ip_send_check(iph);
1189 skb->priority = sk->sk_priority;
1190 skb->dst = dst_clone(&rt->u.dst);
1192 /* Netfilter gets whole the not fragmented skb. */
1193 err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1194 skb->dst->dev, dst_output);
1195 if (err) {
1196 if (err > 0)
1197 err = inet->recverr ? net_xmit_errno(err) : 0;
1198 if (err)
1199 goto error;
1202 out:
1203 inet->cork.flags &= ~IPCORK_OPT;
1204 if (inet->cork.opt) {
1205 kfree(inet->cork.opt);
1206 inet->cork.opt = NULL;
1208 if (inet->cork.rt) {
1209 ip_rt_put(inet->cork.rt);
1210 inet->cork.rt = NULL;
1212 return err;
1214 error:
1215 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1216 goto out;
1220 * Throw away all pending data on the socket.
1222 void ip_flush_pending_frames(struct sock *sk)
1224 struct inet_opt *inet = inet_sk(sk);
1225 struct sk_buff *skb;
1227 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1228 kfree_skb(skb);
1230 inet->cork.flags &= ~IPCORK_OPT;
1231 if (inet->cork.opt) {
1232 kfree(inet->cork.opt);
1233 inet->cork.opt = NULL;
1235 if (inet->cork.rt) {
1236 ip_rt_put(inet->cork.rt);
1237 inet->cork.rt = NULL;
1243 * Fetch data from kernel space and fill in checksum if needed.
1245 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1246 int len, int odd, struct sk_buff *skb)
1248 unsigned int csum;
1250 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1251 skb->csum = csum_block_add(skb->csum, csum, odd);
1252 return 0;
1256 * Generic function to send a packet as reply to another packet.
1257 * Used to send TCP resets so far. ICMP should use this function too.
1259 * Should run single threaded per socket because it uses the sock
1260 * structure to pass arguments.
1262 * LATER: switch from ip_build_xmit to ip_append_*
1264 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1265 unsigned int len)
1267 struct inet_opt *inet = inet_sk(sk);
1268 struct {
1269 struct ip_options opt;
1270 char data[40];
1271 } replyopts;
1272 struct ipcm_cookie ipc;
1273 u32 daddr;
1274 struct rtable *rt = (struct rtable*)skb->dst;
1276 if (ip_options_echo(&replyopts.opt, skb))
1277 return;
1279 daddr = ipc.addr = rt->rt_src;
1280 ipc.opt = NULL;
1282 if (replyopts.opt.optlen) {
1283 ipc.opt = &replyopts.opt;
1285 if (ipc.opt->srr)
1286 daddr = replyopts.opt.faddr;
1290 struct flowi fl = { .nl_u = { .ip4_u =
1291 { .daddr = daddr,
1292 .saddr = rt->rt_spec_dst,
1293 .tos = RT_TOS(skb->nh.iph->tos) } },
1294 /* Not quite clean, but right. */
1295 .uli_u = { .ports =
1296 { .sport = skb->h.th->dest,
1297 .dport = skb->h.th->source } },
1298 .proto = sk->sk_protocol };
1299 if (ip_route_output_key(&rt, &fl))
1300 return;
1303 /* And let IP do all the hard work.
1305 This chunk is not reenterable, hence spinlock.
1306 Note that it uses the fact, that this function is called
1307 with locally disabled BH and that sk cannot be already spinlocked.
1309 bh_lock_sock(sk);
1310 inet->tos = skb->nh.iph->tos;
1311 sk->sk_priority = skb->priority;
1312 sk->sk_protocol = skb->nh.iph->protocol;
1313 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1314 &ipc, rt, MSG_DONTWAIT);
1315 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1316 if (arg->csumoffset >= 0)
1317 *((u16 *)skb->h.raw + arg->csumoffset) = csum_fold(csum_add(skb->csum, arg->csum));
1318 skb->ip_summed = CHECKSUM_NONE;
1319 ip_push_pending_frames(sk);
1322 bh_unlock_sock(sk);
1324 ip_rt_put(rt);
1328 * IP protocol layer initialiser
1331 static struct packet_type ip_packet_type = {
1332 .type = __constant_htons(ETH_P_IP),
1333 .func = ip_rcv,
1337 * IP registers the packet type and then calls the subprotocol initialisers
1340 void __init ip_init(void)
1342 dev_add_pack(&ip_packet_type);
1344 ip_rt_init();
1345 inet_initpeers();
1347 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1348 igmp_mc_proc_init();
1349 #endif
1352 EXPORT_SYMBOL(ip_finish_output);
1353 EXPORT_SYMBOL(ip_fragment);
1354 EXPORT_SYMBOL(ip_generic_getfrag);
1355 EXPORT_SYMBOL(ip_queue_xmit);
1356 EXPORT_SYMBOL(ip_send_check);
1358 #ifdef CONFIG_SYSCTL
1359 EXPORT_SYMBOL(sysctl_ip_default_ttl);
1360 #endif