2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
35 #include <asm/tlbflush.h>
37 DECLARE_BITMAP(node_online_map
, MAX_NUMNODES
);
38 struct pglist_data
*pgdat_list
;
39 unsigned long totalram_pages
;
40 unsigned long totalhigh_pages
;
43 int sysctl_lower_zone_protection
= 0;
45 EXPORT_SYMBOL(totalram_pages
);
46 EXPORT_SYMBOL(nr_swap_pages
);
49 * Used by page_zone() to look up the address of the struct zone whose
50 * id is encoded in the upper bits of page->flags
52 struct zone
*zone_table
[1 << (ZONES_SHIFT
+ NODES_SHIFT
)];
53 EXPORT_SYMBOL(zone_table
);
55 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "Normal", "HighMem" };
56 int min_free_kbytes
= 1024;
58 unsigned long __initdata nr_kernel_pages
;
59 unsigned long __initdata nr_all_pages
;
62 * Temporary debugging check for pages not lying within a given zone.
64 static int bad_range(struct zone
*zone
, struct page
*page
)
66 if (page_to_pfn(page
) >= zone
->zone_start_pfn
+ zone
->spanned_pages
)
68 if (page_to_pfn(page
) < zone
->zone_start_pfn
)
70 if (zone
!= page_zone(page
))
75 static void bad_page(const char *function
, struct page
*page
)
77 printk(KERN_EMERG
"Bad page state at %s (in process '%s', page %p)\n",
78 function
, current
->comm
, page
);
79 printk(KERN_EMERG
"flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
80 (int)(2*sizeof(page_flags_t
)), (unsigned long)page
->flags
,
81 page
->mapping
, page_mapcount(page
), page_count(page
));
82 printk(KERN_EMERG
"Backtrace:\n");
84 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n");
85 page
->flags
&= ~(1 << PG_private
|
92 set_page_count(page
, 0);
93 reset_page_mapcount(page
);
97 #ifndef CONFIG_HUGETLB_PAGE
98 #define prep_compound_page(page, order) do { } while (0)
99 #define destroy_compound_page(page, order) do { } while (0)
102 * Higher-order pages are called "compound pages". They are structured thusly:
104 * The first PAGE_SIZE page is called the "head page".
106 * The remaining PAGE_SIZE pages are called "tail pages".
108 * All pages have PG_compound set. All pages have their ->private pointing at
109 * the head page (even the head page has this).
111 * The first tail page's ->mapping, if non-zero, holds the address of the
112 * compound page's put_page() function.
114 * The order of the allocation is stored in the first tail page's ->index
115 * This is only for debug at present. This usage means that zero-order pages
116 * may not be compound.
118 static void prep_compound_page(struct page
*page
, unsigned long order
)
121 int nr_pages
= 1 << order
;
123 page
[1].mapping
= NULL
;
124 page
[1].index
= order
;
125 for (i
= 0; i
< nr_pages
; i
++) {
126 struct page
*p
= page
+ i
;
129 p
->private = (unsigned long)page
;
133 static void destroy_compound_page(struct page
*page
, unsigned long order
)
136 int nr_pages
= 1 << order
;
138 if (!PageCompound(page
))
141 if (page
[1].index
!= order
)
142 bad_page(__FUNCTION__
, page
);
144 for (i
= 0; i
< nr_pages
; i
++) {
145 struct page
*p
= page
+ i
;
147 if (!PageCompound(p
))
148 bad_page(__FUNCTION__
, page
);
149 if (p
->private != (unsigned long)page
)
150 bad_page(__FUNCTION__
, page
);
151 ClearPageCompound(p
);
154 #endif /* CONFIG_HUGETLB_PAGE */
157 * Freeing function for a buddy system allocator.
159 * The concept of a buddy system is to maintain direct-mapped table
160 * (containing bit values) for memory blocks of various "orders".
161 * The bottom level table contains the map for the smallest allocatable
162 * units of memory (here, pages), and each level above it describes
163 * pairs of units from the levels below, hence, "buddies".
164 * At a high level, all that happens here is marking the table entry
165 * at the bottom level available, and propagating the changes upward
166 * as necessary, plus some accounting needed to play nicely with other
167 * parts of the VM system.
168 * At each level, we keep one bit for each pair of blocks, which
169 * is set to 1 iff only one of the pair is allocated. So when we
170 * are allocating or freeing one, we can derive the state of the
171 * other. That is, if we allocate a small block, and both were
172 * free, the remainder of the region must be split into blocks.
173 * If a block is freed, and its buddy is also free, then this
174 * triggers coalescing into a block of larger size.
179 static inline void __free_pages_bulk (struct page
*page
, struct page
*base
,
180 struct zone
*zone
, struct free_area
*area
, unsigned int order
)
182 unsigned long page_idx
, index
, mask
;
185 destroy_compound_page(page
, order
);
186 mask
= (~0UL) << order
;
187 page_idx
= page
- base
;
188 if (page_idx
& ~mask
)
190 index
= page_idx
>> (1 + order
);
192 zone
->free_pages
+= 1 << order
;
193 while (order
< MAX_ORDER
-1) {
194 struct page
*buddy1
, *buddy2
;
196 BUG_ON(area
>= zone
->free_area
+ MAX_ORDER
);
197 if (!__test_and_change_bit(index
, area
->map
))
199 * the buddy page is still allocated.
203 /* Move the buddy up one level. */
204 buddy1
= base
+ (page_idx
^ (1 << order
));
205 buddy2
= base
+ page_idx
;
206 BUG_ON(bad_range(zone
, buddy1
));
207 BUG_ON(bad_range(zone
, buddy2
));
208 list_del(&buddy1
->lru
);
215 list_add(&(base
+ page_idx
)->lru
, &area
->free_list
);
218 static inline void free_pages_check(const char *function
, struct page
*page
)
220 if ( page_mapped(page
) ||
221 page
->mapping
!= NULL
||
222 page_count(page
) != 0 ||
231 1 << PG_writeback
)))
232 bad_page(function
, page
);
234 ClearPageDirty(page
);
238 * Frees a list of pages.
239 * Assumes all pages on list are in same zone, and of same order.
240 * count is the number of pages to free, or 0 for all on the list.
242 * If the zone was previously in an "all pages pinned" state then look to
243 * see if this freeing clears that state.
245 * And clear the zone's pages_scanned counter, to hold off the "all pages are
246 * pinned" detection logic.
249 free_pages_bulk(struct zone
*zone
, int count
,
250 struct list_head
*list
, unsigned int order
)
253 struct free_area
*area
;
254 struct page
*base
, *page
= NULL
;
257 base
= zone
->zone_mem_map
;
258 area
= zone
->free_area
+ order
;
259 spin_lock_irqsave(&zone
->lock
, flags
);
260 zone
->all_unreclaimable
= 0;
261 zone
->pages_scanned
= 0;
262 while (!list_empty(list
) && count
--) {
263 page
= list_entry(list
->prev
, struct page
, lru
);
264 /* have to delete it as __free_pages_bulk list manipulates */
265 list_del(&page
->lru
);
266 __free_pages_bulk(page
, base
, zone
, area
, order
);
269 spin_unlock_irqrestore(&zone
->lock
, flags
);
273 void __free_pages_ok(struct page
*page
, unsigned int order
)
278 arch_free_page(page
, order
);
280 mod_page_state(pgfree
, 1 << order
);
281 for (i
= 0 ; i
< (1 << order
) ; ++i
)
282 free_pages_check(__FUNCTION__
, page
+ i
);
283 list_add(&page
->lru
, &list
);
284 kernel_map_pages(page
, 1<<order
, 0);
285 free_pages_bulk(page_zone(page
), 1, &list
, order
);
288 #define MARK_USED(index, order, area) \
289 __change_bit((index) >> (1+(order)), (area)->map)
292 * The order of subdivision here is critical for the IO subsystem.
293 * Please do not alter this order without good reasons and regression
294 * testing. Specifically, as large blocks of memory are subdivided,
295 * the order in which smaller blocks are delivered depends on the order
296 * they're subdivided in this function. This is the primary factor
297 * influencing the order in which pages are delivered to the IO
298 * subsystem according to empirical testing, and this is also justified
299 * by considering the behavior of a buddy system containing a single
300 * large block of memory acted on by a series of small allocations.
301 * This behavior is a critical factor in sglist merging's success.
305 static inline struct page
*
306 expand(struct zone
*zone
, struct page
*page
,
307 unsigned long index
, int low
, int high
, struct free_area
*area
)
309 unsigned long size
= 1 << high
;
315 BUG_ON(bad_range(zone
, &page
[size
]));
316 list_add(&page
[size
].lru
, &area
->free_list
);
317 MARK_USED(index
+ size
, high
, area
);
322 static inline void set_page_refs(struct page
*page
, int order
)
325 set_page_count(page
, 1);
330 * We need to reference all the pages for this order, otherwise if
331 * anyone accesses one of the pages with (get/put) it will be freed.
333 for (i
= 0; i
< (1 << order
); i
++)
334 set_page_count(page
+i
, 1);
335 #endif /* CONFIG_MMU */
339 * This page is about to be returned from the page allocator
341 static void prep_new_page(struct page
*page
, int order
)
343 if (page
->mapping
|| page_mapped(page
) ||
352 1 << PG_writeback
)))
353 bad_page(__FUNCTION__
, page
);
355 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
356 1 << PG_referenced
| 1 << PG_arch_1
|
357 1 << PG_checked
| 1 << PG_mappedtodisk
);
359 set_page_refs(page
, order
);
363 * Do the hard work of removing an element from the buddy allocator.
364 * Call me with the zone->lock already held.
366 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
368 struct free_area
* area
;
369 unsigned int current_order
;
373 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
374 area
= zone
->free_area
+ current_order
;
375 if (list_empty(&area
->free_list
))
378 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
379 list_del(&page
->lru
);
380 index
= page
- zone
->zone_mem_map
;
381 if (current_order
!= MAX_ORDER
-1)
382 MARK_USED(index
, current_order
, area
);
383 zone
->free_pages
-= 1UL << order
;
384 return expand(zone
, page
, index
, order
, current_order
, area
);
391 * Obtain a specified number of elements from the buddy allocator, all under
392 * a single hold of the lock, for efficiency. Add them to the supplied list.
393 * Returns the number of new pages which were placed at *list.
395 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
396 unsigned long count
, struct list_head
*list
)
403 spin_lock_irqsave(&zone
->lock
, flags
);
404 for (i
= 0; i
< count
; ++i
) {
405 page
= __rmqueue(zone
, order
);
409 list_add_tail(&page
->lru
, list
);
411 spin_unlock_irqrestore(&zone
->lock
, flags
);
415 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
416 static void __drain_pages(unsigned int cpu
)
421 for_each_zone(zone
) {
422 struct per_cpu_pageset
*pset
;
424 pset
= &zone
->pageset
[cpu
];
425 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
426 struct per_cpu_pages
*pcp
;
429 pcp
->count
-= free_pages_bulk(zone
, pcp
->count
,
434 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
437 int is_head_of_free_region(struct page
*page
)
439 struct zone
*zone
= page_zone(page
);
442 struct list_head
*curr
;
445 * Should not matter as we need quiescent system for
446 * suspend anyway, but...
448 spin_lock_irqsave(&zone
->lock
, flags
);
449 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
450 list_for_each(curr
, &zone
->free_area
[order
].free_list
)
451 if (page
== list_entry(curr
, struct page
, lru
)) {
452 spin_unlock_irqrestore(&zone
->lock
, flags
);
455 spin_unlock_irqrestore(&zone
->lock
, flags
);
460 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
462 void drain_local_pages(void)
466 local_irq_save(flags
);
467 __drain_pages(smp_processor_id());
468 local_irq_restore(flags
);
470 #endif /* CONFIG_PM */
472 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
)
477 pg_data_t
*pg
= z
->zone_pgdat
;
478 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
479 struct per_cpu_pageset
*p
;
481 local_irq_save(flags
);
482 cpu
= smp_processor_id();
483 p
= &z
->pageset
[cpu
];
485 z
->pageset
[cpu
].numa_hit
++;
488 zonelist
->zones
[0]->pageset
[cpu
].numa_foreign
++;
490 if (pg
== NODE_DATA(numa_node_id()))
494 local_irq_restore(flags
);
499 * Free a 0-order page
501 static void FASTCALL(free_hot_cold_page(struct page
*page
, int cold
));
502 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
504 struct zone
*zone
= page_zone(page
);
505 struct per_cpu_pages
*pcp
;
508 arch_free_page(page
, 0);
510 kernel_map_pages(page
, 1, 0);
511 inc_page_state(pgfree
);
513 page
->mapping
= NULL
;
514 free_pages_check(__FUNCTION__
, page
);
515 pcp
= &zone
->pageset
[get_cpu()].pcp
[cold
];
516 local_irq_save(flags
);
517 if (pcp
->count
>= pcp
->high
)
518 pcp
->count
-= free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
519 list_add(&page
->lru
, &pcp
->list
);
521 local_irq_restore(flags
);
525 void fastcall
free_hot_page(struct page
*page
)
527 free_hot_cold_page(page
, 0);
530 void fastcall
free_cold_page(struct page
*page
)
532 free_hot_cold_page(page
, 1);
536 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
537 * we cheat by calling it from here, in the order > 0 path. Saves a branch
542 buffered_rmqueue(struct zone
*zone
, int order
, int gfp_flags
)
545 struct page
*page
= NULL
;
546 int cold
= !!(gfp_flags
& __GFP_COLD
);
549 struct per_cpu_pages
*pcp
;
551 pcp
= &zone
->pageset
[get_cpu()].pcp
[cold
];
552 local_irq_save(flags
);
553 if (pcp
->count
<= pcp
->low
)
554 pcp
->count
+= rmqueue_bulk(zone
, 0,
555 pcp
->batch
, &pcp
->list
);
557 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
558 list_del(&page
->lru
);
561 local_irq_restore(flags
);
566 spin_lock_irqsave(&zone
->lock
, flags
);
567 page
= __rmqueue(zone
, order
);
568 spin_unlock_irqrestore(&zone
->lock
, flags
);
572 BUG_ON(bad_range(zone
, page
));
573 mod_page_state_zone(zone
, pgalloc
, 1 << order
);
574 prep_new_page(page
, order
);
575 if (order
&& (gfp_flags
& __GFP_COMP
))
576 prep_compound_page(page
, order
);
582 * This is the 'heart' of the zoned buddy allocator.
584 * Herein lies the mysterious "incremental min". That's the
586 * local_low = z->pages_low;
589 * thing. The intent here is to provide additional protection to low zones for
590 * allocation requests which _could_ use higher zones. So a GFP_HIGHMEM
591 * request is not allowed to dip as deeply into the normal zone as a GFP_KERNEL
592 * request. This preserves additional space in those lower zones for requests
593 * which really do need memory from those zones. It means that on a decent
594 * sized machine, GFP_HIGHMEM and GFP_KERNEL requests basically leave the DMA
597 struct page
* fastcall
598 __alloc_pages(unsigned int gfp_mask
, unsigned int order
,
599 struct zonelist
*zonelist
)
601 const int wait
= gfp_mask
& __GFP_WAIT
;
603 struct zone
**zones
, *z
;
605 struct reclaim_state reclaim_state
;
606 struct task_struct
*p
= current
;
612 might_sleep_if(wait
);
615 * The caller may dip into page reserves a bit more if the caller
616 * cannot run direct reclaim, or is the caller has realtime scheduling
619 can_try_harder
= (unlikely(rt_task(p
)) && !in_interrupt()) || !wait
;
621 zones
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
623 if (unlikely(zones
[0] == NULL
)) {
624 /* Should this ever happen?? */
628 alloc_type
= zone_idx(zones
[0]);
630 /* Go through the zonelist once, looking for a zone with enough free */
631 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
632 min
= z
->pages_low
+ (1<<order
) + z
->protection
[alloc_type
];
634 if (z
->free_pages
< min
)
637 page
= buffered_rmqueue(z
, order
, gfp_mask
);
642 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++)
646 * Go through the zonelist again. Let __GFP_HIGH and allocations
647 * coming from realtime tasks to go deeper into reserves
649 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
651 if (gfp_mask
& __GFP_HIGH
)
655 min
+= (1<<order
) + z
->protection
[alloc_type
];
657 if (z
->free_pages
< min
)
660 page
= buffered_rmqueue(z
, order
, gfp_mask
);
665 /* This allocation should allow future memory freeing. */
666 if ((p
->flags
& (PF_MEMALLOC
| PF_MEMDIE
)) && !in_interrupt()) {
667 /* go through the zonelist yet again, ignoring mins */
668 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
669 page
= buffered_rmqueue(z
, order
, gfp_mask
);
676 /* Atomic allocations - we can't balance anything */
681 /* We now go into synchronous reclaim */
682 p
->flags
|= PF_MEMALLOC
;
683 reclaim_state
.reclaimed_slab
= 0;
684 p
->reclaim_state
= &reclaim_state
;
686 try_to_free_pages(zones
, gfp_mask
, order
);
688 p
->reclaim_state
= NULL
;
689 p
->flags
&= ~PF_MEMALLOC
;
691 /* go through the zonelist yet one more time */
692 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
694 if (gfp_mask
& __GFP_HIGH
)
698 min
+= (1<<order
) + z
->protection
[alloc_type
];
700 if (z
->free_pages
< min
)
703 page
= buffered_rmqueue(z
, order
, gfp_mask
);
709 * Don't let big-order allocations loop unless the caller explicitly
710 * requests that. Wait for some write requests to complete then retry.
712 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
713 * <= 3, but that may not be true in other implementations.
716 if (!(gfp_mask
& __GFP_NORETRY
)) {
717 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
719 if (gfp_mask
& __GFP_NOFAIL
)
723 blk_congestion_wait(WRITE
, HZ
/50);
728 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
729 printk(KERN_WARNING
"%s: page allocation failure."
730 " order:%d, mode:0x%x\n",
731 p
->comm
, order
, gfp_mask
);
736 zone_statistics(zonelist
, z
);
737 kernel_map_pages(page
, 1 << order
, 1);
741 EXPORT_SYMBOL(__alloc_pages
);
744 * Common helper functions.
746 fastcall
unsigned long __get_free_pages(unsigned int gfp_mask
, unsigned int order
)
749 page
= alloc_pages(gfp_mask
, order
);
752 return (unsigned long) page_address(page
);
755 EXPORT_SYMBOL(__get_free_pages
);
757 fastcall
unsigned long get_zeroed_page(unsigned int gfp_mask
)
762 * get_zeroed_page() returns a 32-bit address, which cannot represent
765 BUG_ON(gfp_mask
& __GFP_HIGHMEM
);
767 page
= alloc_pages(gfp_mask
, 0);
769 void *address
= page_address(page
);
771 return (unsigned long) address
;
776 EXPORT_SYMBOL(get_zeroed_page
);
778 void __pagevec_free(struct pagevec
*pvec
)
780 int i
= pagevec_count(pvec
);
783 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
786 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
788 if (!PageReserved(page
) && put_page_testzero(page
)) {
792 __free_pages_ok(page
, order
);
796 EXPORT_SYMBOL(__free_pages
);
798 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
801 BUG_ON(!virt_addr_valid((void *)addr
));
802 __free_pages(virt_to_page((void *)addr
), order
);
806 EXPORT_SYMBOL(free_pages
);
809 * Total amount of free (allocatable) RAM:
811 unsigned int nr_free_pages(void)
813 unsigned int sum
= 0;
817 sum
+= zone
->free_pages
;
822 EXPORT_SYMBOL(nr_free_pages
);
825 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
827 unsigned int i
, sum
= 0;
829 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
830 sum
+= pgdat
->node_zones
[i
].free_pages
;
836 static unsigned int nr_free_zone_pages(int offset
)
839 unsigned int sum
= 0;
841 for_each_pgdat(pgdat
) {
842 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
843 struct zone
**zonep
= zonelist
->zones
;
846 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
847 unsigned long size
= zone
->present_pages
;
848 unsigned long high
= zone
->pages_high
;
858 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
860 unsigned int nr_free_buffer_pages(void)
862 return nr_free_zone_pages(GFP_USER
& GFP_ZONEMASK
);
866 * Amount of free RAM allocatable within all zones
868 unsigned int nr_free_pagecache_pages(void)
870 return nr_free_zone_pages(GFP_HIGHUSER
& GFP_ZONEMASK
);
873 #ifdef CONFIG_HIGHMEM
874 unsigned int nr_free_highpages (void)
877 unsigned int pages
= 0;
879 for_each_pgdat(pgdat
)
880 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
887 static void show_node(struct zone
*zone
)
889 printk("Node %d ", zone
->zone_pgdat
->node_id
);
892 #define show_node(zone) do { } while (0)
896 * Accumulate the page_state information across all CPUs.
897 * The result is unavoidably approximate - it can change
898 * during and after execution of this function.
900 DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
901 EXPORT_PER_CPU_SYMBOL(page_states
);
903 atomic_t nr_pagecache
= ATOMIC_INIT(0);
904 EXPORT_SYMBOL(nr_pagecache
);
906 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
909 void __get_page_state(struct page_state
*ret
, int nr
)
913 memset(ret
, 0, sizeof(*ret
));
914 while (cpu
< NR_CPUS
) {
915 unsigned long *in
, *out
, off
;
917 if (!cpu_possible(cpu
)) {
922 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
924 if (cpu
< NR_CPUS
&& cpu_possible(cpu
))
925 prefetch(&per_cpu(page_states
, cpu
));
926 out
= (unsigned long *)ret
;
927 for (off
= 0; off
< nr
; off
++)
932 void get_page_state(struct page_state
*ret
)
936 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
937 nr
/= sizeof(unsigned long);
939 __get_page_state(ret
, nr
+ 1);
942 void get_full_page_state(struct page_state
*ret
)
944 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long));
947 unsigned long __read_page_state(unsigned offset
)
949 unsigned long ret
= 0;
952 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
955 if (!cpu_possible(cpu
))
958 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
959 ret
+= *((unsigned long *)in
);
964 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
965 unsigned long *free
, struct pglist_data
*pgdat
)
967 struct zone
*zones
= pgdat
->node_zones
;
973 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
974 *active
+= zones
[i
].nr_active
;
975 *inactive
+= zones
[i
].nr_inactive
;
976 *free
+= zones
[i
].free_pages
;
980 void get_zone_counts(unsigned long *active
,
981 unsigned long *inactive
, unsigned long *free
)
983 struct pglist_data
*pgdat
;
988 for_each_pgdat(pgdat
) {
989 unsigned long l
, m
, n
;
990 __get_zone_counts(&l
, &m
, &n
, pgdat
);
997 void si_meminfo(struct sysinfo
*val
)
999 val
->totalram
= totalram_pages
;
1001 val
->freeram
= nr_free_pages();
1002 val
->bufferram
= nr_blockdev_pages();
1003 #ifdef CONFIG_HIGHMEM
1004 val
->totalhigh
= totalhigh_pages
;
1005 val
->freehigh
= nr_free_highpages();
1010 val
->mem_unit
= PAGE_SIZE
;
1013 EXPORT_SYMBOL(si_meminfo
);
1016 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1018 pg_data_t
*pgdat
= NODE_DATA(nid
);
1020 val
->totalram
= pgdat
->node_present_pages
;
1021 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1022 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1023 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1024 val
->mem_unit
= PAGE_SIZE
;
1028 #define K(x) ((x) << (PAGE_SHIFT-10))
1031 * Show free area list (used inside shift_scroll-lock stuff)
1032 * We also calculate the percentage fragmentation. We do this by counting the
1033 * memory on each free list with the exception of the first item on the list.
1035 void show_free_areas(void)
1037 struct page_state ps
;
1038 int cpu
, temperature
;
1039 unsigned long active
;
1040 unsigned long inactive
;
1044 for_each_zone(zone
) {
1046 printk("%s per-cpu:", zone
->name
);
1048 if (!zone
->present_pages
) {
1054 for (cpu
= 0; cpu
< NR_CPUS
; ++cpu
) {
1055 struct per_cpu_pageset
*pageset
;
1057 if (!cpu_possible(cpu
))
1060 pageset
= zone
->pageset
+ cpu
;
1062 for (temperature
= 0; temperature
< 2; temperature
++)
1063 printk("cpu %d %s: low %d, high %d, batch %d\n",
1065 temperature
? "cold" : "hot",
1066 pageset
->pcp
[temperature
].low
,
1067 pageset
->pcp
[temperature
].high
,
1068 pageset
->pcp
[temperature
].batch
);
1072 get_page_state(&ps
);
1073 get_zone_counts(&active
, &inactive
, &free
);
1075 printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1077 K(nr_free_highpages()));
1079 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1080 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1089 ps
.nr_page_table_pages
);
1091 for_each_zone(zone
) {
1105 K(zone
->free_pages
),
1108 K(zone
->pages_high
),
1110 K(zone
->nr_inactive
),
1111 K(zone
->present_pages
)
1113 printk("protections[]:");
1114 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1115 printk(" %lu", zone
->protection
[i
]);
1119 for_each_zone(zone
) {
1120 struct list_head
*elem
;
1121 unsigned long nr
, flags
, order
, total
= 0;
1124 printk("%s: ", zone
->name
);
1125 if (!zone
->present_pages
) {
1130 spin_lock_irqsave(&zone
->lock
, flags
);
1131 for (order
= 0; order
< MAX_ORDER
; order
++) {
1133 list_for_each(elem
, &zone
->free_area
[order
].free_list
)
1135 total
+= nr
<< order
;
1136 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1138 spin_unlock_irqrestore(&zone
->lock
, flags
);
1139 printk("= %lukB\n", K(total
));
1142 show_swap_cache_info();
1146 * Builds allocation fallback zone lists.
1148 static int __init
build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
, int j
, int k
)
1155 zone
= pgdat
->node_zones
+ ZONE_HIGHMEM
;
1156 if (zone
->present_pages
) {
1157 #ifndef CONFIG_HIGHMEM
1160 zonelist
->zones
[j
++] = zone
;
1163 zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
1164 if (zone
->present_pages
)
1165 zonelist
->zones
[j
++] = zone
;
1167 zone
= pgdat
->node_zones
+ ZONE_DMA
;
1168 if (zone
->present_pages
)
1169 zonelist
->zones
[j
++] = zone
;
1176 #define MAX_NODE_LOAD (numnodes)
1177 static int __initdata node_load
[MAX_NUMNODES
];
1179 * find_next_best_node - find the next node that should appear in a given
1180 * node's fallback list
1181 * @node: node whose fallback list we're appending
1182 * @used_node_mask: pointer to the bitmap of already used nodes
1184 * We use a number of factors to determine which is the next node that should
1185 * appear on a given node's fallback list. The node should not have appeared
1186 * already in @node's fallback list, and it should be the next closest node
1187 * according to the distance array (which contains arbitrary distance values
1188 * from each node to each node in the system), and should also prefer nodes
1189 * with no CPUs, since presumably they'll have very little allocation pressure
1190 * on them otherwise.
1191 * It returns -1 if no node is found.
1193 static int __init
find_next_best_node(int node
, void *used_node_mask
)
1196 int min_val
= INT_MAX
;
1199 for (i
= 0; i
< numnodes
; i
++) {
1202 /* Start from local node */
1203 n
= (node
+i
)%numnodes
;
1205 /* Don't want a node to appear more than once */
1206 if (test_bit(n
, used_node_mask
))
1209 /* Use the distance array to find the distance */
1210 val
= node_distance(node
, n
);
1212 /* Give preference to headless and unused nodes */
1213 tmp
= node_to_cpumask(n
);
1214 if (!cpus_empty(tmp
))
1215 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1217 /* Slight preference for less loaded node */
1218 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1219 val
+= node_load
[n
];
1221 if (val
< min_val
) {
1228 set_bit(best_node
, used_node_mask
);
1233 static void __init
build_zonelists(pg_data_t
*pgdat
)
1235 int i
, j
, k
, node
, local_node
;
1236 int prev_node
, load
;
1237 struct zonelist
*zonelist
;
1238 DECLARE_BITMAP(used_mask
, MAX_NUMNODES
);
1240 /* initialize zonelists */
1241 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1242 zonelist
= pgdat
->node_zonelists
+ i
;
1243 memset(zonelist
, 0, sizeof(*zonelist
));
1244 zonelist
->zones
[0] = NULL
;
1247 /* NUMA-aware ordering of nodes */
1248 local_node
= pgdat
->node_id
;
1250 prev_node
= local_node
;
1251 bitmap_zero(used_mask
, MAX_NUMNODES
);
1252 while ((node
= find_next_best_node(local_node
, used_mask
)) >= 0) {
1254 * We don't want to pressure a particular node.
1255 * So adding penalty to the first node in same
1256 * distance group to make it round-robin.
1258 if (node_distance(local_node
, node
) !=
1259 node_distance(local_node
, prev_node
))
1260 node_load
[node
] += load
;
1263 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1264 zonelist
= pgdat
->node_zonelists
+ i
;
1265 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1268 if (i
& __GFP_HIGHMEM
)
1273 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1274 zonelist
->zones
[j
] = NULL
;
1279 #else /* CONFIG_NUMA */
1281 static void __init
build_zonelists(pg_data_t
*pgdat
)
1283 int i
, j
, k
, node
, local_node
;
1285 local_node
= pgdat
->node_id
;
1286 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1287 struct zonelist
*zonelist
;
1289 zonelist
= pgdat
->node_zonelists
+ i
;
1290 memset(zonelist
, 0, sizeof(*zonelist
));
1294 if (i
& __GFP_HIGHMEM
)
1299 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1301 * Now we build the zonelist so that it contains the zones
1302 * of all the other nodes.
1303 * We don't want to pressure a particular node, so when
1304 * building the zones for node N, we make sure that the
1305 * zones coming right after the local ones are those from
1306 * node N+1 (modulo N)
1308 for (node
= local_node
+ 1; node
< numnodes
; node
++)
1309 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1310 for (node
= 0; node
< local_node
; node
++)
1311 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1313 zonelist
->zones
[j
] = NULL
;
1317 #endif /* CONFIG_NUMA */
1319 void __init
build_all_zonelists(void)
1323 for(i
= 0 ; i
< numnodes
; i
++)
1324 build_zonelists(NODE_DATA(i
));
1325 printk("Built %i zonelists\n", numnodes
);
1329 * Helper functions to size the waitqueue hash table.
1330 * Essentially these want to choose hash table sizes sufficiently
1331 * large so that collisions trying to wait on pages are rare.
1332 * But in fact, the number of active page waitqueues on typical
1333 * systems is ridiculously low, less than 200. So this is even
1334 * conservative, even though it seems large.
1336 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1337 * waitqueues, i.e. the size of the waitq table given the number of pages.
1339 #define PAGES_PER_WAITQUEUE 256
1341 static inline unsigned long wait_table_size(unsigned long pages
)
1343 unsigned long size
= 1;
1345 pages
/= PAGES_PER_WAITQUEUE
;
1347 while (size
< pages
)
1351 * Once we have dozens or even hundreds of threads sleeping
1352 * on IO we've got bigger problems than wait queue collision.
1353 * Limit the size of the wait table to a reasonable size.
1355 size
= min(size
, 4096UL);
1357 return max(size
, 4UL);
1361 * This is an integer logarithm so that shifts can be used later
1362 * to extract the more random high bits from the multiplicative
1363 * hash function before the remainder is taken.
1365 static inline unsigned long wait_table_bits(unsigned long size
)
1370 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1372 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1373 unsigned long *zones_size
, unsigned long *zholes_size
)
1375 unsigned long realtotalpages
, totalpages
= 0;
1378 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1379 totalpages
+= zones_size
[i
];
1380 pgdat
->node_spanned_pages
= totalpages
;
1382 realtotalpages
= totalpages
;
1384 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1385 realtotalpages
-= zholes_size
[i
];
1386 pgdat
->node_present_pages
= realtotalpages
;
1387 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1392 * Initially all pages are reserved - free ones are freed
1393 * up by free_all_bootmem() once the early boot process is
1394 * done. Non-atomic initialization, single-pass.
1396 void __init
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1397 unsigned long start_pfn
)
1399 struct page
*start
= pfn_to_page(start_pfn
);
1402 for (page
= start
; page
< (start
+ size
); page
++) {
1403 set_page_zone(page
, NODEZONE(nid
, zone
));
1404 set_page_count(page
, 0);
1405 reset_page_mapcount(page
);
1406 SetPageReserved(page
);
1407 INIT_LIST_HEAD(&page
->lru
);
1408 #ifdef WANT_PAGE_VIRTUAL
1409 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1410 if (!is_highmem_idx(zone
))
1411 set_page_address(page
, __va(start_pfn
<< PAGE_SHIFT
));
1418 * Page buddy system uses "index >> (i+1)", where "index" is
1421 * The extra "+3" is to round down to byte size (8 bits per byte
1422 * assumption). Thus we get "(size-1) >> (i+4)" as the last byte
1425 * The "+1" is because we want to round the byte allocation up
1426 * rather than down. So we should have had a "+7" before we shifted
1427 * down by three. Also, we have to add one as we actually _use_ the
1428 * last bit (it's [0,n] inclusive, not [0,n[).
1430 * So we actually had +7+1 before we shift down by 3. But
1431 * (n+8) >> 3 == (n >> 3) + 1 (modulo overflows, which we do not have).
1433 * Finally, we LONG_ALIGN because all bitmap operations are on longs.
1435 unsigned long pages_to_bitmap_size(unsigned long order
, unsigned long nr_pages
)
1437 unsigned long bitmap_size
;
1439 bitmap_size
= (nr_pages
-1) >> (order
+4);
1440 bitmap_size
= LONG_ALIGN(bitmap_size
+1);
1445 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
, unsigned long size
)
1448 for (order
= 0; ; order
++) {
1449 unsigned long bitmap_size
;
1451 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1452 if (order
== MAX_ORDER
-1) {
1453 zone
->free_area
[order
].map
= NULL
;
1457 bitmap_size
= pages_to_bitmap_size(order
, size
);
1458 zone
->free_area
[order
].map
=
1459 (unsigned long *) alloc_bootmem_node(pgdat
, bitmap_size
);
1463 #ifndef __HAVE_ARCH_MEMMAP_INIT
1464 #define memmap_init(size, nid, zone, start_pfn) \
1465 memmap_init_zone((size), (nid), (zone), (start_pfn))
1469 * Set up the zone data structures:
1470 * - mark all pages reserved
1471 * - mark all memory queues empty
1472 * - clear the memory bitmaps
1474 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
1475 unsigned long *zones_size
, unsigned long *zholes_size
)
1478 const unsigned long zone_required_alignment
= 1UL << (MAX_ORDER
-1);
1479 int cpu
, nid
= pgdat
->node_id
;
1480 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
1482 pgdat
->nr_zones
= 0;
1483 init_waitqueue_head(&pgdat
->kswapd_wait
);
1485 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
1486 struct zone
*zone
= pgdat
->node_zones
+ j
;
1487 unsigned long size
, realsize
;
1488 unsigned long batch
;
1490 zone_table
[NODEZONE(nid
, j
)] = zone
;
1491 realsize
= size
= zones_size
[j
];
1493 realsize
-= zholes_size
[j
];
1495 if (j
== ZONE_DMA
|| j
== ZONE_NORMAL
)
1496 nr_kernel_pages
+= realsize
;
1497 nr_all_pages
+= realsize
;
1499 zone
->spanned_pages
= size
;
1500 zone
->present_pages
= realsize
;
1501 zone
->name
= zone_names
[j
];
1502 spin_lock_init(&zone
->lock
);
1503 spin_lock_init(&zone
->lru_lock
);
1504 zone
->zone_pgdat
= pgdat
;
1505 zone
->free_pages
= 0;
1507 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
1510 * The per-cpu-pages pools are set to around 1000th of the
1511 * size of the zone. But no more than 1/4 of a meg - there's
1512 * no point in going beyond the size of L2 cache.
1514 * OK, so we don't know how big the cache is. So guess.
1516 batch
= zone
->present_pages
/ 1024;
1517 if (batch
* PAGE_SIZE
> 256 * 1024)
1518 batch
= (256 * 1024) / PAGE_SIZE
;
1519 batch
/= 4; /* We effectively *= 4 below */
1523 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
1524 struct per_cpu_pages
*pcp
;
1526 pcp
= &zone
->pageset
[cpu
].pcp
[0]; /* hot */
1528 pcp
->low
= 2 * batch
;
1529 pcp
->high
= 6 * batch
;
1530 pcp
->batch
= 1 * batch
;
1531 INIT_LIST_HEAD(&pcp
->list
);
1533 pcp
= &zone
->pageset
[cpu
].pcp
[1]; /* cold */
1536 pcp
->high
= 2 * batch
;
1537 pcp
->batch
= 1 * batch
;
1538 INIT_LIST_HEAD(&pcp
->list
);
1540 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
1541 zone_names
[j
], realsize
, batch
);
1542 INIT_LIST_HEAD(&zone
->active_list
);
1543 INIT_LIST_HEAD(&zone
->inactive_list
);
1544 zone
->nr_scan_active
= 0;
1545 zone
->nr_scan_inactive
= 0;
1546 zone
->nr_active
= 0;
1547 zone
->nr_inactive
= 0;
1552 * The per-page waitqueue mechanism uses hashed waitqueues
1555 zone
->wait_table_size
= wait_table_size(size
);
1556 zone
->wait_table_bits
=
1557 wait_table_bits(zone
->wait_table_size
);
1558 zone
->wait_table
= (wait_queue_head_t
*)
1559 alloc_bootmem_node(pgdat
, zone
->wait_table_size
1560 * sizeof(wait_queue_head_t
));
1562 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
1563 init_waitqueue_head(zone
->wait_table
+ i
);
1565 pgdat
->nr_zones
= j
+1;
1567 zone
->zone_mem_map
= pfn_to_page(zone_start_pfn
);
1568 zone
->zone_start_pfn
= zone_start_pfn
;
1570 if ((zone_start_pfn
) & (zone_required_alignment
-1))
1571 printk("BUG: wrong zone alignment, it will crash\n");
1573 memmap_init(size
, nid
, j
, zone_start_pfn
);
1575 zone_start_pfn
+= size
;
1577 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
1581 void __init
node_alloc_mem_map(struct pglist_data
*pgdat
)
1585 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
1586 pgdat
->node_mem_map
= alloc_bootmem_node(pgdat
, size
);
1587 #ifndef CONFIG_DISCONTIGMEM
1588 mem_map
= contig_page_data
.node_mem_map
;
1592 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
1593 unsigned long *zones_size
, unsigned long node_start_pfn
,
1594 unsigned long *zholes_size
)
1596 pgdat
->node_id
= nid
;
1597 pgdat
->node_start_pfn
= node_start_pfn
;
1598 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
1600 if (!pfn_to_page(node_start_pfn
))
1601 node_alloc_mem_map(pgdat
);
1603 free_area_init_core(pgdat
, zones_size
, zholes_size
);
1606 #ifndef CONFIG_DISCONTIGMEM
1607 static bootmem_data_t contig_bootmem_data
;
1608 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
1610 EXPORT_SYMBOL(contig_page_data
);
1612 void __init
free_area_init(unsigned long *zones_size
)
1614 free_area_init_node(0, &contig_page_data
, zones_size
,
1615 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
1619 #ifdef CONFIG_PROC_FS
1621 #include <linux/seq_file.h>
1623 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
1628 for (pgdat
= pgdat_list
; pgdat
&& node
; pgdat
= pgdat
->pgdat_next
)
1634 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1636 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1639 return pgdat
->pgdat_next
;
1642 static void frag_stop(struct seq_file
*m
, void *arg
)
1647 * This walks the freelist for each zone. Whilst this is slow, I'd rather
1648 * be slow here than slow down the fast path by keeping stats - mjbligh
1650 static int frag_show(struct seq_file
*m
, void *arg
)
1652 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1654 struct zone
*node_zones
= pgdat
->node_zones
;
1655 unsigned long flags
;
1658 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
1659 if (!zone
->present_pages
)
1662 spin_lock_irqsave(&zone
->lock
, flags
);
1663 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1664 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1665 unsigned long nr_bufs
= 0;
1666 struct list_head
*elem
;
1668 list_for_each(elem
, &(zone
->free_area
[order
].free_list
))
1670 seq_printf(m
, "%6lu ", nr_bufs
);
1672 spin_unlock_irqrestore(&zone
->lock
, flags
);
1678 struct seq_operations fragmentation_op
= {
1679 .start
= frag_start
,
1685 static char *vmstat_text
[] = {
1689 "nr_page_table_pages",
1714 "pgscan_kswapd_high",
1715 "pgscan_kswapd_normal",
1717 "pgscan_kswapd_dma",
1718 "pgscan_direct_high",
1719 "pgscan_direct_normal",
1720 "pgscan_direct_dma",
1725 "kswapd_inodesteal",
1732 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1734 struct page_state
*ps
;
1736 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1739 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
1742 return ERR_PTR(-ENOMEM
);
1743 get_full_page_state(ps
);
1744 ps
->pgpgin
/= 2; /* sectors -> kbytes */
1746 return (unsigned long *)ps
+ *pos
;
1749 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1752 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1754 return (unsigned long *)m
->private + *pos
;
1757 static int vmstat_show(struct seq_file
*m
, void *arg
)
1759 unsigned long *l
= arg
;
1760 unsigned long off
= l
- (unsigned long *)m
->private;
1762 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1766 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1772 struct seq_operations vmstat_op
= {
1773 .start
= vmstat_start
,
1774 .next
= vmstat_next
,
1775 .stop
= vmstat_stop
,
1776 .show
= vmstat_show
,
1779 #endif /* CONFIG_PROC_FS */
1781 #ifdef CONFIG_HOTPLUG_CPU
1782 static int page_alloc_cpu_notify(struct notifier_block
*self
,
1783 unsigned long action
, void *hcpu
)
1785 int cpu
= (unsigned long)hcpu
;
1788 if (action
== CPU_DEAD
) {
1789 /* Drain local pagecache count. */
1790 count
= &per_cpu(nr_pagecache_local
, cpu
);
1791 atomic_add(*count
, &nr_pagecache
);
1793 local_irq_disable();
1799 #endif /* CONFIG_HOTPLUG_CPU */
1801 void __init
page_alloc_init(void)
1803 hotcpu_notifier(page_alloc_cpu_notify
, 0);
1806 static unsigned long higherzone_val(struct zone
*z
, int max_zone
,
1809 int z_idx
= zone_idx(z
);
1810 struct zone
*higherzone
;
1811 unsigned long pages
;
1813 /* there is no higher zone to get a contribution from */
1814 if (z_idx
== MAX_NR_ZONES
-1)
1817 higherzone
= &z
->zone_pgdat
->node_zones
[z_idx
+1];
1819 /* We always start with the higher zone's protection value */
1820 pages
= higherzone
->protection
[alloc_type
];
1823 * We get a lower-zone-protection contribution only if there are
1824 * pages in the higher zone and if we're not the highest zone
1825 * in the current zonelist. e.g., never happens for GFP_DMA. Happens
1826 * only for ZONE_DMA in a GFP_KERNEL allocation and happens for ZONE_DMA
1827 * and ZONE_NORMAL for a GFP_HIGHMEM allocation.
1829 if (higherzone
->present_pages
&& z_idx
< alloc_type
)
1830 pages
+= higherzone
->pages_low
* sysctl_lower_zone_protection
;
1836 * setup_per_zone_protection - called whenver min_free_kbytes or
1837 * sysctl_lower_zone_protection changes. Ensures that each zone
1838 * has a correct pages_protected value, so an adequate number of
1839 * pages are left in the zone after a successful __alloc_pages().
1841 * This algorithm is way confusing. I tries to keep the same behavior
1842 * as we had with the incremental min iterative algorithm.
1844 static void setup_per_zone_protection(void)
1846 struct pglist_data
*pgdat
;
1847 struct zone
*zones
, *zone
;
1851 for_each_pgdat(pgdat
) {
1852 zones
= pgdat
->node_zones
;
1854 for (i
= 0, max_zone
= 0; i
< MAX_NR_ZONES
; i
++)
1855 if (zones
[i
].present_pages
)
1859 * For each of the different allocation types:
1860 * GFP_DMA -> GFP_KERNEL -> GFP_HIGHMEM
1862 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1864 * For each of the zones:
1865 * ZONE_HIGHMEM -> ZONE_NORMAL -> ZONE_DMA
1867 for (j
= MAX_NR_ZONES
-1; j
>= 0; j
--) {
1871 * We never protect zones that don't have memory
1872 * in them (j>max_zone) or zones that aren't in
1873 * the zonelists for a certain type of
1874 * allocation (j>=i). We have to assign these
1875 * to zero because the lower zones take
1876 * contributions from the higher zones.
1878 if (j
> max_zone
|| j
>= i
) {
1879 zone
->protection
[i
] = 0;
1883 * The contribution of the next higher zone
1885 zone
->protection
[i
] = higherzone_val(zone
,
1893 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
1894 * that the pages_{min,low,high} values for each zone are set correctly
1895 * with respect to min_free_kbytes.
1897 static void setup_per_zone_pages_min(void)
1899 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
1900 unsigned long lowmem_pages
= 0;
1902 unsigned long flags
;
1904 /* Calculate total number of !ZONE_HIGHMEM pages */
1905 for_each_zone(zone
) {
1906 if (!is_highmem(zone
))
1907 lowmem_pages
+= zone
->present_pages
;
1910 for_each_zone(zone
) {
1911 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1912 if (is_highmem(zone
)) {
1914 * Often, highmem doesn't need to reserve any pages.
1915 * But the pages_min/low/high values are also used for
1916 * batching up page reclaim activity so we need a
1917 * decent value here.
1921 min_pages
= zone
->present_pages
/ 1024;
1922 if (min_pages
< SWAP_CLUSTER_MAX
)
1923 min_pages
= SWAP_CLUSTER_MAX
;
1924 if (min_pages
> 128)
1926 zone
->pages_min
= min_pages
;
1928 /* if it's a lowmem zone, reserve a number of pages
1929 * proportionate to the zone's size.
1931 zone
->pages_min
= (pages_min
* zone
->present_pages
) /
1935 zone
->pages_low
= zone
->pages_min
* 2;
1936 zone
->pages_high
= zone
->pages_min
* 3;
1937 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1942 * Initialise min_free_kbytes.
1944 * For small machines we want it small (128k min). For large machines
1945 * we want it large (16MB max). But it is not linear, because network
1946 * bandwidth does not increase linearly with machine size. We use
1948 * min_free_kbytes = sqrt(lowmem_kbytes)
1964 static int __init
init_per_zone_pages_min(void)
1966 unsigned long lowmem_kbytes
;
1968 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
1970 min_free_kbytes
= int_sqrt(lowmem_kbytes
);
1971 if (min_free_kbytes
< 128)
1972 min_free_kbytes
= 128;
1973 if (min_free_kbytes
> 16384)
1974 min_free_kbytes
= 16384;
1975 setup_per_zone_pages_min();
1976 setup_per_zone_protection();
1979 module_init(init_per_zone_pages_min
)
1982 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1983 * that we can call two helper functions whenever min_free_kbytes
1986 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
1987 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1989 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1990 setup_per_zone_pages_min();
1991 setup_per_zone_protection();
1996 * lower_zone_protection_sysctl_handler - just a wrapper around
1997 * proc_dointvec() so that we can call setup_per_zone_protection()
1998 * whenever sysctl_lower_zone_protection changes.
2000 int lower_zone_protection_sysctl_handler(ctl_table
*table
, int write
,
2001 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2003 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2004 setup_per_zone_protection();
2009 * allocate a large system hash table from bootmem
2010 * - it is assumed that the hash table must contain an exact power-of-2
2011 * quantity of entries
2013 void *__init
alloc_large_system_hash(const char *tablename
,
2014 unsigned long bucketsize
,
2015 unsigned long numentries
,
2017 int consider_highmem
,
2018 unsigned int *_hash_shift
,
2019 unsigned int *_hash_mask
)
2021 unsigned long long max
;
2022 unsigned long log2qty
, size
;
2025 /* allow the kernel cmdline to have a say */
2027 /* round applicable memory size up to nearest megabyte */
2028 numentries
= consider_highmem
? nr_all_pages
: nr_kernel_pages
;
2029 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2030 numentries
>>= 20 - PAGE_SHIFT
;
2031 numentries
<<= 20 - PAGE_SHIFT
;
2033 /* limit to 1 bucket per 2^scale bytes of low memory */
2034 if (scale
> PAGE_SHIFT
)
2035 numentries
>>= (scale
- PAGE_SHIFT
);
2037 numentries
<<= (PAGE_SHIFT
- scale
);
2039 /* rounded up to nearest power of 2 in size */
2040 numentries
= 1UL << (long_log2(numentries
) + 1);
2042 /* limit allocation size to 1/16 total memory */
2043 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2044 do_div(max
, bucketsize
);
2046 if (numentries
> max
)
2049 log2qty
= long_log2(numentries
);
2052 size
= bucketsize
<< log2qty
;
2053 table
= alloc_bootmem(size
);
2054 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2057 panic("Failed to allocate %s hash table\n", tablename
);
2059 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2062 long_log2(size
) - PAGE_SHIFT
,
2066 *_hash_shift
= log2qty
;
2068 *_hash_mask
= (1 << log2qty
) - 1;