6 * Address space accounting code <alan@redhat.com>
9 #include <linux/slab.h>
10 #include <linux/shm.h>
11 #include <linux/mman.h>
12 #include <linux/pagemap.h>
13 #include <linux/swap.h>
14 #include <linux/syscalls.h>
15 #include <linux/init.h>
16 #include <linux/file.h>
18 #include <linux/personality.h>
19 #include <linux/security.h>
20 #include <linux/hugetlb.h>
21 #include <linux/profile.h>
22 #include <linux/module.h>
23 #include <linux/mount.h>
24 #include <linux/mempolicy.h>
25 #include <linux/rmap.h>
27 #include <asm/uaccess.h>
28 #include <asm/cacheflush.h>
32 * WARNING: the debugging will use recursive algorithms so never enable this
33 * unless you know what you are doing.
37 /* description of effects of mapping type and prot in current implementation.
38 * this is due to the limited x86 page protection hardware. The expected
39 * behavior is in parens:
42 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
43 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
44 * w: (no) no w: (no) no w: (yes) yes w: (no) no
45 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
47 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
48 * w: (no) no w: (no) no w: (copy) copy w: (no) no
49 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
52 pgprot_t protection_map
[16] = {
53 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
54 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
57 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
58 int sysctl_overcommit_ratio
= 50; /* default is 50% */
59 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
60 atomic_t vm_committed_space
= ATOMIC_INIT(0);
62 EXPORT_SYMBOL(sysctl_overcommit_memory
);
63 EXPORT_SYMBOL(sysctl_overcommit_ratio
);
64 EXPORT_SYMBOL(sysctl_max_map_count
);
65 EXPORT_SYMBOL(vm_committed_space
);
68 * Requires inode->i_mapping->i_mmap_lock
70 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
71 struct file
*file
, struct address_space
*mapping
)
73 if (vma
->vm_flags
& VM_DENYWRITE
)
74 atomic_inc(&file
->f_dentry
->d_inode
->i_writecount
);
75 if (vma
->vm_flags
& VM_SHARED
)
76 mapping
->i_mmap_writable
--;
78 flush_dcache_mmap_lock(mapping
);
79 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
80 list_del_init(&vma
->shared
.vm_set
.list
);
82 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
83 flush_dcache_mmap_unlock(mapping
);
87 * Remove one vm structure and free it.
89 static void remove_vm_struct(struct vm_area_struct
*vma
)
91 struct file
*file
= vma
->vm_file
;
95 struct address_space
*mapping
= file
->f_mapping
;
96 spin_lock(&mapping
->i_mmap_lock
);
97 __remove_shared_vm_struct(vma
, file
, mapping
);
98 spin_unlock(&mapping
->i_mmap_lock
);
100 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
101 vma
->vm_ops
->close(vma
);
104 anon_vma_unlink(vma
);
105 mpol_free(vma_policy(vma
));
106 kmem_cache_free(vm_area_cachep
, vma
);
110 * sys_brk() for the most part doesn't need the global kernel
111 * lock, except when an application is doing something nasty
112 * like trying to un-brk an area that has already been mapped
113 * to a regular file. in this case, the unmapping will need
114 * to invoke file system routines that need the global lock.
116 asmlinkage
unsigned long sys_brk(unsigned long brk
)
118 unsigned long rlim
, retval
;
119 unsigned long newbrk
, oldbrk
;
120 struct mm_struct
*mm
= current
->mm
;
122 down_write(&mm
->mmap_sem
);
124 if (brk
< mm
->end_code
)
126 newbrk
= PAGE_ALIGN(brk
);
127 oldbrk
= PAGE_ALIGN(mm
->brk
);
128 if (oldbrk
== newbrk
)
131 /* Always allow shrinking brk. */
132 if (brk
<= mm
->brk
) {
133 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
138 /* Check against rlimit.. */
139 rlim
= current
->rlim
[RLIMIT_DATA
].rlim_cur
;
140 if (rlim
< RLIM_INFINITY
&& brk
- mm
->start_data
> rlim
)
143 /* Check against existing mmap mappings. */
144 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
147 /* Ok, looks good - let it rip. */
148 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
154 up_write(&mm
->mmap_sem
);
159 static int browse_rb(struct rb_root
*root
)
162 struct rb_node
*nd
, *pn
= NULL
;
163 unsigned long prev
= 0, pend
= 0;
165 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
166 struct vm_area_struct
*vma
;
167 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
168 if (vma
->vm_start
< prev
)
169 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
170 if (vma
->vm_start
< pend
)
171 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
172 if (vma
->vm_start
> vma
->vm_end
)
173 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
178 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
182 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
186 void validate_mm(struct mm_struct
*mm
)
190 struct vm_area_struct
*tmp
= mm
->mmap
;
195 if (i
!= mm
->map_count
)
196 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
197 i
= browse_rb(&mm
->mm_rb
);
198 if (i
!= mm
->map_count
)
199 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
204 #define validate_mm(mm) do { } while (0)
207 static struct vm_area_struct
*
208 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
209 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
210 struct rb_node
** rb_parent
)
212 struct vm_area_struct
* vma
;
213 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
215 __rb_link
= &mm
->mm_rb
.rb_node
;
216 rb_prev
= __rb_parent
= NULL
;
220 struct vm_area_struct
*vma_tmp
;
222 __rb_parent
= *__rb_link
;
223 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
225 if (vma_tmp
->vm_end
> addr
) {
227 if (vma_tmp
->vm_start
<= addr
)
229 __rb_link
= &__rb_parent
->rb_left
;
231 rb_prev
= __rb_parent
;
232 __rb_link
= &__rb_parent
->rb_right
;
238 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
239 *rb_link
= __rb_link
;
240 *rb_parent
= __rb_parent
;
245 __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
246 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
249 vma
->vm_next
= prev
->vm_next
;
254 vma
->vm_next
= rb_entry(rb_parent
,
255 struct vm_area_struct
, vm_rb
);
261 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
262 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
264 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
265 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
268 static inline void __vma_link_file(struct vm_area_struct
*vma
)
274 struct address_space
*mapping
= file
->f_mapping
;
276 if (vma
->vm_flags
& VM_DENYWRITE
)
277 atomic_dec(&file
->f_dentry
->d_inode
->i_writecount
);
278 if (vma
->vm_flags
& VM_SHARED
)
279 mapping
->i_mmap_writable
++;
281 flush_dcache_mmap_lock(mapping
);
282 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
283 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
285 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
286 flush_dcache_mmap_unlock(mapping
);
291 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
292 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
293 struct rb_node
*rb_parent
)
295 __vma_link_list(mm
, vma
, prev
, rb_parent
);
296 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
297 __anon_vma_link(vma
);
300 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
301 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
302 struct rb_node
*rb_parent
)
304 struct address_space
*mapping
= NULL
;
307 mapping
= vma
->vm_file
->f_mapping
;
310 spin_lock(&mapping
->i_mmap_lock
);
313 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
314 __vma_link_file(vma
);
316 anon_vma_unlock(vma
);
318 spin_unlock(&mapping
->i_mmap_lock
);
325 * Helper for vma_adjust in the split_vma insert case:
326 * insert vm structure into list and rbtree and anon_vma,
327 * but it has already been inserted into prio_tree earlier.
330 __insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
332 struct vm_area_struct
* __vma
, * prev
;
333 struct rb_node
** rb_link
, * rb_parent
;
335 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
336 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
338 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
343 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
344 struct vm_area_struct
*prev
)
346 prev
->vm_next
= vma
->vm_next
;
347 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
348 if (mm
->mmap_cache
== vma
)
349 mm
->mmap_cache
= prev
;
353 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
354 * is already present in an i_mmap tree without adjusting the tree.
355 * The following helper function should be used when such adjustments
356 * are necessary. The "insert" vma (if any) is to be inserted
357 * before we drop the necessary locks.
359 void vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
360 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
362 struct mm_struct
*mm
= vma
->vm_mm
;
363 struct vm_area_struct
*next
= vma
->vm_next
;
364 struct vm_area_struct
*importer
= NULL
;
365 struct address_space
*mapping
= NULL
;
366 struct prio_tree_root
*root
= NULL
;
367 struct file
*file
= vma
->vm_file
;
368 struct anon_vma
*anon_vma
= NULL
;
369 long adjust_next
= 0;
372 if (next
&& !insert
) {
373 if (end
>= next
->vm_end
) {
375 * vma expands, overlapping all the next, and
376 * perhaps the one after too (mprotect case 6).
378 again
: remove_next
= 1 + (end
> next
->vm_end
);
380 anon_vma
= next
->anon_vma
;
381 } else if (end
> next
->vm_start
) {
383 * vma expands, overlapping part of the next:
384 * mprotect case 5 shifting the boundary up.
386 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
387 anon_vma
= next
->anon_vma
;
389 } else if (end
< vma
->vm_end
) {
391 * vma shrinks, and !insert tells it's not
392 * split_vma inserting another: so it must be
393 * mprotect case 4 shifting the boundary down.
395 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
396 anon_vma
= next
->anon_vma
;
402 mapping
= file
->f_mapping
;
403 if (!(vma
->vm_flags
& VM_NONLINEAR
))
404 root
= &mapping
->i_mmap
;
405 spin_lock(&mapping
->i_mmap_lock
);
408 * Put into prio_tree now, so instantiated pages
409 * are visible to arm/parisc __flush_dcache_page
410 * throughout; but we cannot insert into address
411 * space until vma start or end is updated.
413 __vma_link_file(insert
);
418 * When changing only vma->vm_end, we don't really need
419 * anon_vma lock: but is that case worth optimizing out?
422 anon_vma
= vma
->anon_vma
;
424 spin_lock(&anon_vma
->lock
);
426 * Easily overlooked: when mprotect shifts the boundary,
427 * make sure the expanding vma has anon_vma set if the
428 * shrinking vma had, to cover any anon pages imported.
430 if (importer
&& !importer
->anon_vma
) {
431 importer
->anon_vma
= anon_vma
;
432 __anon_vma_link(importer
);
437 flush_dcache_mmap_lock(mapping
);
438 vma_prio_tree_remove(vma
, root
);
440 vma_prio_tree_remove(next
, root
);
443 vma
->vm_start
= start
;
445 vma
->vm_pgoff
= pgoff
;
447 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
448 next
->vm_pgoff
+= adjust_next
;
453 vma_prio_tree_insert(next
, root
);
454 vma_prio_tree_insert(vma
, root
);
455 flush_dcache_mmap_unlock(mapping
);
460 * vma_merge has merged next into vma, and needs
461 * us to remove next before dropping the locks.
463 __vma_unlink(mm
, next
, vma
);
465 __remove_shared_vm_struct(next
, file
, mapping
);
467 __anon_vma_merge(vma
, next
);
470 * split_vma has split insert from vma, and needs
471 * us to insert it before dropping the locks
472 * (it may either follow vma or precede it).
474 __insert_vm_struct(mm
, insert
);
478 spin_unlock(&anon_vma
->lock
);
480 spin_unlock(&mapping
->i_mmap_lock
);
486 mpol_free(vma_policy(next
));
487 kmem_cache_free(vm_area_cachep
, next
);
489 * In mprotect's case 6 (see comments on vma_merge),
490 * we must remove another next too. It would clutter
491 * up the code too much to do both in one go.
493 if (remove_next
== 2) {
503 * If the vma has a ->close operation then the driver probably needs to release
504 * per-vma resources, so we don't attempt to merge those.
506 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED)
508 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
509 struct file
*file
, unsigned long vm_flags
)
511 if (vma
->vm_flags
!= vm_flags
)
513 if (vma
->vm_file
!= file
)
515 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
520 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
521 struct anon_vma
*anon_vma2
)
523 return !anon_vma1
|| !anon_vma2
|| (anon_vma1
== anon_vma2
);
527 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
528 * in front of (at a lower virtual address and file offset than) the vma.
530 * We cannot merge two vmas if they have differently assigned (non-NULL)
531 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
533 * We don't check here for the merged mmap wrapping around the end of pagecache
534 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
535 * wrap, nor mmaps which cover the final page at index -1UL.
538 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
539 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
541 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
542 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
543 if (vma
->vm_pgoff
== vm_pgoff
)
550 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
551 * beyond (at a higher virtual address and file offset than) the vma.
553 * We cannot merge two vmas if they have differently assigned (non-NULL)
554 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
557 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
558 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
560 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
561 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
563 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
564 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
571 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
572 * whether that can be merged with its predecessor or its successor.
573 * Or both (it neatly fills a hole).
575 * In most cases - when called for mmap, brk or mremap - [addr,end) is
576 * certain not to be mapped by the time vma_merge is called; but when
577 * called for mprotect, it is certain to be already mapped (either at
578 * an offset within prev, or at the start of next), and the flags of
579 * this area are about to be changed to vm_flags - and the no-change
580 * case has already been eliminated.
582 * The following mprotect cases have to be considered, where AAAA is
583 * the area passed down from mprotect_fixup, never extending beyond one
584 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
586 * AAAA AAAA AAAA AAAA
587 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
588 * cannot merge might become might become might become
589 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
590 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
591 * mremap move: PPPPNNNNNNNN 8
593 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
594 * might become case 1 below case 2 below case 3 below
596 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
597 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
599 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
600 struct vm_area_struct
*prev
, unsigned long addr
,
601 unsigned long end
, unsigned long vm_flags
,
602 struct anon_vma
*anon_vma
, struct file
*file
,
603 pgoff_t pgoff
, struct mempolicy
*policy
)
605 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
606 struct vm_area_struct
*area
, *next
;
609 * We later require that vma->vm_flags == vm_flags,
610 * so this tests vma->vm_flags & VM_SPECIAL, too.
612 if (vm_flags
& VM_SPECIAL
)
616 next
= prev
->vm_next
;
620 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
621 next
= next
->vm_next
;
624 * Can it merge with the predecessor?
626 if (prev
&& prev
->vm_end
== addr
&&
627 mpol_equal(vma_policy(prev
), policy
) &&
628 can_vma_merge_after(prev
, vm_flags
,
629 anon_vma
, file
, pgoff
)) {
631 * OK, it can. Can we now merge in the successor as well?
633 if (next
&& end
== next
->vm_start
&&
634 mpol_equal(policy
, vma_policy(next
)) &&
635 can_vma_merge_before(next
, vm_flags
,
636 anon_vma
, file
, pgoff
+pglen
) &&
637 is_mergeable_anon_vma(prev
->anon_vma
,
640 vma_adjust(prev
, prev
->vm_start
,
641 next
->vm_end
, prev
->vm_pgoff
, NULL
);
642 } else /* cases 2, 5, 7 */
643 vma_adjust(prev
, prev
->vm_start
,
644 end
, prev
->vm_pgoff
, NULL
);
649 * Can this new request be merged in front of next?
651 if (next
&& end
== next
->vm_start
&&
652 mpol_equal(policy
, vma_policy(next
)) &&
653 can_vma_merge_before(next
, vm_flags
,
654 anon_vma
, file
, pgoff
+pglen
)) {
655 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
656 vma_adjust(prev
, prev
->vm_start
,
657 addr
, prev
->vm_pgoff
, NULL
);
658 else /* cases 3, 8 */
659 vma_adjust(area
, addr
, next
->vm_end
,
660 next
->vm_pgoff
- pglen
, NULL
);
668 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
669 * neighbouring vmas for a suitable anon_vma, before it goes off
670 * to allocate a new anon_vma. It checks because a repetitive
671 * sequence of mprotects and faults may otherwise lead to distinct
672 * anon_vmas being allocated, preventing vma merge in subsequent
675 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
677 struct vm_area_struct
*near
;
678 unsigned long vm_flags
;
685 * Since only mprotect tries to remerge vmas, match flags
686 * which might be mprotected into each other later on.
687 * Neither mlock nor madvise tries to remerge at present,
688 * so leave their flags as obstructing a merge.
690 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
691 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
693 if (near
->anon_vma
&& vma
->vm_end
== near
->vm_start
&&
694 mpol_equal(vma_policy(vma
), vma_policy(near
)) &&
695 can_vma_merge_before(near
, vm_flags
,
696 NULL
, vma
->vm_file
, vma
->vm_pgoff
+
697 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
)))
698 return near
->anon_vma
;
701 * It is potentially slow to have to call find_vma_prev here.
702 * But it's only on the first write fault on the vma, not
703 * every time, and we could devise a way to avoid it later
704 * (e.g. stash info in next's anon_vma_node when assigning
705 * an anon_vma, or when trying vma_merge). Another time.
707 if (find_vma_prev(vma
->vm_mm
, vma
->vm_start
, &near
) != vma
)
712 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
713 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
715 if (near
->anon_vma
&& near
->vm_end
== vma
->vm_start
&&
716 mpol_equal(vma_policy(near
), vma_policy(vma
)) &&
717 can_vma_merge_after(near
, vm_flags
,
718 NULL
, vma
->vm_file
, vma
->vm_pgoff
))
719 return near
->anon_vma
;
722 * There's no absolute need to look only at touching neighbours:
723 * we could search further afield for "compatible" anon_vmas.
724 * But it would probably just be a waste of time searching,
725 * or lead to too many vmas hanging off the same anon_vma.
726 * We're trying to allow mprotect remerging later on,
727 * not trying to minimize memory used for anon_vmas.
732 #ifdef CONFIG_PROC_FS
733 void __vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
734 struct file
*file
, long pages
)
736 const unsigned long stack_flags
737 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
739 #ifdef CONFIG_HUGETLB
740 if (flags
& VM_HUGETLB
) {
741 if (!(flags
& VM_DONTCOPY
))
742 mm
->shared_vm
+= pages
;
745 #endif /* CONFIG_HUGETLB */
748 mm
->shared_vm
+= pages
;
749 else if (flags
& stack_flags
)
750 mm
->stack_vm
+= pages
;
752 mm
->exec_vm
+= pages
;
753 if (flags
& (VM_RESERVED
|VM_IO
))
754 mm
->reserved_vm
+= pages
;
756 #endif /* CONFIG_PROC_FS */
759 * The caller must hold down_write(current->mm->mmap_sem).
762 unsigned long do_mmap_pgoff(struct file
* file
, unsigned long addr
,
763 unsigned long len
, unsigned long prot
,
764 unsigned long flags
, unsigned long pgoff
)
766 struct mm_struct
* mm
= current
->mm
;
767 struct vm_area_struct
* vma
, * prev
;
769 unsigned int vm_flags
;
770 int correct_wcount
= 0;
772 struct rb_node
** rb_link
, * rb_parent
;
774 unsigned long charged
= 0;
777 if (is_file_hugepages(file
))
780 if (!file
->f_op
|| !file
->f_op
->mmap
)
783 if ((prot
& PROT_EXEC
) &&
784 (file
->f_vfsmnt
->mnt_flags
& MNT_NOEXEC
))
788 * Does the application expect PROT_READ to imply PROT_EXEC?
790 * (the exception is when the underlying filesystem is noexec
791 * mounted, in which case we dont add PROT_EXEC.)
793 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
794 if (!(file
&& (file
->f_vfsmnt
->mnt_flags
& MNT_NOEXEC
)))
800 /* Careful about overflows.. */
801 len
= PAGE_ALIGN(len
);
802 if (!len
|| len
> TASK_SIZE
)
805 /* offset overflow? */
806 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
809 /* Too many mappings? */
810 if (mm
->map_count
> sysctl_max_map_count
)
813 /* Obtain the address to map to. we verify (or select) it and ensure
814 * that it represents a valid section of the address space.
816 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
817 if (addr
& ~PAGE_MASK
)
820 /* Do simple checking here so the lower-level routines won't have
821 * to. we assume access permissions have been handled by the open
822 * of the memory object, so we don't do any here.
824 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
825 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
827 if (flags
& MAP_LOCKED
) {
830 vm_flags
|= VM_LOCKED
;
832 /* mlock MCL_FUTURE? */
833 if (vm_flags
& VM_LOCKED
) {
834 unsigned long locked
, lock_limit
;
835 locked
= mm
->locked_vm
<< PAGE_SHIFT
;
836 lock_limit
= current
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
838 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
842 inode
= file
? file
->f_dentry
->d_inode
: NULL
;
845 switch (flags
& MAP_TYPE
) {
847 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
851 * Make sure we don't allow writing to an append-only
854 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
858 * Make sure there are no mandatory locks on the file.
860 if (locks_verify_locked(inode
))
863 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
864 if (!(file
->f_mode
& FMODE_WRITE
))
865 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
869 if (!(file
->f_mode
& FMODE_READ
))
877 switch (flags
& MAP_TYPE
) {
879 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
883 * Set pgoff according to addr for anon_vma.
885 pgoff
= addr
>> PAGE_SHIFT
;
892 error
= security_file_mmap(file
, prot
, flags
);
899 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
900 if (vma
&& vma
->vm_start
< addr
+ len
) {
901 if (do_munmap(mm
, addr
, len
))
906 /* Check against address space limit. */
907 if ((mm
->total_vm
<< PAGE_SHIFT
) + len
908 > current
->rlim
[RLIMIT_AS
].rlim_cur
)
911 if (accountable
&& (!(flags
& MAP_NORESERVE
) ||
912 sysctl_overcommit_memory
== OVERCOMMIT_NEVER
)) {
913 if (vm_flags
& VM_SHARED
) {
914 /* Check memory availability in shmem_file_setup? */
915 vm_flags
|= VM_ACCOUNT
;
916 } else if (vm_flags
& VM_WRITE
) {
918 * Private writable mapping: check memory availability
920 charged
= len
>> PAGE_SHIFT
;
921 if (security_vm_enough_memory(charged
))
923 vm_flags
|= VM_ACCOUNT
;
928 * Can we just expand an old private anonymous mapping?
929 * The VM_SHARED test is necessary because shmem_zero_setup
930 * will create the file object for a shared anonymous map below.
932 if (!file
&& !(vm_flags
& VM_SHARED
) &&
933 vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
934 NULL
, NULL
, pgoff
, NULL
))
938 * Determine the object being mapped and call the appropriate
939 * specific mapper. the address has already been validated, but
940 * not unmapped, but the maps are removed from the list.
942 vma
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
947 memset(vma
, 0, sizeof(*vma
));
950 vma
->vm_start
= addr
;
951 vma
->vm_end
= addr
+ len
;
952 vma
->vm_flags
= vm_flags
;
953 vma
->vm_page_prot
= protection_map
[vm_flags
& 0x0f];
954 vma
->vm_pgoff
= pgoff
;
958 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
960 if (vm_flags
& VM_DENYWRITE
) {
961 error
= deny_write_access(file
);
968 error
= file
->f_op
->mmap(file
, vma
);
970 goto unmap_and_free_vma
;
971 } else if (vm_flags
& VM_SHARED
) {
972 error
= shmem_zero_setup(vma
);
977 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
978 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
979 * that memory reservation must be checked; but that reservation
980 * belongs to shared memory object, not to vma: so now clear it.
982 if ((vm_flags
& (VM_SHARED
|VM_ACCOUNT
)) == (VM_SHARED
|VM_ACCOUNT
))
983 vma
->vm_flags
&= ~VM_ACCOUNT
;
985 /* Can addr have changed??
987 * Answer: Yes, several device drivers can do it in their
988 * f_op->mmap method. -DaveM
990 addr
= vma
->vm_start
;
992 if (!file
|| !vma_merge(mm
, prev
, addr
, vma
->vm_end
,
993 vma
->vm_flags
, NULL
, file
, pgoff
, vma_policy(vma
))) {
994 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
996 atomic_inc(&inode
->i_writecount
);
1000 atomic_inc(&inode
->i_writecount
);
1003 mpol_free(vma_policy(vma
));
1004 kmem_cache_free(vm_area_cachep
, vma
);
1007 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1008 if (vm_flags
& VM_LOCKED
) {
1009 mm
->locked_vm
+= len
>> PAGE_SHIFT
;
1010 make_pages_present(addr
, addr
+ len
);
1012 if (flags
& MAP_POPULATE
) {
1013 up_write(&mm
->mmap_sem
);
1014 sys_remap_file_pages(addr
, len
, 0,
1015 pgoff
, flags
& MAP_NONBLOCK
);
1016 down_write(&mm
->mmap_sem
);
1018 __vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1023 atomic_inc(&inode
->i_writecount
);
1024 vma
->vm_file
= NULL
;
1027 /* Undo any partial mapping done by a device driver. */
1028 zap_page_range(vma
, vma
->vm_start
, vma
->vm_end
- vma
->vm_start
, NULL
);
1030 kmem_cache_free(vm_area_cachep
, vma
);
1033 vm_unacct_memory(charged
);
1037 EXPORT_SYMBOL(do_mmap_pgoff
);
1039 /* Get an address range which is currently unmapped.
1040 * For shmat() with addr=0.
1042 * Ugly calling convention alert:
1043 * Return value with the low bits set means error value,
1045 * if (ret & ~PAGE_MASK)
1048 * This function "knows" that -ENOMEM has the bits set.
1050 #ifndef HAVE_ARCH_UNMAPPED_AREA
1052 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1053 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1055 struct mm_struct
*mm
= current
->mm
;
1056 struct vm_area_struct
*vma
;
1057 unsigned long start_addr
;
1059 if (len
> TASK_SIZE
)
1063 addr
= PAGE_ALIGN(addr
);
1064 vma
= find_vma(mm
, addr
);
1065 if (TASK_SIZE
- len
>= addr
&&
1066 (!vma
|| addr
+ len
<= vma
->vm_start
))
1069 start_addr
= addr
= mm
->free_area_cache
;
1072 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1073 /* At this point: (!vma || addr < vma->vm_end). */
1074 if (TASK_SIZE
- len
< addr
) {
1076 * Start a new search - just in case we missed
1079 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1080 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1085 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1087 * Remember the place where we stopped the search:
1089 mm
->free_area_cache
= addr
+ len
;
1097 void arch_unmap_area(struct vm_area_struct
*area
)
1100 * Is this a new hole at the lowest possible address?
1102 if (area
->vm_start
>= TASK_UNMAPPED_BASE
&&
1103 area
->vm_start
< area
->vm_mm
->free_area_cache
)
1104 area
->vm_mm
->free_area_cache
= area
->vm_start
;
1108 * This mmap-allocator allocates new areas top-down from below the
1109 * stack's low limit (the base):
1111 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1113 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1114 const unsigned long len
, const unsigned long pgoff
,
1115 const unsigned long flags
)
1117 struct vm_area_struct
*vma
, *prev_vma
;
1118 struct mm_struct
*mm
= current
->mm
;
1119 unsigned long base
= mm
->mmap_base
, addr
= addr0
;
1122 /* requested length too big for entire address space */
1123 if (len
> TASK_SIZE
)
1126 /* dont allow allocations above current base */
1127 if (mm
->free_area_cache
> base
)
1128 mm
->free_area_cache
= base
;
1130 /* requesting a specific address */
1132 addr
= PAGE_ALIGN(addr
);
1133 vma
= find_vma(mm
, addr
);
1134 if (TASK_SIZE
- len
>= addr
&&
1135 (!vma
|| addr
+ len
<= vma
->vm_start
))
1140 /* make sure it can fit in the remaining address space */
1141 if (mm
->free_area_cache
< len
)
1144 /* either no address requested or cant fit in requested address hole */
1145 addr
= (mm
->free_area_cache
- len
) & PAGE_MASK
;
1148 * Lookup failure means no vma is above this address,
1149 * i.e. return with success:
1151 if (!(vma
= find_vma_prev(mm
, addr
, &prev_vma
)))
1155 * new region fits between prev_vma->vm_end and
1156 * vma->vm_start, use it:
1158 if (addr
+len
<= vma
->vm_start
&&
1159 (!prev_vma
|| (addr
>= prev_vma
->vm_end
)))
1160 /* remember the address as a hint for next time */
1161 return (mm
->free_area_cache
= addr
);
1163 /* pull free_area_cache down to the first hole */
1164 if (mm
->free_area_cache
== vma
->vm_end
)
1165 mm
->free_area_cache
= vma
->vm_start
;
1167 /* try just below the current vma->vm_start */
1168 addr
= vma
->vm_start
-len
;
1169 } while (len
<= vma
->vm_start
);
1173 * if hint left us with no space for the requested
1174 * mapping then try again:
1177 mm
->free_area_cache
= base
;
1182 * A failed mmap() very likely causes application failure,
1183 * so fall back to the bottom-up function here. This scenario
1184 * can happen with large stack limits and large mmap()
1187 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1188 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1190 * Restore the topdown base:
1192 mm
->free_area_cache
= base
;
1198 void arch_unmap_area_topdown(struct vm_area_struct
*area
)
1201 * Is this a new hole at the highest possible address?
1203 if (area
->vm_end
> area
->vm_mm
->free_area_cache
)
1204 area
->vm_mm
->free_area_cache
= area
->vm_end
;
1208 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1209 unsigned long pgoff
, unsigned long flags
)
1211 if (flags
& MAP_FIXED
) {
1214 if (addr
> TASK_SIZE
- len
)
1216 if (addr
& ~PAGE_MASK
)
1218 if (file
&& is_file_hugepages(file
)) {
1220 * Check if the given range is hugepage aligned, and
1221 * can be made suitable for hugepages.
1223 ret
= prepare_hugepage_range(addr
, len
);
1226 * Ensure that a normal request is not falling in a
1227 * reserved hugepage range. For some archs like IA-64,
1228 * there is a separate region for hugepages.
1230 ret
= is_hugepage_only_range(addr
, len
);
1237 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1238 return file
->f_op
->get_unmapped_area(file
, addr
, len
,
1241 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1244 EXPORT_SYMBOL(get_unmapped_area
);
1246 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1247 struct vm_area_struct
* find_vma(struct mm_struct
* mm
, unsigned long addr
)
1249 struct vm_area_struct
*vma
= NULL
;
1252 /* Check the cache first. */
1253 /* (Cache hit rate is typically around 35%.) */
1254 vma
= mm
->mmap_cache
;
1255 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1256 struct rb_node
* rb_node
;
1258 rb_node
= mm
->mm_rb
.rb_node
;
1262 struct vm_area_struct
* vma_tmp
;
1264 vma_tmp
= rb_entry(rb_node
,
1265 struct vm_area_struct
, vm_rb
);
1267 if (vma_tmp
->vm_end
> addr
) {
1269 if (vma_tmp
->vm_start
<= addr
)
1271 rb_node
= rb_node
->rb_left
;
1273 rb_node
= rb_node
->rb_right
;
1276 mm
->mmap_cache
= vma
;
1282 EXPORT_SYMBOL(find_vma
);
1284 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1285 struct vm_area_struct
*
1286 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1287 struct vm_area_struct
**pprev
)
1289 struct vm_area_struct
*vma
= NULL
, *prev
= NULL
;
1290 struct rb_node
* rb_node
;
1294 /* Guard against addr being lower than the first VMA */
1297 /* Go through the RB tree quickly. */
1298 rb_node
= mm
->mm_rb
.rb_node
;
1301 struct vm_area_struct
*vma_tmp
;
1302 vma_tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1304 if (addr
< vma_tmp
->vm_end
) {
1305 rb_node
= rb_node
->rb_left
;
1308 if (!prev
->vm_next
|| (addr
< prev
->vm_next
->vm_end
))
1310 rb_node
= rb_node
->rb_right
;
1316 return prev
? prev
->vm_next
: vma
;
1319 #ifdef CONFIG_STACK_GROWSUP
1321 * vma is the first one with address > vma->vm_end. Have to extend vma.
1323 int expand_stack(struct vm_area_struct
* vma
, unsigned long address
)
1327 if (!(vma
->vm_flags
& VM_GROWSUP
))
1331 * We must make sure the anon_vma is allocated
1332 * so that the anon_vma locking is not a noop.
1334 if (unlikely(anon_vma_prepare(vma
)))
1339 * vma->vm_start/vm_end cannot change under us because the caller
1340 * is required to hold the mmap_sem in read mode. We need the
1341 * anon_vma lock to serialize against concurrent expand_stacks.
1343 address
+= 4 + PAGE_SIZE
- 1;
1344 address
&= PAGE_MASK
;
1345 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1348 if (security_vm_enough_memory(grow
)) {
1349 anon_vma_unlock(vma
);
1353 if (address
- vma
->vm_start
> current
->rlim
[RLIMIT_STACK
].rlim_cur
||
1354 ((vma
->vm_mm
->total_vm
+ grow
) << PAGE_SHIFT
) >
1355 current
->rlim
[RLIMIT_AS
].rlim_cur
) {
1356 anon_vma_unlock(vma
);
1357 vm_unacct_memory(grow
);
1360 vma
->vm_end
= address
;
1361 vma
->vm_mm
->total_vm
+= grow
;
1362 if (vma
->vm_flags
& VM_LOCKED
)
1363 vma
->vm_mm
->locked_vm
+= grow
;
1364 __vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1365 anon_vma_unlock(vma
);
1369 struct vm_area_struct
*
1370 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1372 struct vm_area_struct
*vma
, *prev
;
1375 vma
= find_vma_prev(mm
, addr
, &prev
);
1376 if (vma
&& (vma
->vm_start
<= addr
))
1378 if (!prev
|| expand_stack(prev
, addr
))
1380 if (prev
->vm_flags
& VM_LOCKED
) {
1381 make_pages_present(addr
, prev
->vm_end
);
1387 * vma is the first one with address < vma->vm_start. Have to extend vma.
1389 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1394 * We must make sure the anon_vma is allocated
1395 * so that the anon_vma locking is not a noop.
1397 if (unlikely(anon_vma_prepare(vma
)))
1402 * vma->vm_start/vm_end cannot change under us because the caller
1403 * is required to hold the mmap_sem in read mode. We need the
1404 * anon_vma lock to serialize against concurrent expand_stacks.
1406 address
&= PAGE_MASK
;
1407 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1410 if (security_vm_enough_memory(grow
)) {
1411 anon_vma_unlock(vma
);
1415 if (vma
->vm_end
- address
> current
->rlim
[RLIMIT_STACK
].rlim_cur
||
1416 ((vma
->vm_mm
->total_vm
+ grow
) << PAGE_SHIFT
) >
1417 current
->rlim
[RLIMIT_AS
].rlim_cur
) {
1418 anon_vma_unlock(vma
);
1419 vm_unacct_memory(grow
);
1422 vma
->vm_start
= address
;
1423 vma
->vm_pgoff
-= grow
;
1424 vma
->vm_mm
->total_vm
+= grow
;
1425 if (vma
->vm_flags
& VM_LOCKED
)
1426 vma
->vm_mm
->locked_vm
+= grow
;
1427 __vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1428 anon_vma_unlock(vma
);
1432 struct vm_area_struct
*
1433 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1435 struct vm_area_struct
* vma
;
1436 unsigned long start
;
1439 vma
= find_vma(mm
,addr
);
1442 if (vma
->vm_start
<= addr
)
1444 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1446 start
= vma
->vm_start
;
1447 if (expand_stack(vma
, addr
))
1449 if (vma
->vm_flags
& VM_LOCKED
) {
1450 make_pages_present(addr
, start
);
1457 * Try to free as many page directory entries as we can,
1458 * without having to work very hard at actually scanning
1459 * the page tables themselves.
1461 * Right now we try to free page tables if we have a nice
1462 * PGDIR-aligned area that got free'd up. We could be more
1463 * granular if we want to, but this is fast and simple,
1464 * and covers the bad cases.
1466 * "prev", if it exists, points to a vma before the one
1467 * we just free'd - but there's no telling how much before.
1469 static void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*prev
,
1470 unsigned long start
, unsigned long end
)
1472 unsigned long first
= start
& PGDIR_MASK
;
1473 unsigned long last
= end
+ PGDIR_SIZE
- 1;
1474 unsigned long start_index
, end_index
;
1475 struct mm_struct
*mm
= tlb
->mm
;
1481 if (prev
->vm_end
> start
) {
1482 if (last
> prev
->vm_start
)
1483 last
= prev
->vm_start
;
1488 struct vm_area_struct
*next
= prev
->vm_next
;
1491 if (next
->vm_start
< start
) {
1495 if (last
> next
->vm_start
)
1496 last
= next
->vm_start
;
1498 if (prev
->vm_end
> first
)
1499 first
= prev
->vm_end
+ PGDIR_SIZE
- 1;
1503 if (last
< first
) /* for arches with discontiguous pgd indices */
1506 * If the PGD bits are not consecutive in the virtual address, the
1507 * old method of shifting the VA >> by PGDIR_SHIFT doesn't work.
1509 start_index
= pgd_index(first
);
1510 if (start_index
< FIRST_USER_PGD_NR
)
1511 start_index
= FIRST_USER_PGD_NR
;
1512 end_index
= pgd_index(last
);
1513 if (end_index
> start_index
) {
1514 clear_page_tables(tlb
, start_index
, end_index
- start_index
);
1515 flush_tlb_pgtables(mm
, first
& PGDIR_MASK
, last
& PGDIR_MASK
);
1519 /* Normal function to fix up a mapping
1520 * This function is the default for when an area has no specific
1521 * function. This may be used as part of a more specific routine.
1523 * By the time this function is called, the area struct has been
1524 * removed from the process mapping list.
1526 static void unmap_vma(struct mm_struct
*mm
, struct vm_area_struct
*area
)
1528 size_t len
= area
->vm_end
- area
->vm_start
;
1530 area
->vm_mm
->total_vm
-= len
>> PAGE_SHIFT
;
1531 if (area
->vm_flags
& VM_LOCKED
)
1532 area
->vm_mm
->locked_vm
-= len
>> PAGE_SHIFT
;
1533 vm_stat_unaccount(area
);
1534 area
->vm_mm
->unmap_area(area
);
1535 remove_vm_struct(area
);
1539 * Update the VMA and inode share lists.
1541 * Ok - we have the memory areas we should free on the 'free' list,
1542 * so release them, and do the vma updates.
1544 static void unmap_vma_list(struct mm_struct
*mm
,
1545 struct vm_area_struct
*mpnt
)
1548 struct vm_area_struct
*next
= mpnt
->vm_next
;
1549 unmap_vma(mm
, mpnt
);
1551 } while (mpnt
!= NULL
);
1556 * Get rid of page table information in the indicated region.
1558 * Called with the page table lock held.
1560 static void unmap_region(struct mm_struct
*mm
,
1561 struct vm_area_struct
*vma
,
1562 struct vm_area_struct
*prev
,
1563 unsigned long start
,
1566 struct mmu_gather
*tlb
;
1567 unsigned long nr_accounted
= 0;
1570 tlb
= tlb_gather_mmu(mm
, 0);
1571 unmap_vmas(&tlb
, mm
, vma
, start
, end
, &nr_accounted
, NULL
);
1572 vm_unacct_memory(nr_accounted
);
1574 if (is_hugepage_only_range(start
, end
- start
))
1575 hugetlb_free_pgtables(tlb
, prev
, start
, end
);
1577 free_pgtables(tlb
, prev
, start
, end
);
1578 tlb_finish_mmu(tlb
, start
, end
);
1582 * Create a list of vma's touched by the unmap, removing them from the mm's
1583 * vma list as we go..
1586 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1587 struct vm_area_struct
*prev
, unsigned long end
)
1589 struct vm_area_struct
**insertion_point
;
1590 struct vm_area_struct
*tail_vma
= NULL
;
1592 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1594 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1598 } while (vma
&& vma
->vm_start
< end
);
1599 *insertion_point
= vma
;
1600 tail_vma
->vm_next
= NULL
;
1601 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1605 * Split a vma into two pieces at address 'addr', a new vma is allocated
1606 * either for the first part or the the tail.
1608 int split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1609 unsigned long addr
, int new_below
)
1611 struct mempolicy
*pol
;
1612 struct vm_area_struct
*new;
1614 if (mm
->map_count
>= sysctl_max_map_count
)
1617 new = kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
1621 /* most fields are the same, copy all, and then fixup */
1627 new->vm_start
= addr
;
1628 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1631 pol
= mpol_copy(vma_policy(vma
));
1633 kmem_cache_free(vm_area_cachep
, new);
1634 return PTR_ERR(pol
);
1636 vma_set_policy(new, pol
);
1639 get_file(new->vm_file
);
1641 if (new->vm_ops
&& new->vm_ops
->open
)
1642 new->vm_ops
->open(new);
1645 vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1646 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1648 vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
1653 /* Munmap is split into 2 main parts -- this part which finds
1654 * what needs doing, and the areas themselves, which do the
1655 * work. This now handles partial unmappings.
1656 * Jeremy Fitzhardinge <jeremy@goop.org>
1658 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1661 struct vm_area_struct
*mpnt
, *prev
, *last
;
1663 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
1666 if ((len
= PAGE_ALIGN(len
)) == 0)
1669 /* Find the first overlapping VMA */
1670 mpnt
= find_vma_prev(mm
, start
, &prev
);
1673 /* we have start < mpnt->vm_end */
1675 if (is_vm_hugetlb_page(mpnt
)) {
1676 int ret
= is_aligned_hugepage_range(start
, len
);
1682 /* if it doesn't overlap, we have nothing.. */
1684 if (mpnt
->vm_start
>= end
)
1688 * If we need to split any vma, do it now to save pain later.
1690 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1691 * unmapped vm_area_struct will remain in use: so lower split_vma
1692 * places tmp vma above, and higher split_vma places tmp vma below.
1694 if (start
> mpnt
->vm_start
) {
1695 if (split_vma(mm
, mpnt
, start
, 0))
1700 /* Does it split the last one? */
1701 last
= find_vma(mm
, end
);
1702 if (last
&& end
> last
->vm_start
) {
1703 if (split_vma(mm
, last
, end
, 1))
1706 mpnt
= prev
? prev
->vm_next
: mm
->mmap
;
1709 * Remove the vma's, and unmap the actual pages
1711 detach_vmas_to_be_unmapped(mm
, mpnt
, prev
, end
);
1712 spin_lock(&mm
->page_table_lock
);
1713 unmap_region(mm
, mpnt
, prev
, start
, end
);
1714 spin_unlock(&mm
->page_table_lock
);
1716 /* Fix up all other VM information */
1717 unmap_vma_list(mm
, mpnt
);
1722 EXPORT_SYMBOL(do_munmap
);
1724 asmlinkage
long sys_munmap(unsigned long addr
, size_t len
)
1727 struct mm_struct
*mm
= current
->mm
;
1729 profile_munmap(addr
);
1731 down_write(&mm
->mmap_sem
);
1732 ret
= do_munmap(mm
, addr
, len
);
1733 up_write(&mm
->mmap_sem
);
1738 * this is really a simplified "do_mmap". it only handles
1739 * anonymous maps. eventually we may be able to do some
1740 * brk-specific accounting here.
1742 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1744 struct mm_struct
* mm
= current
->mm
;
1745 struct vm_area_struct
* vma
, * prev
;
1746 unsigned long flags
;
1747 struct rb_node
** rb_link
, * rb_parent
;
1748 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
1750 len
= PAGE_ALIGN(len
);
1754 if ((addr
+ len
) > TASK_SIZE
|| (addr
+ len
) < addr
)
1760 if (mm
->def_flags
& VM_LOCKED
) {
1761 unsigned long locked
, lock_limit
;
1762 locked
= mm
->locked_vm
<< PAGE_SHIFT
;
1763 lock_limit
= current
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
1765 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1770 * Clear old maps. this also does some error checking for us
1773 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1774 if (vma
&& vma
->vm_start
< addr
+ len
) {
1775 if (do_munmap(mm
, addr
, len
))
1780 /* Check against address space limits *after* clearing old maps... */
1781 if ((mm
->total_vm
<< PAGE_SHIFT
) + len
1782 > current
->rlim
[RLIMIT_AS
].rlim_cur
)
1785 if (mm
->map_count
> sysctl_max_map_count
)
1788 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
1791 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
1793 /* Can we just expand an old private anonymous mapping? */
1794 if (vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
1795 NULL
, NULL
, pgoff
, NULL
))
1799 * create a vma struct for an anonymous mapping
1801 vma
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
1803 vm_unacct_memory(len
>> PAGE_SHIFT
);
1806 memset(vma
, 0, sizeof(*vma
));
1809 vma
->vm_start
= addr
;
1810 vma
->vm_end
= addr
+ len
;
1811 vma
->vm_pgoff
= pgoff
;
1812 vma
->vm_flags
= flags
;
1813 vma
->vm_page_prot
= protection_map
[flags
& 0x0f];
1814 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1816 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1817 if (flags
& VM_LOCKED
) {
1818 mm
->locked_vm
+= len
>> PAGE_SHIFT
;
1819 make_pages_present(addr
, addr
+ len
);
1824 EXPORT_SYMBOL(do_brk
);
1826 /* Release all mmaps. */
1827 void exit_mmap(struct mm_struct
*mm
)
1829 struct mmu_gather
*tlb
;
1830 struct vm_area_struct
*vma
;
1831 unsigned long nr_accounted
= 0;
1835 spin_lock(&mm
->page_table_lock
);
1837 tlb
= tlb_gather_mmu(mm
, 1);
1839 /* Use ~0UL here to ensure all VMAs in the mm are unmapped */
1840 mm
->map_count
-= unmap_vmas(&tlb
, mm
, mm
->mmap
, 0,
1841 ~0UL, &nr_accounted
, NULL
);
1842 vm_unacct_memory(nr_accounted
);
1843 BUG_ON(mm
->map_count
); /* This is just debugging */
1844 clear_page_tables(tlb
, FIRST_USER_PGD_NR
, USER_PTRS_PER_PGD
);
1845 tlb_finish_mmu(tlb
, 0, MM_VM_SIZE(mm
));
1848 mm
->mmap
= mm
->mmap_cache
= NULL
;
1849 mm
->mm_rb
= RB_ROOT
;
1854 spin_unlock(&mm
->page_table_lock
);
1857 * Walk the list again, actually closing and freeing it
1858 * without holding any MM locks.
1861 struct vm_area_struct
*next
= vma
->vm_next
;
1862 remove_vm_struct(vma
);
1867 /* Insert vm structure into process list sorted by address
1868 * and into the inode's i_mmap tree. If vm_file is non-NULL
1869 * then i_mmap_lock is taken here.
1871 void insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
1873 struct vm_area_struct
* __vma
, * prev
;
1874 struct rb_node
** rb_link
, * rb_parent
;
1877 * The vm_pgoff of a purely anonymous vma should be irrelevant
1878 * until its first write fault, when page's anon_vma and index
1879 * are set. But now set the vm_pgoff it will almost certainly
1880 * end up with (unless mremap moves it elsewhere before that
1881 * first wfault), so /proc/pid/maps tells a consistent story.
1883 * By setting it to reflect the virtual start address of the
1884 * vma, merges and splits can happen in a seamless way, just
1885 * using the existing file pgoff checks and manipulations.
1886 * Similarly in do_mmap_pgoff and in do_brk.
1888 if (!vma
->vm_file
) {
1889 BUG_ON(vma
->anon_vma
);
1890 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
1892 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
1893 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
1895 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1899 * Copy the vma structure to a new location in the same mm,
1900 * prior to moving page table entries, to effect an mremap move.
1902 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
1903 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
1905 struct vm_area_struct
*vma
= *vmap
;
1906 unsigned long vma_start
= vma
->vm_start
;
1907 struct mm_struct
*mm
= vma
->vm_mm
;
1908 struct vm_area_struct
*new_vma
, *prev
;
1909 struct rb_node
**rb_link
, *rb_parent
;
1910 struct mempolicy
*pol
;
1913 * If anonymous vma has not yet been faulted, update new pgoff
1914 * to match new location, to increase its chance of merging.
1916 if (!vma
->vm_file
&& !vma
->anon_vma
)
1917 pgoff
= addr
>> PAGE_SHIFT
;
1919 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1920 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
1921 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
1924 * Source vma may have been merged into new_vma
1926 if (vma_start
>= new_vma
->vm_start
&&
1927 vma_start
< new_vma
->vm_end
)
1930 new_vma
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
1933 pol
= mpol_copy(vma_policy(vma
));
1935 kmem_cache_free(vm_area_cachep
, new_vma
);
1938 vma_set_policy(new_vma
, pol
);
1939 new_vma
->vm_start
= addr
;
1940 new_vma
->vm_end
= addr
+ len
;
1941 new_vma
->vm_pgoff
= pgoff
;
1942 if (new_vma
->vm_file
)
1943 get_file(new_vma
->vm_file
);
1944 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
1945 new_vma
->vm_ops
->open(new_vma
);
1946 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);