initial commit with v2.6.9
[linux-2.6.9-moxart.git] / kernel / posix-timers.c
blob7ba8941b834b1f4234ebf4892d4bbb2dc113ce7d
1 /*
2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
39 #include <asm/uaccess.h>
40 #include <asm/semaphore.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/idr.h>
45 #include <linux/posix-timers.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
49 #ifndef div_long_long_rem
50 #include <asm/div64.h>
52 #define div_long_long_rem(dividend,divisor,remainder) ({ \
53 u64 result = dividend; \
54 *remainder = do_div(result,divisor); \
55 result; })
57 #endif
58 #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
60 static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
62 return (u64)mpy1 * mpy2;
65 * Management arrays for POSIX timers. Timers are kept in slab memory
66 * Timer ids are allocated by an external routine that keeps track of the
67 * id and the timer. The external interface is:
69 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
70 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
71 * related it to <ptr>
72 * void idr_remove(struct idr *idp, int id); to release <id>
73 * void idr_init(struct idr *idp); to initialize <idp>
74 * which we supply.
75 * The idr_get_new *may* call slab for more memory so it must not be
76 * called under a spin lock. Likewise idr_remore may release memory
77 * (but it may be ok to do this under a lock...).
78 * idr_find is just a memory look up and is quite fast. A -1 return
79 * indicates that the requested id does not exist.
83 * Lets keep our timers in a slab cache :-)
85 static kmem_cache_t *posix_timers_cache;
86 static struct idr posix_timers_id;
87 static spinlock_t idr_lock = SPIN_LOCK_UNLOCKED;
90 * Just because the timer is not in the timer list does NOT mean it is
91 * inactive. It could be in the "fire" routine getting a new expire time.
93 #define TIMER_INACTIVE 1
94 #define TIMER_RETRY 1
96 #ifdef CONFIG_SMP
97 # define timer_active(tmr) \
98 ((tmr)->it_timer.entry.prev != (void *)TIMER_INACTIVE)
99 # define set_timer_inactive(tmr) \
100 do { \
101 (tmr)->it_timer.entry.prev = (void *)TIMER_INACTIVE; \
102 } while (0)
103 #else
104 # define timer_active(tmr) BARFY // error to use outside of SMP
105 # define set_timer_inactive(tmr) do { } while (0)
106 #endif
108 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
109 * SIGEV values. Here we put out an error if this assumption fails.
111 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
112 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
113 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
114 #endif
117 #define REQUEUE_PENDING 1
119 * The timer ID is turned into a timer address by idr_find().
120 * Verifying a valid ID consists of:
122 * a) checking that idr_find() returns other than -1.
123 * b) checking that the timer id matches the one in the timer itself.
124 * c) that the timer owner is in the callers thread group.
128 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
129 * to implement others. This structure defines the various
130 * clocks and allows the possibility of adding others. We
131 * provide an interface to add clocks to the table and expect
132 * the "arch" code to add at least one clock that is high
133 * resolution. Here we define the standard CLOCK_REALTIME as a
134 * 1/HZ resolution clock.
136 * CPUTIME & THREAD_CPUTIME: We are not, at this time, definding these
137 * two clocks (and the other process related clocks (Std
138 * 1003.1d-1999). The way these should be supported, we think,
139 * is to use large negative numbers for the two clocks that are
140 * pinned to the executing process and to use -pid for clocks
141 * pinned to particular pids. Calls which supported these clock
142 * ids would split early in the function.
144 * RESOLUTION: Clock resolution is used to round up timer and interval
145 * times, NOT to report clock times, which are reported with as
146 * much resolution as the system can muster. In some cases this
147 * resolution may depend on the underlaying clock hardware and
148 * may not be quantifiable until run time, and only then is the
149 * necessary code is written. The standard says we should say
150 * something about this issue in the documentation...
152 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
153 * various clock functions. For clocks that use the standard
154 * system timer code these entries should be NULL. This will
155 * allow dispatch without the overhead of indirect function
156 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
157 * must supply functions here, even if the function just returns
158 * ENOSYS. The standard POSIX timer management code assumes the
159 * following: 1.) The k_itimer struct (sched.h) is used for the
160 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
161 * fields are not modified by timer code.
163 * At this time all functions EXCEPT clock_nanosleep can be
164 * redirected by the CLOCKS structure. Clock_nanosleep is in
165 * there, but the code ignors it.
167 * Permissions: It is assumed that the clock_settime() function defined
168 * for each clock will take care of permission checks. Some
169 * clocks may be set able by any user (i.e. local process
170 * clocks) others not. Currently the only set able clock we
171 * have is CLOCK_REALTIME and its high res counter part, both of
172 * which we beg off on and pass to do_sys_settimeofday().
175 static struct k_clock posix_clocks[MAX_CLOCKS];
177 * We only have one real clock that can be set so we need only one abs list,
178 * even if we should want to have several clocks with differing resolutions.
180 static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list),
181 .lock = SPIN_LOCK_UNLOCKED};
183 #define if_clock_do(clock_fun,alt_fun,parms) \
184 (!clock_fun) ? alt_fun parms : clock_fun parms
186 #define p_timer_get(clock,a,b) \
187 if_clock_do((clock)->timer_get,do_timer_gettime, (a,b))
189 #define p_nsleep(clock,a,b,c) \
190 if_clock_do((clock)->nsleep, do_nsleep, (a,b,c))
192 #define p_timer_del(clock,a) \
193 if_clock_do((clock)->timer_del, do_timer_delete, (a))
195 void register_posix_clock(int clock_id, struct k_clock *new_clock);
196 static int do_posix_gettime(struct k_clock *clock, struct timespec *tp);
197 static u64 do_posix_clock_monotonic_gettime_parts(
198 struct timespec *tp, struct timespec *mo);
199 int do_posix_clock_monotonic_gettime(struct timespec *tp);
200 int do_posix_clock_monotonic_settime(struct timespec *tp);
201 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
203 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
205 spin_unlock_irqrestore(&timr->it_lock, flags);
209 * Initialize everything, well, just everything in Posix clocks/timers ;)
211 static __init int init_posix_timers(void)
213 struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES,
214 .abs_struct = &abs_list
216 struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
217 .abs_struct = NULL,
218 .clock_get = do_posix_clock_monotonic_gettime,
219 .clock_set = do_posix_clock_monotonic_settime
222 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
223 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
225 posix_timers_cache = kmem_cache_create("posix_timers_cache",
226 sizeof (struct k_itimer), 0, 0, NULL, NULL);
227 idr_init(&posix_timers_id);
228 return 0;
231 __initcall(init_posix_timers);
233 static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
235 long sec = tp->tv_sec;
236 long nsec = tp->tv_nsec + res - 1;
238 if (nsec > NSEC_PER_SEC) {
239 sec++;
240 nsec -= NSEC_PER_SEC;
244 * The scaling constants are defined in <linux/time.h>
245 * The difference between there and here is that we do the
246 * res rounding and compute a 64-bit result (well so does that
247 * but it then throws away the high bits).
249 *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
250 (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
251 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
255 * This function adjusts the timer as needed as a result of the clock
256 * being set. It should only be called for absolute timers, and then
257 * under the abs_list lock. It computes the time difference and sets
258 * the new jiffies value in the timer. It also updates the timers
259 * reference wall_to_monotonic value. It is complicated by the fact
260 * that tstojiffies() only handles positive times and it needs to work
261 * with both positive and negative times. Also, for negative offsets,
262 * we need to defeat the res round up.
264 * Return is true if there is a new time, else false.
266 static long add_clockset_delta(struct k_itimer *timr,
267 struct timespec *new_wall_to)
269 struct timespec delta;
270 int sign = 0;
271 u64 exp;
273 set_normalized_timespec(&delta,
274 new_wall_to->tv_sec -
275 timr->wall_to_prev.tv_sec,
276 new_wall_to->tv_nsec -
277 timr->wall_to_prev.tv_nsec);
278 if (likely(!(delta.tv_sec | delta.tv_nsec)))
279 return 0;
280 if (delta.tv_sec < 0) {
281 set_normalized_timespec(&delta,
282 -delta.tv_sec,
283 1 - delta.tv_nsec -
284 posix_clocks[timr->it_clock].res);
285 sign++;
287 tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp);
288 timr->wall_to_prev = *new_wall_to;
289 timr->it_timer.expires += (sign ? -exp : exp);
290 return 1;
293 static void remove_from_abslist(struct k_itimer *timr)
295 if (!list_empty(&timr->abs_timer_entry)) {
296 spin_lock(&abs_list.lock);
297 list_del_init(&timr->abs_timer_entry);
298 spin_unlock(&abs_list.lock);
302 static void schedule_next_timer(struct k_itimer *timr)
304 struct timespec new_wall_to;
305 struct now_struct now;
306 unsigned long seq;
309 * Set up the timer for the next interval (if there is one).
310 * Note: this code uses the abs_timer_lock to protect
311 * wall_to_prev and must hold it until exp is set, not exactly
312 * obvious...
314 * This function is used for CLOCK_REALTIME* and
315 * CLOCK_MONOTONIC* timers. If we ever want to handle other
316 * CLOCKs, the calling code (do_schedule_next_timer) would need
317 * to pull the "clock" info from the timer and dispatch the
318 * "other" CLOCKs "next timer" code (which, I suppose should
319 * also be added to the k_clock structure).
321 if (!timr->it_incr)
322 return;
324 do {
325 seq = read_seqbegin(&xtime_lock);
326 new_wall_to = wall_to_monotonic;
327 posix_get_now(&now);
328 } while (read_seqretry(&xtime_lock, seq));
330 if (!list_empty(&timr->abs_timer_entry)) {
331 spin_lock(&abs_list.lock);
332 add_clockset_delta(timr, &new_wall_to);
334 posix_bump_timer(timr, now);
336 spin_unlock(&abs_list.lock);
337 } else {
338 posix_bump_timer(timr, now);
340 timr->it_overrun_last = timr->it_overrun;
341 timr->it_overrun = -1;
342 ++timr->it_requeue_pending;
343 add_timer(&timr->it_timer);
347 * This function is exported for use by the signal deliver code. It is
348 * called just prior to the info block being released and passes that
349 * block to us. It's function is to update the overrun entry AND to
350 * restart the timer. It should only be called if the timer is to be
351 * restarted (i.e. we have flagged this in the sys_private entry of the
352 * info block).
354 * To protect aginst the timer going away while the interrupt is queued,
355 * we require that the it_requeue_pending flag be set.
357 void do_schedule_next_timer(struct siginfo *info)
359 struct k_itimer *timr;
360 unsigned long flags;
362 timr = lock_timer(info->si_tid, &flags);
364 if (!timr || timr->it_requeue_pending != info->si_sys_private)
365 goto exit;
367 schedule_next_timer(timr);
368 info->si_overrun = timr->it_overrun_last;
369 exit:
370 if (timr)
371 unlock_timer(timr, flags);
375 * Notify the task and set up the timer for the next expiration (if
376 * applicable). This function requires that the k_itimer structure
377 * it_lock is taken. This code will requeue the timer only if we get
378 * either an error return or a flag (ret > 0) from send_seg_info
379 * indicating that the signal was either not queued or was queued
380 * without an info block. In this case, we will not get a call back to
381 * do_schedule_next_timer() so we do it here. This should be rare...
383 * An interesting problem can occur if, while a signal, and thus a call
384 * back is pending, the timer is rearmed, i.e. stopped and restarted.
385 * We then need to sort out the call back and do the right thing. What
386 * we do is to put a counter in the info block and match it with the
387 * timers copy on the call back. If they don't match, we just ignore
388 * the call back. The counter is local to the timer and we use odd to
389 * indicate a call back is pending. Note that we do allow the timer to
390 * be deleted while a signal is pending. The standard says we can
391 * allow that signal to be delivered, and we do.
394 static void timer_notify_task(struct k_itimer *timr)
396 int ret;
398 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
401 * Send signal to the process that owns this timer.
403 * This code assumes that all the possible abs_lists share the
404 * same lock (there is only one list at this time). If this is
405 * not the case, the CLOCK info would need to be used to find
406 * the proper abs list lock.
409 timr->sigq->info.si_signo = timr->it_sigev_signo;
410 timr->sigq->info.si_errno = 0;
411 timr->sigq->info.si_code = SI_TIMER;
412 timr->sigq->info.si_tid = timr->it_id;
413 timr->sigq->info.si_value = timr->it_sigev_value;
414 if (timr->it_incr)
415 timr->sigq->info.si_sys_private = ++timr->it_requeue_pending;
416 else {
417 remove_from_abslist(timr);
420 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
421 if (unlikely(timr->it_process->flags & PF_EXITING)) {
422 timr->it_sigev_notify = SIGEV_SIGNAL;
423 put_task_struct(timr->it_process);
424 timr->it_process = timr->it_process->group_leader;
425 goto group;
427 ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
428 timr->it_process);
430 else {
431 group:
432 ret = send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
433 timr->it_process);
435 if (ret) {
437 * signal was not sent because of sig_ignor
438 * we will not get a call back to restart it AND
439 * it should be restarted.
441 schedule_next_timer(timr);
446 * This function gets called when a POSIX.1b interval timer expires. It
447 * is used as a callback from the kernel internal timer. The
448 * run_timer_list code ALWAYS calls with interrutps on.
450 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
452 static void posix_timer_fn(unsigned long __data)
454 struct k_itimer *timr = (struct k_itimer *) __data;
455 unsigned long flags;
456 unsigned long seq;
457 struct timespec delta, new_wall_to;
458 u64 exp = 0;
459 int do_notify = 1;
461 spin_lock_irqsave(&timr->it_lock, flags);
462 set_timer_inactive(timr);
463 if (!list_empty(&timr->abs_timer_entry)) {
464 spin_lock(&abs_list.lock);
465 do {
466 seq = read_seqbegin(&xtime_lock);
467 new_wall_to = wall_to_monotonic;
468 } while (read_seqretry(&xtime_lock, seq));
469 set_normalized_timespec(&delta,
470 new_wall_to.tv_sec -
471 timr->wall_to_prev.tv_sec,
472 new_wall_to.tv_nsec -
473 timr->wall_to_prev.tv_nsec);
474 if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) {
475 /* do nothing, timer is on time */
476 } else if (delta.tv_sec < 0) {
477 /* do nothing, timer is already late */
478 } else {
479 /* timer is early due to a clock set */
480 tstojiffie(&delta,
481 posix_clocks[timr->it_clock].res,
482 &exp);
483 timr->wall_to_prev = new_wall_to;
484 timr->it_timer.expires += exp;
485 add_timer(&timr->it_timer);
486 do_notify = 0;
488 spin_unlock(&abs_list.lock);
491 if (do_notify)
492 timer_notify_task(timr);
493 unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */
497 static inline struct task_struct * good_sigevent(sigevent_t * event)
499 struct task_struct *rtn = current->group_leader;
501 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
502 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
503 rtn->tgid != current->tgid ||
504 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
505 return NULL;
507 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
508 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
509 return NULL;
511 return rtn;
514 void register_posix_clock(int clock_id, struct k_clock *new_clock)
516 if ((unsigned) clock_id >= MAX_CLOCKS) {
517 printk("POSIX clock register failed for clock_id %d\n",
518 clock_id);
519 return;
521 posix_clocks[clock_id] = *new_clock;
524 static struct k_itimer * alloc_posix_timer(void)
526 struct k_itimer *tmr;
527 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
528 if (!tmr)
529 return tmr;
530 memset(tmr, 0, sizeof (struct k_itimer));
531 INIT_LIST_HEAD(&tmr->abs_timer_entry);
532 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
533 kmem_cache_free(posix_timers_cache, tmr);
534 tmr = NULL;
536 return tmr;
539 #define IT_ID_SET 1
540 #define IT_ID_NOT_SET 0
541 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
543 if (it_id_set) {
544 unsigned long flags;
545 spin_lock_irqsave(&idr_lock, flags);
546 idr_remove(&posix_timers_id, tmr->it_id);
547 spin_unlock_irqrestore(&idr_lock, flags);
549 sigqueue_free(tmr->sigq);
550 if (unlikely(tmr->it_process) &&
551 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
552 put_task_struct(tmr->it_process);
553 kmem_cache_free(posix_timers_cache, tmr);
556 /* Create a POSIX.1b interval timer. */
558 asmlinkage long
559 sys_timer_create(clockid_t which_clock,
560 struct sigevent __user *timer_event_spec,
561 timer_t __user * created_timer_id)
563 int error = 0;
564 struct k_itimer *new_timer = NULL;
565 int new_timer_id;
566 struct task_struct *process = NULL;
567 unsigned long flags;
568 sigevent_t event;
569 int it_id_set = IT_ID_NOT_SET;
571 if ((unsigned) which_clock >= MAX_CLOCKS ||
572 !posix_clocks[which_clock].res)
573 return -EINVAL;
575 new_timer = alloc_posix_timer();
576 if (unlikely(!new_timer))
577 return -EAGAIN;
579 spin_lock_init(&new_timer->it_lock);
580 retry:
581 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
582 error = -EAGAIN;
583 goto out;
585 spin_lock_irq(&idr_lock);
586 error = idr_get_new(&posix_timers_id,
587 (void *) new_timer,
588 &new_timer_id);
589 spin_unlock_irq(&idr_lock);
590 if (error == -EAGAIN)
591 goto retry;
592 else if (error) {
594 * Wierd looking, but we return EAGAIN if the IDR is
595 * full (proper POSIX return value for this)
597 error = -EAGAIN;
598 goto out;
601 it_id_set = IT_ID_SET;
602 new_timer->it_id = (timer_t) new_timer_id;
603 new_timer->it_clock = which_clock;
604 new_timer->it_incr = 0;
605 new_timer->it_overrun = -1;
606 init_timer(&new_timer->it_timer);
607 new_timer->it_timer.expires = 0;
608 new_timer->it_timer.data = (unsigned long) new_timer;
609 new_timer->it_timer.function = posix_timer_fn;
610 set_timer_inactive(new_timer);
613 * return the timer_id now. The next step is hard to
614 * back out if there is an error.
616 if (copy_to_user(created_timer_id,
617 &new_timer_id, sizeof (new_timer_id))) {
618 error = -EFAULT;
619 goto out;
621 if (timer_event_spec) {
622 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
623 error = -EFAULT;
624 goto out;
626 new_timer->it_sigev_notify = event.sigev_notify;
627 new_timer->it_sigev_signo = event.sigev_signo;
628 new_timer->it_sigev_value = event.sigev_value;
630 read_lock(&tasklist_lock);
631 if ((process = good_sigevent(&event))) {
633 * We may be setting up this process for another
634 * thread. It may be exiting. To catch this
635 * case the we check the PF_EXITING flag. If
636 * the flag is not set, the siglock will catch
637 * him before it is too late (in exit_itimers).
639 * The exec case is a bit more invloved but easy
640 * to code. If the process is in our thread
641 * group (and it must be or we would not allow
642 * it here) and is doing an exec, it will cause
643 * us to be killed. In this case it will wait
644 * for us to die which means we can finish this
645 * linkage with our last gasp. I.e. no code :)
647 spin_lock_irqsave(&process->sighand->siglock, flags);
648 if (!(process->flags & PF_EXITING)) {
649 new_timer->it_process = process;
650 list_add(&new_timer->list,
651 &process->signal->posix_timers);
652 spin_unlock_irqrestore(&process->sighand->siglock, flags);
653 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
654 get_task_struct(process);
655 } else {
656 spin_unlock_irqrestore(&process->sighand->siglock, flags);
657 process = NULL;
660 read_unlock(&tasklist_lock);
661 if (!process) {
662 error = -EINVAL;
663 goto out;
665 } else {
666 new_timer->it_sigev_notify = SIGEV_SIGNAL;
667 new_timer->it_sigev_signo = SIGALRM;
668 new_timer->it_sigev_value.sival_int = new_timer->it_id;
669 process = current->group_leader;
670 spin_lock_irqsave(&process->sighand->siglock, flags);
671 new_timer->it_process = process;
672 list_add(&new_timer->list, &process->signal->posix_timers);
673 spin_unlock_irqrestore(&process->sighand->siglock, flags);
677 * In the case of the timer belonging to another task, after
678 * the task is unlocked, the timer is owned by the other task
679 * and may cease to exist at any time. Don't use or modify
680 * new_timer after the unlock call.
683 out:
684 if (error)
685 release_posix_timer(new_timer, it_id_set);
687 return error;
691 * good_timespec
693 * This function checks the elements of a timespec structure.
695 * Arguments:
696 * ts : Pointer to the timespec structure to check
698 * Return value:
699 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
700 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
701 * this function returns 0. Otherwise it returns 1.
703 static int good_timespec(const struct timespec *ts)
705 if ((!ts) || (ts->tv_sec < 0) ||
706 ((unsigned) ts->tv_nsec >= NSEC_PER_SEC))
707 return 0;
708 return 1;
712 * Locking issues: We need to protect the result of the id look up until
713 * we get the timer locked down so it is not deleted under us. The
714 * removal is done under the idr spinlock so we use that here to bridge
715 * the find to the timer lock. To avoid a dead lock, the timer id MUST
716 * be release with out holding the timer lock.
718 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
720 struct k_itimer *timr;
722 * Watch out here. We do a irqsave on the idr_lock and pass the
723 * flags part over to the timer lock. Must not let interrupts in
724 * while we are moving the lock.
727 spin_lock_irqsave(&idr_lock, *flags);
728 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
729 if (timr) {
730 spin_lock(&timr->it_lock);
731 spin_unlock(&idr_lock);
733 if ((timr->it_id != timer_id) || !(timr->it_process) ||
734 timr->it_process->tgid != current->tgid) {
735 unlock_timer(timr, *flags);
736 timr = NULL;
738 } else
739 spin_unlock_irqrestore(&idr_lock, *flags);
741 return timr;
745 * Get the time remaining on a POSIX.1b interval timer. This function
746 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
747 * mess with irq.
749 * We have a couple of messes to clean up here. First there is the case
750 * of a timer that has a requeue pending. These timers should appear to
751 * be in the timer list with an expiry as if we were to requeue them
752 * now.
754 * The second issue is the SIGEV_NONE timer which may be active but is
755 * not really ever put in the timer list (to save system resources).
756 * This timer may be expired, and if so, we will do it here. Otherwise
757 * it is the same as a requeue pending timer WRT to what we should
758 * report.
760 static void
761 do_timer_gettime(struct k_itimer *timr, struct itimerspec *cur_setting)
763 unsigned long expires;
764 struct now_struct now;
767 expires = timr->it_timer.expires;
768 while ((volatile long) (timr->it_timer.expires) != expires);
770 posix_get_now(&now);
772 if (expires &&
773 ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) &&
774 !timr->it_incr &&
775 posix_time_before(&timr->it_timer, &now))
776 timr->it_timer.expires = expires = 0;
777 if (expires) {
778 if (timr->it_requeue_pending & REQUEUE_PENDING ||
779 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
780 posix_bump_timer(timr, now);
781 expires = timr->it_timer.expires;
783 else
784 if (!timer_pending(&timr->it_timer))
785 expires = 0;
786 if (expires)
787 expires -= now.jiffies;
789 jiffies_to_timespec(expires, &cur_setting->it_value);
790 jiffies_to_timespec(timr->it_incr, &cur_setting->it_interval);
792 if (cur_setting->it_value.tv_sec < 0) {
793 cur_setting->it_value.tv_nsec = 1;
794 cur_setting->it_value.tv_sec = 0;
798 /* Get the time remaining on a POSIX.1b interval timer. */
799 asmlinkage long
800 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
802 struct k_itimer *timr;
803 struct itimerspec cur_setting;
804 unsigned long flags;
806 timr = lock_timer(timer_id, &flags);
807 if (!timr)
808 return -EINVAL;
810 p_timer_get(&posix_clocks[timr->it_clock], timr, &cur_setting);
812 unlock_timer(timr, flags);
814 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
815 return -EFAULT;
817 return 0;
820 * Get the number of overruns of a POSIX.1b interval timer. This is to
821 * be the overrun of the timer last delivered. At the same time we are
822 * accumulating overruns on the next timer. The overrun is frozen when
823 * the signal is delivered, either at the notify time (if the info block
824 * is not queued) or at the actual delivery time (as we are informed by
825 * the call back to do_schedule_next_timer(). So all we need to do is
826 * to pick up the frozen overrun.
829 asmlinkage long
830 sys_timer_getoverrun(timer_t timer_id)
832 struct k_itimer *timr;
833 int overrun;
834 long flags;
836 timr = lock_timer(timer_id, &flags);
837 if (!timr)
838 return -EINVAL;
840 overrun = timr->it_overrun_last;
841 unlock_timer(timr, flags);
843 return overrun;
846 * Adjust for absolute time
848 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
849 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
850 * what ever clock he is using.
852 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
853 * time to it to get the proper time for the timer.
855 static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
856 int abs, u64 *exp, struct timespec *wall_to)
858 struct timespec now;
859 struct timespec oc = *tp;
860 u64 jiffies_64_f;
861 int rtn =0;
863 if (abs) {
865 * The mask pick up the 4 basic clocks
867 if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) {
868 jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
869 &now, wall_to);
871 * If we are doing a MONOTONIC clock
873 if((clock - &posix_clocks[0]) & CLOCKS_MONO){
874 now.tv_sec += wall_to->tv_sec;
875 now.tv_nsec += wall_to->tv_nsec;
877 } else {
879 * Not one of the basic clocks
881 do_posix_gettime(clock, &now);
882 jiffies_64_f = get_jiffies_64();
885 * Take away now to get delta
887 oc.tv_sec -= now.tv_sec;
888 oc.tv_nsec -= now.tv_nsec;
890 * Normalize...
892 while ((oc.tv_nsec - NSEC_PER_SEC) >= 0) {
893 oc.tv_nsec -= NSEC_PER_SEC;
894 oc.tv_sec++;
896 while ((oc.tv_nsec) < 0) {
897 oc.tv_nsec += NSEC_PER_SEC;
898 oc.tv_sec--;
900 }else{
901 jiffies_64_f = get_jiffies_64();
904 * Check if the requested time is prior to now (if so set now)
906 if (oc.tv_sec < 0)
907 oc.tv_sec = oc.tv_nsec = 0;
908 tstojiffie(&oc, clock->res, exp);
911 * Check if the requested time is more than the timer code
912 * can handle (if so we error out but return the value too).
914 if (*exp > ((u64)MAX_JIFFY_OFFSET))
916 * This is a considered response, not exactly in
917 * line with the standard (in fact it is silent on
918 * possible overflows). We assume such a large
919 * value is ALMOST always a programming error and
920 * try not to compound it by setting a really dumb
921 * value.
923 rtn = -EINVAL;
925 * return the actual jiffies expire time, full 64 bits
927 *exp += jiffies_64_f;
928 return rtn;
931 /* Set a POSIX.1b interval timer. */
932 /* timr->it_lock is taken. */
933 static inline int
934 do_timer_settime(struct k_itimer *timr, int flags,
935 struct itimerspec *new_setting, struct itimerspec *old_setting)
937 struct k_clock *clock = &posix_clocks[timr->it_clock];
938 u64 expire_64;
940 if (old_setting)
941 do_timer_gettime(timr, old_setting);
943 /* disable the timer */
944 timr->it_incr = 0;
946 * careful here. If smp we could be in the "fire" routine which will
947 * be spinning as we hold the lock. But this is ONLY an SMP issue.
949 #ifdef CONFIG_SMP
950 if (timer_active(timr) && !del_timer(&timr->it_timer))
952 * It can only be active if on an other cpu. Since
953 * we have cleared the interval stuff above, it should
954 * clear once we release the spin lock. Of course once
955 * we do that anything could happen, including the
956 * complete melt down of the timer. So return with
957 * a "retry" exit status.
959 return TIMER_RETRY;
961 set_timer_inactive(timr);
962 #else
963 del_timer(&timr->it_timer);
964 #endif
965 remove_from_abslist(timr);
967 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
968 ~REQUEUE_PENDING;
969 timr->it_overrun_last = 0;
970 timr->it_overrun = -1;
972 *switch off the timer when it_value is zero
974 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
975 timr->it_timer.expires = 0;
976 return 0;
979 if (adjust_abs_time(clock,
980 &new_setting->it_value, flags & TIMER_ABSTIME,
981 &expire_64, &(timr->wall_to_prev))) {
982 return -EINVAL;
984 timr->it_timer.expires = (unsigned long)expire_64;
985 tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
986 timr->it_incr = (unsigned long)expire_64;
989 * We do not even queue SIGEV_NONE timers! But we do put them
990 * in the abs list so we can do that right.
992 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE))
993 add_timer(&timr->it_timer);
995 if (flags & TIMER_ABSTIME && clock->abs_struct) {
996 spin_lock(&clock->abs_struct->lock);
997 list_add_tail(&(timr->abs_timer_entry),
998 &(clock->abs_struct->list));
999 spin_unlock(&clock->abs_struct->lock);
1001 return 0;
1004 /* Set a POSIX.1b interval timer */
1005 asmlinkage long
1006 sys_timer_settime(timer_t timer_id, int flags,
1007 const struct itimerspec __user *new_setting,
1008 struct itimerspec __user *old_setting)
1010 struct k_itimer *timr;
1011 struct itimerspec new_spec, old_spec;
1012 int error = 0;
1013 long flag;
1014 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
1016 if (!new_setting)
1017 return -EINVAL;
1019 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
1020 return -EFAULT;
1022 if ((!good_timespec(&new_spec.it_interval)) ||
1023 (!good_timespec(&new_spec.it_value)))
1024 return -EINVAL;
1025 retry:
1026 timr = lock_timer(timer_id, &flag);
1027 if (!timr)
1028 return -EINVAL;
1030 if (!posix_clocks[timr->it_clock].timer_set)
1031 error = do_timer_settime(timr, flags, &new_spec, rtn);
1032 else
1033 error = posix_clocks[timr->it_clock].timer_set(timr,
1034 flags,
1035 &new_spec, rtn);
1036 unlock_timer(timr, flag);
1037 if (error == TIMER_RETRY) {
1038 rtn = NULL; // We already got the old time...
1039 goto retry;
1042 if (old_setting && !error && copy_to_user(old_setting,
1043 &old_spec, sizeof (old_spec)))
1044 error = -EFAULT;
1046 return error;
1049 static inline int do_timer_delete(struct k_itimer *timer)
1051 timer->it_incr = 0;
1052 #ifdef CONFIG_SMP
1053 if (timer_active(timer) && !del_timer(&timer->it_timer))
1055 * It can only be active if on an other cpu. Since
1056 * we have cleared the interval stuff above, it should
1057 * clear once we release the spin lock. Of course once
1058 * we do that anything could happen, including the
1059 * complete melt down of the timer. So return with
1060 * a "retry" exit status.
1062 return TIMER_RETRY;
1063 #else
1064 del_timer(&timer->it_timer);
1065 #endif
1066 remove_from_abslist(timer);
1068 return 0;
1071 /* Delete a POSIX.1b interval timer. */
1072 asmlinkage long
1073 sys_timer_delete(timer_t timer_id)
1075 struct k_itimer *timer;
1076 long flags;
1078 #ifdef CONFIG_SMP
1079 int error;
1080 retry_delete:
1081 #endif
1082 timer = lock_timer(timer_id, &flags);
1083 if (!timer)
1084 return -EINVAL;
1086 #ifdef CONFIG_SMP
1087 error = p_timer_del(&posix_clocks[timer->it_clock], timer);
1089 if (error == TIMER_RETRY) {
1090 unlock_timer(timer, flags);
1091 goto retry_delete;
1093 #else
1094 p_timer_del(&posix_clocks[timer->it_clock], timer);
1095 #endif
1096 spin_lock(&current->sighand->siglock);
1097 list_del(&timer->list);
1098 spin_unlock(&current->sighand->siglock);
1100 * This keeps any tasks waiting on the spin lock from thinking
1101 * they got something (see the lock code above).
1103 if (timer->it_process) {
1104 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1105 put_task_struct(timer->it_process);
1106 timer->it_process = NULL;
1108 unlock_timer(timer, flags);
1109 release_posix_timer(timer, IT_ID_SET);
1110 return 0;
1113 * return timer owned by the process, used by exit_itimers
1115 static inline void itimer_delete(struct k_itimer *timer)
1117 unsigned long flags;
1119 #ifdef CONFIG_SMP
1120 int error;
1121 retry_delete:
1122 #endif
1123 spin_lock_irqsave(&timer->it_lock, flags);
1125 #ifdef CONFIG_SMP
1126 error = p_timer_del(&posix_clocks[timer->it_clock], timer);
1128 if (error == TIMER_RETRY) {
1129 unlock_timer(timer, flags);
1130 goto retry_delete;
1132 #else
1133 p_timer_del(&posix_clocks[timer->it_clock], timer);
1134 #endif
1135 list_del(&timer->list);
1137 * This keeps any tasks waiting on the spin lock from thinking
1138 * they got something (see the lock code above).
1140 if (timer->it_process) {
1141 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1142 put_task_struct(timer->it_process);
1143 timer->it_process = NULL;
1145 unlock_timer(timer, flags);
1146 release_posix_timer(timer, IT_ID_SET);
1150 * This is called by __exit_signal, only when there are no more
1151 * references to the shared signal_struct.
1153 void exit_itimers(struct signal_struct *sig)
1155 struct k_itimer *tmr;
1157 while (!list_empty(&sig->posix_timers)) {
1158 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1159 itimer_delete(tmr);
1164 * And now for the "clock" calls
1166 * These functions are called both from timer functions (with the timer
1167 * spin_lock_irq() held and from clock calls with no locking. They must
1168 * use the save flags versions of locks.
1170 static int do_posix_gettime(struct k_clock *clock, struct timespec *tp)
1172 if (clock->clock_get)
1173 return clock->clock_get(tp);
1175 getnstimeofday(tp);
1176 return 0;
1180 * We do ticks here to avoid the irq lock ( they take sooo long).
1181 * The seqlock is great here. Since we a reader, we don't really care
1182 * if we are interrupted since we don't take lock that will stall us or
1183 * any other cpu. Voila, no irq lock is needed.
1187 static u64 do_posix_clock_monotonic_gettime_parts(
1188 struct timespec *tp, struct timespec *mo)
1190 u64 jiff;
1191 unsigned int seq;
1193 do {
1194 seq = read_seqbegin(&xtime_lock);
1195 getnstimeofday(tp);
1196 *mo = wall_to_monotonic;
1197 jiff = jiffies_64;
1199 } while(read_seqretry(&xtime_lock, seq));
1201 return jiff;
1204 int do_posix_clock_monotonic_gettime(struct timespec *tp)
1206 struct timespec wall_to_mono;
1208 do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
1210 tp->tv_sec += wall_to_mono.tv_sec;
1211 tp->tv_nsec += wall_to_mono.tv_nsec;
1213 if ((tp->tv_nsec - NSEC_PER_SEC) > 0) {
1214 tp->tv_nsec -= NSEC_PER_SEC;
1215 tp->tv_sec++;
1217 return 0;
1220 int do_posix_clock_monotonic_settime(struct timespec *tp)
1222 return -EINVAL;
1225 asmlinkage long
1226 sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp)
1228 struct timespec new_tp;
1230 if ((unsigned) which_clock >= MAX_CLOCKS ||
1231 !posix_clocks[which_clock].res)
1232 return -EINVAL;
1233 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1234 return -EFAULT;
1235 if (posix_clocks[which_clock].clock_set)
1236 return posix_clocks[which_clock].clock_set(&new_tp);
1238 return do_sys_settimeofday(&new_tp, NULL);
1241 asmlinkage long
1242 sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp)
1244 struct timespec rtn_tp;
1245 int error = 0;
1247 if ((unsigned) which_clock >= MAX_CLOCKS ||
1248 !posix_clocks[which_clock].res)
1249 return -EINVAL;
1251 error = do_posix_gettime(&posix_clocks[which_clock], &rtn_tp);
1253 if (!error && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1254 error = -EFAULT;
1256 return error;
1260 asmlinkage long
1261 sys_clock_getres(clockid_t which_clock, struct timespec __user *tp)
1263 struct timespec rtn_tp;
1265 if ((unsigned) which_clock >= MAX_CLOCKS ||
1266 !posix_clocks[which_clock].res)
1267 return -EINVAL;
1269 rtn_tp.tv_sec = 0;
1270 rtn_tp.tv_nsec = posix_clocks[which_clock].res;
1271 if (tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1272 return -EFAULT;
1274 return 0;
1278 static void nanosleep_wake_up(unsigned long __data)
1280 struct task_struct *p = (struct task_struct *) __data;
1282 wake_up_process(p);
1286 * The standard says that an absolute nanosleep call MUST wake up at
1287 * the requested time in spite of clock settings. Here is what we do:
1288 * For each nanosleep call that needs it (only absolute and not on
1289 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
1290 * into the "nanosleep_abs_list". All we need is the task_struct pointer.
1291 * When ever the clock is set we just wake up all those tasks. The rest
1292 * is done by the while loop in clock_nanosleep().
1294 * On locking, clock_was_set() is called from update_wall_clock which
1295 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
1296 * called from the timer bh code. Thus we need the irq save locks.
1298 * Also, on the call from update_wall_clock, that is done as part of a
1299 * softirq thing. We don't want to delay the system that much (possibly
1300 * long list of timers to fix), so we defer that work to keventd.
1303 static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
1304 static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL);
1306 static DECLARE_MUTEX(clock_was_set_lock);
1308 void clock_was_set(void)
1310 struct k_itimer *timr;
1311 struct timespec new_wall_to;
1312 LIST_HEAD(cws_list);
1313 unsigned long seq;
1316 if (unlikely(in_interrupt())) {
1317 schedule_work(&clock_was_set_work);
1318 return;
1320 wake_up_all(&nanosleep_abs_wqueue);
1323 * Check if there exist TIMER_ABSTIME timers to correct.
1325 * Notes on locking: This code is run in task context with irq
1326 * on. We CAN be interrupted! All other usage of the abs list
1327 * lock is under the timer lock which holds the irq lock as
1328 * well. We REALLY don't want to scan the whole list with the
1329 * interrupt system off, AND we would like a sequence lock on
1330 * this code as well. Since we assume that the clock will not
1331 * be set often, it seems ok to take and release the irq lock
1332 * for each timer. In fact add_timer will do this, so this is
1333 * not an issue. So we know when we are done, we will move the
1334 * whole list to a new location. Then as we process each entry,
1335 * we will move it to the actual list again. This way, when our
1336 * copy is empty, we are done. We are not all that concerned
1337 * about preemption so we will use a semaphore lock to protect
1338 * aginst reentry. This way we will not stall another
1339 * processor. It is possible that this may delay some timers
1340 * that should have expired, given the new clock, but even this
1341 * will be minimal as we will always update to the current time,
1342 * even if it was set by a task that is waiting for entry to
1343 * this code. Timers that expire too early will be caught by
1344 * the expire code and restarted.
1346 * Absolute timers that repeat are left in the abs list while
1347 * waiting for the task to pick up the signal. This means we
1348 * may find timers that are not in the "add_timer" list, but are
1349 * in the abs list. We do the same thing for these, save
1350 * putting them back in the "add_timer" list. (Note, these are
1351 * left in the abs list mainly to indicate that they are
1352 * ABSOLUTE timers, a fact that is used by the re-arm code, and
1353 * for which we have no other flag.)
1357 down(&clock_was_set_lock);
1358 spin_lock_irq(&abs_list.lock);
1359 list_splice_init(&abs_list.list, &cws_list);
1360 spin_unlock_irq(&abs_list.lock);
1361 do {
1362 do {
1363 seq = read_seqbegin(&xtime_lock);
1364 new_wall_to = wall_to_monotonic;
1365 } while (read_seqretry(&xtime_lock, seq));
1367 spin_lock_irq(&abs_list.lock);
1368 if (list_empty(&cws_list)) {
1369 spin_unlock_irq(&abs_list.lock);
1370 break;
1372 timr = list_entry(cws_list.next, struct k_itimer,
1373 abs_timer_entry);
1375 list_del_init(&timr->abs_timer_entry);
1376 if (add_clockset_delta(timr, &new_wall_to) &&
1377 del_timer(&timr->it_timer)) /* timer run yet? */
1378 add_timer(&timr->it_timer);
1379 list_add(&timr->abs_timer_entry, &abs_list.list);
1380 spin_unlock_irq(&abs_list.lock);
1381 } while (1);
1383 up(&clock_was_set_lock);
1386 long clock_nanosleep_restart(struct restart_block *restart_block);
1388 extern long do_clock_nanosleep(clockid_t which_clock, int flags,
1389 struct timespec *t);
1391 asmlinkage long
1392 sys_clock_nanosleep(clockid_t which_clock, int flags,
1393 const struct timespec __user *rqtp,
1394 struct timespec __user *rmtp)
1396 struct timespec t;
1397 struct restart_block *restart_block =
1398 &(current_thread_info()->restart_block);
1399 int ret;
1401 if ((unsigned) which_clock >= MAX_CLOCKS ||
1402 !posix_clocks[which_clock].res)
1403 return -EINVAL;
1405 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1406 return -EFAULT;
1408 if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0)
1409 return -EINVAL;
1411 ret = do_clock_nanosleep(which_clock, flags, &t);
1413 * Do this here as do_clock_nanosleep does not have the real address
1415 restart_block->arg1 = (unsigned long)rmtp;
1417 if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
1418 copy_to_user(rmtp, &t, sizeof (t)))
1419 return -EFAULT;
1420 return ret;
1423 long
1424 do_clock_nanosleep(clockid_t which_clock, int flags, struct timespec *tsave)
1426 struct timespec t, dum;
1427 struct timer_list new_timer;
1428 DECLARE_WAITQUEUE(abs_wqueue, current);
1429 u64 rq_time = (u64)0;
1430 s64 left;
1431 int abs;
1432 struct restart_block *restart_block =
1433 &current_thread_info()->restart_block;
1435 abs_wqueue.flags = 0;
1436 init_timer(&new_timer);
1437 new_timer.expires = 0;
1438 new_timer.data = (unsigned long) current;
1439 new_timer.function = nanosleep_wake_up;
1440 abs = flags & TIMER_ABSTIME;
1442 if (restart_block->fn == clock_nanosleep_restart) {
1444 * Interrupted by a non-delivered signal, pick up remaining
1445 * time and continue. Remaining time is in arg2 & 3.
1447 restart_block->fn = do_no_restart_syscall;
1449 rq_time = restart_block->arg3;
1450 rq_time = (rq_time << 32) + restart_block->arg2;
1451 if (!rq_time)
1452 return -EINTR;
1453 left = rq_time - get_jiffies_64();
1454 if (left <= (s64)0)
1455 return 0; /* Already passed */
1458 if (abs && (posix_clocks[which_clock].clock_get !=
1459 posix_clocks[CLOCK_MONOTONIC].clock_get))
1460 add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue);
1462 do {
1463 t = *tsave;
1464 if (abs || !rq_time) {
1465 adjust_abs_time(&posix_clocks[which_clock], &t, abs,
1466 &rq_time, &dum);
1467 rq_time += (t.tv_sec || t.tv_nsec);
1470 left = rq_time - get_jiffies_64();
1471 if (left >= (s64)MAX_JIFFY_OFFSET)
1472 left = (s64)MAX_JIFFY_OFFSET;
1473 if (left < (s64)0)
1474 break;
1476 new_timer.expires = jiffies + left;
1477 __set_current_state(TASK_INTERRUPTIBLE);
1478 add_timer(&new_timer);
1480 schedule();
1482 del_timer_sync(&new_timer);
1483 left = rq_time - get_jiffies_64();
1484 } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING));
1486 if (abs_wqueue.task_list.next)
1487 finish_wait(&nanosleep_abs_wqueue, &abs_wqueue);
1489 if (left > (s64)0) {
1492 * Always restart abs calls from scratch to pick up any
1493 * clock shifting that happened while we are away.
1495 if (abs)
1496 return -ERESTARTNOHAND;
1498 left *= TICK_NSEC;
1499 tsave->tv_sec = div_long_long_rem(left,
1500 NSEC_PER_SEC,
1501 &tsave->tv_nsec);
1503 * Restart works by saving the time remaing in
1504 * arg2 & 3 (it is 64-bits of jiffies). The other
1505 * info we need is the clock_id (saved in arg0).
1506 * The sys_call interface needs the users
1507 * timespec return address which _it_ saves in arg1.
1508 * Since we have cast the nanosleep call to a clock_nanosleep
1509 * both can be restarted with the same code.
1511 restart_block->fn = clock_nanosleep_restart;
1512 restart_block->arg0 = which_clock;
1514 * Caller sets arg1
1516 restart_block->arg2 = rq_time & 0xffffffffLL;
1517 restart_block->arg3 = rq_time >> 32;
1519 return -ERESTART_RESTARTBLOCK;
1522 return 0;
1525 * This will restart clock_nanosleep.
1527 long
1528 clock_nanosleep_restart(struct restart_block *restart_block)
1530 struct timespec t;
1531 int ret = do_clock_nanosleep(restart_block->arg0, 0, &t);
1533 if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
1534 copy_to_user((struct timespec __user *)(restart_block->arg1), &t,
1535 sizeof (t)))
1536 return -EFAULT;
1537 return ret;