initial commit with v2.6.9
[linux-2.6.9-moxart.git] / include / linux / reiserfs_fs.h
blob2bcb5bb73ebb308c05986691c0862d0d5af93491
1 /*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
5 /* this file has an amazingly stupid
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
12 #ifndef _LINUX_REISER_FS_H
13 #define _LINUX_REISER_FS_H
15 #include <linux/types.h>
16 #ifdef __KERNEL__
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/workqueue.h>
20 #include <asm/unaligned.h>
21 #include <linux/bitops.h>
22 #include <linux/proc_fs.h>
23 #include <linux/smp_lock.h>
24 #include <linux/buffer_head.h>
25 #include <linux/reiserfs_fs_i.h>
26 #include <linux/reiserfs_fs_sb.h>
27 #endif
30 * include/linux/reiser_fs.h
32 * Reiser File System constants and structures
36 /* in reading the #defines, it may help to understand that they employ
37 the following abbreviations:
39 B = Buffer
40 I = Item header
41 H = Height within the tree (should be changed to LEV)
42 N = Number of the item in the node
43 STAT = stat data
44 DEH = Directory Entry Header
45 EC = Entry Count
46 E = Entry number
47 UL = Unsigned Long
48 BLKH = BLocK Header
49 UNFM = UNForMatted node
50 DC = Disk Child
51 P = Path
53 These #defines are named by concatenating these abbreviations,
54 where first comes the arguments, and last comes the return value,
55 of the macro.
59 #define USE_INODE_GENERATION_COUNTER
61 #define REISERFS_PREALLOCATE
62 #define DISPLACE_NEW_PACKING_LOCALITIES
63 #define PREALLOCATION_SIZE 9
65 /* n must be power of 2 */
66 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
68 // to be ok for alpha and others we have to align structures to 8 byte
69 // boundary.
70 // FIXME: do not change 4 by anything else: there is code which relies on that
71 #define ROUND_UP(x) _ROUND_UP(x,8LL)
73 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
74 ** messages.
76 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
78 void reiserfs_warning (struct super_block *s, const char * fmt, ...);
79 /* assertions handling */
81 /** always check a condition and panic if it's false. */
82 #define RASSERT( cond, format, args... ) \
83 if( !( cond ) ) \
84 reiserfs_panic( NULL, "reiserfs[%i]: assertion " #cond " failed at " \
85 __FILE__ ":%i:%s: " format "\n", \
86 in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
88 #if defined( CONFIG_REISERFS_CHECK )
89 #define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
90 #else
91 #define RFALSE( cond, format, args... ) do {;} while( 0 )
92 #endif
94 #define CONSTF __attribute_const__
96 * Disk Data Structures
99 /***************************************************************************/
100 /* SUPER BLOCK */
101 /***************************************************************************/
104 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
105 * the version in RAM is part of a larger structure containing fields never written to disk.
107 #define UNSET_HASH 0 // read_super will guess about, what hash names
108 // in directories were sorted with
109 #define TEA_HASH 1
110 #define YURA_HASH 2
111 #define R5_HASH 3
112 #define DEFAULT_HASH R5_HASH
115 struct journal_params {
116 __u32 jp_journal_1st_block; /* where does journal start from on its
117 * device */
118 __u32 jp_journal_dev; /* journal device st_rdev */
119 __u32 jp_journal_size; /* size of the journal */
120 __u32 jp_journal_trans_max; /* max number of blocks in a transaction. */
121 __u32 jp_journal_magic; /* random value made on fs creation (this
122 * was sb_journal_block_count) */
123 __u32 jp_journal_max_batch; /* max number of blocks to batch into a
124 * trans */
125 __u32 jp_journal_max_commit_age; /* in seconds, how old can an async
126 * commit be */
127 __u32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
128 * be */
131 /* this is the super from 3.5.X, where X >= 10 */
132 struct reiserfs_super_block_v1
134 __u32 s_block_count; /* blocks count */
135 __u32 s_free_blocks; /* free blocks count */
136 __u32 s_root_block; /* root block number */
137 struct journal_params s_journal;
138 __u16 s_blocksize; /* block size */
139 __u16 s_oid_maxsize; /* max size of object id array, see
140 * get_objectid() commentary */
141 __u16 s_oid_cursize; /* current size of object id array */
142 __u16 s_umount_state; /* this is set to 1 when filesystem was
143 * umounted, to 2 - when not */
144 char s_magic[10]; /* reiserfs magic string indicates that
145 * file system is reiserfs:
146 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
147 __u16 s_fs_state; /* it is set to used by fsck to mark which
148 * phase of rebuilding is done */
149 __u32 s_hash_function_code; /* indicate, what hash function is being use
150 * to sort names in a directory*/
151 __u16 s_tree_height; /* height of disk tree */
152 __u16 s_bmap_nr; /* amount of bitmap blocks needed to address
153 * each block of file system */
154 __u16 s_version; /* this field is only reliable on filesystem
155 * with non-standard journal */
156 __u16 s_reserved_for_journal; /* size in blocks of journal area on main
157 * device, we need to keep after
158 * making fs with non-standard journal */
159 } __attribute__ ((__packed__));
161 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
163 /* this is the on disk super block */
164 struct reiserfs_super_block
166 struct reiserfs_super_block_v1 s_v1;
167 __u32 s_inode_generation;
168 __u32 s_flags; /* Right now used only by inode-attributes, if enabled */
169 unsigned char s_uuid[16]; /* filesystem unique identifier */
170 unsigned char s_label[16]; /* filesystem volume label */
171 char s_unused[88] ; /* zero filled by mkreiserfs and
172 * reiserfs_convert_objectid_map_v1()
173 * so any additions must be updated
174 * there as well. */
175 } __attribute__ ((__packed__));
177 #define SB_SIZE (sizeof(struct reiserfs_super_block))
179 #define REISERFS_VERSION_1 0
180 #define REISERFS_VERSION_2 2
183 // on-disk super block fields converted to cpu form
184 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
185 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
186 #define SB_BLOCKSIZE(s) \
187 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
188 #define SB_BLOCK_COUNT(s) \
189 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
190 #define SB_FREE_BLOCKS(s) \
191 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
192 #define SB_REISERFS_MAGIC(s) \
193 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
194 #define SB_ROOT_BLOCK(s) \
195 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
196 #define SB_TREE_HEIGHT(s) \
197 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
198 #define SB_REISERFS_STATE(s) \
199 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
200 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
201 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
203 #define PUT_SB_BLOCK_COUNT(s, val) \
204 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
205 #define PUT_SB_FREE_BLOCKS(s, val) \
206 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
207 #define PUT_SB_ROOT_BLOCK(s, val) \
208 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
209 #define PUT_SB_TREE_HEIGHT(s, val) \
210 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
211 #define PUT_SB_REISERFS_STATE(s, val) \
212 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
213 #define PUT_SB_VERSION(s, val) \
214 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
215 #define PUT_SB_BMAP_NR(s, val) \
216 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
219 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
220 #define SB_ONDISK_JOURNAL_SIZE(s) \
221 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
222 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
223 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
224 #define SB_ONDISK_JOURNAL_DEVICE(s) \
225 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
226 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
227 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
229 #define is_block_in_log_or_reserved_area(s, block) \
230 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
231 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
232 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
233 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
237 /* used by gcc */
238 #define REISERFS_SUPER_MAGIC 0x52654973
239 /* used by file system utilities that
240 look at the superblock, etc. */
241 #define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
242 #define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
243 #define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
245 extern const char reiserfs_3_5_magic_string[];
246 extern const char reiserfs_3_6_magic_string[];
247 extern const char reiserfs_jr_magic_string[];
249 int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
250 int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
251 int is_reiserfs_jr (struct reiserfs_super_block * rs);
253 /* ReiserFS leaves the first 64k unused, so that partition labels have
254 enough space. If someone wants to write a fancy bootloader that
255 needs more than 64k, let us know, and this will be increased in size.
256 This number must be larger than than the largest block size on any
257 platform, or code will break. -Hans */
258 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
259 #define REISERFS_FIRST_BLOCK unused_define
260 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
262 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
263 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
265 // reiserfs internal error code (used by search_by_key adn fix_nodes))
266 #define CARRY_ON 0
267 #define REPEAT_SEARCH -1
268 #define IO_ERROR -2
269 #define NO_DISK_SPACE -3
270 #define NO_BALANCING_NEEDED (-4)
271 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
272 #define QUOTA_EXCEEDED -6
274 typedef __u32 b_blocknr_t;
275 typedef __u32 unp_t;
277 struct unfm_nodeinfo {
278 unp_t unfm_nodenum;
279 unsigned short unfm_freespace;
282 /* there are two formats of keys: 3.5 and 3.6
284 #define KEY_FORMAT_3_5 0
285 #define KEY_FORMAT_3_6 1
287 /* there are two stat datas */
288 #define STAT_DATA_V1 0
289 #define STAT_DATA_V2 1
292 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
294 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
297 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
299 return sb->s_fs_info;
302 /** this says about version of key of all items (but stat data) the
303 object consists of */
304 #define get_inode_item_key_version( inode ) \
305 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
307 #define set_inode_item_key_version( inode, version ) \
308 ({ if((version)==KEY_FORMAT_3_6) \
309 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
310 else \
311 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
313 #define get_inode_sd_version(inode) \
314 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
316 #define set_inode_sd_version(inode, version) \
317 ({ if((version)==STAT_DATA_V2) \
318 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
319 else \
320 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
322 /* This is an aggressive tail suppression policy, I am hoping it
323 improves our benchmarks. The principle behind it is that percentage
324 space saving is what matters, not absolute space saving. This is
325 non-intuitive, but it helps to understand it if you consider that the
326 cost to access 4 blocks is not much more than the cost to access 1
327 block, if you have to do a seek and rotate. A tail risks a
328 non-linear disk access that is significant as a percentage of total
329 time cost for a 4 block file and saves an amount of space that is
330 less significant as a percentage of space, or so goes the hypothesis.
331 -Hans */
332 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
334 (!(n_tail_size)) || \
335 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
336 ( (n_file_size) >= (n_block_size) * 4 ) || \
337 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
338 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
339 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
340 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
341 ( ( (n_file_size) >= (n_block_size) ) && \
342 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
345 /* Another strategy for tails, this one means only create a tail if all the
346 file would fit into one DIRECT item.
347 Primary intention for this one is to increase performance by decreasing
348 seeking.
350 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
352 (!(n_tail_size)) || \
353 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
359 * values for s_umount_state field
361 #define REISERFS_VALID_FS 1
362 #define REISERFS_ERROR_FS 2
365 // there are 5 item types currently
367 #define TYPE_STAT_DATA 0
368 #define TYPE_INDIRECT 1
369 #define TYPE_DIRECT 2
370 #define TYPE_DIRENTRY 3
371 #define TYPE_MAXTYPE 3
372 #define TYPE_ANY 15 // FIXME: comment is required
374 /***************************************************************************/
375 /* KEY & ITEM HEAD */
376 /***************************************************************************/
379 // directories use this key as well as old files
381 struct offset_v1 {
382 __u32 k_offset;
383 __u32 k_uniqueness;
384 } __attribute__ ((__packed__));
386 struct offset_v2 {
387 #ifdef __LITTLE_ENDIAN
388 /* little endian version */
389 __u64 k_offset:60;
390 __u64 k_type: 4;
391 #else
392 /* big endian version */
393 __u64 k_type: 4;
394 __u64 k_offset:60;
395 #endif
396 } __attribute__ ((__packed__));
398 #ifndef __LITTLE_ENDIAN
399 typedef union {
400 struct offset_v2 offset_v2;
401 __u64 linear;
402 } __attribute__ ((__packed__)) offset_v2_esafe_overlay;
404 static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
406 offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
407 tmp.linear = le64_to_cpu( tmp.linear );
408 return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY;
411 static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
413 offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
414 tmp->linear = le64_to_cpu(tmp->linear);
415 tmp->offset_v2.k_type = type;
416 tmp->linear = cpu_to_le64(tmp->linear);
419 static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
421 offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
422 tmp.linear = le64_to_cpu( tmp.linear );
423 return tmp.offset_v2.k_offset;
426 static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
427 offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
428 tmp->linear = le64_to_cpu(tmp->linear);
429 tmp->offset_v2.k_offset = offset;
430 tmp->linear = cpu_to_le64(tmp->linear);
432 #else
433 # define offset_v2_k_type(v2) ((v2)->k_type)
434 # define set_offset_v2_k_type(v2,val) (offset_v2_k_type(v2) = (val))
435 # define offset_v2_k_offset(v2) ((v2)->k_offset)
436 # define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
437 #endif
439 /* Key of an item determines its location in the S+tree, and
440 is composed of 4 components */
441 struct key {
442 __u32 k_dir_id; /* packing locality: by default parent
443 directory object id */
444 __u32 k_objectid; /* object identifier */
445 union {
446 struct offset_v1 k_offset_v1;
447 struct offset_v2 k_offset_v2;
448 } __attribute__ ((__packed__)) u;
449 } __attribute__ ((__packed__));
452 struct cpu_key {
453 struct key on_disk_key;
454 int version;
455 int key_length; /* 3 in all cases but direct2indirect and
456 indirect2direct conversion */
459 /* Our function for comparing keys can compare keys of different
460 lengths. It takes as a parameter the length of the keys it is to
461 compare. These defines are used in determining what is to be passed
462 to it as that parameter. */
463 #define REISERFS_FULL_KEY_LEN 4
464 #define REISERFS_SHORT_KEY_LEN 2
466 /* The result of the key compare */
467 #define FIRST_GREATER 1
468 #define SECOND_GREATER -1
469 #define KEYS_IDENTICAL 0
470 #define KEY_FOUND 1
471 #define KEY_NOT_FOUND 0
473 #define KEY_SIZE (sizeof(struct key))
474 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
476 /* return values for search_by_key and clones */
477 #define ITEM_FOUND 1
478 #define ITEM_NOT_FOUND 0
479 #define ENTRY_FOUND 1
480 #define ENTRY_NOT_FOUND 0
481 #define DIRECTORY_NOT_FOUND -1
482 #define REGULAR_FILE_FOUND -2
483 #define DIRECTORY_FOUND -3
484 #define BYTE_FOUND 1
485 #define BYTE_NOT_FOUND 0
486 #define FILE_NOT_FOUND -1
488 #define POSITION_FOUND 1
489 #define POSITION_NOT_FOUND 0
491 // return values for reiserfs_find_entry and search_by_entry_key
492 #define NAME_FOUND 1
493 #define NAME_NOT_FOUND 0
494 #define GOTO_PREVIOUS_ITEM 2
495 #define NAME_FOUND_INVISIBLE 3
497 /* Everything in the filesystem is stored as a set of items. The
498 item head contains the key of the item, its free space (for
499 indirect items) and specifies the location of the item itself
500 within the block. */
502 struct item_head
504 /* Everything in the tree is found by searching for it based on
505 * its key.*/
506 struct key ih_key;
507 union {
508 /* The free space in the last unformatted node of an
509 indirect item if this is an indirect item. This
510 equals 0xFFFF iff this is a direct item or stat data
511 item. Note that the key, not this field, is used to
512 determine the item type, and thus which field this
513 union contains. */
514 __u16 ih_free_space_reserved;
515 /* Iff this is a directory item, this field equals the
516 number of directory entries in the directory item. */
517 __u16 ih_entry_count;
518 } __attribute__ ((__packed__)) u;
519 __u16 ih_item_len; /* total size of the item body */
520 __u16 ih_item_location; /* an offset to the item body
521 * within the block */
522 __u16 ih_version; /* 0 for all old items, 2 for new
523 ones. Highest bit is set by fsck
524 temporary, cleaned after all
525 done */
526 } __attribute__ ((__packed__));
527 /* size of item header */
528 #define IH_SIZE (sizeof(struct item_head))
530 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
531 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
532 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
533 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
534 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
536 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
537 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
538 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
539 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
540 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
543 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
545 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
546 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
548 /* these operate on indirect items, where you've got an array of ints
549 ** at a possibly unaligned location. These are a noop on ia32
551 ** p is the array of __u32, i is the index into the array, v is the value
552 ** to store there.
554 #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
555 #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
558 // in old version uniqueness field shows key type
560 #define V1_SD_UNIQUENESS 0
561 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
562 #define V1_DIRECT_UNIQUENESS 0xffffffff
563 #define V1_DIRENTRY_UNIQUENESS 500
564 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
567 // here are conversion routines
569 static inline int uniqueness2type (__u32 uniqueness) CONSTF;
570 static inline int uniqueness2type (__u32 uniqueness)
572 switch ((int)uniqueness) {
573 case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
574 case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
575 case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
576 case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
577 default:
578 reiserfs_warning (NULL, "vs-500: unknown uniqueness %d",
579 uniqueness);
580 case V1_ANY_UNIQUENESS:
581 return TYPE_ANY;
585 static inline __u32 type2uniqueness (int type) CONSTF;
586 static inline __u32 type2uniqueness (int type)
588 switch (type) {
589 case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
590 case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
591 case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
592 case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
593 default:
594 reiserfs_warning (NULL, "vs-501: unknown type %d", type);
595 case TYPE_ANY:
596 return V1_ANY_UNIQUENESS;
601 // key is pointer to on disk key which is stored in le, result is cpu,
602 // there is no way to get version of object from key, so, provide
603 // version to these defines
605 static inline loff_t le_key_k_offset (int version, const struct key * key)
607 return (version == KEY_FORMAT_3_5) ?
608 le32_to_cpu( key->u.k_offset_v1.k_offset ) :
609 offset_v2_k_offset( &(key->u.k_offset_v2) );
612 static inline loff_t le_ih_k_offset (const struct item_head * ih)
614 return le_key_k_offset (ih_version (ih), &(ih->ih_key));
617 static inline loff_t le_key_k_type (int version, const struct key * key)
619 return (version == KEY_FORMAT_3_5) ?
620 uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
621 offset_v2_k_type( &(key->u.k_offset_v2) );
624 static inline loff_t le_ih_k_type (const struct item_head * ih)
626 return le_key_k_type (ih_version (ih), &(ih->ih_key));
630 static inline void set_le_key_k_offset (int version, struct key * key, loff_t offset)
632 (version == KEY_FORMAT_3_5) ?
633 (void)(key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
634 (void)(set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
638 static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
640 set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
644 static inline void set_le_key_k_type (int version, struct key * key, int type)
646 (version == KEY_FORMAT_3_5) ?
647 (void)(key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
648 (void)(set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
650 static inline void set_le_ih_k_type (struct item_head * ih, int type)
652 set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
656 #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
657 #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
658 #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
659 #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
662 // item header has version.
664 #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
665 #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
666 #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
667 #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
672 // key is pointer to cpu key, result is cpu
674 static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
676 return (key->version == KEY_FORMAT_3_5) ?
677 key->on_disk_key.u.k_offset_v1.k_offset :
678 key->on_disk_key.u.k_offset_v2.k_offset;
681 static inline loff_t cpu_key_k_type (const struct cpu_key * key)
683 return (key->version == KEY_FORMAT_3_5) ?
684 uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) :
685 key->on_disk_key.u.k_offset_v2.k_type;
688 static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
690 (key->version == KEY_FORMAT_3_5) ?
691 (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
692 (key->on_disk_key.u.k_offset_v2.k_offset = offset);
696 static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
698 (key->version == KEY_FORMAT_3_5) ?
699 (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)):
700 (key->on_disk_key.u.k_offset_v2.k_type = type);
704 static inline void cpu_key_k_offset_dec (struct cpu_key * key)
706 if (key->version == KEY_FORMAT_3_5)
707 key->on_disk_key.u.k_offset_v1.k_offset --;
708 else
709 key->on_disk_key.u.k_offset_v2.k_offset --;
713 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
714 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
715 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
716 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
719 /* are these used ? */
720 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
721 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
722 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
723 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
729 #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
730 ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
731 I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
733 /* maximal length of item */
734 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
735 #define MIN_ITEM_LEN 1
738 /* object identifier for root dir */
739 #define REISERFS_ROOT_OBJECTID 2
740 #define REISERFS_ROOT_PARENT_OBJECTID 1
741 extern struct key root_key;
747 * Picture represents a leaf of the S+tree
748 * ______________________________________________________
749 * | | Array of | | |
750 * |Block | Object-Item | F r e e | Objects- |
751 * | head | Headers | S p a c e | Items |
752 * |______|_______________|___________________|___________|
755 /* Header of a disk block. More precisely, header of a formatted leaf
756 or internal node, and not the header of an unformatted node. */
757 struct block_head {
758 __u16 blk_level; /* Level of a block in the tree. */
759 __u16 blk_nr_item; /* Number of keys/items in a block. */
760 __u16 blk_free_space; /* Block free space in bytes. */
761 __u16 blk_reserved;
762 /* dump this in v4/planA */
763 struct key blk_right_delim_key; /* kept only for compatibility */
766 #define BLKH_SIZE (sizeof(struct block_head))
767 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
768 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
769 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
770 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
771 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
772 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
773 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
774 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
775 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
776 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
779 * values for blk_level field of the struct block_head
782 #define FREE_LEVEL 0 /* when node gets removed from the tree its
783 blk_level is set to FREE_LEVEL. It is then
784 used to see whether the node is still in the
785 tree */
787 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level.*/
789 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
790 #define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data))
791 /* Number of items that are in buffer. */
792 #define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
793 #define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh)))
794 #define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh)))
796 #define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
797 #define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
798 #define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
801 /* Get right delimiting key. -- little endian */
802 #define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
804 /* Does the buffer contain a disk leaf. */
805 #define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
807 /* Does the buffer contain a disk internal node */
808 #define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
809 && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
814 /***************************************************************************/
815 /* STAT DATA */
816 /***************************************************************************/
820 // old stat data is 32 bytes long. We are going to distinguish new one by
821 // different size
823 struct stat_data_v1
825 __u16 sd_mode; /* file type, permissions */
826 __u16 sd_nlink; /* number of hard links */
827 __u16 sd_uid; /* owner */
828 __u16 sd_gid; /* group */
829 __u32 sd_size; /* file size */
830 __u32 sd_atime; /* time of last access */
831 __u32 sd_mtime; /* time file was last modified */
832 __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
833 union {
834 __u32 sd_rdev;
835 __u32 sd_blocks; /* number of blocks file uses */
836 } __attribute__ ((__packed__)) u;
837 __u32 sd_first_direct_byte; /* first byte of file which is stored
838 in a direct item: except that if it
839 equals 1 it is a symlink and if it
840 equals ~(__u32)0 there is no
841 direct item. The existence of this
842 field really grates on me. Let's
843 replace it with a macro based on
844 sd_size and our tail suppression
845 policy. Someday. -Hans */
846 } __attribute__ ((__packed__));
848 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
849 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
850 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
851 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
852 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
853 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
854 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
855 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
856 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
857 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
858 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
859 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
860 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
861 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
862 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
863 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
864 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
865 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
866 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
867 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
868 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
869 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
870 #define sd_v1_first_direct_byte(sdp) \
871 (le32_to_cpu((sdp)->sd_first_direct_byte))
872 #define set_sd_v1_first_direct_byte(sdp,v) \
873 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
875 #include <linux/ext2_fs.h>
877 /* inode flags stored in sd_attrs (nee sd_reserved) */
879 /* we want common flags to have the same values as in ext2,
880 so chattr(1) will work without problems */
881 #define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
882 #define REISERFS_APPEND_FL EXT2_APPEND_FL
883 #define REISERFS_SYNC_FL EXT2_SYNC_FL
884 #define REISERFS_NOATIME_FL EXT2_NOATIME_FL
885 #define REISERFS_NODUMP_FL EXT2_NODUMP_FL
886 #define REISERFS_SECRM_FL EXT2_SECRM_FL
887 #define REISERFS_UNRM_FL EXT2_UNRM_FL
888 #define REISERFS_COMPR_FL EXT2_COMPR_FL
889 #define REISERFS_NOTAIL_FL EXT2_NOTAIL_FL
891 /* persistent flags that file inherits from the parent directory */
892 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
893 REISERFS_SYNC_FL | \
894 REISERFS_NOATIME_FL | \
895 REISERFS_NODUMP_FL | \
896 REISERFS_SECRM_FL | \
897 REISERFS_COMPR_FL | \
898 REISERFS_NOTAIL_FL )
900 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
901 address blocks) */
902 struct stat_data {
903 __u16 sd_mode; /* file type, permissions */
904 __u16 sd_attrs; /* persistent inode flags */
905 __u32 sd_nlink; /* number of hard links */
906 __u64 sd_size; /* file size */
907 __u32 sd_uid; /* owner */
908 __u32 sd_gid; /* group */
909 __u32 sd_atime; /* time of last access */
910 __u32 sd_mtime; /* time file was last modified */
911 __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
912 __u32 sd_blocks;
913 union {
914 __u32 sd_rdev;
915 __u32 sd_generation;
916 //__u32 sd_first_direct_byte;
917 /* first byte of file which is stored in a
918 direct item: except that if it equals 1
919 it is a symlink and if it equals
920 ~(__u32)0 there is no direct item. The
921 existence of this field really grates
922 on me. Let's replace it with a macro
923 based on sd_size and our tail
924 suppression policy? */
925 } __attribute__ ((__packed__)) u;
926 } __attribute__ ((__packed__));
928 // this is 44 bytes long
930 #define SD_SIZE (sizeof(struct stat_data))
931 #define SD_V2_SIZE SD_SIZE
932 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
933 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
934 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
935 /* sd_reserved */
936 /* set_sd_reserved */
937 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
938 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
939 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
940 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
941 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
942 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
943 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
944 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
945 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
946 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
947 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
948 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
949 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
950 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
951 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
952 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
953 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
954 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
955 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
956 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
957 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
958 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
961 /***************************************************************************/
962 /* DIRECTORY STRUCTURE */
963 /***************************************************************************/
965 Picture represents the structure of directory items
966 ________________________________________________
967 | Array of | | | | | |
968 | directory |N-1| N-2 | .... | 1st |0th|
969 | entry headers | | | | | |
970 |_______________|___|_____|________|_______|___|
971 <---- directory entries ------>
973 First directory item has k_offset component 1. We store "." and ".."
974 in one item, always, we never split "." and ".." into differing
975 items. This makes, among other things, the code for removing
976 directories simpler. */
977 #define SD_OFFSET 0
978 #define SD_UNIQUENESS 0
979 #define DOT_OFFSET 1
980 #define DOT_DOT_OFFSET 2
981 #define DIRENTRY_UNIQUENESS 500
983 /* */
984 #define FIRST_ITEM_OFFSET 1
987 Q: How to get key of object pointed to by entry from entry?
989 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
990 of object, entry points to */
992 /* NOT IMPLEMENTED:
993 Directory will someday contain stat data of object */
997 struct reiserfs_de_head
999 __u32 deh_offset; /* third component of the directory entry key */
1000 __u32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
1001 by directory entry */
1002 __u32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1003 __u16 deh_location; /* offset of name in the whole item */
1004 __u16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1005 entry is hidden (unlinked) */
1006 } __attribute__ ((__packed__));
1007 #define DEH_SIZE sizeof(struct reiserfs_de_head)
1008 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1009 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1010 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1011 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1012 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1014 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1015 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1016 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1017 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1018 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1020 /* empty directory contains two entries "." and ".." and their headers */
1021 #define EMPTY_DIR_SIZE \
1022 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1024 /* old format directories have this size when empty */
1025 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1027 #define DEH_Statdata 0 /* not used now */
1028 #define DEH_Visible 2
1030 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1031 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1032 # define ADDR_UNALIGNED_BITS (3)
1033 #endif
1035 /* These are only used to manipulate deh_state.
1036 * Because of this, we'll use the ext2_ bit routines,
1037 * since they are little endian */
1038 #ifdef ADDR_UNALIGNED_BITS
1040 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1041 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1043 # define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1044 # define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1045 # define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1047 #else
1049 # define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
1050 # define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
1051 # define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1053 #endif
1055 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1056 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1057 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1058 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1060 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1061 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1062 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1064 extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
1065 __u32 par_dirid, __u32 par_objid);
1066 extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
1067 __u32 par_dirid, __u32 par_objid);
1069 /* array of the entry headers */
1070 /* get item body */
1071 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1072 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1074 /* length of the directory entry in directory item. This define
1075 calculates length of i-th directory entry using directory entry
1076 locations from dir entry head. When it calculates length of 0-th
1077 directory entry, it uses length of whole item in place of entry
1078 location of the non-existent following entry in the calculation.
1079 See picture above.*/
1081 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1082 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1084 static inline int entry_length (const struct buffer_head * bh,
1085 const struct item_head * ih, int pos_in_item)
1087 struct reiserfs_de_head * deh;
1089 deh = B_I_DEH (bh, ih) + pos_in_item;
1090 if (pos_in_item)
1091 return deh_location(deh-1) - deh_location(deh);
1093 return ih_item_len(ih) - deh_location(deh);
1098 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1099 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1102 /* name by bh, ih and entry_num */
1103 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1105 // two entries per block (at least)
1106 #define REISERFS_MAX_NAME(block_size) 255
1109 /* this structure is used for operations on directory entries. It is
1110 not a disk structure. */
1111 /* When reiserfs_find_entry or search_by_entry_key find directory
1112 entry, they return filled reiserfs_dir_entry structure */
1113 struct reiserfs_dir_entry
1115 struct buffer_head * de_bh;
1116 int de_item_num;
1117 struct item_head * de_ih;
1118 int de_entry_num;
1119 struct reiserfs_de_head * de_deh;
1120 int de_entrylen;
1121 int de_namelen;
1122 char * de_name;
1123 char * de_gen_number_bit_string;
1125 __u32 de_dir_id;
1126 __u32 de_objectid;
1128 struct cpu_key de_entry_key;
1131 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1133 /* pointer to file name, stored in entry */
1134 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1136 /* length of name */
1137 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1138 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1142 /* hash value occupies bits from 7 up to 30 */
1143 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1144 /* generation number occupies 7 bits starting from 0 up to 6 */
1145 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1146 #define MAX_GENERATION_NUMBER 127
1148 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1152 * Picture represents an internal node of the reiserfs tree
1153 * ______________________________________________________
1154 * | | Array of | Array of | Free |
1155 * |block | keys | pointers | space |
1156 * | head | N | N+1 | |
1157 * |______|_______________|___________________|___________|
1160 /***************************************************************************/
1161 /* DISK CHILD */
1162 /***************************************************************************/
1163 /* Disk child pointer: The pointer from an internal node of the tree
1164 to a node that is on disk. */
1165 struct disk_child {
1166 __u32 dc_block_number; /* Disk child's block number. */
1167 __u16 dc_size; /* Disk child's used space. */
1168 __u16 dc_reserved;
1171 #define DC_SIZE (sizeof(struct disk_child))
1172 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1173 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1174 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1175 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1177 /* Get disk child by buffer header and position in the tree node. */
1178 #define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\
1179 ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1181 /* Get disk child number by buffer header and position in the tree node. */
1182 #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1183 #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1185 /* maximal value of field child_size in structure disk_child */
1186 /* child size is the combined size of all items and their headers */
1187 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1189 /* amount of used space in buffer (not including block head) */
1190 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1192 /* max and min number of keys in internal node */
1193 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1194 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1196 /***************************************************************************/
1197 /* PATH STRUCTURES AND DEFINES */
1198 /***************************************************************************/
1201 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1202 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1203 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1204 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1205 position of the block_number of the next node if it is looking through an internal node. If it
1206 is looking through a leaf node bin_search will find the position of the item which has key either
1207 equal to given key, or which is the maximal key less than the given key. */
1209 struct path_element {
1210 struct buffer_head * pe_buffer; /* Pointer to the buffer at the path in the tree. */
1211 int pe_position; /* Position in the tree node which is placed in the */
1212 /* buffer above. */
1215 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1216 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1217 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1219 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1220 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1224 /* We need to keep track of who the ancestors of nodes are. When we
1225 perform a search we record which nodes were visited while
1226 descending the tree looking for the node we searched for. This list
1227 of nodes is called the path. This information is used while
1228 performing balancing. Note that this path information may become
1229 invalid, and this means we must check it when using it to see if it
1230 is still valid. You'll need to read search_by_key and the comments
1231 in it, especially about decrement_counters_in_path(), to understand
1232 this structure.
1234 Paths make the code so much harder to work with and debug.... An
1235 enormous number of bugs are due to them, and trying to write or modify
1236 code that uses them just makes my head hurt. They are based on an
1237 excessive effort to avoid disturbing the precious VFS code.:-( The
1238 gods only know how we are going to SMP the code that uses them.
1239 znodes are the way! */
1241 #define PATH_READA 0x1 /* do read ahead */
1242 #define PATH_READA_BACK 0x2 /* read backwards */
1244 struct path {
1245 int path_length; /* Length of the array above. */
1246 int reada;
1247 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1248 int pos_in_item;
1251 #define pos_in_item(path) ((path)->pos_in_item)
1253 #define INITIALIZE_PATH(var) \
1254 struct path var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1256 /* Get path element by path and path position. */
1257 #define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset))
1259 /* Get buffer header at the path by path and path position. */
1260 #define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1262 /* Get position in the element at the path by path and path position. */
1263 #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1266 #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1267 /* you know, to the person who didn't
1268 write this the macro name does not
1269 at first suggest what it does.
1270 Maybe POSITION_FROM_PATH_END? Or
1271 maybe we should just focus on
1272 dumping paths... -Hans */
1273 #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1276 #define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1278 /* in do_balance leaf has h == 0 in contrast with path structure,
1279 where root has level == 0. That is why we need these defines */
1280 #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1281 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1282 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1283 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1285 #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1287 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1288 #define get_ih(path) PATH_PITEM_HEAD(path)
1289 #define get_item_pos(path) PATH_LAST_POSITION(path)
1290 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1291 #define item_moved(ih,path) comp_items(ih, path)
1292 #define path_changed(ih,path) comp_items (ih, path)
1295 /***************************************************************************/
1296 /* MISC */
1297 /***************************************************************************/
1299 /* Size of pointer to the unformatted node. */
1300 #define UNFM_P_SIZE (sizeof(unp_t))
1301 #define UNFM_P_SHIFT 2
1303 // in in-core inode key is stored on le form
1304 #define INODE_PKEY(inode) ((struct key *)(REISERFS_I(inode)->i_key))
1306 #define MAX_UL_INT 0xffffffff
1307 #define MAX_INT 0x7ffffff
1308 #define MAX_US_INT 0xffff
1310 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1311 #define U32_MAX (~(__u32)0)
1313 static inline loff_t max_reiserfs_offset (struct inode * inode)
1315 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1316 return (loff_t)U32_MAX;
1318 return (loff_t)((~(__u64)0) >> 4);
1322 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1323 #define MAX_KEY_OBJECTID MAX_UL_INT
1326 #define MAX_B_NUM MAX_UL_INT
1327 #define MAX_FC_NUM MAX_US_INT
1330 /* the purpose is to detect overflow of an unsigned short */
1331 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1334 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1335 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1336 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1338 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1339 #define get_generation(s) atomic_read (&fs_generation(s))
1340 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1341 #define __fs_changed(gen,s) (gen != get_generation (s))
1342 #define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1345 /***************************************************************************/
1346 /* FIXATE NODES */
1347 /***************************************************************************/
1349 #define VI_TYPE_LEFT_MERGEABLE 1
1350 #define VI_TYPE_RIGHT_MERGEABLE 2
1352 /* To make any changes in the tree we always first find node, that
1353 contains item to be changed/deleted or place to insert a new
1354 item. We call this node S. To do balancing we need to decide what
1355 we will shift to left/right neighbor, or to a new node, where new
1356 item will be etc. To make this analysis simpler we build virtual
1357 node. Virtual node is an array of items, that will replace items of
1358 node S. (For instance if we are going to delete an item, virtual
1359 node does not contain it). Virtual node keeps information about
1360 item sizes and types, mergeability of first and last items, sizes
1361 of all entries in directory item. We use this array of items when
1362 calculating what we can shift to neighbors and how many nodes we
1363 have to have if we do not any shiftings, if we shift to left/right
1364 neighbor or to both. */
1365 struct virtual_item
1367 int vi_index; // index in the array of item operations
1368 unsigned short vi_type; // left/right mergeability
1369 unsigned short vi_item_len; /* length of item that it will have after balancing */
1370 struct item_head * vi_ih;
1371 const char * vi_item; // body of item (old or new)
1372 const void * vi_new_data; // 0 always but paste mode
1373 void * vi_uarea; // item specific area
1377 struct virtual_node
1379 char * vn_free_ptr; /* this is a pointer to the free space in the buffer */
1380 unsigned short vn_nr_item; /* number of items in virtual node */
1381 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1382 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1383 short vn_affected_item_num;
1384 short vn_pos_in_item;
1385 struct item_head * vn_ins_ih; /* item header of inserted item, 0 for other modes */
1386 const void * vn_data;
1387 struct virtual_item * vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1390 /* used by directory items when creating virtual nodes */
1391 struct direntry_uarea {
1392 int flags;
1393 __u16 entry_count;
1394 __u16 entry_sizes[1];
1395 } __attribute__ ((__packed__)) ;
1398 /***************************************************************************/
1399 /* TREE BALANCE */
1400 /***************************************************************************/
1402 /* This temporary structure is used in tree balance algorithms, and
1403 constructed as we go to the extent that its various parts are
1404 needed. It contains arrays of nodes that can potentially be
1405 involved in the balancing of node S, and parameters that define how
1406 each of the nodes must be balanced. Note that in these algorithms
1407 for balancing the worst case is to need to balance the current node
1408 S and the left and right neighbors and all of their parents plus
1409 create a new node. We implement S1 balancing for the leaf nodes
1410 and S0 balancing for the internal nodes (S1 and S0 are defined in
1411 our papers.)*/
1413 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1415 /* maximum number of FEB blocknrs on a single level */
1416 #define MAX_AMOUNT_NEEDED 2
1418 /* someday somebody will prefix every field in this struct with tb_ */
1419 struct tree_balance
1421 int tb_mode;
1422 int need_balance_dirty;
1423 struct super_block * tb_sb;
1424 struct reiserfs_transaction_handle *transaction_handle ;
1425 struct path * tb_path;
1426 struct buffer_head * L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1427 struct buffer_head * R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path*/
1428 struct buffer_head * FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1429 struct buffer_head * FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1430 struct buffer_head * CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1431 struct buffer_head * CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1433 struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1434 cur_blknum. */
1435 struct buffer_head * used[MAX_FEB_SIZE];
1436 struct buffer_head * thrown[MAX_FEB_SIZE];
1437 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1438 shifted to the left in order to balance the
1439 current node; for leaves includes item that
1440 will be partially shifted; for internal
1441 nodes, it is the number of child pointers
1442 rather than items. It includes the new item
1443 being created. The code sometimes subtracts
1444 one to get the number of wholly shifted
1445 items for other purposes. */
1446 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1447 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1448 S[h] to its item number within the node CFL[h] */
1449 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1450 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1451 S[h]. A negative value means removing. */
1452 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1453 balancing on the level h of the tree. If 0 then S is
1454 being deleted, if 1 then S is remaining and no new nodes
1455 are being created, if 2 or 3 then 1 or 2 new nodes is
1456 being created */
1458 /* fields that are used only for balancing leaves of the tree */
1459 int cur_blknum; /* number of empty blocks having been already allocated */
1460 int s0num; /* number of items that fall into left most node when S[0] splits */
1461 int s1num; /* number of items that fall into first new node when S[0] splits */
1462 int s2num; /* number of items that fall into second new node when S[0] splits */
1463 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1464 /* most liquid item that cannot be shifted from S[0] entirely */
1465 /* if -1 then nothing will be partially shifted */
1466 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1467 /* most liquid item that cannot be shifted from S[0] entirely */
1468 /* if -1 then nothing will be partially shifted */
1469 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1470 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1471 int s2bytes;
1472 struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1473 char * vn_buf; /* kmalloced memory. Used to create
1474 virtual node and keep map of
1475 dirtied bitmap blocks */
1476 int vn_buf_size; /* size of the vn_buf */
1477 struct virtual_node * tb_vn; /* VN starts after bitmap of bitmap blocks */
1479 int fs_gen; /* saved value of `reiserfs_generation' counter
1480 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1481 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1482 struct key key; /* key pointer, to pass to block allocator or
1483 another low-level subsystem */
1484 #endif
1487 /* These are modes of balancing */
1489 /* When inserting an item. */
1490 #define M_INSERT 'i'
1491 /* When inserting into (directories only) or appending onto an already
1492 existant item. */
1493 #define M_PASTE 'p'
1494 /* When deleting an item. */
1495 #define M_DELETE 'd'
1496 /* When truncating an item or removing an entry from a (directory) item. */
1497 #define M_CUT 'c'
1499 /* used when balancing on leaf level skipped (in reiserfsck) */
1500 #define M_INTERNAL 'n'
1502 /* When further balancing is not needed, then do_balance does not need
1503 to be called. */
1504 #define M_SKIP_BALANCING 's'
1505 #define M_CONVERT 'v'
1507 /* modes of leaf_move_items */
1508 #define LEAF_FROM_S_TO_L 0
1509 #define LEAF_FROM_S_TO_R 1
1510 #define LEAF_FROM_R_TO_L 2
1511 #define LEAF_FROM_L_TO_R 3
1512 #define LEAF_FROM_S_TO_SNEW 4
1514 #define FIRST_TO_LAST 0
1515 #define LAST_TO_FIRST 1
1517 /* used in do_balance for passing parent of node information that has
1518 been gotten from tb struct */
1519 struct buffer_info {
1520 struct tree_balance * tb;
1521 struct buffer_head * bi_bh;
1522 struct buffer_head * bi_parent;
1523 int bi_position;
1527 /* there are 4 types of items: stat data, directory item, indirect, direct.
1528 +-------------------+------------+--------------+------------+
1529 | | k_offset | k_uniqueness | mergeable? |
1530 +-------------------+------------+--------------+------------+
1531 | stat data | 0 | 0 | no |
1532 +-------------------+------------+--------------+------------+
1533 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1534 | non 1st directory | hash value | | yes |
1535 | item | | | |
1536 +-------------------+------------+--------------+------------+
1537 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1538 +-------------------+------------+--------------+------------+
1539 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1540 +-------------------+------------+--------------+------------+
1543 struct item_operations {
1544 int (*bytes_number) (struct item_head * ih, int block_size);
1545 void (*decrement_key) (struct cpu_key *);
1546 int (*is_left_mergeable) (struct key * ih, unsigned long bsize);
1547 void (*print_item) (struct item_head *, char * item);
1548 void (*check_item) (struct item_head *, char * item);
1550 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1551 int is_affected, int insert_size);
1552 int (*check_left) (struct virtual_item * vi, int free,
1553 int start_skip, int end_skip);
1554 int (*check_right) (struct virtual_item * vi, int free);
1555 int (*part_size) (struct virtual_item * vi, int from, int to);
1556 int (*unit_num) (struct virtual_item * vi);
1557 void (*print_vi) (struct virtual_item * vi);
1561 extern struct item_operations stat_data_ops, indirect_ops, direct_ops,
1562 direntry_ops;
1563 extern struct item_operations * item_ops [TYPE_ANY + 1];
1565 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1566 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1567 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1568 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1569 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1570 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1571 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1572 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1573 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1574 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1580 #define COMP_KEYS comp_keys
1581 #define COMP_SHORT_KEYS comp_short_keys
1582 /*#define keys_of_same_object comp_short_keys*/
1584 /* number of blocks pointed to by the indirect item */
1585 #define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1587 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1588 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1590 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1593 /* get the item header */
1594 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1596 /* get key */
1597 #define B_N_PDELIM_KEY(bh,item_num) ( (struct key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1599 /* get the key */
1600 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1602 /* get item body */
1603 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1605 /* get the stat data by the buffer header and the item order */
1606 #define B_N_STAT_DATA(bh,nr) \
1607 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1609 /* following defines use reiserfs buffer header and item header */
1611 /* get stat-data */
1612 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1614 // this is 3976 for size==4096
1615 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1617 /* indirect items consist of entries which contain blocknrs, pos
1618 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1619 blocknr contained by the entry pos points to */
1620 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1621 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1623 struct reiserfs_iget_args {
1624 __u32 objectid ;
1625 __u32 dirid ;
1628 /***************************************************************************/
1629 /* FUNCTION DECLARATIONS */
1630 /***************************************************************************/
1632 /*#ifdef __KERNEL__*/
1633 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1635 #define journal_trans_half(blocksize) \
1636 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1638 /* journal.c see journal.c for all the comments here */
1640 /* first block written in a commit. */
1641 struct reiserfs_journal_desc {
1642 __u32 j_trans_id ; /* id of commit */
1643 __u32 j_len ; /* length of commit. len +1 is the commit block */
1644 __u32 j_mount_id ; /* mount id of this trans*/
1645 __u32 j_realblock[1] ; /* real locations for each block */
1648 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1649 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1650 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1652 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1653 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1654 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1656 /* last block written in a commit */
1657 struct reiserfs_journal_commit {
1658 __u32 j_trans_id ; /* must match j_trans_id from the desc block */
1659 __u32 j_len ; /* ditto */
1660 __u32 j_realblock[1] ; /* real locations for each block */
1663 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1664 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1665 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1667 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1668 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1670 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1671 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1672 ** and this transaction does not need to be replayed.
1674 struct reiserfs_journal_header {
1675 __u32 j_last_flush_trans_id ; /* id of last fully flushed transaction */
1676 __u32 j_first_unflushed_offset ; /* offset in the log of where to start replay after a crash */
1677 __u32 j_mount_id ;
1678 /* 12 */ struct journal_params jh_journal;
1681 /* biggest tunable defines are right here */
1682 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1683 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1684 #define JOURNAL_TRANS_MIN_DEFAULT 256
1685 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1686 #define JOURNAL_MIN_RATIO 2
1687 #define JOURNAL_MAX_COMMIT_AGE 30
1688 #define JOURNAL_MAX_TRANS_AGE 30
1689 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1691 /* both of these can be as low as 1, or as high as you want. The min is the
1692 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1693 ** as needed, and released when transactions are committed. On release, if
1694 ** the current number of nodes is > max, the node is freed, otherwise,
1695 ** it is put on a free list for faster use later.
1697 #define REISERFS_MIN_BITMAP_NODES 10
1698 #define REISERFS_MAX_BITMAP_NODES 100
1700 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1701 #define JBH_HASH_MASK 8191
1703 #define _jhashfn(sb,block) \
1704 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1705 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1706 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1708 // We need these to make journal.c code more readable
1709 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1710 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1711 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1713 enum reiserfs_bh_state_bits {
1714 BH_JDirty = BH_PrivateStart,
1715 BH_JDirty_wait,
1716 BH_JNew,
1717 BH_JPrepared,
1718 BH_JRestore_dirty,
1719 BH_JTest, // debugging only will go away
1723 ** transaction handle which is passed around for all journal calls
1725 struct reiserfs_transaction_handle {
1726 struct super_block *t_super ; /* super for this FS when journal_begin was
1727 called. saves calls to reiserfs_get_super
1728 also used by nested transactions to make
1729 sure they are nesting on the right FS
1730 _must_ be first in the handle
1732 int t_refcount;
1733 int t_blocks_logged ; /* number of blocks this writer has logged */
1734 int t_blocks_allocated ; /* number of blocks this writer allocated */
1735 unsigned long t_trans_id ; /* sanity check, equals the current trans id */
1736 void *t_handle_save ; /* save existing current->journal_info */
1737 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1738 should be displaced from others */
1741 /* used to keep track of ordered and tail writes, attached to the buffer
1742 * head through b_journal_head.
1744 struct reiserfs_jh {
1745 struct reiserfs_journal_list *jl;
1746 struct buffer_head *bh;
1747 struct list_head list;
1750 void reiserfs_free_jh(struct buffer_head *bh);
1751 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1752 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1753 int journal_mark_dirty(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
1755 static inline int
1756 reiserfs_file_data_log(struct inode *inode) {
1757 if (reiserfs_data_log(inode->i_sb) ||
1758 (REISERFS_I(inode)->i_flags & i_data_log))
1759 return 1 ;
1760 return 0 ;
1763 static inline int reiserfs_transaction_running(struct super_block *s) {
1764 struct reiserfs_transaction_handle *th = current->journal_info ;
1765 if (th && th->t_super == s)
1766 return 1 ;
1767 if (th && th->t_super == NULL)
1768 BUG();
1769 return 0 ;
1772 int reiserfs_async_progress_wait(struct super_block *s);
1774 struct reiserfs_transaction_handle *
1775 reiserfs_persistent_transaction(struct super_block *, int count);
1776 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1777 int reiserfs_commit_page(struct inode *inode, struct page *page,
1778 unsigned from, unsigned to);
1779 int reiserfs_flush_old_commits(struct super_block *);
1780 int reiserfs_commit_for_inode(struct inode *) ;
1781 int reiserfs_inode_needs_commit(struct inode *) ;
1782 void reiserfs_update_inode_transaction(struct inode *) ;
1783 void reiserfs_wait_on_write_block(struct super_block *s) ;
1784 void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1785 void reiserfs_allow_writes(struct super_block *s) ;
1786 void reiserfs_check_lock_depth(struct super_block *s, char *caller) ;
1787 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
1788 void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
1789 int journal_init(struct super_block *, const char * j_dev_name, int old_format, unsigned int) ;
1790 int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1791 int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1792 int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1793 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1794 int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ;
1795 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1796 int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ;
1797 int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1799 int buffer_journaled(const struct buffer_head *bh) ;
1800 int mark_buffer_journal_new(struct buffer_head *bh) ;
1801 int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1803 /* why is this kerplunked right here? */
1804 static inline int reiserfs_buffer_prepared(const struct buffer_head *bh) {
1805 if (bh && test_bit(BH_JPrepared, &bh->b_state))
1806 return 1 ;
1807 else
1808 return 0 ;
1811 /* buffer was journaled, waiting to get to disk */
1812 static inline int buffer_journal_dirty(const struct buffer_head *bh) {
1813 if (bh)
1814 return test_bit(BH_JDirty_wait, &bh->b_state) ;
1815 else
1816 return 0 ;
1818 static inline int mark_buffer_notjournal_dirty(struct buffer_head *bh) {
1819 if (bh)
1820 clear_bit(BH_JDirty_wait, &bh->b_state) ;
1821 return 0 ;
1823 static inline int mark_buffer_notjournal_new(struct buffer_head *bh) {
1824 if (bh) {
1825 clear_bit(BH_JNew, &bh->b_state) ;
1827 return 0 ;
1830 void add_save_link (struct reiserfs_transaction_handle * th,
1831 struct inode * inode, int truncate);
1832 void remove_save_link (struct inode * inode, int truncate);
1834 /* objectid.c */
1835 __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1836 void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1837 int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1839 /* stree.c */
1840 int B_IS_IN_TREE(const struct buffer_head *);
1841 extern inline void copy_short_key (void * to, const void * from);
1842 extern void copy_item_head(struct item_head * p_v_to,
1843 const struct item_head * p_v_from);
1845 // first key is in cpu form, second - le
1846 extern int comp_keys (const struct key * le_key,
1847 const struct cpu_key * cpu_key);
1848 extern int comp_short_keys (const struct key * le_key,
1849 const struct cpu_key * cpu_key);
1850 extern void le_key2cpu_key (struct cpu_key * to, const struct key * from);
1852 // both are cpu keys
1853 extern int comp_cpu_keys (const struct cpu_key *, const struct cpu_key *);
1854 extern int comp_short_cpu_keys (const struct cpu_key *,
1855 const struct cpu_key *);
1856 extern void cpu_key2cpu_key (struct cpu_key *, const struct cpu_key *);
1858 // both are in le form
1859 extern int comp_le_keys (const struct key *, const struct key *);
1860 extern int comp_short_le_keys (const struct key *, const struct key *);
1863 // get key version from on disk key - kludge
1865 static inline int le_key_version (const struct key * key)
1867 int type;
1869 type = offset_v2_k_type( &(key->u.k_offset_v2));
1870 if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1871 return KEY_FORMAT_3_5;
1873 return KEY_FORMAT_3_6;
1878 static inline void copy_key (struct key *to, const struct key *from)
1880 memcpy (to, from, KEY_SIZE);
1884 int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
1885 const struct key * get_rkey (const struct path * p_s_chk_path,
1886 const struct super_block * p_s_sb);
1887 inline int bin_search (const void * p_v_key, const void * p_v_base,
1888 int p_n_num, int p_n_width, int * p_n_pos);
1889 int search_by_key (struct super_block *, const struct cpu_key *,
1890 struct path *, int);
1891 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1892 int search_for_position_by_key (struct super_block * p_s_sb,
1893 const struct cpu_key * p_s_cpu_key,
1894 struct path * p_s_search_path);
1895 extern void decrement_bcount (struct buffer_head * p_s_bh);
1896 void decrement_counters_in_path (struct path * p_s_search_path);
1897 void pathrelse (struct path * p_s_search_path);
1898 int reiserfs_check_path(struct path *p) ;
1899 void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1901 int reiserfs_insert_item (struct reiserfs_transaction_handle *th,
1902 struct path * path,
1903 const struct cpu_key * key,
1904 struct item_head * ih,
1905 struct inode *inode, const char * body);
1907 int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1908 struct path * path,
1909 const struct cpu_key * key,
1910 struct inode *inode,
1911 const char * body, int paste_size);
1913 int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1914 struct path * path,
1915 struct cpu_key * key,
1916 struct inode * inode,
1917 struct page *page,
1918 loff_t new_file_size);
1920 int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1921 struct path * path,
1922 const struct cpu_key * key,
1923 struct inode * inode,
1924 struct buffer_head * p_s_un_bh);
1926 void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1927 struct inode *inode, struct key * key);
1928 void reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1929 void reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
1930 struct inode * p_s_inode, struct page *,
1931 int update_timestamps);
1933 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1934 #define file_size(inode) ((inode)->i_size)
1935 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1937 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1938 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1940 void padd_item (char * item, int total_length, int length);
1942 /* inode.c */
1943 void restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path);
1944 void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ;
1945 int reiserfs_find_actor(struct inode * inode, void *p) ;
1946 int reiserfs_init_locked_inode(struct inode * inode, void *p) ;
1947 void reiserfs_delete_inode (struct inode * inode);
1948 int reiserfs_write_inode (struct inode * inode, int) ;
1949 struct dentry *reiserfs_get_dentry(struct super_block *, void *) ;
1950 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
1951 int len, int fhtype,
1952 int (*acceptable)(void *contect, struct dentry *de),
1953 void *context) ;
1954 int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp,
1955 int connectable );
1957 int reiserfs_prepare_write(struct file *, struct page *, unsigned, unsigned) ;
1958 void reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1959 void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset,
1960 int type, int key_length);
1961 void make_le_item_head (struct item_head * ih, const struct cpu_key * key,
1962 int version,
1963 loff_t offset, int type, int length, int entry_count);
1964 struct inode * reiserfs_iget (struct super_block * s,
1965 const struct cpu_key * key);
1968 int reiserfs_new_inode (struct reiserfs_transaction_handle *th,
1969 struct inode * dir, int mode,
1970 const char * symname, loff_t i_size,
1971 struct dentry *dentry, struct inode *inode);
1973 int reiserfs_sync_inode (struct reiserfs_transaction_handle *th,
1974 struct inode * inode);
1976 void reiserfs_update_sd_size (struct reiserfs_transaction_handle *th,
1977 struct inode * inode, loff_t size);
1979 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1980 struct inode *inode)
1982 reiserfs_update_sd_size(th, inode, inode->i_size) ;
1985 void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1986 void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1987 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1989 /* namei.c */
1990 void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1991 int search_by_entry_key (struct super_block * sb, const struct cpu_key * key,
1992 struct path * path,
1993 struct reiserfs_dir_entry * de);
1994 struct dentry *reiserfs_get_parent(struct dentry *) ;
1995 /* procfs.c */
1997 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1998 #define REISERFS_PROC_INFO
1999 #else
2000 #undef REISERFS_PROC_INFO
2001 #endif
2003 int reiserfs_proc_info_init( struct super_block *sb );
2004 int reiserfs_proc_info_done( struct super_block *sb );
2005 struct proc_dir_entry *reiserfs_proc_register_global( char *name,
2006 read_proc_t *func );
2007 void reiserfs_proc_unregister_global( const char *name );
2008 int reiserfs_proc_info_global_init( void );
2009 int reiserfs_proc_info_global_done( void );
2010 int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
2011 int count, int *eof, void *data );
2013 #if defined( REISERFS_PROC_INFO )
2015 #define PROC_EXP( e ) e
2017 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2018 #define PROC_INFO_MAX( sb, field, value ) \
2019 __PINFO( sb ).field = \
2020 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2021 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2022 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2023 #define PROC_INFO_BH_STAT( sb, bh, level ) \
2024 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2025 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2026 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2027 #else
2028 #define PROC_EXP( e )
2029 #define VOID_V ( ( void ) 0 )
2030 #define PROC_INFO_MAX( sb, field, value ) VOID_V
2031 #define PROC_INFO_INC( sb, field ) VOID_V
2032 #define PROC_INFO_ADD( sb, field, val ) VOID_V
2033 #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
2034 #endif
2036 /* dir.c */
2037 extern struct inode_operations reiserfs_dir_inode_operations;
2038 extern struct inode_operations reiserfs_symlink_inode_operations;
2039 extern struct inode_operations reiserfs_special_inode_operations;
2040 extern struct file_operations reiserfs_dir_operations;
2042 /* tail_conversion.c */
2043 int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
2044 int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
2045 void reiserfs_unmap_buffer(struct buffer_head *) ;
2048 /* file.c */
2049 extern struct inode_operations reiserfs_file_inode_operations;
2050 extern struct file_operations reiserfs_file_operations;
2051 extern struct address_space_operations reiserfs_address_space_operations ;
2053 /* fix_nodes.c */
2054 #ifdef CONFIG_REISERFS_CHECK
2055 void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
2056 void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
2057 #else
2058 static inline void *reiserfs_kmalloc(size_t size, int flags,
2059 struct super_block *s)
2061 return kmalloc(size, flags);
2064 static inline void reiserfs_kfree(const void *vp, size_t size,
2065 struct super_block *s)
2067 kfree(vp);
2069 #endif
2071 int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb,
2072 struct item_head * p_s_ins_ih, const void *);
2073 void unfix_nodes (struct tree_balance *);
2074 void free_buffers_in_tb (struct tree_balance * p_s_tb);
2077 /* prints.c */
2078 void reiserfs_panic (struct super_block * s, const char * fmt, ...) __attribute__ ( ( noreturn ) );
2079 void reiserfs_info (struct super_block *s, const char * fmt, ...);
2080 void reiserfs_printk (const char * fmt, ...);
2081 void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
2082 void print_virtual_node (struct virtual_node * vn);
2083 void print_indirect_item (struct buffer_head * bh, int item_num);
2084 void store_print_tb (struct tree_balance * tb);
2085 void print_cur_tb (char * mes);
2086 void print_de (struct reiserfs_dir_entry * de);
2087 void print_bi (struct buffer_info * bi, char * mes);
2088 #define PRINT_LEAF_ITEMS 1 /* print all items */
2089 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2090 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2091 void print_block (struct buffer_head * bh, ...);
2092 void print_path (struct tree_balance * tb, struct path * path);
2093 void print_bmap (struct super_block * s, int silent);
2094 void print_bmap_block (int i, char * data, int size, int silent);
2095 /*void print_super_block (struct super_block * s, char * mes);*/
2096 void print_objectid_map (struct super_block * s);
2097 void print_block_head (struct buffer_head * bh, char * mes);
2098 void check_leaf (struct buffer_head * bh);
2099 void check_internal (struct buffer_head * bh);
2100 void print_statistics (struct super_block * s);
2101 char * reiserfs_hashname(int code);
2103 /* lbalance.c */
2104 int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
2105 int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
2106 int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
2107 void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
2108 void leaf_insert_into_buf (struct buffer_info * bi, int before,
2109 struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
2110 void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num,
2111 int pos_in_item, int paste_size, const char * body, int zeros_number);
2112 void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item,
2113 int cut_size);
2114 void leaf_paste_entries (struct buffer_head * bh, int item_num, int before,
2115 int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
2116 /* ibalance.c */
2117 int balance_internal (struct tree_balance * , int, int, struct item_head * ,
2118 struct buffer_head **);
2120 /* do_balance.c */
2121 void do_balance_mark_leaf_dirty (struct tree_balance * tb,
2122 struct buffer_head * bh, int flag);
2123 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2124 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2126 void do_balance (struct tree_balance * tb, struct item_head * ih,
2127 const char * body, int flag);
2128 void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
2130 int get_left_neighbor_position (struct tree_balance * tb, int h);
2131 int get_right_neighbor_position (struct tree_balance * tb, int h);
2132 void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
2133 void replace_lkey (struct tree_balance *, int, struct item_head *);
2134 void replace_rkey (struct tree_balance *, int, struct item_head *);
2135 void make_empty_node (struct buffer_info *);
2136 struct buffer_head * get_FEB (struct tree_balance *);
2138 /* bitmap.c */
2140 /* structure contains hints for block allocator, and it is a container for
2141 * arguments, such as node, search path, transaction_handle, etc. */
2142 struct __reiserfs_blocknr_hint {
2143 struct inode * inode; /* inode passed to allocator, if we allocate unf. nodes */
2144 long block; /* file offset, in blocks */
2145 struct key key;
2146 struct path * path; /* search path, used by allocator to deternine search_start by
2147 * various ways */
2148 struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
2149 * bitmap blocks changes */
2150 b_blocknr_t beg, end;
2151 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2152 * between different block allocator procedures
2153 * (determine_search_start() and others) */
2154 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2155 * function that do actual allocation */
2157 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2158 * formatted/unformatted blocks with/without preallocation */
2159 unsigned preallocate:1;
2162 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2164 int reiserfs_parse_alloc_options (struct super_block *, char *);
2165 void reiserfs_init_alloc_options (struct super_block *s);
2168 * given a directory, this will tell you what packing locality
2169 * to use for a new object underneat it. The locality is returned
2170 * in disk byte order (le).
2172 u32 reiserfs_choose_packing(struct inode *dir);
2174 int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value);
2175 void reiserfs_free_block (struct reiserfs_transaction_handle *th, struct inode *, b_blocknr_t, int for_unformatted);
2176 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
2177 extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
2178 b_blocknr_t *new_blocknrs, int amount_needed)
2180 reiserfs_blocknr_hint_t hint = {
2181 .th = tb->transaction_handle,
2182 .path = tb->tb_path,
2183 .inode = NULL,
2184 .key = tb->key,
2185 .block = 0,
2186 .formatted_node = 1
2188 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
2191 extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
2192 struct inode *inode,
2193 b_blocknr_t *new_blocknrs,
2194 struct path * path, long block)
2196 reiserfs_blocknr_hint_t hint = {
2197 .th = th,
2198 .path = path,
2199 .inode = inode,
2200 .block = block,
2201 .formatted_node = 0,
2202 .preallocate = 0
2204 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2207 #ifdef REISERFS_PREALLOCATE
2208 extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
2209 struct inode * inode,
2210 b_blocknr_t *new_blocknrs,
2211 struct path * path, long block)
2213 reiserfs_blocknr_hint_t hint = {
2214 .th = th,
2215 .path = path,
2216 .inode = inode,
2217 .block = block,
2218 .formatted_node = 0,
2219 .preallocate = 1
2221 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2224 void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th,
2225 struct inode * inode);
2226 void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
2227 #endif
2228 void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
2229 void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
2230 int reiserfs_can_fit_pages(struct super_block *sb);
2232 /* hashes.c */
2233 __u32 keyed_hash (const signed char *msg, int len);
2234 __u32 yura_hash (const signed char *msg, int len);
2235 __u32 r5_hash (const signed char *msg, int len);
2237 /* the ext2 bit routines adjust for big or little endian as
2238 ** appropriate for the arch, so in our laziness we use them rather
2239 ** than using the bit routines they call more directly. These
2240 ** routines must be used when changing on disk bitmaps. */
2241 #define reiserfs_test_and_set_le_bit ext2_set_bit
2242 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2243 #define reiserfs_test_le_bit ext2_test_bit
2244 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2246 /* sometimes reiserfs_truncate may require to allocate few new blocks
2247 to perform indirect2direct conversion. People probably used to
2248 think, that truncate should work without problems on a filesystem
2249 without free disk space. They may complain that they can not
2250 truncate due to lack of free disk space. This spare space allows us
2251 to not worry about it. 500 is probably too much, but it should be
2252 absolutely safe */
2253 #define SPARE_SPACE 500
2256 /* prototypes from ioctl.c */
2257 int reiserfs_ioctl (struct inode * inode, struct file * filp,
2258 unsigned int cmd, unsigned long arg);
2259 int reiserfs_unpack (struct inode * inode, struct file * filp);
2261 /* ioctl's command */
2262 #define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
2263 /* define following flags to be the same as in ext2, so that chattr(1),
2264 lsattr(1) will work with us. */
2265 #define REISERFS_IOC_GETFLAGS EXT2_IOC_GETFLAGS
2266 #define REISERFS_IOC_SETFLAGS EXT2_IOC_SETFLAGS
2267 #define REISERFS_IOC_GETVERSION EXT2_IOC_GETVERSION
2268 #define REISERFS_IOC_SETVERSION EXT2_IOC_SETVERSION
2270 /* Locking primitives */
2271 /* Right now we are still falling back to (un)lock_kernel, but eventually that
2272 would evolve into real per-fs locks */
2273 #define reiserfs_write_lock( sb ) lock_kernel()
2274 #define reiserfs_write_unlock( sb ) unlock_kernel()
2276 /* xattr stuff */
2277 #define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
2279 #endif /* _LINUX_REISER_FS_H */