initial commit with v2.6.9
[linux-2.6.9-moxart.git] / include / asm-parisc / pgtable.h
blob1593a8a7a5fbc73d2abe3ffec8008ee1a7329e88
1 #ifndef _PARISC_PGTABLE_H
2 #define _PARISC_PGTABLE_H
4 #include <linux/config.h>
5 #include <asm/fixmap.h>
7 #ifndef __ASSEMBLY__
8 /*
9 * we simulate an x86-style page table for the linux mm code
12 #include <linux/spinlock.h>
13 #include <asm/processor.h>
14 #include <asm/cache.h>
15 #include <asm/bitops.h>
18 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
19 * memory. For the return value to be meaningful, ADDR must be >=
20 * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
21 * require a hash-, or multi-level tree-lookup or something of that
22 * sort) but it guarantees to return TRUE only if accessing the page
23 * at that address does not cause an error. Note that there may be
24 * addresses for which kern_addr_valid() returns FALSE even though an
25 * access would not cause an error (e.g., this is typically true for
26 * memory mapped I/O regions.
28 * XXX Need to implement this for parisc.
30 #define kern_addr_valid(addr) (1)
32 /* Certain architectures need to do special things when PTEs
33 * within a page table are directly modified. Thus, the following
34 * hook is made available.
36 #define set_pte(pteptr, pteval) \
37 do{ \
38 *(pteptr) = (pteval); \
39 } while(0)
41 #endif /* !__ASSEMBLY__ */
43 #define pte_ERROR(e) \
44 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
45 #define pmd_ERROR(e) \
46 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
47 #define pgd_ERROR(e) \
48 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
50 /* Note: If you change ISTACK_SIZE, you need to change the corresponding
51 * values in vmlinux.lds and vmlinux64.lds (init_istack section). Also,
52 * the "order" and size need to agree.
55 #define ISTACK_SIZE 32768 /* Interrupt Stack Size */
56 #define ISTACK_ORDER 3
58 /* This is the size of the initially mapped kernel memory (i.e. currently
59 * 0 to 1<<23 == 8MB */
60 #ifdef CONFIG_64BIT
61 #define KERNEL_INITIAL_ORDER 24
62 #else
63 #define KERNEL_INITIAL_ORDER 23
64 #endif
65 #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER)
67 #ifdef CONFIG_64BIT
68 #define PT_NLEVELS 3
69 #define PGD_ORDER 1 /* Number of pages per pgd */
70 #define PMD_ORDER 1 /* Number of pages per pmd */
71 #define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */
72 #else
73 #define PT_NLEVELS 2
74 #define PGD_ORDER 1 /* Number of pages per pgd */
75 #define PGD_ALLOC_ORDER PGD_ORDER
76 #endif
78 /* Definitions for 3rd level (we use PLD here for Page Lower directory
79 * because PTE_SHIFT is used lower down to mean shift that has to be
80 * done to get usable bits out of the PTE) */
81 #define PLD_SHIFT PAGE_SHIFT
82 #define PLD_SIZE PAGE_SIZE
83 #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
84 #define PTRS_PER_PTE (1UL << BITS_PER_PTE)
86 /* Definitions for 2nd level */
87 #define pgtable_cache_init() do { } while (0)
89 #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE)
90 #define PMD_SIZE (1UL << PMD_SHIFT)
91 #define PMD_MASK (~(PMD_SIZE-1))
92 #if PT_NLEVELS == 3
93 #define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
94 #else
95 #define BITS_PER_PMD 0
96 #endif
97 #define PTRS_PER_PMD (1UL << BITS_PER_PMD)
99 /* Definitions for 1st level */
100 #define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD)
101 #define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
102 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
103 #define PGDIR_MASK (~(PGDIR_SIZE-1))
104 #define PTRS_PER_PGD (1UL << BITS_PER_PGD)
105 #define USER_PTRS_PER_PGD PTRS_PER_PGD
107 #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD)
108 #define MAX_ADDRESS (1UL << MAX_ADDRBITS)
110 #define SPACEID_SHIFT (MAX_ADDRBITS - 32)
112 /* This calculates the number of initial pages we need for the initial
113 * page tables */
114 #define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
117 * pgd entries used up by user/kernel:
120 #define FIRST_USER_PGD_NR 0
122 #ifndef __ASSEMBLY__
123 extern void *vmalloc_start;
124 #define PCXL_DMA_MAP_SIZE (8*1024*1024)
125 #define VMALLOC_START ((unsigned long)vmalloc_start)
126 /* this is a fixmap remnant, see fixmap.h */
127 #define VMALLOC_END (KERNEL_MAP_END)
128 #endif
130 /* NB: The tlb miss handlers make certain assumptions about the order */
131 /* of the following bits, so be careful (One example, bits 25-31 */
132 /* are moved together in one instruction). */
134 #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */
135 #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */
136 #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */
137 #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */
138 #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */
139 #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */
140 #define _PAGE_FILE_BIT _PAGE_DIRTY_BIT /* overload this bit */
141 #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */
142 #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */
143 #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */
144 #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */
145 #define _PAGE_FLUSH_BIT 21 /* (0x400) Software: translation valid */
146 /* for cache flushing only */
147 #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */
149 /* N.B. The bits are defined in terms of a 32 bit word above, so the */
150 /* following macro is ok for both 32 and 64 bit. */
152 #define xlate_pabit(x) (31 - x)
154 /* this defines the shift to the usable bits in the PTE it is set so
155 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
156 * to zero */
157 #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT)
159 /* this is how many bits may be used by the file functions */
160 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT)
162 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
163 #define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE })
165 #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT))
166 #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT))
167 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
168 #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT))
169 #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
170 #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT))
171 #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT))
172 #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
173 #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
174 #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
175 #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT))
176 #define _PAGE_FLUSH (1 << xlate_pabit(_PAGE_FLUSH_BIT))
177 #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT))
178 #define _PAGE_FILE (1 << xlate_pabit(_PAGE_FILE_BIT))
180 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
181 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
182 #define _PAGE_KERNEL (_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
184 /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
185 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
186 * for a few meta-information bits, so we shift the address to be
187 * able to effectively address 40-bits of physical address space. */
188 #define _PxD_PRESENT_BIT 31
189 #define _PxD_ATTACHED_BIT 30
190 #define _PxD_VALID_BIT 29
192 #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT))
193 #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
194 #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT))
195 #define PxD_FLAG_MASK (0xf)
196 #define PxD_FLAG_SHIFT (4)
197 #define PxD_VALUE_SHIFT (8)
199 #ifndef __ASSEMBLY__
201 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
202 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
203 /* Others seem to make this executable, I don't know if that's correct
204 or not. The stack is mapped this way though so this is necessary
205 in the short term - dhd@linuxcare.com, 2000-08-08 */
206 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
207 #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
208 #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
209 #define PAGE_COPY PAGE_EXECREAD
210 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
211 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
212 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
213 #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
214 #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
215 #define PAGE_FLUSH __pgprot(_PAGE_FLUSH)
219 * We could have an execute only page using "gateway - promote to priv
220 * level 3", but that is kind of silly. So, the way things are defined
221 * now, we must always have read permission for pages with execute
222 * permission. For the fun of it we'll go ahead and support write only
223 * pages.
226 /*xwr*/
227 #define __P000 PAGE_NONE
228 #define __P001 PAGE_READONLY
229 #define __P010 __P000 /* copy on write */
230 #define __P011 __P001 /* copy on write */
231 #define __P100 PAGE_EXECREAD
232 #define __P101 PAGE_EXECREAD
233 #define __P110 __P100 /* copy on write */
234 #define __P111 __P101 /* copy on write */
236 #define __S000 PAGE_NONE
237 #define __S001 PAGE_READONLY
238 #define __S010 PAGE_WRITEONLY
239 #define __S011 PAGE_SHARED
240 #define __S100 PAGE_EXECREAD
241 #define __S101 PAGE_EXECREAD
242 #define __S110 PAGE_RWX
243 #define __S111 PAGE_RWX
245 extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
247 /* initial page tables for 0-8MB for kernel */
249 extern pte_t pg0[];
251 /* zero page used for uninitialized stuff */
253 extern unsigned long *empty_zero_page;
256 * ZERO_PAGE is a global shared page that is always zero: used
257 * for zero-mapped memory areas etc..
260 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
262 #define pte_none(x) ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH))
263 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
264 #define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0)
266 #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK)
267 #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
268 #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK)
269 #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
271 #ifdef CONFIG_64BIT
272 /* The first entry of the permanent pmd is not there if it contains
273 * the gateway marker */
274 #define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
275 #else
276 #define pmd_none(x) (!pmd_val(x))
277 #endif
278 #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID))
279 #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT)
280 static inline void pmd_clear(pmd_t *pmd) {
281 #ifdef CONFIG_64BIT
282 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
283 /* This is the entry pointing to the permanent pmd
284 * attached to the pgd; cannot clear it */
285 __pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
286 else
287 #endif
288 __pmd_val_set(*pmd, 0);
293 #if PT_NLEVELS == 3
294 #define pgd_page(pgd) ((unsigned long) __va(pgd_address(pgd)))
296 /* For 64 bit we have three level tables */
298 #define pgd_none(x) (!pgd_val(x))
299 #define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID))
300 #define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT)
301 static inline void pgd_clear(pgd_t *pgd) {
302 #ifdef CONFIG_64BIT
303 if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
304 /* This is the permanent pmd attached to the pgd; cannot
305 * free it */
306 return;
307 #endif
308 __pgd_val_set(*pgd, 0);
310 #else
312 * The "pgd_xxx()" functions here are trivial for a folded two-level
313 * setup: the pgd is never bad, and a pmd always exists (as it's folded
314 * into the pgd entry)
316 extern inline int pgd_none(pgd_t pgd) { return 0; }
317 extern inline int pgd_bad(pgd_t pgd) { return 0; }
318 extern inline int pgd_present(pgd_t pgd) { return 1; }
319 extern inline void pgd_clear(pgd_t * pgdp) { }
320 #endif
323 * The following only work if pte_present() is true.
324 * Undefined behaviour if not..
326 extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
327 extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
328 extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
329 extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
330 extern inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
331 extern inline int pte_user(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
333 extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_READ; return pte; }
334 extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
335 extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
336 extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
337 extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; return pte; }
338 extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
339 extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
340 extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
343 * Conversion functions: convert a page and protection to a page entry,
344 * and a page entry and page directory to the page they refer to.
346 #define __mk_pte(addr,pgprot) \
347 ({ \
348 pte_t __pte; \
350 pte_val(__pte) = ((addr)+pgprot_val(pgprot)); \
352 __pte; \
355 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
357 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
359 pte_t pte;
360 pte_val(pte) = (pfn << PAGE_SHIFT) | pgprot_val(pgprot);
361 return pte;
364 /* This takes a physical page address that is used by the remapping functions */
365 #define mk_pte_phys(physpage, pgprot) \
366 ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
368 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
369 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
371 /* Permanent address of a page. On parisc we don't have highmem. */
373 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
375 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
377 #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_address(pmd)))
379 #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
380 #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
382 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
384 /* to find an entry in a page-table-directory */
385 #define pgd_offset(mm, address) \
386 ((mm)->pgd + ((address) >> PGDIR_SHIFT))
388 /* to find an entry in a kernel page-table-directory */
389 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
391 /* Find an entry in the second-level page table.. */
393 #if PT_NLEVELS == 3
394 #define pmd_offset(dir,address) \
395 ((pmd_t *) pgd_page(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1)))
396 #else
397 #define pmd_offset(dir,addr) ((pmd_t *) dir)
398 #endif
400 /* Find an entry in the third-level page table.. */
401 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
402 #define pte_offset_kernel(pmd, address) \
403 ((pte_t *) pmd_page_kernel(*(pmd)) + pte_index(address))
404 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
405 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
406 #define pte_unmap(pte) do { } while (0)
407 #define pte_unmap_nested(pte) do { } while (0)
409 #define pte_unmap(pte) do { } while (0)
410 #define pte_unmap_nested(pte) do { } while (0)
412 extern void paging_init (void);
414 /* Used for deferring calls to flush_dcache_page() */
416 #define PG_dcache_dirty PG_arch_1
418 struct vm_area_struct; /* forward declaration (include/linux/mm.h) */
419 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
421 /* Encode and de-code a swap entry */
423 #define __swp_type(x) ((x).val & 0x1f)
424 #define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \
425 (((x).val >> 8) & ~0x7) )
426 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | \
427 ((offset & 0x7) << 6) | \
428 ((offset & ~0x7) << 8) })
429 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
430 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
432 static inline int ptep_test_and_clear_young(pte_t *ptep)
434 #ifdef CONFIG_SMP
435 if (!pte_young(*ptep))
436 return 0;
437 return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep));
438 #else
439 pte_t pte = *ptep;
440 if (!pte_young(pte))
441 return 0;
442 set_pte(ptep, pte_mkold(pte));
443 return 1;
444 #endif
447 static inline int ptep_test_and_clear_dirty(pte_t *ptep)
449 #ifdef CONFIG_SMP
450 if (!pte_dirty(*ptep))
451 return 0;
452 return test_and_clear_bit(xlate_pabit(_PAGE_DIRTY_BIT), &pte_val(*ptep));
453 #else
454 pte_t pte = *ptep;
455 if (!pte_dirty(pte))
456 return 0;
457 set_pte(ptep, pte_mkclean(pte));
458 return 1;
459 #endif
462 extern spinlock_t pa_dbit_lock;
464 static inline pte_t ptep_get_and_clear(pte_t *ptep)
466 pte_t old_pte;
467 pte_t pte;
469 spin_lock(&pa_dbit_lock);
470 pte = old_pte = *ptep;
471 pte_val(pte) &= ~_PAGE_PRESENT;
472 pte_val(pte) |= _PAGE_FLUSH;
473 set_pte(ptep,pte);
474 spin_unlock(&pa_dbit_lock);
476 return old_pte;
479 static inline void ptep_set_wrprotect(pte_t *ptep)
481 #ifdef CONFIG_SMP
482 unsigned long new, old;
484 do {
485 old = pte_val(*ptep);
486 new = pte_val(pte_wrprotect(__pte (old)));
487 } while (cmpxchg((unsigned long *) ptep, old, new) != old);
488 #else
489 pte_t old_pte = *ptep;
490 set_pte(ptep, pte_wrprotect(old_pte));
491 #endif
494 static inline void ptep_mkdirty(pte_t *ptep)
496 #ifdef CONFIG_SMP
497 set_bit(xlate_pabit(_PAGE_DIRTY_BIT), &pte_val(*ptep));
498 #else
499 pte_t old_pte = *ptep;
500 set_pte(ptep, pte_mkdirty(old_pte));
501 #endif
504 #define pte_same(A,B) (pte_val(A) == pte_val(B))
506 #endif /* !__ASSEMBLY__ */
508 #define io_remap_page_range remap_page_range
510 /* We provide our own get_unmapped_area to provide cache coherency */
512 #define HAVE_ARCH_UNMAPPED_AREA
514 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
515 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
516 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
517 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
518 #define __HAVE_ARCH_PTEP_MKDIRTY
519 #define __HAVE_ARCH_PTE_SAME
520 #include <asm-generic/pgtable.h>
522 #endif /* _PARISC_PGTABLE_H */