initial commit with v2.6.9
[linux-2.6.9-moxart.git] / fs / xfs / linux-2.6 / xfs_aops.c
blob29fc5b35c2688647c457367010db9d906f007f6e
1 /*
2 * Copyright (c) 2000-2004 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
26 * http://www.sgi.com
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
33 #include "xfs.h"
34 #include "xfs_inum.h"
35 #include "xfs_log.h"
36 #include "xfs_sb.h"
37 #include "xfs_dir.h"
38 #include "xfs_dir2.h"
39 #include "xfs_trans.h"
40 #include "xfs_dmapi.h"
41 #include "xfs_mount.h"
42 #include "xfs_bmap_btree.h"
43 #include "xfs_alloc_btree.h"
44 #include "xfs_ialloc_btree.h"
45 #include "xfs_alloc.h"
46 #include "xfs_btree.h"
47 #include "xfs_attr_sf.h"
48 #include "xfs_dir_sf.h"
49 #include "xfs_dir2_sf.h"
50 #include "xfs_dinode.h"
51 #include "xfs_inode.h"
52 #include "xfs_error.h"
53 #include "xfs_rw.h"
54 #include "xfs_iomap.h"
55 #include <linux/mpage.h>
56 #include <linux/writeback.h>
58 STATIC void xfs_count_page_state(struct page *, int *, int *, int *);
59 STATIC void xfs_convert_page(struct inode *, struct page *, xfs_iomap_t *,
60 struct writeback_control *wbc, void *, int, int);
62 #if defined(XFS_RW_TRACE)
63 void
64 xfs_page_trace(
65 int tag,
66 struct inode *inode,
67 struct page *page,
68 int mask)
70 xfs_inode_t *ip;
71 bhv_desc_t *bdp;
72 vnode_t *vp = LINVFS_GET_VP(inode);
73 loff_t isize = i_size_read(inode);
74 loff_t offset = page->index << PAGE_CACHE_SHIFT;
75 int delalloc = -1, unmapped = -1, unwritten = -1;
77 if (page_has_buffers(page))
78 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
80 bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops);
81 ip = XFS_BHVTOI(bdp);
82 if (!ip->i_rwtrace)
83 return;
85 ktrace_enter(ip->i_rwtrace,
86 (void *)((unsigned long)tag),
87 (void *)ip,
88 (void *)inode,
89 (void *)page,
90 (void *)((unsigned long)mask),
91 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
92 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
93 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(isize & 0xffffffff)),
95 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(offset & 0xffffffff)),
97 (void *)((unsigned long)delalloc),
98 (void *)((unsigned long)unmapped),
99 (void *)((unsigned long)unwritten),
100 (void *)NULL,
101 (void *)NULL);
103 #else
104 #define xfs_page_trace(tag, inode, page, mask)
105 #endif
107 void
108 linvfs_unwritten_done(
109 struct buffer_head *bh,
110 int uptodate)
112 xfs_buf_t *pb = (xfs_buf_t *)bh->b_private;
114 ASSERT(buffer_unwritten(bh));
115 bh->b_end_io = NULL;
116 clear_buffer_unwritten(bh);
117 if (!uptodate)
118 pagebuf_ioerror(pb, EIO);
119 if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
120 pagebuf_iodone(pb, 1, 1);
122 end_buffer_async_write(bh, uptodate);
126 * Issue transactions to convert a buffer range from unwritten
127 * to written extents (buffered IO).
129 STATIC void
130 linvfs_unwritten_convert(
131 xfs_buf_t *bp)
133 vnode_t *vp = XFS_BUF_FSPRIVATE(bp, vnode_t *);
134 int error;
136 BUG_ON(atomic_read(&bp->pb_hold) < 1);
137 VOP_BMAP(vp, XFS_BUF_OFFSET(bp), XFS_BUF_SIZE(bp),
138 BMAPI_UNWRITTEN, NULL, NULL, error);
139 XFS_BUF_SET_FSPRIVATE(bp, NULL);
140 XFS_BUF_CLR_IODONE_FUNC(bp);
141 XFS_BUF_UNDATAIO(bp);
142 iput(LINVFS_GET_IP(vp));
143 pagebuf_iodone(bp, 0, 0);
147 * Issue transactions to convert a buffer range from unwritten
148 * to written extents (direct IO).
150 STATIC void
151 linvfs_unwritten_convert_direct(
152 struct inode *inode,
153 loff_t offset,
154 ssize_t size,
155 void *private)
157 ASSERT(!private || inode == (struct inode *)private);
159 /* private indicates an unwritten extent lay beneath this IO,
160 * see linvfs_get_block_core.
162 if (private && size > 0) {
163 vnode_t *vp = LINVFS_GET_VP(inode);
164 int error;
166 VOP_BMAP(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL, error);
170 STATIC int
171 xfs_map_blocks(
172 struct inode *inode,
173 loff_t offset,
174 ssize_t count,
175 xfs_iomap_t *mapp,
176 int flags)
178 vnode_t *vp = LINVFS_GET_VP(inode);
179 int error, nmaps = 1;
181 VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error);
182 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
183 VMODIFY(vp);
184 return -error;
188 * Finds the corresponding mapping in block @map array of the
189 * given @offset within a @page.
191 STATIC xfs_iomap_t *
192 xfs_offset_to_map(
193 struct page *page,
194 xfs_iomap_t *iomapp,
195 unsigned long offset)
197 loff_t full_offset; /* offset from start of file */
199 ASSERT(offset < PAGE_CACHE_SIZE);
201 full_offset = page->index; /* NB: using 64bit number */
202 full_offset <<= PAGE_CACHE_SHIFT; /* offset from file start */
203 full_offset += offset; /* offset from page start */
205 if (full_offset < iomapp->iomap_offset)
206 return NULL;
207 if (iomapp->iomap_offset + (iomapp->iomap_bsize -1) >= full_offset)
208 return iomapp;
209 return NULL;
212 STATIC void
213 xfs_map_at_offset(
214 struct page *page,
215 struct buffer_head *bh,
216 unsigned long offset,
217 int block_bits,
218 xfs_iomap_t *iomapp)
220 xfs_daddr_t bn;
221 loff_t delta;
222 int sector_shift;
224 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
225 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
226 ASSERT(iomapp->iomap_bn != IOMAP_DADDR_NULL);
228 delta = page->index;
229 delta <<= PAGE_CACHE_SHIFT;
230 delta += offset;
231 delta -= iomapp->iomap_offset;
232 delta >>= block_bits;
234 sector_shift = block_bits - BBSHIFT;
235 bn = iomapp->iomap_bn >> sector_shift;
236 bn += delta;
237 BUG_ON(!bn && !(iomapp->iomap_flags & IOMAP_REALTIME));
238 ASSERT((bn << sector_shift) >= iomapp->iomap_bn);
240 lock_buffer(bh);
241 bh->b_blocknr = bn;
242 bh->b_bdev = iomapp->iomap_target->pbr_bdev;
243 set_buffer_mapped(bh);
244 clear_buffer_delay(bh);
248 * Look for a page at index which is unlocked and contains our
249 * unwritten extent flagged buffers at its head. Returns page
250 * locked and with an extra reference count, and length of the
251 * unwritten extent component on this page that we can write,
252 * in units of filesystem blocks.
254 STATIC struct page *
255 xfs_probe_unwritten_page(
256 struct address_space *mapping,
257 pgoff_t index,
258 xfs_iomap_t *iomapp,
259 xfs_buf_t *pb,
260 unsigned long max_offset,
261 unsigned long *fsbs,
262 unsigned int bbits)
264 struct page *page;
266 page = find_trylock_page(mapping, index);
267 if (!page)
268 return NULL;
269 if (PageWriteback(page))
270 goto out;
272 if (page->mapping && page_has_buffers(page)) {
273 struct buffer_head *bh, *head;
274 unsigned long p_offset = 0;
276 *fsbs = 0;
277 bh = head = page_buffers(page);
278 do {
279 if (!buffer_unwritten(bh) || !buffer_uptodate(bh))
280 break;
281 if (!xfs_offset_to_map(page, iomapp, p_offset))
282 break;
283 if (p_offset >= max_offset)
284 break;
285 xfs_map_at_offset(page, bh, p_offset, bbits, iomapp);
286 set_buffer_unwritten_io(bh);
287 bh->b_private = pb;
288 p_offset += bh->b_size;
289 (*fsbs)++;
290 } while ((bh = bh->b_this_page) != head);
292 if (p_offset)
293 return page;
296 out:
297 unlock_page(page);
298 return NULL;
302 * Look for a page at index which is unlocked and not mapped
303 * yet - clustering for mmap write case.
305 STATIC unsigned int
306 xfs_probe_unmapped_page(
307 struct address_space *mapping,
308 pgoff_t index,
309 unsigned int pg_offset)
311 struct page *page;
312 int ret = 0;
314 page = find_trylock_page(mapping, index);
315 if (!page)
316 return 0;
317 if (PageWriteback(page))
318 goto out;
320 if (page->mapping && PageDirty(page)) {
321 if (page_has_buffers(page)) {
322 struct buffer_head *bh, *head;
324 bh = head = page_buffers(page);
325 do {
326 if (buffer_mapped(bh) || !buffer_uptodate(bh))
327 break;
328 ret += bh->b_size;
329 if (ret >= pg_offset)
330 break;
331 } while ((bh = bh->b_this_page) != head);
332 } else
333 ret = PAGE_CACHE_SIZE;
336 out:
337 unlock_page(page);
338 return ret;
341 STATIC unsigned int
342 xfs_probe_unmapped_cluster(
343 struct inode *inode,
344 struct page *startpage,
345 struct buffer_head *bh,
346 struct buffer_head *head)
348 pgoff_t tindex, tlast, tloff;
349 unsigned int pg_offset, len, total = 0;
350 struct address_space *mapping = inode->i_mapping;
352 /* First sum forwards in this page */
353 do {
354 if (buffer_mapped(bh))
355 break;
356 total += bh->b_size;
357 } while ((bh = bh->b_this_page) != head);
359 /* If we reached the end of the page, sum forwards in
360 * following pages.
362 if (bh == head) {
363 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
364 /* Prune this back to avoid pathological behavior */
365 tloff = min(tlast, startpage->index + 64);
366 for (tindex = startpage->index + 1; tindex < tloff; tindex++) {
367 len = xfs_probe_unmapped_page(mapping, tindex,
368 PAGE_CACHE_SIZE);
369 if (!len)
370 return total;
371 total += len;
373 if (tindex == tlast &&
374 (pg_offset = i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
375 total += xfs_probe_unmapped_page(mapping,
376 tindex, pg_offset);
379 return total;
383 * Probe for a given page (index) in the inode and test if it is delayed
384 * and without unwritten buffers. Returns page locked and with an extra
385 * reference count.
387 STATIC struct page *
388 xfs_probe_delalloc_page(
389 struct inode *inode,
390 pgoff_t index)
392 struct page *page;
394 page = find_trylock_page(inode->i_mapping, index);
395 if (!page)
396 return NULL;
397 if (PageWriteback(page))
398 goto out;
400 if (page->mapping && page_has_buffers(page)) {
401 struct buffer_head *bh, *head;
402 int acceptable = 0;
404 bh = head = page_buffers(page);
405 do {
406 if (buffer_unwritten(bh)) {
407 acceptable = 0;
408 break;
409 } else if (buffer_delay(bh)) {
410 acceptable = 1;
412 } while ((bh = bh->b_this_page) != head);
414 if (acceptable)
415 return page;
418 out:
419 unlock_page(page);
420 return NULL;
423 STATIC int
424 xfs_map_unwritten(
425 struct inode *inode,
426 struct page *start_page,
427 struct buffer_head *head,
428 struct buffer_head *curr,
429 unsigned long p_offset,
430 int block_bits,
431 xfs_iomap_t *iomapp,
432 struct writeback_control *wbc,
433 int startio,
434 int all_bh)
436 struct buffer_head *bh = curr;
437 xfs_iomap_t *tmp;
438 xfs_buf_t *pb;
439 loff_t offset, size;
440 unsigned long nblocks = 0;
442 offset = start_page->index;
443 offset <<= PAGE_CACHE_SHIFT;
444 offset += p_offset;
446 /* get an "empty" pagebuf to manage IO completion
447 * Proper values will be set before returning */
448 pb = pagebuf_lookup(iomapp->iomap_target, 0, 0, 0);
449 if (!pb)
450 return -EAGAIN;
452 /* Take a reference to the inode to prevent it from
453 * being reclaimed while we have outstanding unwritten
454 * extent IO on it.
456 if ((igrab(inode)) != inode) {
457 pagebuf_free(pb);
458 return -EAGAIN;
461 /* Set the count to 1 initially, this will stop an I/O
462 * completion callout which happens before we have started
463 * all the I/O from calling pagebuf_iodone too early.
465 atomic_set(&pb->pb_io_remaining, 1);
467 /* First map forwards in the page consecutive buffers
468 * covering this unwritten extent
470 do {
471 if (!buffer_unwritten(bh))
472 break;
473 tmp = xfs_offset_to_map(start_page, iomapp, p_offset);
474 if (!tmp)
475 break;
476 xfs_map_at_offset(start_page, bh, p_offset, block_bits, iomapp);
477 set_buffer_unwritten_io(bh);
478 bh->b_private = pb;
479 p_offset += bh->b_size;
480 nblocks++;
481 } while ((bh = bh->b_this_page) != head);
483 atomic_add(nblocks, &pb->pb_io_remaining);
485 /* If we reached the end of the page, map forwards in any
486 * following pages which are also covered by this extent.
488 if (bh == head) {
489 struct address_space *mapping = inode->i_mapping;
490 pgoff_t tindex, tloff, tlast;
491 unsigned long bs;
492 unsigned int pg_offset, bbits = inode->i_blkbits;
493 struct page *page;
495 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
496 tloff = (iomapp->iomap_offset + iomapp->iomap_bsize) >> PAGE_CACHE_SHIFT;
497 tloff = min(tlast, tloff);
498 for (tindex = start_page->index + 1; tindex < tloff; tindex++) {
499 page = xfs_probe_unwritten_page(mapping,
500 tindex, iomapp, pb,
501 PAGE_CACHE_SIZE, &bs, bbits);
502 if (!page)
503 break;
504 nblocks += bs;
505 atomic_add(bs, &pb->pb_io_remaining);
506 xfs_convert_page(inode, page, iomapp, wbc, pb,
507 startio, all_bh);
508 /* stop if converting the next page might add
509 * enough blocks that the corresponding byte
510 * count won't fit in our ulong page buf length */
511 if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits))
512 goto enough;
515 if (tindex == tlast &&
516 (pg_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1)))) {
517 page = xfs_probe_unwritten_page(mapping,
518 tindex, iomapp, pb,
519 pg_offset, &bs, bbits);
520 if (page) {
521 nblocks += bs;
522 atomic_add(bs, &pb->pb_io_remaining);
523 xfs_convert_page(inode, page, iomapp, wbc, pb,
524 startio, all_bh);
525 if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits))
526 goto enough;
531 enough:
532 size = nblocks; /* NB: using 64bit number here */
533 size <<= block_bits; /* convert fsb's to byte range */
535 XFS_BUF_DATAIO(pb);
536 XFS_BUF_ASYNC(pb);
537 XFS_BUF_SET_SIZE(pb, size);
538 XFS_BUF_SET_COUNT(pb, size);
539 XFS_BUF_SET_OFFSET(pb, offset);
540 XFS_BUF_SET_FSPRIVATE(pb, LINVFS_GET_VP(inode));
541 XFS_BUF_SET_IODONE_FUNC(pb, linvfs_unwritten_convert);
543 if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
544 pagebuf_iodone(pb, 1, 1);
547 return 0;
550 STATIC void
551 xfs_submit_page(
552 struct page *page,
553 struct writeback_control *wbc,
554 struct buffer_head *bh_arr[],
555 int bh_count,
556 int probed_page,
557 int clear_dirty)
559 struct buffer_head *bh;
560 int i;
562 BUG_ON(PageWriteback(page));
563 set_page_writeback(page);
564 if (clear_dirty)
565 clear_page_dirty(page);
566 unlock_page(page);
568 if (bh_count) {
569 for (i = 0; i < bh_count; i++) {
570 bh = bh_arr[i];
571 mark_buffer_async_write(bh);
572 if (buffer_unwritten(bh))
573 set_buffer_unwritten_io(bh);
574 set_buffer_uptodate(bh);
575 clear_buffer_dirty(bh);
578 for (i = 0; i < bh_count; i++)
579 submit_bh(WRITE, bh_arr[i]);
581 if (probed_page && clear_dirty)
582 wbc->nr_to_write--; /* Wrote an "extra" page */
583 } else {
584 end_page_writeback(page);
585 wbc->pages_skipped++; /* We didn't write this page */
590 * Allocate & map buffers for page given the extent map. Write it out.
591 * except for the original page of a writepage, this is called on
592 * delalloc/unwritten pages only, for the original page it is possible
593 * that the page has no mapping at all.
595 STATIC void
596 xfs_convert_page(
597 struct inode *inode,
598 struct page *page,
599 xfs_iomap_t *iomapp,
600 struct writeback_control *wbc,
601 void *private,
602 int startio,
603 int all_bh)
605 struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head;
606 xfs_iomap_t *mp = iomapp, *tmp;
607 unsigned long end, offset;
608 pgoff_t end_index;
609 int i = 0, index = 0;
610 int bbits = inode->i_blkbits;
612 end_index = i_size_read(inode) >> PAGE_CACHE_SHIFT;
613 if (page->index < end_index) {
614 end = PAGE_CACHE_SIZE;
615 } else {
616 end = i_size_read(inode) & (PAGE_CACHE_SIZE-1);
618 bh = head = page_buffers(page);
619 do {
620 offset = i << bbits;
621 if (offset >= end)
622 break;
623 if (!(PageUptodate(page) || buffer_uptodate(bh)))
624 continue;
625 if (buffer_mapped(bh) && all_bh &&
626 !(buffer_unwritten(bh) || buffer_delay(bh))) {
627 if (startio) {
628 lock_buffer(bh);
629 bh_arr[index++] = bh;
631 continue;
633 tmp = xfs_offset_to_map(page, mp, offset);
634 if (!tmp)
635 continue;
636 ASSERT(!(tmp->iomap_flags & IOMAP_HOLE));
637 ASSERT(!(tmp->iomap_flags & IOMAP_DELAY));
639 /* If this is a new unwritten extent buffer (i.e. one
640 * that we haven't passed in private data for, we must
641 * now map this buffer too.
643 if (buffer_unwritten(bh) && !bh->b_end_io) {
644 ASSERT(tmp->iomap_flags & IOMAP_UNWRITTEN);
645 xfs_map_unwritten(inode, page, head, bh, offset,
646 bbits, tmp, wbc, startio, all_bh);
647 } else if (! (buffer_unwritten(bh) && buffer_locked(bh))) {
648 xfs_map_at_offset(page, bh, offset, bbits, tmp);
649 if (buffer_unwritten(bh)) {
650 set_buffer_unwritten_io(bh);
651 bh->b_private = private;
652 ASSERT(private);
655 if (startio) {
656 bh_arr[index++] = bh;
657 } else {
658 set_buffer_dirty(bh);
659 unlock_buffer(bh);
660 mark_buffer_dirty(bh);
662 } while (i++, (bh = bh->b_this_page) != head);
664 if (startio) {
665 xfs_submit_page(page, wbc, bh_arr, index, 1, index == i);
666 } else {
667 unlock_page(page);
672 * Convert & write out a cluster of pages in the same extent as defined
673 * by mp and following the start page.
675 STATIC void
676 xfs_cluster_write(
677 struct inode *inode,
678 pgoff_t tindex,
679 xfs_iomap_t *iomapp,
680 struct writeback_control *wbc,
681 int startio,
682 int all_bh,
683 pgoff_t tlast)
685 struct page *page;
687 for (; tindex <= tlast; tindex++) {
688 page = xfs_probe_delalloc_page(inode, tindex);
689 if (!page)
690 break;
691 xfs_convert_page(inode, page, iomapp, wbc, NULL,
692 startio, all_bh);
697 * Calling this without startio set means we are being asked to make a dirty
698 * page ready for freeing it's buffers. When called with startio set then
699 * we are coming from writepage.
701 * When called with startio set it is important that we write the WHOLE
702 * page if possible.
703 * The bh->b_state's cannot know if any of the blocks or which block for
704 * that matter are dirty due to mmap writes, and therefore bh uptodate is
705 * only vaild if the page itself isn't completely uptodate. Some layers
706 * may clear the page dirty flag prior to calling write page, under the
707 * assumption the entire page will be written out; by not writing out the
708 * whole page the page can be reused before all valid dirty data is
709 * written out. Note: in the case of a page that has been dirty'd by
710 * mapwrite and but partially setup by block_prepare_write the
711 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
712 * valid state, thus the whole page must be written out thing.
715 STATIC int
716 xfs_page_state_convert(
717 struct inode *inode,
718 struct page *page,
719 struct writeback_control *wbc,
720 int startio,
721 int unmapped) /* also implies page uptodate */
723 struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head;
724 xfs_iomap_t *iomp, iomap;
725 loff_t offset;
726 unsigned long p_offset = 0;
727 __uint64_t end_offset;
728 pgoff_t end_index, last_index, tlast;
729 int len, err, i, cnt = 0, uptodate = 1;
730 int flags = startio ? 0 : BMAPI_TRYLOCK;
731 int page_dirty = 1;
732 int delalloc = 0;
735 /* Are we off the end of the file ? */
736 offset = i_size_read(inode);
737 end_index = offset >> PAGE_CACHE_SHIFT;
738 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
739 if (page->index >= end_index) {
740 if ((page->index >= end_index + 1) ||
741 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
742 err = -EIO;
743 goto error;
747 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
748 end_offset = min_t(unsigned long long,
749 offset + PAGE_CACHE_SIZE, i_size_read(inode));
751 bh = head = page_buffers(page);
752 iomp = NULL;
754 len = bh->b_size;
755 do {
756 if (offset >= end_offset)
757 break;
758 if (!buffer_uptodate(bh))
759 uptodate = 0;
760 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio)
761 continue;
763 if (iomp) {
764 iomp = xfs_offset_to_map(page, &iomap, p_offset);
768 * First case, map an unwritten extent and prepare for
769 * extent state conversion transaction on completion.
771 if (buffer_unwritten(bh)) {
772 if (!startio)
773 continue;
774 if (!iomp) {
775 err = xfs_map_blocks(inode, offset, len, &iomap,
776 BMAPI_READ|BMAPI_IGNSTATE);
777 if (err) {
778 goto error;
780 iomp = xfs_offset_to_map(page, &iomap,
781 p_offset);
783 if (iomp) {
784 if (!bh->b_end_io) {
785 err = xfs_map_unwritten(inode, page,
786 head, bh, p_offset,
787 inode->i_blkbits, iomp,
788 wbc, startio, unmapped);
789 if (err) {
790 goto error;
792 } else {
793 set_bit(BH_Lock, &bh->b_state);
795 BUG_ON(!buffer_locked(bh));
796 bh_arr[cnt++] = bh;
797 page_dirty = 0;
800 * Second case, allocate space for a delalloc buffer.
801 * We can return EAGAIN here in the release page case.
803 } else if (buffer_delay(bh)) {
804 if (!iomp) {
805 delalloc = 1;
806 err = xfs_map_blocks(inode, offset, len, &iomap,
807 BMAPI_ALLOCATE | flags);
808 if (err) {
809 goto error;
811 iomp = xfs_offset_to_map(page, &iomap,
812 p_offset);
814 if (iomp) {
815 xfs_map_at_offset(page, bh, p_offset,
816 inode->i_blkbits, iomp);
817 if (startio) {
818 bh_arr[cnt++] = bh;
819 } else {
820 set_buffer_dirty(bh);
821 unlock_buffer(bh);
822 mark_buffer_dirty(bh);
824 page_dirty = 0;
826 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
827 (unmapped || startio)) {
829 if (!buffer_mapped(bh)) {
830 int size;
833 * Getting here implies an unmapped buffer
834 * was found, and we are in a path where we
835 * need to write the whole page out.
837 if (!iomp) {
838 size = xfs_probe_unmapped_cluster(
839 inode, page, bh, head);
840 err = xfs_map_blocks(inode, offset,
841 size, &iomap,
842 BMAPI_WRITE|BMAPI_MMAP);
843 if (err) {
844 goto error;
846 iomp = xfs_offset_to_map(page, &iomap,
847 p_offset);
849 if (iomp) {
850 xfs_map_at_offset(page,
851 bh, p_offset,
852 inode->i_blkbits, iomp);
853 if (startio) {
854 bh_arr[cnt++] = bh;
855 } else {
856 set_buffer_dirty(bh);
857 unlock_buffer(bh);
858 mark_buffer_dirty(bh);
860 page_dirty = 0;
862 } else if (startio) {
863 if (buffer_uptodate(bh) &&
864 !test_and_set_bit(BH_Lock, &bh->b_state)) {
865 bh_arr[cnt++] = bh;
866 page_dirty = 0;
870 } while (offset += len, p_offset += len,
871 ((bh = bh->b_this_page) != head));
873 if (uptodate && bh == head)
874 SetPageUptodate(page);
876 if (startio)
877 xfs_submit_page(page, wbc, bh_arr, cnt, 0, 1);
879 if (iomp) {
880 tlast = (iomp->iomap_offset + iomp->iomap_bsize - 1) >>
881 PAGE_CACHE_SHIFT;
882 if (delalloc && (tlast > last_index))
883 tlast = last_index;
884 xfs_cluster_write(inode, page->index + 1, iomp, wbc,
885 startio, unmapped, tlast);
888 return page_dirty;
890 error:
891 for (i = 0; i < cnt; i++) {
892 unlock_buffer(bh_arr[i]);
896 * If it's delalloc and we have nowhere to put it,
897 * throw it away, unless the lower layers told
898 * us to try again.
900 if (err != -EAGAIN) {
901 if (!unmapped) {
902 block_invalidatepage(page, 0);
904 ClearPageUptodate(page);
906 return err;
909 STATIC int
910 linvfs_get_block_core(
911 struct inode *inode,
912 sector_t iblock,
913 unsigned long blocks,
914 struct buffer_head *bh_result,
915 int create,
916 int direct,
917 bmapi_flags_t flags)
919 vnode_t *vp = LINVFS_GET_VP(inode);
920 xfs_iomap_t iomap;
921 int retpbbm = 1;
922 int error;
923 ssize_t size;
924 loff_t offset = (loff_t)iblock << inode->i_blkbits;
926 if (blocks)
927 size = blocks << inode->i_blkbits;
928 else
929 size = 1 << inode->i_blkbits;
931 VOP_BMAP(vp, offset, size,
932 create ? flags : BMAPI_READ, &iomap, &retpbbm, error);
933 if (error)
934 return -error;
936 if (retpbbm == 0)
937 return 0;
939 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
940 xfs_daddr_t bn;
941 loff_t delta;
943 /* For unwritten extents do not report a disk address on
944 * the read case (treat as if we're reading into a hole).
946 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
947 delta = offset - iomap.iomap_offset;
948 delta >>= inode->i_blkbits;
950 bn = iomap.iomap_bn >> (inode->i_blkbits - BBSHIFT);
951 bn += delta;
952 BUG_ON(!bn && !(iomap.iomap_flags & IOMAP_REALTIME));
953 bh_result->b_blocknr = bn;
954 set_buffer_mapped(bh_result);
956 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
957 if (direct)
958 bh_result->b_private = inode;
959 set_buffer_unwritten(bh_result);
960 set_buffer_delay(bh_result);
964 /* If this is a realtime file, data might be on a new device */
965 bh_result->b_bdev = iomap.iomap_target->pbr_bdev;
967 /* If we previously allocated a block out beyond eof and
968 * we are now coming back to use it then we will need to
969 * flag it as new even if it has a disk address.
971 if (create &&
972 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
973 (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW))) {
974 set_buffer_new(bh_result);
977 if (iomap.iomap_flags & IOMAP_DELAY) {
978 BUG_ON(direct);
979 if (create) {
980 set_buffer_mapped(bh_result);
981 set_buffer_uptodate(bh_result);
983 set_buffer_delay(bh_result);
986 if (blocks) {
987 bh_result->b_size = (ssize_t)min(
988 (loff_t)(iomap.iomap_bsize - iomap.iomap_delta),
989 (loff_t)(blocks << inode->i_blkbits));
992 return 0;
996 linvfs_get_block(
997 struct inode *inode,
998 sector_t iblock,
999 struct buffer_head *bh_result,
1000 int create)
1002 return linvfs_get_block_core(inode, iblock, 0, bh_result,
1003 create, 0, BMAPI_WRITE);
1006 STATIC int
1007 linvfs_get_blocks_direct(
1008 struct inode *inode,
1009 sector_t iblock,
1010 unsigned long max_blocks,
1011 struct buffer_head *bh_result,
1012 int create)
1014 return linvfs_get_block_core(inode, iblock, max_blocks, bh_result,
1015 create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1018 STATIC ssize_t
1019 linvfs_direct_IO(
1020 int rw,
1021 struct kiocb *iocb,
1022 const struct iovec *iov,
1023 loff_t offset,
1024 unsigned long nr_segs)
1026 struct file *file = iocb->ki_filp;
1027 struct inode *inode = file->f_mapping->host;
1028 vnode_t *vp = LINVFS_GET_VP(inode);
1029 xfs_iomap_t iomap;
1030 int maps = 1;
1031 int error;
1033 VOP_BMAP(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps, error);
1034 if (error)
1035 return -error;
1037 return blockdev_direct_IO_own_locking(rw, iocb, inode,
1038 iomap.iomap_target->pbr_bdev,
1039 iov, offset, nr_segs,
1040 linvfs_get_blocks_direct,
1041 linvfs_unwritten_convert_direct);
1045 STATIC sector_t
1046 linvfs_bmap(
1047 struct address_space *mapping,
1048 sector_t block)
1050 struct inode *inode = (struct inode *)mapping->host;
1051 vnode_t *vp = LINVFS_GET_VP(inode);
1052 int error;
1054 vn_trace_entry(vp, "linvfs_bmap", (inst_t *)__return_address);
1056 VOP_RWLOCK(vp, VRWLOCK_READ);
1057 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error);
1058 VOP_RWUNLOCK(vp, VRWLOCK_READ);
1059 return generic_block_bmap(mapping, block, linvfs_get_block);
1062 STATIC int
1063 linvfs_readpage(
1064 struct file *unused,
1065 struct page *page)
1067 return mpage_readpage(page, linvfs_get_block);
1070 STATIC int
1071 linvfs_readpages(
1072 struct file *unused,
1073 struct address_space *mapping,
1074 struct list_head *pages,
1075 unsigned nr_pages)
1077 return mpage_readpages(mapping, pages, nr_pages, linvfs_get_block);
1080 STATIC void
1081 xfs_count_page_state(
1082 struct page *page,
1083 int *delalloc,
1084 int *unmapped,
1085 int *unwritten)
1087 struct buffer_head *bh, *head;
1089 *delalloc = *unmapped = *unwritten = 0;
1091 bh = head = page_buffers(page);
1092 do {
1093 if (buffer_uptodate(bh) && !buffer_mapped(bh))
1094 (*unmapped) = 1;
1095 else if (buffer_unwritten(bh) && !buffer_delay(bh))
1096 clear_buffer_unwritten(bh);
1097 else if (buffer_unwritten(bh))
1098 (*unwritten) = 1;
1099 else if (buffer_delay(bh))
1100 (*delalloc) = 1;
1101 } while ((bh = bh->b_this_page) != head);
1106 * writepage: Called from one of two places:
1108 * 1. we are flushing a delalloc buffer head.
1110 * 2. we are writing out a dirty page. Typically the page dirty
1111 * state is cleared before we get here. In this case is it
1112 * conceivable we have no buffer heads.
1114 * For delalloc space on the page we need to allocate space and
1115 * flush it. For unmapped buffer heads on the page we should
1116 * allocate space if the page is uptodate. For any other dirty
1117 * buffer heads on the page we should flush them.
1119 * If we detect that a transaction would be required to flush
1120 * the page, we have to check the process flags first, if we
1121 * are already in a transaction or disk I/O during allocations
1122 * is off, we need to fail the writepage and redirty the page.
1125 STATIC int
1126 linvfs_writepage(
1127 struct page *page,
1128 struct writeback_control *wbc)
1130 int error;
1131 int need_trans;
1132 int delalloc, unmapped, unwritten;
1133 struct inode *inode = page->mapping->host;
1135 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1138 * We need a transaction if:
1139 * 1. There are delalloc buffers on the page
1140 * 2. The page is uptodate and we have unmapped buffers
1141 * 3. The page is uptodate and we have no buffers
1142 * 4. There are unwritten buffers on the page
1145 if (!page_has_buffers(page)) {
1146 unmapped = 1;
1147 need_trans = 1;
1148 } else {
1149 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1150 if (!PageUptodate(page))
1151 unmapped = 0;
1152 need_trans = delalloc + unmapped + unwritten;
1156 * If we need a transaction and the process flags say
1157 * we are already in a transaction, or no IO is allowed
1158 * then mark the page dirty again and leave the page
1159 * as is.
1161 if (PFLAGS_TEST_FSTRANS() && need_trans)
1162 goto out_fail;
1165 * Delay hooking up buffer heads until we have
1166 * made our go/no-go decision.
1168 if (!page_has_buffers(page))
1169 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1172 * Convert delayed allocate, unwritten or unmapped space
1173 * to real space and flush out to disk.
1175 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1176 if (error == -EAGAIN)
1177 goto out_fail;
1178 if (unlikely(error < 0))
1179 goto out_unlock;
1181 return 0;
1183 out_fail:
1184 redirty_page_for_writepage(wbc, page);
1185 unlock_page(page);
1186 return 0;
1187 out_unlock:
1188 unlock_page(page);
1189 return error;
1193 * Called to move a page into cleanable state - and from there
1194 * to be released. Possibly the page is already clean. We always
1195 * have buffer heads in this call.
1197 * Returns 0 if the page is ok to release, 1 otherwise.
1199 * Possible scenarios are:
1201 * 1. We are being called to release a page which has been written
1202 * to via regular I/O. buffer heads will be dirty and possibly
1203 * delalloc. If no delalloc buffer heads in this case then we
1204 * can just return zero.
1206 * 2. We are called to release a page which has been written via
1207 * mmap, all we need to do is ensure there is no delalloc
1208 * state in the buffer heads, if not we can let the caller
1209 * free them and we should come back later via writepage.
1211 STATIC int
1212 linvfs_release_page(
1213 struct page *page,
1214 int gfp_mask)
1216 struct inode *inode = page->mapping->host;
1217 int dirty, delalloc, unmapped, unwritten;
1218 struct writeback_control wbc = {
1219 .sync_mode = WB_SYNC_ALL,
1220 .nr_to_write = 1,
1223 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1225 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1226 if (!delalloc && !unwritten)
1227 goto free_buffers;
1229 if (!(gfp_mask & __GFP_FS))
1230 return 0;
1232 /* If we are already inside a transaction or the thread cannot
1233 * do I/O, we cannot release this page.
1235 if (PFLAGS_TEST_FSTRANS())
1236 return 0;
1239 * Convert delalloc space to real space, do not flush the
1240 * data out to disk, that will be done by the caller.
1241 * Never need to allocate space here - we will always
1242 * come back to writepage in that case.
1244 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1245 if (dirty == 0 && !unwritten)
1246 goto free_buffers;
1247 return 0;
1249 free_buffers:
1250 return try_to_free_buffers(page);
1253 STATIC int
1254 linvfs_prepare_write(
1255 struct file *file,
1256 struct page *page,
1257 unsigned int from,
1258 unsigned int to)
1260 return block_prepare_write(page, from, to, linvfs_get_block);
1263 struct address_space_operations linvfs_aops = {
1264 .readpage = linvfs_readpage,
1265 .readpages = linvfs_readpages,
1266 .writepage = linvfs_writepage,
1267 .sync_page = block_sync_page,
1268 .releasepage = linvfs_release_page,
1269 .prepare_write = linvfs_prepare_write,
1270 .commit_write = generic_commit_write,
1271 .bmap = linvfs_bmap,
1272 .direct_IO = linvfs_direct_IO,