initial commit with v2.6.9
[linux-2.6.9-moxart.git] / fs / dcache.c
blobf938ad50ffc6178e66d25a693b0617fdfd341e3d
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/config.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/smp_lock.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
35 /* #define DCACHE_DEBUG 1 */
37 int sysctl_vfs_cache_pressure = 100;
39 spinlock_t dcache_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
40 seqlock_t rename_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
42 EXPORT_SYMBOL(dcache_lock);
44 static kmem_cache_t *dentry_cache;
46 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 * This is the single most critical data structure when it comes
50 * to the dcache: the hashtable for lookups. Somebody should try
51 * to make this good - I've just made it work.
53 * This hash-function tries to avoid losing too many bits of hash
54 * information, yet avoid using a prime hash-size or similar.
56 #define D_HASHBITS d_hash_shift
57 #define D_HASHMASK d_hash_mask
59 static unsigned int d_hash_mask;
60 static unsigned int d_hash_shift;
61 static struct hlist_head *dentry_hashtable;
62 static LIST_HEAD(dentry_unused);
64 /* Statistics gathering. */
65 struct dentry_stat_t dentry_stat = {
66 .age_limit = 45,
69 static void d_callback(struct rcu_head *head)
71 struct dentry * dentry = container_of(head, struct dentry, d_rcu);
73 if (dname_external(dentry))
74 kfree(dentry->d_name.name);
75 kmem_cache_free(dentry_cache, dentry);
79 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
80 * inside dcache_lock.
82 static void d_free(struct dentry *dentry)
84 if (dentry->d_op && dentry->d_op->d_release)
85 dentry->d_op->d_release(dentry);
86 call_rcu(&dentry->d_rcu, d_callback);
90 * Release the dentry's inode, using the filesystem
91 * d_iput() operation if defined.
92 * Called with dcache_lock and per dentry lock held, drops both.
94 static inline void dentry_iput(struct dentry * dentry)
96 struct inode *inode = dentry->d_inode;
97 if (inode) {
98 dentry->d_inode = NULL;
99 list_del_init(&dentry->d_alias);
100 spin_unlock(&dentry->d_lock);
101 spin_unlock(&dcache_lock);
102 if (dentry->d_op && dentry->d_op->d_iput)
103 dentry->d_op->d_iput(dentry, inode);
104 else
105 iput(inode);
106 } else {
107 spin_unlock(&dentry->d_lock);
108 spin_unlock(&dcache_lock);
113 * This is dput
115 * This is complicated by the fact that we do not want to put
116 * dentries that are no longer on any hash chain on the unused
117 * list: we'd much rather just get rid of them immediately.
119 * However, that implies that we have to traverse the dentry
120 * tree upwards to the parents which might _also_ now be
121 * scheduled for deletion (it may have been only waiting for
122 * its last child to go away).
124 * This tail recursion is done by hand as we don't want to depend
125 * on the compiler to always get this right (gcc generally doesn't).
126 * Real recursion would eat up our stack space.
130 * dput - release a dentry
131 * @dentry: dentry to release
133 * Release a dentry. This will drop the usage count and if appropriate
134 * call the dentry unlink method as well as removing it from the queues and
135 * releasing its resources. If the parent dentries were scheduled for release
136 * they too may now get deleted.
138 * no dcache lock, please.
141 void dput(struct dentry *dentry)
143 if (!dentry)
144 return;
146 repeat:
147 if (atomic_read(&dentry->d_count) == 1)
148 might_sleep();
149 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
150 return;
152 spin_lock(&dentry->d_lock);
153 if (atomic_read(&dentry->d_count)) {
154 spin_unlock(&dentry->d_lock);
155 spin_unlock(&dcache_lock);
156 return;
160 * AV: ->d_delete() is _NOT_ allowed to block now.
162 if (dentry->d_op && dentry->d_op->d_delete) {
163 if (dentry->d_op->d_delete(dentry))
164 goto unhash_it;
166 /* Unreachable? Get rid of it */
167 if (d_unhashed(dentry))
168 goto kill_it;
169 if (list_empty(&dentry->d_lru)) {
170 dentry->d_flags |= DCACHE_REFERENCED;
171 list_add(&dentry->d_lru, &dentry_unused);
172 dentry_stat.nr_unused++;
174 spin_unlock(&dentry->d_lock);
175 spin_unlock(&dcache_lock);
176 return;
178 unhash_it:
179 __d_drop(dentry);
181 kill_it: {
182 struct dentry *parent;
184 /* If dentry was on d_lru list
185 * delete it from there
187 if (!list_empty(&dentry->d_lru)) {
188 list_del(&dentry->d_lru);
189 dentry_stat.nr_unused--;
191 list_del(&dentry->d_child);
192 dentry_stat.nr_dentry--; /* For d_free, below */
193 /*drops the locks, at that point nobody can reach this dentry */
194 dentry_iput(dentry);
195 parent = dentry->d_parent;
196 d_free(dentry);
197 if (dentry == parent)
198 return;
199 dentry = parent;
200 goto repeat;
205 * d_invalidate - invalidate a dentry
206 * @dentry: dentry to invalidate
208 * Try to invalidate the dentry if it turns out to be
209 * possible. If there are other dentries that can be
210 * reached through this one we can't delete it and we
211 * return -EBUSY. On success we return 0.
213 * no dcache lock.
216 int d_invalidate(struct dentry * dentry)
219 * If it's already been dropped, return OK.
221 spin_lock(&dcache_lock);
222 if (d_unhashed(dentry)) {
223 spin_unlock(&dcache_lock);
224 return 0;
227 * Check whether to do a partial shrink_dcache
228 * to get rid of unused child entries.
230 if (!list_empty(&dentry->d_subdirs)) {
231 spin_unlock(&dcache_lock);
232 shrink_dcache_parent(dentry);
233 spin_lock(&dcache_lock);
237 * Somebody else still using it?
239 * If it's a directory, we can't drop it
240 * for fear of somebody re-populating it
241 * with children (even though dropping it
242 * would make it unreachable from the root,
243 * we might still populate it if it was a
244 * working directory or similar).
246 spin_lock(&dentry->d_lock);
247 if (atomic_read(&dentry->d_count) > 1) {
248 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
249 spin_unlock(&dentry->d_lock);
250 spin_unlock(&dcache_lock);
251 return -EBUSY;
255 __d_drop(dentry);
256 spin_unlock(&dentry->d_lock);
257 spin_unlock(&dcache_lock);
258 return 0;
261 /* This should be called _only_ with dcache_lock held */
263 static inline struct dentry * __dget_locked(struct dentry *dentry)
265 atomic_inc(&dentry->d_count);
266 if (!list_empty(&dentry->d_lru)) {
267 dentry_stat.nr_unused--;
268 list_del_init(&dentry->d_lru);
270 return dentry;
273 struct dentry * dget_locked(struct dentry *dentry)
275 return __dget_locked(dentry);
279 * d_find_alias - grab a hashed alias of inode
280 * @inode: inode in question
282 * If inode has a hashed alias - acquire the reference to alias and
283 * return it. Otherwise return NULL. Notice that if inode is a directory
284 * there can be only one alias and it can be unhashed only if it has
285 * no children.
287 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
288 * any other hashed alias over that one.
291 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
293 struct list_head *head, *next, *tmp;
294 struct dentry *alias, *discon_alias=NULL;
296 head = &inode->i_dentry;
297 next = inode->i_dentry.next;
298 while (next != head) {
299 tmp = next;
300 next = tmp->next;
301 prefetch(next);
302 alias = list_entry(tmp, struct dentry, d_alias);
303 if (!d_unhashed(alias)) {
304 if (alias->d_flags & DCACHE_DISCONNECTED)
305 discon_alias = alias;
306 else if (!want_discon) {
307 __dget_locked(alias);
308 return alias;
312 if (discon_alias)
313 __dget_locked(discon_alias);
314 return discon_alias;
317 struct dentry * d_find_alias(struct inode *inode)
319 struct dentry *de;
320 spin_lock(&dcache_lock);
321 de = __d_find_alias(inode, 0);
322 spin_unlock(&dcache_lock);
323 return de;
327 * Try to kill dentries associated with this inode.
328 * WARNING: you must own a reference to inode.
330 void d_prune_aliases(struct inode *inode)
332 struct list_head *tmp, *head = &inode->i_dentry;
333 restart:
334 spin_lock(&dcache_lock);
335 tmp = head;
336 while ((tmp = tmp->next) != head) {
337 struct dentry *dentry = list_entry(tmp, struct dentry, d_alias);
338 if (!atomic_read(&dentry->d_count)) {
339 __dget_locked(dentry);
340 __d_drop(dentry);
341 spin_unlock(&dcache_lock);
342 dput(dentry);
343 goto restart;
346 spin_unlock(&dcache_lock);
350 * Throw away a dentry - free the inode, dput the parent.
351 * This requires that the LRU list has already been
352 * removed.
353 * Called with dcache_lock, drops it and then regains.
355 static inline void prune_one_dentry(struct dentry * dentry)
357 struct dentry * parent;
359 __d_drop(dentry);
360 list_del(&dentry->d_child);
361 dentry_stat.nr_dentry--; /* For d_free, below */
362 dentry_iput(dentry);
363 parent = dentry->d_parent;
364 d_free(dentry);
365 if (parent != dentry)
366 dput(parent);
367 spin_lock(&dcache_lock);
371 * prune_dcache - shrink the dcache
372 * @count: number of entries to try and free
374 * Shrink the dcache. This is done when we need
375 * more memory, or simply when we need to unmount
376 * something (at which point we need to unuse
377 * all dentries).
379 * This function may fail to free any resources if
380 * all the dentries are in use.
383 static void prune_dcache(int count)
385 spin_lock(&dcache_lock);
386 for (; count ; count--) {
387 struct dentry *dentry;
388 struct list_head *tmp;
390 tmp = dentry_unused.prev;
391 if (tmp == &dentry_unused)
392 break;
393 list_del_init(tmp);
394 prefetch(dentry_unused.prev);
395 dentry_stat.nr_unused--;
396 dentry = list_entry(tmp, struct dentry, d_lru);
398 spin_lock(&dentry->d_lock);
400 * We found an inuse dentry which was not removed from
401 * dentry_unused because of laziness during lookup. Do not free
402 * it - just keep it off the dentry_unused list.
404 if (atomic_read(&dentry->d_count)) {
405 spin_unlock(&dentry->d_lock);
406 continue;
408 /* If the dentry was recently referenced, don't free it. */
409 if (dentry->d_flags & DCACHE_REFERENCED) {
410 dentry->d_flags &= ~DCACHE_REFERENCED;
411 list_add(&dentry->d_lru, &dentry_unused);
412 dentry_stat.nr_unused++;
413 spin_unlock(&dentry->d_lock);
414 continue;
416 prune_one_dentry(dentry);
418 spin_unlock(&dcache_lock);
422 * Shrink the dcache for the specified super block.
423 * This allows us to unmount a device without disturbing
424 * the dcache for the other devices.
426 * This implementation makes just two traversals of the
427 * unused list. On the first pass we move the selected
428 * dentries to the most recent end, and on the second
429 * pass we free them. The second pass must restart after
430 * each dput(), but since the target dentries are all at
431 * the end, it's really just a single traversal.
435 * shrink_dcache_sb - shrink dcache for a superblock
436 * @sb: superblock
438 * Shrink the dcache for the specified super block. This
439 * is used to free the dcache before unmounting a file
440 * system
443 void shrink_dcache_sb(struct super_block * sb)
445 struct list_head *tmp, *next;
446 struct dentry *dentry;
449 * Pass one ... move the dentries for the specified
450 * superblock to the most recent end of the unused list.
452 spin_lock(&dcache_lock);
453 next = dentry_unused.next;
454 while (next != &dentry_unused) {
455 tmp = next;
456 next = tmp->next;
457 dentry = list_entry(tmp, struct dentry, d_lru);
458 if (dentry->d_sb != sb)
459 continue;
460 list_del(tmp);
461 list_add(tmp, &dentry_unused);
465 * Pass two ... free the dentries for this superblock.
467 repeat:
468 next = dentry_unused.next;
469 while (next != &dentry_unused) {
470 tmp = next;
471 next = tmp->next;
472 dentry = list_entry(tmp, struct dentry, d_lru);
473 if (dentry->d_sb != sb)
474 continue;
475 dentry_stat.nr_unused--;
476 list_del_init(tmp);
477 spin_lock(&dentry->d_lock);
478 if (atomic_read(&dentry->d_count)) {
479 spin_unlock(&dentry->d_lock);
480 continue;
482 prune_one_dentry(dentry);
483 goto repeat;
485 spin_unlock(&dcache_lock);
489 * Search for at least 1 mount point in the dentry's subdirs.
490 * We descend to the next level whenever the d_subdirs
491 * list is non-empty and continue searching.
495 * have_submounts - check for mounts over a dentry
496 * @parent: dentry to check.
498 * Return true if the parent or its subdirectories contain
499 * a mount point
502 int have_submounts(struct dentry *parent)
504 struct dentry *this_parent = parent;
505 struct list_head *next;
507 spin_lock(&dcache_lock);
508 if (d_mountpoint(parent))
509 goto positive;
510 repeat:
511 next = this_parent->d_subdirs.next;
512 resume:
513 while (next != &this_parent->d_subdirs) {
514 struct list_head *tmp = next;
515 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
516 next = tmp->next;
517 /* Have we found a mount point ? */
518 if (d_mountpoint(dentry))
519 goto positive;
520 if (!list_empty(&dentry->d_subdirs)) {
521 this_parent = dentry;
522 goto repeat;
526 * All done at this level ... ascend and resume the search.
528 if (this_parent != parent) {
529 next = this_parent->d_child.next;
530 this_parent = this_parent->d_parent;
531 goto resume;
533 spin_unlock(&dcache_lock);
534 return 0; /* No mount points found in tree */
535 positive:
536 spin_unlock(&dcache_lock);
537 return 1;
541 * Search the dentry child list for the specified parent,
542 * and move any unused dentries to the end of the unused
543 * list for prune_dcache(). We descend to the next level
544 * whenever the d_subdirs list is non-empty and continue
545 * searching.
547 static int select_parent(struct dentry * parent)
549 struct dentry *this_parent = parent;
550 struct list_head *next;
551 int found = 0;
553 spin_lock(&dcache_lock);
554 repeat:
555 next = this_parent->d_subdirs.next;
556 resume:
557 while (next != &this_parent->d_subdirs) {
558 struct list_head *tmp = next;
559 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
560 next = tmp->next;
562 if (!list_empty(&dentry->d_lru)) {
563 dentry_stat.nr_unused--;
564 list_del_init(&dentry->d_lru);
567 * move only zero ref count dentries to the end
568 * of the unused list for prune_dcache
570 if (!atomic_read(&dentry->d_count)) {
571 list_add(&dentry->d_lru, dentry_unused.prev);
572 dentry_stat.nr_unused++;
573 found++;
576 * Descend a level if the d_subdirs list is non-empty.
578 if (!list_empty(&dentry->d_subdirs)) {
579 this_parent = dentry;
580 #ifdef DCACHE_DEBUG
581 printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n",
582 dentry->d_parent->d_name.name, dentry->d_name.name, found);
583 #endif
584 goto repeat;
588 * All done at this level ... ascend and resume the search.
590 if (this_parent != parent) {
591 next = this_parent->d_child.next;
592 this_parent = this_parent->d_parent;
593 #ifdef DCACHE_DEBUG
594 printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n",
595 this_parent->d_parent->d_name.name, this_parent->d_name.name, found);
596 #endif
597 goto resume;
599 spin_unlock(&dcache_lock);
600 return found;
604 * shrink_dcache_parent - prune dcache
605 * @parent: parent of entries to prune
607 * Prune the dcache to remove unused children of the parent dentry.
610 void shrink_dcache_parent(struct dentry * parent)
612 int found;
614 while ((found = select_parent(parent)) != 0)
615 prune_dcache(found);
619 * shrink_dcache_anon - further prune the cache
620 * @head: head of d_hash list of dentries to prune
622 * Prune the dentries that are anonymous
624 * parsing d_hash list does not hlist_for_each_rcu() as it
625 * done under dcache_lock.
628 void shrink_dcache_anon(struct hlist_head *head)
630 struct hlist_node *lp;
631 int found;
632 do {
633 found = 0;
634 spin_lock(&dcache_lock);
635 hlist_for_each(lp, head) {
636 struct dentry *this = hlist_entry(lp, struct dentry, d_hash);
637 if (!list_empty(&this->d_lru)) {
638 dentry_stat.nr_unused--;
639 list_del_init(&this->d_lru);
643 * move only zero ref count dentries to the end
644 * of the unused list for prune_dcache
646 if (!atomic_read(&this->d_count)) {
647 list_add_tail(&this->d_lru, &dentry_unused);
648 dentry_stat.nr_unused++;
649 found++;
652 spin_unlock(&dcache_lock);
653 prune_dcache(found);
654 } while(found);
658 * Scan `nr' dentries and return the number which remain.
660 * We need to avoid reentering the filesystem if the caller is performing a
661 * GFP_NOFS allocation attempt. One example deadlock is:
663 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
664 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
665 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
667 * In this case we return -1 to tell the caller that we baled.
669 static int shrink_dcache_memory(int nr, unsigned int gfp_mask)
671 if (nr) {
672 if (!(gfp_mask & __GFP_FS))
673 return -1;
674 prune_dcache(nr);
676 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
680 * d_alloc - allocate a dcache entry
681 * @parent: parent of entry to allocate
682 * @name: qstr of the name
684 * Allocates a dentry. It returns %NULL if there is insufficient memory
685 * available. On a success the dentry is returned. The name passed in is
686 * copied and the copy passed in may be reused after this call.
689 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
691 struct dentry *dentry;
692 char *dname;
694 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
695 if (!dentry)
696 return NULL;
698 if (name->len > DNAME_INLINE_LEN-1) {
699 dname = kmalloc(name->len + 1, GFP_KERNEL);
700 if (!dname) {
701 kmem_cache_free(dentry_cache, dentry);
702 return NULL;
704 } else {
705 dname = dentry->d_iname;
707 dentry->d_name.name = dname;
709 dentry->d_name.len = name->len;
710 dentry->d_name.hash = name->hash;
711 memcpy(dname, name->name, name->len);
712 dname[name->len] = 0;
714 atomic_set(&dentry->d_count, 1);
715 dentry->d_flags = DCACHE_UNHASHED;
716 dentry->d_lock = SPIN_LOCK_UNLOCKED;
717 dentry->d_inode = NULL;
718 dentry->d_parent = NULL;
719 dentry->d_sb = NULL;
720 dentry->d_op = NULL;
721 dentry->d_fsdata = NULL;
722 dentry->d_mounted = 0;
723 dentry->d_cookie = NULL;
724 dentry->d_bucket = NULL;
725 INIT_HLIST_NODE(&dentry->d_hash);
726 INIT_LIST_HEAD(&dentry->d_lru);
727 INIT_LIST_HEAD(&dentry->d_subdirs);
728 INIT_LIST_HEAD(&dentry->d_alias);
730 if (parent) {
731 dentry->d_parent = dget(parent);
732 dentry->d_sb = parent->d_sb;
733 } else {
734 INIT_LIST_HEAD(&dentry->d_child);
737 spin_lock(&dcache_lock);
738 if (parent)
739 list_add(&dentry->d_child, &parent->d_subdirs);
740 dentry_stat.nr_dentry++;
741 spin_unlock(&dcache_lock);
743 return dentry;
747 * d_instantiate - fill in inode information for a dentry
748 * @entry: dentry to complete
749 * @inode: inode to attach to this dentry
751 * Fill in inode information in the entry.
753 * This turns negative dentries into productive full members
754 * of society.
756 * NOTE! This assumes that the inode count has been incremented
757 * (or otherwise set) by the caller to indicate that it is now
758 * in use by the dcache.
761 void d_instantiate(struct dentry *entry, struct inode * inode)
763 if (!list_empty(&entry->d_alias)) BUG();
764 spin_lock(&dcache_lock);
765 if (inode)
766 list_add(&entry->d_alias, &inode->i_dentry);
767 entry->d_inode = inode;
768 spin_unlock(&dcache_lock);
769 security_d_instantiate(entry, inode);
773 * d_alloc_root - allocate root dentry
774 * @root_inode: inode to allocate the root for
776 * Allocate a root ("/") dentry for the inode given. The inode is
777 * instantiated and returned. %NULL is returned if there is insufficient
778 * memory or the inode passed is %NULL.
781 struct dentry * d_alloc_root(struct inode * root_inode)
783 struct dentry *res = NULL;
785 if (root_inode) {
786 static const struct qstr name = { .name = "/", .len = 1 };
788 res = d_alloc(NULL, &name);
789 if (res) {
790 res->d_sb = root_inode->i_sb;
791 res->d_parent = res;
792 d_instantiate(res, root_inode);
795 return res;
798 static inline struct hlist_head *d_hash(struct dentry *parent,
799 unsigned long hash)
801 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
802 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
803 return dentry_hashtable + (hash & D_HASHMASK);
807 * d_alloc_anon - allocate an anonymous dentry
808 * @inode: inode to allocate the dentry for
810 * This is similar to d_alloc_root. It is used by filesystems when
811 * creating a dentry for a given inode, often in the process of
812 * mapping a filehandle to a dentry. The returned dentry may be
813 * anonymous, or may have a full name (if the inode was already
814 * in the cache). The file system may need to make further
815 * efforts to connect this dentry into the dcache properly.
817 * When called on a directory inode, we must ensure that
818 * the inode only ever has one dentry. If a dentry is
819 * found, that is returned instead of allocating a new one.
821 * On successful return, the reference to the inode has been transferred
822 * to the dentry. If %NULL is returned (indicating kmalloc failure),
823 * the reference on the inode has not been released.
826 struct dentry * d_alloc_anon(struct inode *inode)
828 static const struct qstr anonstring = { .name = "" };
829 struct dentry *tmp;
830 struct dentry *res;
832 if ((res = d_find_alias(inode))) {
833 iput(inode);
834 return res;
837 tmp = d_alloc(NULL, &anonstring);
838 if (!tmp)
839 return NULL;
841 tmp->d_parent = tmp; /* make sure dput doesn't croak */
843 spin_lock(&dcache_lock);
844 res = __d_find_alias(inode, 0);
845 if (!res) {
846 /* attach a disconnected dentry */
847 res = tmp;
848 tmp = NULL;
849 spin_lock(&res->d_lock);
850 res->d_sb = inode->i_sb;
851 res->d_parent = res;
852 res->d_inode = inode;
855 * Set d_bucket to an "impossible" bucket address so
856 * that d_move() doesn't get a false positive
858 res->d_bucket = NULL;
859 res->d_flags |= DCACHE_DISCONNECTED;
860 res->d_flags &= ~DCACHE_UNHASHED;
861 list_add(&res->d_alias, &inode->i_dentry);
862 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
863 spin_unlock(&res->d_lock);
865 inode = NULL; /* don't drop reference */
867 spin_unlock(&dcache_lock);
869 if (inode)
870 iput(inode);
871 if (tmp)
872 dput(tmp);
873 return res;
878 * d_splice_alias - splice a disconnected dentry into the tree if one exists
879 * @inode: the inode which may have a disconnected dentry
880 * @dentry: a negative dentry which we want to point to the inode.
882 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
883 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
884 * and return it, else simply d_add the inode to the dentry and return NULL.
886 * This is needed in the lookup routine of any filesystem that is exportable
887 * (via knfsd) so that we can build dcache paths to directories effectively.
889 * If a dentry was found and moved, then it is returned. Otherwise NULL
890 * is returned. This matches the expected return value of ->lookup.
893 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
895 struct dentry *new = NULL;
897 if (inode) {
898 spin_lock(&dcache_lock);
899 new = __d_find_alias(inode, 1);
900 if (new) {
901 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
902 spin_unlock(&dcache_lock);
903 security_d_instantiate(new, inode);
904 d_rehash(dentry);
905 d_move(new, dentry);
906 iput(inode);
907 } else {
908 /* d_instantiate takes dcache_lock, so we do it by hand */
909 list_add(&dentry->d_alias, &inode->i_dentry);
910 dentry->d_inode = inode;
911 spin_unlock(&dcache_lock);
912 security_d_instantiate(dentry, inode);
913 d_rehash(dentry);
915 } else
916 d_add(dentry, inode);
917 return new;
922 * d_lookup - search for a dentry
923 * @parent: parent dentry
924 * @name: qstr of name we wish to find
926 * Searches the children of the parent dentry for the name in question. If
927 * the dentry is found its reference count is incremented and the dentry
928 * is returned. The caller must use d_put to free the entry when it has
929 * finished using it. %NULL is returned on failure.
931 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
932 * Memory barriers are used while updating and doing lockless traversal.
933 * To avoid races with d_move while rename is happening, d_lock is used.
935 * Overflows in memcmp(), while d_move, are avoided by keeping the length
936 * and name pointer in one structure pointed by d_qstr.
938 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
939 * lookup is going on.
941 * dentry_unused list is not updated even if lookup finds the required dentry
942 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
943 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
944 * acquisition.
946 * d_lookup() is protected against the concurrent renames in some unrelated
947 * directory using the seqlockt_t rename_lock.
950 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
952 struct dentry * dentry = NULL;
953 unsigned long seq;
955 do {
956 seq = read_seqbegin(&rename_lock);
957 dentry = __d_lookup(parent, name);
958 if (dentry)
959 break;
960 } while (read_seqretry(&rename_lock, seq));
961 return dentry;
964 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
966 unsigned int len = name->len;
967 unsigned int hash = name->hash;
968 const unsigned char *str = name->name;
969 struct hlist_head *head = d_hash(parent,hash);
970 struct dentry *found = NULL;
971 struct hlist_node *node;
973 rcu_read_lock();
975 hlist_for_each_rcu(node, head) {
976 struct dentry *dentry;
977 struct qstr *qstr;
979 dentry = hlist_entry(node, struct dentry, d_hash);
981 smp_rmb();
983 if (dentry->d_name.hash != hash)
984 continue;
985 if (dentry->d_parent != parent)
986 continue;
988 spin_lock(&dentry->d_lock);
991 * If lookup ends up in a different bucket due to concurrent
992 * rename, fail it
994 if (unlikely(dentry->d_bucket != head))
995 goto terminate;
998 * Recheck the dentry after taking the lock - d_move may have
999 * changed things. Don't bother checking the hash because we're
1000 * about to compare the whole name anyway.
1002 if (dentry->d_parent != parent)
1003 goto next;
1005 qstr = rcu_dereference(&dentry->d_name);
1006 if (parent->d_op && parent->d_op->d_compare) {
1007 if (parent->d_op->d_compare(parent, qstr, name))
1008 goto next;
1009 } else {
1010 if (qstr->len != len)
1011 goto next;
1012 if (memcmp(qstr->name, str, len))
1013 goto next;
1016 if (!d_unhashed(dentry)) {
1017 atomic_inc(&dentry->d_count);
1018 found = dentry;
1020 terminate:
1021 spin_unlock(&dentry->d_lock);
1022 break;
1023 next:
1024 spin_unlock(&dentry->d_lock);
1026 rcu_read_unlock();
1028 return found;
1032 * d_validate - verify dentry provided from insecure source
1033 * @dentry: The dentry alleged to be valid child of @dparent
1034 * @dparent: The parent dentry (known to be valid)
1035 * @hash: Hash of the dentry
1036 * @len: Length of the name
1038 * An insecure source has sent us a dentry, here we verify it and dget() it.
1039 * This is used by ncpfs in its readdir implementation.
1040 * Zero is returned in the dentry is invalid.
1043 int d_validate(struct dentry *dentry, struct dentry *dparent)
1045 struct hlist_head *base;
1046 struct hlist_node *lhp;
1048 /* Check whether the ptr might be valid at all.. */
1049 if (!kmem_ptr_validate(dentry_cache, dentry))
1050 goto out;
1052 if (dentry->d_parent != dparent)
1053 goto out;
1055 spin_lock(&dcache_lock);
1056 base = d_hash(dparent, dentry->d_name.hash);
1057 hlist_for_each(lhp,base) {
1058 /* hlist_for_each_rcu() not required for d_hash list
1059 * as it is parsed under dcache_lock
1061 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1062 __dget_locked(dentry);
1063 spin_unlock(&dcache_lock);
1064 return 1;
1067 spin_unlock(&dcache_lock);
1068 out:
1069 return 0;
1073 * When a file is deleted, we have two options:
1074 * - turn this dentry into a negative dentry
1075 * - unhash this dentry and free it.
1077 * Usually, we want to just turn this into
1078 * a negative dentry, but if anybody else is
1079 * currently using the dentry or the inode
1080 * we can't do that and we fall back on removing
1081 * it from the hash queues and waiting for
1082 * it to be deleted later when it has no users
1086 * d_delete - delete a dentry
1087 * @dentry: The dentry to delete
1089 * Turn the dentry into a negative dentry if possible, otherwise
1090 * remove it from the hash queues so it can be deleted later
1093 void d_delete(struct dentry * dentry)
1096 * Are we the only user?
1098 spin_lock(&dcache_lock);
1099 spin_lock(&dentry->d_lock);
1100 if (atomic_read(&dentry->d_count) == 1) {
1101 dentry_iput(dentry);
1102 return;
1105 if (!d_unhashed(dentry))
1106 __d_drop(dentry);
1108 spin_unlock(&dentry->d_lock);
1109 spin_unlock(&dcache_lock);
1113 * d_rehash - add an entry back to the hash
1114 * @entry: dentry to add to the hash
1116 * Adds a dentry to the hash according to its name.
1119 void d_rehash(struct dentry * entry)
1121 struct hlist_head *list = d_hash(entry->d_parent, entry->d_name.hash);
1123 spin_lock(&dcache_lock);
1124 spin_lock(&entry->d_lock);
1125 entry->d_flags &= ~DCACHE_UNHASHED;
1126 spin_unlock(&entry->d_lock);
1127 entry->d_bucket = list;
1128 hlist_add_head_rcu(&entry->d_hash, list);
1129 spin_unlock(&dcache_lock);
1132 #define do_switch(x,y) do { \
1133 __typeof__ (x) __tmp = x; \
1134 x = y; y = __tmp; } while (0)
1137 * When switching names, the actual string doesn't strictly have to
1138 * be preserved in the target - because we're dropping the target
1139 * anyway. As such, we can just do a simple memcpy() to copy over
1140 * the new name before we switch.
1142 * Note that we have to be a lot more careful about getting the hash
1143 * switched - we have to switch the hash value properly even if it
1144 * then no longer matches the actual (corrupted) string of the target.
1145 * The hash value has to match the hash queue that the dentry is on..
1147 static void switch_names(struct dentry *dentry, struct dentry *target)
1149 if (dname_external(target)) {
1150 if (dname_external(dentry)) {
1152 * Both external: swap the pointers
1154 do_switch(target->d_name.name, dentry->d_name.name);
1155 } else {
1157 * dentry:internal, target:external. Steal target's
1158 * storage and make target internal.
1160 dentry->d_name.name = target->d_name.name;
1161 target->d_name.name = target->d_iname;
1163 } else {
1164 if (dname_external(dentry)) {
1166 * dentry:external, target:internal. Give dentry's
1167 * storage to target and make dentry internal
1169 memcpy(dentry->d_iname, target->d_name.name,
1170 target->d_name.len + 1);
1171 target->d_name.name = dentry->d_name.name;
1172 dentry->d_name.name = dentry->d_iname;
1173 } else {
1175 * Both are internal. Just copy target to dentry
1177 memcpy(dentry->d_iname, target->d_name.name,
1178 target->d_name.len + 1);
1184 * We cannibalize "target" when moving dentry on top of it,
1185 * because it's going to be thrown away anyway. We could be more
1186 * polite about it, though.
1188 * This forceful removal will result in ugly /proc output if
1189 * somebody holds a file open that got deleted due to a rename.
1190 * We could be nicer about the deleted file, and let it show
1191 * up under the name it got deleted rather than the name that
1192 * deleted it.
1196 * d_move - move a dentry
1197 * @dentry: entry to move
1198 * @target: new dentry
1200 * Update the dcache to reflect the move of a file name. Negative
1201 * dcache entries should not be moved in this way.
1204 void d_move(struct dentry * dentry, struct dentry * target)
1206 if (!dentry->d_inode)
1207 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1209 spin_lock(&dcache_lock);
1210 write_seqlock(&rename_lock);
1212 * XXXX: do we really need to take target->d_lock?
1214 if (target < dentry) {
1215 spin_lock(&target->d_lock);
1216 spin_lock(&dentry->d_lock);
1217 } else {
1218 spin_lock(&dentry->d_lock);
1219 spin_lock(&target->d_lock);
1222 /* Move the dentry to the target hash queue, if on different bucket */
1223 if (dentry->d_flags & DCACHE_UNHASHED)
1224 goto already_unhashed;
1225 if (dentry->d_bucket != target->d_bucket) {
1226 hlist_del_rcu(&dentry->d_hash);
1227 already_unhashed:
1228 dentry->d_bucket = target->d_bucket;
1229 hlist_add_head_rcu(&dentry->d_hash, target->d_bucket);
1230 dentry->d_flags &= ~DCACHE_UNHASHED;
1233 /* Unhash the target: dput() will then get rid of it */
1234 __d_drop(target);
1236 list_del(&dentry->d_child);
1237 list_del(&target->d_child);
1239 /* Switch the names.. */
1240 switch_names(dentry, target);
1241 smp_wmb();
1242 do_switch(dentry->d_name.len, target->d_name.len);
1243 do_switch(dentry->d_name.hash, target->d_name.hash);
1245 /* ... and switch the parents */
1246 if (IS_ROOT(dentry)) {
1247 dentry->d_parent = target->d_parent;
1248 target->d_parent = target;
1249 INIT_LIST_HEAD(&target->d_child);
1250 } else {
1251 do_switch(dentry->d_parent, target->d_parent);
1253 /* And add them back to the (new) parent lists */
1254 list_add(&target->d_child, &target->d_parent->d_subdirs);
1257 list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
1258 spin_unlock(&target->d_lock);
1259 spin_unlock(&dentry->d_lock);
1260 write_sequnlock(&rename_lock);
1261 spin_unlock(&dcache_lock);
1265 * d_path - return the path of a dentry
1266 * @dentry: dentry to report
1267 * @vfsmnt: vfsmnt to which the dentry belongs
1268 * @root: root dentry
1269 * @rootmnt: vfsmnt to which the root dentry belongs
1270 * @buffer: buffer to return value in
1271 * @buflen: buffer length
1273 * Convert a dentry into an ASCII path name. If the entry has been deleted
1274 * the string " (deleted)" is appended. Note that this is ambiguous.
1276 * Returns the buffer or an error code if the path was too long.
1278 * "buflen" should be positive. Caller holds the dcache_lock.
1280 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1281 struct dentry *root, struct vfsmount *rootmnt,
1282 char *buffer, int buflen)
1284 char * end = buffer+buflen;
1285 char * retval;
1286 int namelen;
1288 *--end = '\0';
1289 buflen--;
1290 if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1291 buflen -= 10;
1292 end -= 10;
1293 if (buflen < 0)
1294 goto Elong;
1295 memcpy(end, " (deleted)", 10);
1298 if (buflen < 1)
1299 goto Elong;
1300 /* Get '/' right */
1301 retval = end-1;
1302 *retval = '/';
1304 for (;;) {
1305 struct dentry * parent;
1307 if (dentry == root && vfsmnt == rootmnt)
1308 break;
1309 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1310 /* Global root? */
1311 spin_lock(&vfsmount_lock);
1312 if (vfsmnt->mnt_parent == vfsmnt) {
1313 spin_unlock(&vfsmount_lock);
1314 goto global_root;
1316 dentry = vfsmnt->mnt_mountpoint;
1317 vfsmnt = vfsmnt->mnt_parent;
1318 spin_unlock(&vfsmount_lock);
1319 continue;
1321 parent = dentry->d_parent;
1322 prefetch(parent);
1323 namelen = dentry->d_name.len;
1324 buflen -= namelen + 1;
1325 if (buflen < 0)
1326 goto Elong;
1327 end -= namelen;
1328 memcpy(end, dentry->d_name.name, namelen);
1329 *--end = '/';
1330 retval = end;
1331 dentry = parent;
1334 return retval;
1336 global_root:
1337 namelen = dentry->d_name.len;
1338 buflen -= namelen;
1339 if (buflen < 0)
1340 goto Elong;
1341 retval -= namelen-1; /* hit the slash */
1342 memcpy(retval, dentry->d_name.name, namelen);
1343 return retval;
1344 Elong:
1345 return ERR_PTR(-ENAMETOOLONG);
1348 /* write full pathname into buffer and return start of pathname */
1349 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1350 char *buf, int buflen)
1352 char *res;
1353 struct vfsmount *rootmnt;
1354 struct dentry *root;
1356 read_lock(&current->fs->lock);
1357 rootmnt = mntget(current->fs->rootmnt);
1358 root = dget(current->fs->root);
1359 read_unlock(&current->fs->lock);
1360 spin_lock(&dcache_lock);
1361 res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1362 spin_unlock(&dcache_lock);
1363 dput(root);
1364 mntput(rootmnt);
1365 return res;
1369 * NOTE! The user-level library version returns a
1370 * character pointer. The kernel system call just
1371 * returns the length of the buffer filled (which
1372 * includes the ending '\0' character), or a negative
1373 * error value. So libc would do something like
1375 * char *getcwd(char * buf, size_t size)
1377 * int retval;
1379 * retval = sys_getcwd(buf, size);
1380 * if (retval >= 0)
1381 * return buf;
1382 * errno = -retval;
1383 * return NULL;
1386 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1388 int error;
1389 struct vfsmount *pwdmnt, *rootmnt;
1390 struct dentry *pwd, *root;
1391 char *page = (char *) __get_free_page(GFP_USER);
1393 if (!page)
1394 return -ENOMEM;
1396 read_lock(&current->fs->lock);
1397 pwdmnt = mntget(current->fs->pwdmnt);
1398 pwd = dget(current->fs->pwd);
1399 rootmnt = mntget(current->fs->rootmnt);
1400 root = dget(current->fs->root);
1401 read_unlock(&current->fs->lock);
1403 error = -ENOENT;
1404 /* Has the current directory has been unlinked? */
1405 spin_lock(&dcache_lock);
1406 if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1407 unsigned long len;
1408 char * cwd;
1410 cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1411 spin_unlock(&dcache_lock);
1413 error = PTR_ERR(cwd);
1414 if (IS_ERR(cwd))
1415 goto out;
1417 error = -ERANGE;
1418 len = PAGE_SIZE + page - cwd;
1419 if (len <= size) {
1420 error = len;
1421 if (copy_to_user(buf, cwd, len))
1422 error = -EFAULT;
1424 } else
1425 spin_unlock(&dcache_lock);
1427 out:
1428 dput(pwd);
1429 mntput(pwdmnt);
1430 dput(root);
1431 mntput(rootmnt);
1432 free_page((unsigned long) page);
1433 return error;
1437 * Test whether new_dentry is a subdirectory of old_dentry.
1439 * Trivially implemented using the dcache structure
1443 * is_subdir - is new dentry a subdirectory of old_dentry
1444 * @new_dentry: new dentry
1445 * @old_dentry: old dentry
1447 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1448 * Returns 0 otherwise.
1449 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1452 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1454 int result;
1455 struct dentry * saved = new_dentry;
1456 unsigned long seq;
1458 result = 0;
1459 /* need rcu_readlock to protect against the d_parent trashing due to
1460 * d_move
1462 rcu_read_lock();
1463 do {
1464 /* for restarting inner loop in case of seq retry */
1465 new_dentry = saved;
1466 seq = read_seqbegin(&rename_lock);
1467 for (;;) {
1468 if (new_dentry != old_dentry) {
1469 struct dentry * parent = new_dentry->d_parent;
1470 if (parent == new_dentry)
1471 break;
1472 new_dentry = parent;
1473 continue;
1475 result = 1;
1476 break;
1478 } while (read_seqretry(&rename_lock, seq));
1479 rcu_read_unlock();
1481 return result;
1484 void d_genocide(struct dentry *root)
1486 struct dentry *this_parent = root;
1487 struct list_head *next;
1489 spin_lock(&dcache_lock);
1490 repeat:
1491 next = this_parent->d_subdirs.next;
1492 resume:
1493 while (next != &this_parent->d_subdirs) {
1494 struct list_head *tmp = next;
1495 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1496 next = tmp->next;
1497 if (d_unhashed(dentry)||!dentry->d_inode)
1498 continue;
1499 if (!list_empty(&dentry->d_subdirs)) {
1500 this_parent = dentry;
1501 goto repeat;
1503 atomic_dec(&dentry->d_count);
1505 if (this_parent != root) {
1506 next = this_parent->d_child.next;
1507 atomic_dec(&this_parent->d_count);
1508 this_parent = this_parent->d_parent;
1509 goto resume;
1511 spin_unlock(&dcache_lock);
1515 * find_inode_number - check for dentry with name
1516 * @dir: directory to check
1517 * @name: Name to find.
1519 * Check whether a dentry already exists for the given name,
1520 * and return the inode number if it has an inode. Otherwise
1521 * 0 is returned.
1523 * This routine is used to post-process directory listings for
1524 * filesystems using synthetic inode numbers, and is necessary
1525 * to keep getcwd() working.
1528 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1530 struct dentry * dentry;
1531 ino_t ino = 0;
1534 * Check for a fs-specific hash function. Note that we must
1535 * calculate the standard hash first, as the d_op->d_hash()
1536 * routine may choose to leave the hash value unchanged.
1538 name->hash = full_name_hash(name->name, name->len);
1539 if (dir->d_op && dir->d_op->d_hash)
1541 if (dir->d_op->d_hash(dir, name) != 0)
1542 goto out;
1545 dentry = d_lookup(dir, name);
1546 if (dentry)
1548 if (dentry->d_inode)
1549 ino = dentry->d_inode->i_ino;
1550 dput(dentry);
1552 out:
1553 return ino;
1556 static __initdata unsigned long dhash_entries;
1557 static int __init set_dhash_entries(char *str)
1559 if (!str)
1560 return 0;
1561 dhash_entries = simple_strtoul(str, &str, 0);
1562 return 1;
1564 __setup("dhash_entries=", set_dhash_entries);
1566 static void __init dcache_init_early(void)
1568 int loop;
1570 dentry_hashtable =
1571 alloc_large_system_hash("Dentry cache",
1572 sizeof(struct hlist_head),
1573 dhash_entries,
1576 &d_hash_shift,
1577 &d_hash_mask);
1579 for (loop = 0; loop < (1 << d_hash_shift); loop++)
1580 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1583 static void __init dcache_init(unsigned long mempages)
1586 * A constructor could be added for stable state like the lists,
1587 * but it is probably not worth it because of the cache nature
1588 * of the dcache.
1590 dentry_cache = kmem_cache_create("dentry_cache",
1591 sizeof(struct dentry),
1593 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC,
1594 NULL, NULL);
1596 set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1599 /* SLAB cache for __getname() consumers */
1600 kmem_cache_t *names_cachep;
1602 /* SLAB cache for file structures */
1603 kmem_cache_t *filp_cachep;
1605 EXPORT_SYMBOL(d_genocide);
1607 extern void bdev_cache_init(void);
1608 extern void chrdev_init(void);
1610 void __init vfs_caches_init_early(void)
1612 dcache_init_early();
1613 inode_init_early();
1616 void __init vfs_caches_init(unsigned long mempages)
1618 unsigned long reserve;
1620 /* Base hash sizes on available memory, with a reserve equal to
1621 150% of current kernel size */
1623 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
1624 mempages -= reserve;
1626 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
1627 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1629 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
1630 SLAB_HWCACHE_ALIGN|SLAB_PANIC, filp_ctor, filp_dtor);
1632 dcache_init(mempages);
1633 inode_init(mempages);
1634 files_init(mempages);
1635 mnt_init(mempages);
1636 bdev_cache_init();
1637 chrdev_init();
1640 EXPORT_SYMBOL(d_alloc);
1641 EXPORT_SYMBOL(d_alloc_anon);
1642 EXPORT_SYMBOL(d_alloc_root);
1643 EXPORT_SYMBOL(d_delete);
1644 EXPORT_SYMBOL(d_find_alias);
1645 EXPORT_SYMBOL(d_instantiate);
1646 EXPORT_SYMBOL(d_invalidate);
1647 EXPORT_SYMBOL(d_lookup);
1648 EXPORT_SYMBOL(d_move);
1649 EXPORT_SYMBOL(d_path);
1650 EXPORT_SYMBOL(d_prune_aliases);
1651 EXPORT_SYMBOL(d_rehash);
1652 EXPORT_SYMBOL(d_splice_alias);
1653 EXPORT_SYMBOL(d_validate);
1654 EXPORT_SYMBOL(dget_locked);
1655 EXPORT_SYMBOL(dput);
1656 EXPORT_SYMBOL(find_inode_number);
1657 EXPORT_SYMBOL(have_submounts);
1658 EXPORT_SYMBOL(is_subdir);
1659 EXPORT_SYMBOL(names_cachep);
1660 EXPORT_SYMBOL(shrink_dcache_anon);
1661 EXPORT_SYMBOL(shrink_dcache_parent);
1662 EXPORT_SYMBOL(shrink_dcache_sb);