initial commit with v2.6.9
[linux-2.6.9-moxart.git] / drivers / scsi / aic7xxx / aic7xxx_osm.c
blobecbc05d84092c323fc1ada6941915360586d9925
1 /*
2 * Adaptec AIC7xxx device driver for Linux.
4 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $
6 * Copyright (c) 1994 John Aycock
7 * The University of Calgary Department of Computer Science.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
12 * any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, write to
21 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
24 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
25 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
26 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
27 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
28 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
29 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
30 * ANSI SCSI-2 specification (draft 10c), ...
32 * --------------------------------------------------------------------------
34 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
36 * Substantially modified to include support for wide and twin bus
37 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
38 * SCB paging, and other rework of the code.
40 * --------------------------------------------------------------------------
41 * Copyright (c) 1994-2000 Justin T. Gibbs.
42 * Copyright (c) 2000-2001 Adaptec Inc.
43 * All rights reserved.
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions, and the following disclaimer,
50 * without modification.
51 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
52 * substantially similar to the "NO WARRANTY" disclaimer below
53 * ("Disclaimer") and any redistribution must be conditioned upon
54 * including a substantially similar Disclaimer requirement for further
55 * binary redistribution.
56 * 3. Neither the names of the above-listed copyright holders nor the names
57 * of any contributors may be used to endorse or promote products derived
58 * from this software without specific prior written permission.
60 * Alternatively, this software may be distributed under the terms of the
61 * GNU General Public License ("GPL") version 2 as published by the Free
62 * Software Foundation.
64 * NO WARRANTY
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
66 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
67 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
68 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
69 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
73 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
74 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
75 * POSSIBILITY OF SUCH DAMAGES.
77 *---------------------------------------------------------------------------
79 * Thanks also go to (in alphabetical order) the following:
81 * Rory Bolt - Sequencer bug fixes
82 * Jay Estabrook - Initial DEC Alpha support
83 * Doug Ledford - Much needed abort/reset bug fixes
84 * Kai Makisara - DMAing of SCBs
86 * A Boot time option was also added for not resetting the scsi bus.
88 * Form: aic7xxx=extended
89 * aic7xxx=no_reset
90 * aic7xxx=verbose
92 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
94 * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp
98 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
100 * Copyright (c) 1997-1999 Doug Ledford
102 * These changes are released under the same licensing terms as the FreeBSD
103 * driver written by Justin Gibbs. Please see his Copyright notice above
104 * for the exact terms and conditions covering my changes as well as the
105 * warranty statement.
107 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
108 * but are not limited to:
110 * 1: Import of the latest FreeBSD sequencer code for this driver
111 * 2: Modification of kernel code to accommodate different sequencer semantics
112 * 3: Extensive changes throughout kernel portion of driver to improve
113 * abort/reset processing and error hanndling
114 * 4: Other work contributed by various people on the Internet
115 * 5: Changes to printk information and verbosity selection code
116 * 6: General reliability related changes, especially in IRQ management
117 * 7: Modifications to the default probe/attach order for supported cards
118 * 8: SMP friendliness has been improved
122 #include "aic7xxx_osm.h"
123 #include "aic7xxx_inline.h"
124 #include <scsi/scsicam.h>
127 * Include aiclib.c as part of our
128 * "module dependencies are hard" work around.
130 #include "aiclib.c"
132 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
133 #include <linux/init.h> /* __setup */
134 #endif
137 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
138 #include "sd.h" /* For geometry detection */
139 #endif
141 #include <linux/mm.h> /* For fetching system memory size */
142 #include <linux/blkdev.h> /* For block_size() */
143 #include <linux/delay.h> /* For ssleep/msleep */
146 * Lock protecting manipulation of the ahc softc list.
148 spinlock_t ahc_list_spinlock;
150 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
151 /* For dynamic sglist size calculation. */
152 u_int ahc_linux_nseg;
153 #endif
155 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0)
156 struct proc_dir_entry proc_scsi_aic7xxx = {
157 PROC_SCSI_AIC7XXX, 7, "aic7xxx",
158 S_IFDIR | S_IRUGO | S_IXUGO, 2,
159 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL
161 #endif
164 * Set this to the delay in seconds after SCSI bus reset.
165 * Note, we honor this only for the initial bus reset.
166 * The scsi error recovery code performs its own bus settle
167 * delay handling for error recovery actions.
169 #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS
170 #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS
171 #else
172 #define AIC7XXX_RESET_DELAY 5000
173 #endif
176 * Control collection of SCSI transfer statistics for the /proc filesystem.
178 * NOTE: Do NOT enable this when running on kernels version 1.2.x and below.
179 * NOTE: This does affect performance since it has to maintain statistics.
181 #ifdef CONFIG_AIC7XXX_PROC_STATS
182 #define AIC7XXX_PROC_STATS
183 #endif
186 * To change the default number of tagged transactions allowed per-device,
187 * add a line to the lilo.conf file like:
188 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
189 * which will result in the first four devices on the first two
190 * controllers being set to a tagged queue depth of 32.
192 * The tag_commands is an array of 16 to allow for wide and twin adapters.
193 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
194 * for channel 1.
196 typedef struct {
197 uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */
198 } adapter_tag_info_t;
201 * Modify this as you see fit for your system.
203 * 0 tagged queuing disabled
204 * 1 <= n <= 253 n == max tags ever dispatched.
206 * The driver will throttle the number of commands dispatched to a
207 * device if it returns queue full. For devices with a fixed maximum
208 * queue depth, the driver will eventually determine this depth and
209 * lock it in (a console message is printed to indicate that a lock
210 * has occurred). On some devices, queue full is returned for a temporary
211 * resource shortage. These devices will return queue full at varying
212 * depths. The driver will throttle back when the queue fulls occur and
213 * attempt to slowly increase the depth over time as the device recovers
214 * from the resource shortage.
216 * In this example, the first line will disable tagged queueing for all
217 * the devices on the first probed aic7xxx adapter.
219 * The second line enables tagged queueing with 4 commands/LUN for IDs
220 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
221 * driver to attempt to use up to 64 tags for ID 1.
223 * The third line is the same as the first line.
225 * The fourth line disables tagged queueing for devices 0 and 3. It
226 * enables tagged queueing for the other IDs, with 16 commands/LUN
227 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
228 * IDs 2, 5-7, and 9-15.
232 * NOTE: The below structure is for reference only, the actual structure
233 * to modify in order to change things is just below this comment block.
234 adapter_tag_info_t aic7xxx_tag_info[] =
236 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
237 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
238 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
239 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
243 #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE
244 #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE
245 #else
246 #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE
247 #endif
249 #define AIC7XXX_CONFIGED_TAG_COMMANDS { \
250 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
251 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
252 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
253 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
254 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
255 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
256 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
257 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \
261 * By default, use the number of commands specified by
262 * the users kernel configuration.
264 static adapter_tag_info_t aic7xxx_tag_info[] =
266 {AIC7XXX_CONFIGED_TAG_COMMANDS},
267 {AIC7XXX_CONFIGED_TAG_COMMANDS},
268 {AIC7XXX_CONFIGED_TAG_COMMANDS},
269 {AIC7XXX_CONFIGED_TAG_COMMANDS},
270 {AIC7XXX_CONFIGED_TAG_COMMANDS},
271 {AIC7XXX_CONFIGED_TAG_COMMANDS},
272 {AIC7XXX_CONFIGED_TAG_COMMANDS},
273 {AIC7XXX_CONFIGED_TAG_COMMANDS},
274 {AIC7XXX_CONFIGED_TAG_COMMANDS},
275 {AIC7XXX_CONFIGED_TAG_COMMANDS},
276 {AIC7XXX_CONFIGED_TAG_COMMANDS},
277 {AIC7XXX_CONFIGED_TAG_COMMANDS},
278 {AIC7XXX_CONFIGED_TAG_COMMANDS},
279 {AIC7XXX_CONFIGED_TAG_COMMANDS},
280 {AIC7XXX_CONFIGED_TAG_COMMANDS},
281 {AIC7XXX_CONFIGED_TAG_COMMANDS}
285 * DV option:
287 * positive value = DV Enabled
288 * zero = DV Disabled
289 * negative value = DV Default for adapter type/seeprom
291 #ifdef CONFIG_AIC7XXX_DV_SETTING
292 #define AIC7XXX_CONFIGED_DV CONFIG_AIC7XXX_DV_SETTING
293 #else
294 #define AIC7XXX_CONFIGED_DV -1
295 #endif
297 static int8_t aic7xxx_dv_settings[] =
299 AIC7XXX_CONFIGED_DV,
300 AIC7XXX_CONFIGED_DV,
301 AIC7XXX_CONFIGED_DV,
302 AIC7XXX_CONFIGED_DV,
303 AIC7XXX_CONFIGED_DV,
304 AIC7XXX_CONFIGED_DV,
305 AIC7XXX_CONFIGED_DV,
306 AIC7XXX_CONFIGED_DV,
307 AIC7XXX_CONFIGED_DV,
308 AIC7XXX_CONFIGED_DV,
309 AIC7XXX_CONFIGED_DV,
310 AIC7XXX_CONFIGED_DV,
311 AIC7XXX_CONFIGED_DV,
312 AIC7XXX_CONFIGED_DV,
313 AIC7XXX_CONFIGED_DV,
314 AIC7XXX_CONFIGED_DV
318 * There should be a specific return value for this in scsi.h, but
319 * it seems that most drivers ignore it.
321 #define DID_UNDERFLOW DID_ERROR
323 void
324 ahc_print_path(struct ahc_softc *ahc, struct scb *scb)
326 printk("(scsi%d:%c:%d:%d): ",
327 ahc->platform_data->host->host_no,
328 scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X',
329 scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1,
330 scb != NULL ? SCB_GET_LUN(scb) : -1);
334 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
335 * cards in the system. This should be fixed. Exceptions to this
336 * rule are noted in the comments.
340 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
341 * has no effect on any later resets that might occur due to things like
342 * SCSI bus timeouts.
344 static uint32_t aic7xxx_no_reset;
347 * Certain PCI motherboards will scan PCI devices from highest to lowest,
348 * others scan from lowest to highest, and they tend to do all kinds of
349 * strange things when they come into contact with PCI bridge chips. The
350 * net result of all this is that the PCI card that is actually used to boot
351 * the machine is very hard to detect. Most motherboards go from lowest
352 * PCI slot number to highest, and the first SCSI controller found is the
353 * one you boot from. The only exceptions to this are when a controller
354 * has its BIOS disabled. So, we by default sort all of our SCSI controllers
355 * from lowest PCI slot number to highest PCI slot number. We also force
356 * all controllers with their BIOS disabled to the end of the list. This
357 * works on *almost* all computers. Where it doesn't work, we have this
358 * option. Setting this option to non-0 will reverse the order of the sort
359 * to highest first, then lowest, but will still leave cards with their BIOS
360 * disabled at the very end. That should fix everyone up unless there are
361 * really strange cirumstances.
363 static uint32_t aic7xxx_reverse_scan;
366 * Should we force EXTENDED translation on a controller.
367 * 0 == Use whatever is in the SEEPROM or default to off
368 * 1 == Use whatever is in the SEEPROM or default to on
370 static uint32_t aic7xxx_extended;
373 * PCI bus parity checking of the Adaptec controllers. This is somewhat
374 * dubious at best. To my knowledge, this option has never actually
375 * solved a PCI parity problem, but on certain machines with broken PCI
376 * chipset configurations where stray PCI transactions with bad parity are
377 * the norm rather than the exception, the error messages can be overwelming.
378 * It's included in the driver for completeness.
379 * 0 = Shut off PCI parity check
380 * non-0 = reverse polarity pci parity checking
382 static uint32_t aic7xxx_pci_parity = ~0;
385 * Certain newer motherboards have put new PCI based devices into the
386 * IO spaces that used to typically be occupied by VLB or EISA cards.
387 * This overlap can cause these newer motherboards to lock up when scanned
388 * for older EISA and VLB devices. Setting this option to non-0 will
389 * cause the driver to skip scanning for any VLB or EISA controllers and
390 * only support the PCI controllers. NOTE: this means that if the kernel
391 * os compiled with PCI support disabled, then setting this to non-0
392 * would result in never finding any devices :)
394 #ifndef CONFIG_AIC7XXX_PROBE_EISA_VL
395 uint32_t aic7xxx_probe_eisa_vl;
396 #else
397 uint32_t aic7xxx_probe_eisa_vl = ~0;
398 #endif
401 * There are lots of broken chipsets in the world. Some of them will
402 * violate the PCI spec when we issue byte sized memory writes to our
403 * controller. I/O mapped register access, if allowed by the given
404 * platform, will work in almost all cases.
406 uint32_t aic7xxx_allow_memio = ~0;
409 * aic7xxx_detect() has been run, so register all device arrivals
410 * immediately with the system rather than deferring to the sorted
411 * attachment performed by aic7xxx_detect().
413 int aic7xxx_detect_complete;
416 * So that we can set how long each device is given as a selection timeout.
417 * The table of values goes like this:
418 * 0 - 256ms
419 * 1 - 128ms
420 * 2 - 64ms
421 * 3 - 32ms
422 * We default to 256ms because some older devices need a longer time
423 * to respond to initial selection.
425 static uint32_t aic7xxx_seltime;
428 * Certain devices do not perform any aging on commands. Should the
429 * device be saturated by commands in one portion of the disk, it is
430 * possible for transactions on far away sectors to never be serviced.
431 * To handle these devices, we can periodically send an ordered tag to
432 * force all outstanding transactions to be serviced prior to a new
433 * transaction.
435 uint32_t aic7xxx_periodic_otag;
438 * Module information and settable options.
440 static char *aic7xxx = NULL;
442 * Just in case someone uses commas to separate items on the insmod
443 * command line, we define a dummy buffer here to avoid having insmod
444 * write wild stuff into our code segment
446 static char dummy_buffer[60] = "Please don't trounce on me insmod!!\n";
448 MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>");
449 MODULE_DESCRIPTION("Adaptec Aic77XX/78XX SCSI Host Bus Adapter driver");
450 MODULE_LICENSE("Dual BSD/GPL");
451 MODULE_VERSION(AIC7XXX_DRIVER_VERSION);
452 MODULE_PARM(aic7xxx, "s");
453 MODULE_PARM_DESC(aic7xxx,
454 "period delimited, options string.\n"
455 " verbose Enable verbose/diagnostic logging\n"
456 " allow_memio Allow device registers to be memory mapped\n"
457 " debug Bitmask of debug values to enable\n"
458 " no_probe Toggle EISA/VLB controller probing\n"
459 " probe_eisa_vl Toggle EISA/VLB controller probing\n"
460 " no_reset Supress initial bus resets\n"
461 " extended Enable extended geometry on all controllers\n"
462 " periodic_otag Send an ordered tagged transaction\n"
463 " periodically to prevent tag starvation.\n"
464 " This may be required by some older disk\n"
465 " drives or RAID arrays.\n"
466 " reverse_scan Sort PCI devices highest Bus/Slot to lowest\n"
467 " tag_info:<tag_str> Set per-target tag depth\n"
468 " global_tag_depth:<int> Global tag depth for every target\n"
469 " on every bus\n"
470 " dv:<dv_settings> Set per-controller Domain Validation Setting.\n"
471 " seltime:<int> Selection Timeout\n"
472 " (0/256ms,1/128ms,2/64ms,3/32ms)\n"
473 "\n"
474 " Sample /etc/modprobe.conf line:\n"
475 " Toggle EISA/VLB probing\n"
476 " Set tag depth on Controller 1/Target 1 to 10 tags\n"
477 " Shorten the selection timeout to 128ms\n"
478 "\n"
479 " options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n"
482 static void ahc_linux_handle_scsi_status(struct ahc_softc *,
483 struct ahc_linux_device *,
484 struct scb *);
485 static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc,
486 Scsi_Cmnd *cmd);
487 static void ahc_linux_filter_inquiry(struct ahc_softc*, struct ahc_devinfo*);
488 static void ahc_linux_sem_timeout(u_long arg);
489 static void ahc_linux_freeze_simq(struct ahc_softc *ahc);
490 static void ahc_linux_release_simq(u_long arg);
491 static void ahc_linux_dev_timed_unfreeze(u_long arg);
492 static int ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag);
493 static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc);
494 static void ahc_linux_size_nseg(void);
495 static void ahc_linux_thread_run_complete_queue(struct ahc_softc *ahc);
496 static void ahc_linux_start_dv(struct ahc_softc *ahc);
497 static void ahc_linux_dv_timeout(struct scsi_cmnd *cmd);
498 static int ahc_linux_dv_thread(void *data);
499 static void ahc_linux_kill_dv_thread(struct ahc_softc *ahc);
500 static void ahc_linux_dv_target(struct ahc_softc *ahc, u_int target);
501 static void ahc_linux_dv_transition(struct ahc_softc *ahc,
502 struct scsi_cmnd *cmd,
503 struct ahc_devinfo *devinfo,
504 struct ahc_linux_target *targ);
505 static void ahc_linux_dv_fill_cmd(struct ahc_softc *ahc,
506 struct scsi_cmnd *cmd,
507 struct ahc_devinfo *devinfo);
508 static void ahc_linux_dv_inq(struct ahc_softc *ahc,
509 struct scsi_cmnd *cmd,
510 struct ahc_devinfo *devinfo,
511 struct ahc_linux_target *targ,
512 u_int request_length);
513 static void ahc_linux_dv_tur(struct ahc_softc *ahc,
514 struct scsi_cmnd *cmd,
515 struct ahc_devinfo *devinfo);
516 static void ahc_linux_dv_rebd(struct ahc_softc *ahc,
517 struct scsi_cmnd *cmd,
518 struct ahc_devinfo *devinfo,
519 struct ahc_linux_target *targ);
520 static void ahc_linux_dv_web(struct ahc_softc *ahc,
521 struct scsi_cmnd *cmd,
522 struct ahc_devinfo *devinfo,
523 struct ahc_linux_target *targ);
524 static void ahc_linux_dv_reb(struct ahc_softc *ahc,
525 struct scsi_cmnd *cmd,
526 struct ahc_devinfo *devinfo,
527 struct ahc_linux_target *targ);
528 static void ahc_linux_dv_su(struct ahc_softc *ahc,
529 struct scsi_cmnd *cmd,
530 struct ahc_devinfo *devinfo,
531 struct ahc_linux_target *targ);
532 static int ahc_linux_fallback(struct ahc_softc *ahc,
533 struct ahc_devinfo *devinfo);
534 static void ahc_linux_dv_complete(Scsi_Cmnd *cmd);
535 static void ahc_linux_generate_dv_pattern(struct ahc_linux_target *targ);
536 static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc,
537 struct ahc_devinfo *devinfo);
538 static u_int ahc_linux_user_dv_setting(struct ahc_softc *ahc);
539 static void ahc_linux_device_queue_depth(struct ahc_softc *ahc,
540 struct ahc_linux_device *dev);
541 static struct ahc_linux_target* ahc_linux_alloc_target(struct ahc_softc*,
542 u_int, u_int);
543 static void ahc_linux_free_target(struct ahc_softc*,
544 struct ahc_linux_target*);
545 static struct ahc_linux_device* ahc_linux_alloc_device(struct ahc_softc*,
546 struct ahc_linux_target*,
547 u_int);
548 static void ahc_linux_free_device(struct ahc_softc*,
549 struct ahc_linux_device*);
550 static void ahc_linux_run_device_queue(struct ahc_softc*,
551 struct ahc_linux_device*);
552 static void ahc_linux_setup_tag_info_global(char *p);
553 static aic_option_callback_t ahc_linux_setup_tag_info;
554 static aic_option_callback_t ahc_linux_setup_dv;
555 static int aic7xxx_setup(char *s);
556 static int ahc_linux_next_unit(void);
557 static void ahc_runq_tasklet(unsigned long data);
558 static struct ahc_cmd *ahc_linux_run_complete_queue(struct ahc_softc *ahc);
560 /********************************* Inlines ************************************/
561 static __inline void ahc_schedule_runq(struct ahc_softc *ahc);
562 static __inline struct ahc_linux_device*
563 ahc_linux_get_device(struct ahc_softc *ahc, u_int channel,
564 u_int target, u_int lun, int alloc);
565 static __inline void ahc_schedule_completeq(struct ahc_softc *ahc);
566 static __inline void ahc_linux_check_device_queue(struct ahc_softc *ahc,
567 struct ahc_linux_device *dev);
568 static __inline struct ahc_linux_device *
569 ahc_linux_next_device_to_run(struct ahc_softc *ahc);
570 static __inline void ahc_linux_run_device_queues(struct ahc_softc *ahc);
571 static __inline void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);
573 static __inline int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
574 struct ahc_dma_seg *sg,
575 bus_addr_t addr, bus_size_t len);
577 static __inline void
578 ahc_schedule_completeq(struct ahc_softc *ahc)
580 if ((ahc->platform_data->flags & AHC_RUN_CMPLT_Q_TIMER) == 0) {
581 ahc->platform_data->flags |= AHC_RUN_CMPLT_Q_TIMER;
582 ahc->platform_data->completeq_timer.expires = jiffies;
583 add_timer(&ahc->platform_data->completeq_timer);
588 * Must be called with our lock held.
590 static __inline void
591 ahc_schedule_runq(struct ahc_softc *ahc)
593 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
594 tasklet_schedule(&ahc->platform_data->runq_tasklet);
595 #else
597 * Tasklets are not available, so run inline.
599 ahc_runq_tasklet((unsigned long)ahc);
600 #endif
603 static __inline struct ahc_linux_device*
604 ahc_linux_get_device(struct ahc_softc *ahc, u_int channel, u_int target,
605 u_int lun, int alloc)
607 struct ahc_linux_target *targ;
608 struct ahc_linux_device *dev;
609 u_int target_offset;
611 target_offset = target;
612 if (channel != 0)
613 target_offset += 8;
614 targ = ahc->platform_data->targets[target_offset];
615 if (targ == NULL) {
616 if (alloc != 0) {
617 targ = ahc_linux_alloc_target(ahc, channel, target);
618 if (targ == NULL)
619 return (NULL);
620 } else
621 return (NULL);
623 dev = targ->devices[lun];
624 if (dev == NULL && alloc != 0)
625 dev = ahc_linux_alloc_device(ahc, targ, lun);
626 return (dev);
629 #define AHC_LINUX_MAX_RETURNED_ERRORS 4
630 static struct ahc_cmd *
631 ahc_linux_run_complete_queue(struct ahc_softc *ahc)
633 struct ahc_cmd *acmd;
634 u_long done_flags;
635 int with_errors;
637 with_errors = 0;
638 ahc_done_lock(ahc, &done_flags);
639 while ((acmd = TAILQ_FIRST(&ahc->platform_data->completeq)) != NULL) {
640 Scsi_Cmnd *cmd;
642 if (with_errors > AHC_LINUX_MAX_RETURNED_ERRORS) {
644 * Linux uses stack recursion to requeue
645 * commands that need to be retried. Avoid
646 * blowing out the stack by "spoon feeding"
647 * commands that completed with error back
648 * the operating system in case they are going
649 * to be retried. "ick"
651 ahc_schedule_completeq(ahc);
652 break;
654 TAILQ_REMOVE(&ahc->platform_data->completeq,
655 acmd, acmd_links.tqe);
656 cmd = &acmd_scsi_cmd(acmd);
657 cmd->host_scribble = NULL;
658 if (ahc_cmd_get_transaction_status(cmd) != DID_OK
659 || (cmd->result & 0xFF) != SCSI_STATUS_OK)
660 with_errors++;
662 cmd->scsi_done(cmd);
664 ahc_done_unlock(ahc, &done_flags);
665 return (acmd);
668 static __inline void
669 ahc_linux_check_device_queue(struct ahc_softc *ahc,
670 struct ahc_linux_device *dev)
672 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) != 0
673 && dev->active == 0) {
674 dev->flags &= ~AHC_DEV_FREEZE_TIL_EMPTY;
675 dev->qfrozen--;
678 if (TAILQ_FIRST(&dev->busyq) == NULL
679 || dev->openings == 0 || dev->qfrozen != 0)
680 return;
682 ahc_linux_run_device_queue(ahc, dev);
685 static __inline struct ahc_linux_device *
686 ahc_linux_next_device_to_run(struct ahc_softc *ahc)
689 if ((ahc->flags & AHC_RESOURCE_SHORTAGE) != 0
690 || (ahc->platform_data->qfrozen != 0
691 && AHC_DV_SIMQ_FROZEN(ahc) == 0))
692 return (NULL);
693 return (TAILQ_FIRST(&ahc->platform_data->device_runq));
696 static __inline void
697 ahc_linux_run_device_queues(struct ahc_softc *ahc)
699 struct ahc_linux_device *dev;
701 while ((dev = ahc_linux_next_device_to_run(ahc)) != NULL) {
702 TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links);
703 dev->flags &= ~AHC_DEV_ON_RUN_LIST;
704 ahc_linux_check_device_queue(ahc, dev);
708 static __inline void
709 ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
711 Scsi_Cmnd *cmd;
713 cmd = scb->io_ctx;
714 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE);
715 if (cmd->use_sg != 0) {
716 struct scatterlist *sg;
718 sg = (struct scatterlist *)cmd->request_buffer;
719 pci_unmap_sg(ahc->dev_softc, sg, cmd->use_sg,
720 scsi_to_pci_dma_dir(cmd->sc_data_direction));
721 } else if (cmd->request_bufflen != 0) {
722 pci_unmap_single(ahc->dev_softc,
723 scb->platform_data->buf_busaddr,
724 cmd->request_bufflen,
725 scsi_to_pci_dma_dir(cmd->sc_data_direction));
729 static __inline int
730 ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
731 struct ahc_dma_seg *sg, bus_addr_t addr, bus_size_t len)
733 int consumed;
735 if ((scb->sg_count + 1) > AHC_NSEG)
736 panic("Too few segs for dma mapping. "
737 "Increase AHC_NSEG\n");
739 consumed = 1;
740 sg->addr = ahc_htole32(addr & 0xFFFFFFFF);
741 scb->platform_data->xfer_len += len;
743 if (sizeof(bus_addr_t) > 4
744 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0)
745 len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK;
747 sg->len = ahc_htole32(len);
748 return (consumed);
751 /************************ Host template entry points *************************/
752 static int ahc_linux_detect(Scsi_Host_Template *);
753 static int ahc_linux_queue(Scsi_Cmnd *, void (*)(Scsi_Cmnd *));
754 static const char *ahc_linux_info(struct Scsi_Host *);
755 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
756 static int ahc_linux_slave_alloc(Scsi_Device *);
757 static int ahc_linux_slave_configure(Scsi_Device *);
758 static void ahc_linux_slave_destroy(Scsi_Device *);
759 #if defined(__i386__)
760 static int ahc_linux_biosparam(struct scsi_device*,
761 struct block_device*,
762 sector_t, int[]);
763 #endif
764 #else
765 static int ahc_linux_release(struct Scsi_Host *);
766 static void ahc_linux_select_queue_depth(struct Scsi_Host *host,
767 Scsi_Device *scsi_devs);
768 #if defined(__i386__)
769 static int ahc_linux_biosparam(Disk *, kdev_t, int[]);
770 #endif
771 #endif
772 static int ahc_linux_bus_reset(Scsi_Cmnd *);
773 static int ahc_linux_dev_reset(Scsi_Cmnd *);
774 static int ahc_linux_abort(Scsi_Cmnd *);
777 * Calculate a safe value for AHC_NSEG (as expressed through ahc_linux_nseg).
779 * In pre-2.5.X...
780 * The midlayer allocates an S/G array dynamically when a command is issued
781 * using SCSI malloc. This array, which is in an OS dependent format that
782 * must later be copied to our private S/G list, is sized to house just the
783 * number of segments needed for the current transfer. Since the code that
784 * sizes the SCSI malloc pool does not take into consideration fragmentation
785 * of the pool, executing transactions numbering just a fraction of our
786 * concurrent transaction limit with list lengths aproaching AHC_NSEG will
787 * quickly depleat the SCSI malloc pool of usable space. Unfortunately, the
788 * mid-layer does not properly handle this scsi malloc failures for the S/G
789 * array and the result can be a lockup of the I/O subsystem. We try to size
790 * our S/G list so that it satisfies our drivers allocation requirements in
791 * addition to avoiding fragmentation of the SCSI malloc pool.
793 static void
794 ahc_linux_size_nseg(void)
796 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
797 u_int cur_size;
798 u_int best_size;
801 * The SCSI allocator rounds to the nearest 512 bytes
802 * an cannot allocate across a page boundary. Our algorithm
803 * is to start at 1K of scsi malloc space per-command and
804 * loop through all factors of the PAGE_SIZE and pick the best.
806 best_size = 0;
807 for (cur_size = 1024; cur_size <= PAGE_SIZE; cur_size *= 2) {
808 u_int nseg;
810 nseg = cur_size / sizeof(struct scatterlist);
811 if (nseg < AHC_LINUX_MIN_NSEG)
812 continue;
814 if (best_size == 0) {
815 best_size = cur_size;
816 ahc_linux_nseg = nseg;
817 } else {
818 u_int best_rem;
819 u_int cur_rem;
822 * Compare the traits of the current "best_size"
823 * with the current size to determine if the
824 * current size is a better size.
826 best_rem = best_size % sizeof(struct scatterlist);
827 cur_rem = cur_size % sizeof(struct scatterlist);
828 if (cur_rem < best_rem) {
829 best_size = cur_size;
830 ahc_linux_nseg = nseg;
834 #endif
838 * Try to detect an Adaptec 7XXX controller.
840 static int
841 ahc_linux_detect(Scsi_Host_Template *template)
843 struct ahc_softc *ahc;
844 int found = 0;
846 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
848 * It is a bug that the upper layer takes
849 * this lock just prior to calling us.
851 spin_unlock_irq(&io_request_lock);
852 #endif
855 * Sanity checking of Linux SCSI data structures so
856 * that some of our hacks^H^H^H^H^Hassumptions aren't
857 * violated.
859 if (offsetof(struct ahc_cmd_internal, end)
860 > offsetof(struct scsi_cmnd, host_scribble)) {
861 printf("ahc_linux_detect: SCSI data structures changed.\n");
862 printf("ahc_linux_detect: Unable to attach\n");
863 return (0);
865 ahc_linux_size_nseg();
866 #ifdef MODULE
868 * If we've been passed any parameters, process them now.
870 if (aic7xxx)
871 aic7xxx_setup(aic7xxx);
872 if (dummy_buffer[0] != 'P')
873 printk(KERN_WARNING
874 "aic7xxx: Please read the file /usr/src/linux/drivers/scsi/README.aic7xxx\n"
875 "aic7xxx: to see the proper way to specify options to the aic7xxx module\n"
876 "aic7xxx: Specifically, don't use any commas when passing arguments to\n"
877 "aic7xxx: insmod or else it might trash certain memory areas.\n");
878 #endif
880 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0)
881 template->proc_name = "aic7xxx";
882 #else
883 template->proc_dir = &proc_scsi_aic7xxx;
884 #endif
887 * Initialize our softc list lock prior to
888 * probing for any adapters.
890 ahc_list_lockinit();
892 found = ahc_linux_pci_init();
893 if (!ahc_linux_eisa_init())
894 found++;
897 * Register with the SCSI layer all
898 * controllers we've found.
900 TAILQ_FOREACH(ahc, &ahc_tailq, links) {
902 if (ahc_linux_register_host(ahc, template) == 0)
903 found++;
906 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
907 spin_lock_irq(&io_request_lock);
908 #endif
909 aic7xxx_detect_complete++;
911 return (found);
914 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
916 * Free the passed in Scsi_Host memory structures prior to unloading the
917 * module.
920 ahc_linux_release(struct Scsi_Host * host)
922 struct ahc_softc *ahc;
923 u_long l;
925 ahc_list_lock(&l);
926 if (host != NULL) {
929 * We should be able to just perform
930 * the free directly, but check our
931 * list for extra sanity.
933 ahc = ahc_find_softc(*(struct ahc_softc **)host->hostdata);
934 if (ahc != NULL) {
935 u_long s;
937 ahc_lock(ahc, &s);
938 ahc_intr_enable(ahc, FALSE);
939 ahc_unlock(ahc, &s);
940 ahc_free(ahc);
943 ahc_list_unlock(&l);
944 return (0);
946 #endif
949 * Return a string describing the driver.
951 static const char *
952 ahc_linux_info(struct Scsi_Host *host)
954 static char buffer[512];
955 char ahc_info[256];
956 char *bp;
957 struct ahc_softc *ahc;
959 bp = &buffer[0];
960 ahc = *(struct ahc_softc **)host->hostdata;
961 memset(bp, 0, sizeof(buffer));
962 strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev ");
963 strcat(bp, AIC7XXX_DRIVER_VERSION);
964 strcat(bp, "\n");
965 strcat(bp, " <");
966 strcat(bp, ahc->description);
967 strcat(bp, ">\n");
968 strcat(bp, " ");
969 ahc_controller_info(ahc, ahc_info);
970 strcat(bp, ahc_info);
971 strcat(bp, "\n");
973 return (bp);
977 * Queue an SCB to the controller.
979 static int
980 ahc_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *))
982 struct ahc_softc *ahc;
983 struct ahc_linux_device *dev;
984 u_long flags;
986 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
989 * Save the callback on completion function.
991 cmd->scsi_done = scsi_done;
993 ahc_midlayer_entrypoint_lock(ahc, &flags);
996 * Close the race of a command that was in the process of
997 * being queued to us just as our simq was frozen. Let
998 * DV commands through so long as we are only frozen to
999 * perform DV.
1001 if (ahc->platform_data->qfrozen != 0
1002 && AHC_DV_CMD(cmd) == 0) {
1004 ahc_cmd_set_transaction_status(cmd, CAM_REQUEUE_REQ);
1005 ahc_linux_queue_cmd_complete(ahc, cmd);
1006 ahc_schedule_completeq(ahc);
1007 ahc_midlayer_entrypoint_unlock(ahc, &flags);
1008 return (0);
1010 dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id,
1011 cmd->device->lun, /*alloc*/TRUE);
1012 if (dev == NULL) {
1013 ahc_cmd_set_transaction_status(cmd, CAM_RESRC_UNAVAIL);
1014 ahc_linux_queue_cmd_complete(ahc, cmd);
1015 ahc_schedule_completeq(ahc);
1016 ahc_midlayer_entrypoint_unlock(ahc, &flags);
1017 printf("%s: aic7xxx_linux_queue - Unable to allocate device!\n",
1018 ahc_name(ahc));
1019 return (0);
1021 cmd->result = CAM_REQ_INPROG << 16;
1022 TAILQ_INSERT_TAIL(&dev->busyq, (struct ahc_cmd *)cmd, acmd_links.tqe);
1023 if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) {
1024 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links);
1025 dev->flags |= AHC_DEV_ON_RUN_LIST;
1026 ahc_linux_run_device_queues(ahc);
1028 ahc_midlayer_entrypoint_unlock(ahc, &flags);
1029 return (0);
1032 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1033 static int
1034 ahc_linux_slave_alloc(Scsi_Device *device)
1036 struct ahc_softc *ahc;
1038 ahc = *((struct ahc_softc **)device->host->hostdata);
1039 if (bootverbose)
1040 printf("%s: Slave Alloc %d\n", ahc_name(ahc), device->id);
1041 return (0);
1044 static int
1045 ahc_linux_slave_configure(Scsi_Device *device)
1047 struct ahc_softc *ahc;
1048 struct ahc_linux_device *dev;
1049 u_long flags;
1051 ahc = *((struct ahc_softc **)device->host->hostdata);
1052 if (bootverbose)
1053 printf("%s: Slave Configure %d\n", ahc_name(ahc), device->id);
1054 ahc_midlayer_entrypoint_lock(ahc, &flags);
1056 * Since Linux has attached to the device, configure
1057 * it so we don't free and allocate the device
1058 * structure on every command.
1060 dev = ahc_linux_get_device(ahc, device->channel,
1061 device->id, device->lun,
1062 /*alloc*/TRUE);
1063 if (dev != NULL) {
1064 dev->flags &= ~AHC_DEV_UNCONFIGURED;
1065 dev->scsi_device = device;
1066 ahc_linux_device_queue_depth(ahc, dev);
1068 ahc_midlayer_entrypoint_unlock(ahc, &flags);
1069 return (0);
1072 static void
1073 ahc_linux_slave_destroy(Scsi_Device *device)
1075 struct ahc_softc *ahc;
1076 struct ahc_linux_device *dev;
1077 u_long flags;
1079 ahc = *((struct ahc_softc **)device->host->hostdata);
1080 if (bootverbose)
1081 printf("%s: Slave Destroy %d\n", ahc_name(ahc), device->id);
1082 ahc_midlayer_entrypoint_lock(ahc, &flags);
1083 dev = ahc_linux_get_device(ahc, device->channel,
1084 device->id, device->lun,
1085 /*alloc*/FALSE);
1087 * Filter out "silly" deletions of real devices by only
1088 * deleting devices that have had slave_configure()
1089 * called on them. All other devices that have not
1090 * been configured will automatically be deleted by
1091 * the refcounting process.
1093 if (dev != NULL
1094 && (dev->flags & AHC_DEV_SLAVE_CONFIGURED) != 0) {
1095 dev->flags |= AHC_DEV_UNCONFIGURED;
1096 if (TAILQ_EMPTY(&dev->busyq)
1097 && dev->active == 0
1098 && (dev->flags & AHC_DEV_TIMER_ACTIVE) == 0)
1099 ahc_linux_free_device(ahc, dev);
1101 ahc_midlayer_entrypoint_unlock(ahc, &flags);
1103 #else
1105 * Sets the queue depth for each SCSI device hanging
1106 * off the input host adapter.
1108 static void
1109 ahc_linux_select_queue_depth(struct Scsi_Host *host, Scsi_Device *scsi_devs)
1111 Scsi_Device *device;
1112 Scsi_Device *ldev;
1113 struct ahc_softc *ahc;
1114 u_long flags;
1116 ahc = *((struct ahc_softc **)host->hostdata);
1117 ahc_lock(ahc, &flags);
1118 for (device = scsi_devs; device != NULL; device = device->next) {
1121 * Watch out for duplicate devices. This works around
1122 * some quirks in how the SCSI scanning code does its
1123 * device management.
1125 for (ldev = scsi_devs; ldev != device; ldev = ldev->next) {
1126 if (ldev->host == device->host
1127 && ldev->channel == device->channel
1128 && ldev->id == device->id
1129 && ldev->lun == device->lun)
1130 break;
1132 /* Skip duplicate. */
1133 if (ldev != device)
1134 continue;
1136 if (device->host == host) {
1137 struct ahc_linux_device *dev;
1140 * Since Linux has attached to the device, configure
1141 * it so we don't free and allocate the device
1142 * structure on every command.
1144 dev = ahc_linux_get_device(ahc, device->channel,
1145 device->id, device->lun,
1146 /*alloc*/TRUE);
1147 if (dev != NULL) {
1148 dev->flags &= ~AHC_DEV_UNCONFIGURED;
1149 dev->scsi_device = device;
1150 ahc_linux_device_queue_depth(ahc, dev);
1151 device->queue_depth = dev->openings
1152 + dev->active;
1153 if ((dev->flags & (AHC_DEV_Q_BASIC
1154 | AHC_DEV_Q_TAGGED)) == 0) {
1156 * We allow the OS to queue 2 untagged
1157 * transactions to us at any time even
1158 * though we can only execute them
1159 * serially on the controller/device.
1160 * This should remove some latency.
1162 device->queue_depth = 2;
1167 ahc_unlock(ahc, &flags);
1169 #endif
1171 #if defined(__i386__)
1173 * Return the disk geometry for the given SCSI device.
1175 static int
1176 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1177 ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
1178 sector_t capacity, int geom[])
1180 uint8_t *bh;
1181 #else
1182 ahc_linux_biosparam(Disk *disk, kdev_t dev, int geom[])
1184 struct scsi_device *sdev = disk->device;
1185 u_long capacity = disk->capacity;
1186 struct buffer_head *bh;
1187 #endif
1188 int heads;
1189 int sectors;
1190 int cylinders;
1191 int ret;
1192 int extended;
1193 struct ahc_softc *ahc;
1194 u_int channel;
1196 ahc = *((struct ahc_softc **)sdev->host->hostdata);
1197 channel = sdev->channel;
1199 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1200 bh = scsi_bios_ptable(bdev);
1201 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,17)
1202 bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev));
1203 #else
1204 bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, 1024);
1205 #endif
1207 if (bh) {
1208 ret = scsi_partsize(bh, capacity,
1209 &geom[2], &geom[0], &geom[1]);
1210 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1211 kfree(bh);
1212 #else
1213 brelse(bh);
1214 #endif
1215 if (ret != -1)
1216 return (ret);
1218 heads = 64;
1219 sectors = 32;
1220 cylinders = aic_sector_div(capacity, heads, sectors);
1222 if (aic7xxx_extended != 0)
1223 extended = 1;
1224 else if (channel == 0)
1225 extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0;
1226 else
1227 extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0;
1228 if (extended && cylinders >= 1024) {
1229 heads = 255;
1230 sectors = 63;
1231 cylinders = aic_sector_div(capacity, heads, sectors);
1233 geom[0] = heads;
1234 geom[1] = sectors;
1235 geom[2] = cylinders;
1236 return (0);
1238 #endif
1241 * Abort the current SCSI command(s).
1243 static int
1244 ahc_linux_abort(Scsi_Cmnd *cmd)
1246 int error;
1248 error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT);
1249 if (error != 0)
1250 printf("aic7xxx_abort returns 0x%x\n", error);
1251 return (error);
1255 * Attempt to send a target reset message to the device that timed out.
1257 static int
1258 ahc_linux_dev_reset(Scsi_Cmnd *cmd)
1260 int error;
1262 error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET);
1263 if (error != 0)
1264 printf("aic7xxx_dev_reset returns 0x%x\n", error);
1265 return (error);
1269 * Reset the SCSI bus.
1271 static int
1272 ahc_linux_bus_reset(Scsi_Cmnd *cmd)
1274 struct ahc_softc *ahc;
1275 u_long s;
1276 int found;
1278 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
1279 ahc_midlayer_entrypoint_lock(ahc, &s);
1280 found = ahc_reset_channel(ahc, cmd->device->channel + 'A',
1281 /*initiate reset*/TRUE);
1282 ahc_linux_run_complete_queue(ahc);
1283 ahc_midlayer_entrypoint_unlock(ahc, &s);
1285 if (bootverbose)
1286 printf("%s: SCSI bus reset delivered. "
1287 "%d SCBs aborted.\n", ahc_name(ahc), found);
1289 return SUCCESS;
1292 Scsi_Host_Template aic7xxx_driver_template = {
1293 .module = THIS_MODULE,
1294 .name = "aic7xxx",
1295 .proc_info = ahc_linux_proc_info,
1296 .info = ahc_linux_info,
1297 .queuecommand = ahc_linux_queue,
1298 .eh_abort_handler = ahc_linux_abort,
1299 .eh_device_reset_handler = ahc_linux_dev_reset,
1300 .eh_bus_reset_handler = ahc_linux_bus_reset,
1301 #if defined(__i386__)
1302 .bios_param = ahc_linux_biosparam,
1303 #endif
1304 .can_queue = AHC_MAX_QUEUE,
1305 .this_id = -1,
1306 .cmd_per_lun = 2,
1307 .use_clustering = ENABLE_CLUSTERING,
1308 .slave_alloc = ahc_linux_slave_alloc,
1309 .slave_configure = ahc_linux_slave_configure,
1310 .slave_destroy = ahc_linux_slave_destroy,
1313 /**************************** Tasklet Handler *********************************/
1316 * In 2.4.X and above, this routine is called from a tasklet,
1317 * so we must re-acquire our lock prior to executing this code.
1318 * In all prior kernels, ahc_schedule_runq() calls this routine
1319 * directly and ahc_schedule_runq() is called with our lock held.
1321 static void
1322 ahc_runq_tasklet(unsigned long data)
1324 struct ahc_softc* ahc;
1325 struct ahc_linux_device *dev;
1326 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1327 u_long flags;
1328 #endif
1330 ahc = (struct ahc_softc *)data;
1331 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1332 ahc_lock(ahc, &flags);
1333 #endif
1334 while ((dev = ahc_linux_next_device_to_run(ahc)) != NULL) {
1336 TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links);
1337 dev->flags &= ~AHC_DEV_ON_RUN_LIST;
1338 ahc_linux_check_device_queue(ahc, dev);
1339 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1340 /* Yeild to our interrupt handler */
1341 ahc_unlock(ahc, &flags);
1342 ahc_lock(ahc, &flags);
1343 #endif
1345 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1346 ahc_unlock(ahc, &flags);
1347 #endif
1350 /******************************** Macros **************************************/
1351 #define BUILD_SCSIID(ahc, cmd) \
1352 ((((cmd)->device->id << TID_SHIFT) & TID) \
1353 | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \
1354 | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB))
1356 /******************************** Bus DMA *************************************/
1358 ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent,
1359 bus_size_t alignment, bus_size_t boundary,
1360 bus_addr_t lowaddr, bus_addr_t highaddr,
1361 bus_dma_filter_t *filter, void *filterarg,
1362 bus_size_t maxsize, int nsegments,
1363 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
1365 bus_dma_tag_t dmat;
1367 dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT);
1368 if (dmat == NULL)
1369 return (ENOMEM);
1372 * Linux is very simplistic about DMA memory. For now don't
1373 * maintain all specification information. Once Linux supplies
1374 * better facilities for doing these operations, or the
1375 * needs of this particular driver change, we might need to do
1376 * more here.
1378 dmat->alignment = alignment;
1379 dmat->boundary = boundary;
1380 dmat->maxsize = maxsize;
1381 *ret_tag = dmat;
1382 return (0);
1385 void
1386 ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat)
1388 free(dmat, M_DEVBUF);
1392 ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr,
1393 int flags, bus_dmamap_t *mapp)
1395 bus_dmamap_t map;
1397 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
1398 map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT);
1399 if (map == NULL)
1400 return (ENOMEM);
1402 * Although we can dma data above 4GB, our
1403 * "consistent" memory is below 4GB for
1404 * space efficiency reasons (only need a 4byte
1405 * address). For this reason, we have to reset
1406 * our dma mask when doing allocations.
1408 if (ahc->dev_softc != NULL)
1409 if (ahc_pci_set_dma_mask(ahc->dev_softc, 0xFFFFFFFF)) {
1410 printk(KERN_WARNING "aic7xxx: No suitable DMA available.\n");
1411 return (ENODEV);
1413 *vaddr = pci_alloc_consistent(ahc->dev_softc,
1414 dmat->maxsize, &map->bus_addr);
1415 if (ahc->dev_softc != NULL)
1416 if (ahc_pci_set_dma_mask(ahc->dev_softc,
1417 ahc->platform_data->hw_dma_mask)) {
1418 printk(KERN_WARNING "aic7xxx: No suitable DMA available.\n");
1419 return (ENODEV);
1421 #else /* LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) */
1423 * At least in 2.2.14, malloc is a slab allocator so all
1424 * allocations are aligned. We assume for these kernel versions
1425 * that all allocations will be bellow 4Gig, physically contiguous,
1426 * and accessible via DMA by the controller.
1428 map = NULL; /* No additional information to store */
1429 *vaddr = malloc(dmat->maxsize, M_DEVBUF, M_NOWAIT);
1430 #endif
1431 if (*vaddr == NULL)
1432 return (ENOMEM);
1433 *mapp = map;
1434 return(0);
1437 void
1438 ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat,
1439 void* vaddr, bus_dmamap_t map)
1441 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
1442 pci_free_consistent(ahc->dev_softc, dmat->maxsize,
1443 vaddr, map->bus_addr);
1444 #else
1445 free(vaddr, M_DEVBUF);
1446 #endif
1450 ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map,
1451 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
1452 void *cb_arg, int flags)
1455 * Assume for now that this will only be used during
1456 * initialization and not for per-transaction buffer mapping.
1458 bus_dma_segment_t stack_sg;
1460 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
1461 stack_sg.ds_addr = map->bus_addr;
1462 #else
1463 #define VIRT_TO_BUS(a) (uint32_t)virt_to_bus((void *)(a))
1464 stack_sg.ds_addr = VIRT_TO_BUS(buf);
1465 #endif
1466 stack_sg.ds_len = dmat->maxsize;
1467 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
1468 return (0);
1471 void
1472 ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
1475 * The map may is NULL in our < 2.3.X implementation.
1477 if (map != NULL)
1478 free(map, M_DEVBUF);
1482 ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
1484 /* Nothing to do */
1485 return (0);
1488 /********************* Platform Dependent Functions ***************************/
1490 * Compare "left hand" softc with "right hand" softc, returning:
1491 * < 0 - lahc has a lower priority than rahc
1492 * 0 - Softcs are equal
1493 * > 0 - lahc has a higher priority than rahc
1496 ahc_softc_comp(struct ahc_softc *lahc, struct ahc_softc *rahc)
1498 int value;
1499 int rvalue;
1500 int lvalue;
1503 * Under Linux, cards are ordered as follows:
1504 * 1) VLB/EISA BIOS enabled devices sorted by BIOS address.
1505 * 2) PCI devices with BIOS enabled sorted by bus/slot/func.
1506 * 3) All remaining VLB/EISA devices sorted by ioport.
1507 * 4) All remaining PCI devices sorted by bus/slot/func.
1509 value = (lahc->flags & AHC_BIOS_ENABLED)
1510 - (rahc->flags & AHC_BIOS_ENABLED);
1511 if (value != 0)
1512 /* Controllers with BIOS enabled have a *higher* priority */
1513 return (value);
1516 * Same BIOS setting, now sort based on bus type.
1517 * EISA and VL controllers sort together. EISA/VL
1518 * have higher priority than PCI.
1520 rvalue = (rahc->chip & AHC_BUS_MASK);
1521 if (rvalue == AHC_VL)
1522 rvalue = AHC_EISA;
1523 lvalue = (lahc->chip & AHC_BUS_MASK);
1524 if (lvalue == AHC_VL)
1525 lvalue = AHC_EISA;
1526 value = rvalue - lvalue;
1527 if (value != 0)
1528 return (value);
1530 /* Still equal. Sort by BIOS address, ioport, or bus/slot/func. */
1531 switch (rvalue) {
1532 #ifdef CONFIG_PCI
1533 case AHC_PCI:
1535 char primary_channel;
1537 if (aic7xxx_reverse_scan != 0)
1538 value = ahc_get_pci_bus(lahc->dev_softc)
1539 - ahc_get_pci_bus(rahc->dev_softc);
1540 else
1541 value = ahc_get_pci_bus(rahc->dev_softc)
1542 - ahc_get_pci_bus(lahc->dev_softc);
1543 if (value != 0)
1544 break;
1545 if (aic7xxx_reverse_scan != 0)
1546 value = ahc_get_pci_slot(lahc->dev_softc)
1547 - ahc_get_pci_slot(rahc->dev_softc);
1548 else
1549 value = ahc_get_pci_slot(rahc->dev_softc)
1550 - ahc_get_pci_slot(lahc->dev_softc);
1551 if (value != 0)
1552 break;
1554 * On multi-function devices, the user can choose
1555 * to have function 1 probed before function 0.
1556 * Give whichever channel is the primary channel
1557 * the highest priority.
1559 primary_channel = (lahc->flags & AHC_PRIMARY_CHANNEL) + 'A';
1560 value = -1;
1561 if (lahc->channel == primary_channel)
1562 value = 1;
1563 break;
1565 #endif
1566 case AHC_EISA:
1567 if ((rahc->flags & AHC_BIOS_ENABLED) != 0) {
1568 value = rahc->platform_data->bios_address
1569 - lahc->platform_data->bios_address;
1570 } else {
1571 value = rahc->bsh.ioport
1572 - lahc->bsh.ioport;
1574 break;
1575 default:
1576 panic("ahc_softc_sort: invalid bus type");
1578 return (value);
1581 static void
1582 ahc_linux_setup_tag_info_global(char *p)
1584 int tags, i, j;
1586 tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
1587 printf("Setting Global Tags= %d\n", tags);
1589 for (i = 0; i < NUM_ELEMENTS(aic7xxx_tag_info); i++) {
1590 for (j = 0; j < AHC_NUM_TARGETS; j++) {
1591 aic7xxx_tag_info[i].tag_commands[j] = tags;
1596 static void
1597 ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
1600 if ((instance >= 0) && (targ >= 0)
1601 && (instance < NUM_ELEMENTS(aic7xxx_tag_info))
1602 && (targ < AHC_NUM_TARGETS)) {
1603 aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff;
1604 if (bootverbose)
1605 printf("tag_info[%d:%d] = %d\n", instance, targ, value);
1609 static void
1610 ahc_linux_setup_dv(u_long arg, int instance, int targ, int32_t value)
1613 if ((instance >= 0)
1614 && (instance < NUM_ELEMENTS(aic7xxx_dv_settings))) {
1615 aic7xxx_dv_settings[instance] = value;
1616 if (bootverbose)
1617 printf("dv[%d] = %d\n", instance, value);
1622 * Handle Linux boot parameters. This routine allows for assigning a value
1623 * to a parameter with a ':' between the parameter and the value.
1624 * ie. aic7xxx=stpwlev:1,extended
1626 static int
1627 aic7xxx_setup(char *s)
1629 int i, n;
1630 char *p;
1631 char *end;
1633 static struct {
1634 const char *name;
1635 uint32_t *flag;
1636 } options[] = {
1637 { "extended", &aic7xxx_extended },
1638 { "no_reset", &aic7xxx_no_reset },
1639 { "verbose", &aic7xxx_verbose },
1640 { "allow_memio", &aic7xxx_allow_memio},
1641 #ifdef AHC_DEBUG
1642 { "debug", &ahc_debug },
1643 #endif
1644 { "reverse_scan", &aic7xxx_reverse_scan },
1645 { "no_probe", &aic7xxx_probe_eisa_vl },
1646 { "probe_eisa_vl", &aic7xxx_probe_eisa_vl },
1647 { "periodic_otag", &aic7xxx_periodic_otag },
1648 { "pci_parity", &aic7xxx_pci_parity },
1649 { "seltime", &aic7xxx_seltime },
1650 { "tag_info", NULL },
1651 { "global_tag_depth", NULL },
1652 { "dv", NULL }
1655 end = strchr(s, '\0');
1658 * XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS
1659 * will never be 0 in this case.
1661 n = 0;
1663 while ((p = strsep(&s, ",.")) != NULL) {
1664 if (*p == '\0')
1665 continue;
1666 for (i = 0; i < NUM_ELEMENTS(options); i++) {
1668 n = strlen(options[i].name);
1669 if (strncmp(options[i].name, p, n) == 0)
1670 break;
1672 if (i == NUM_ELEMENTS(options))
1673 continue;
1675 if (strncmp(p, "global_tag_depth", n) == 0) {
1676 ahc_linux_setup_tag_info_global(p + n);
1677 } else if (strncmp(p, "tag_info", n) == 0) {
1678 s = aic_parse_brace_option("tag_info", p + n, end,
1679 2, ahc_linux_setup_tag_info, 0);
1680 } else if (strncmp(p, "dv", n) == 0) {
1681 s = aic_parse_brace_option("dv", p + n, end, 1,
1682 ahc_linux_setup_dv, 0);
1683 } else if (p[n] == ':') {
1684 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1685 } else if (strncmp(p, "verbose", n) == 0) {
1686 *(options[i].flag) = 1;
1687 } else {
1688 *(options[i].flag) ^= 0xFFFFFFFF;
1691 return 1;
1694 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0)
1695 __setup("aic7xxx=", aic7xxx_setup);
1696 #endif
1698 uint32_t aic7xxx_verbose;
1701 ahc_linux_register_host(struct ahc_softc *ahc, Scsi_Host_Template *template)
1703 char buf[80];
1704 struct Scsi_Host *host;
1705 char *new_name;
1706 u_long s;
1707 u_int targ_offset;
1709 template->name = ahc->description;
1710 host = scsi_host_alloc(template, sizeof(struct ahc_softc *));
1711 if (host == NULL)
1712 return (ENOMEM);
1714 *((struct ahc_softc **)host->hostdata) = ahc;
1715 ahc_lock(ahc, &s);
1716 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1717 scsi_assign_lock(host, &ahc->platform_data->spin_lock);
1718 #elif AHC_SCSI_HAS_HOST_LOCK != 0
1719 host->lock = &ahc->platform_data->spin_lock;
1720 #endif
1721 ahc->platform_data->host = host;
1722 host->can_queue = AHC_MAX_QUEUE;
1723 host->cmd_per_lun = 2;
1724 /* XXX No way to communicate the ID for multiple channels */
1725 host->this_id = ahc->our_id;
1726 host->irq = ahc->platform_data->irq;
1727 host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
1728 host->max_lun = AHC_NUM_LUNS;
1729 host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0;
1730 host->sg_tablesize = AHC_NSEG;
1731 ahc_set_unit(ahc, ahc_linux_next_unit());
1732 sprintf(buf, "scsi%d", host->host_no);
1733 new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT);
1734 if (new_name != NULL) {
1735 strcpy(new_name, buf);
1736 ahc_set_name(ahc, new_name);
1738 host->unique_id = ahc->unit;
1739 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,4) && \
1740 LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
1741 scsi_set_pci_device(host, ahc->dev_softc);
1742 #endif
1743 ahc_linux_initialize_scsi_bus(ahc);
1744 ahc_unlock(ahc, &s);
1745 ahc->platform_data->dv_pid = kernel_thread(ahc_linux_dv_thread, ahc, 0);
1746 ahc_lock(ahc, &s);
1747 if (ahc->platform_data->dv_pid < 0) {
1748 printf("%s: Failed to create DV thread, error= %d\n",
1749 ahc_name(ahc), ahc->platform_data->dv_pid);
1750 return (-ahc->platform_data->dv_pid);
1753 * Initially allocate *all* of our linux target objects
1754 * so that the DV thread will scan them all in parallel
1755 * just after driver initialization. Any device that
1756 * does not exist will have its target object destroyed
1757 * by the selection timeout handler. In the case of a
1758 * device that appears after the initial DV scan, async
1759 * negotiation will occur for the first command, and DV
1760 * will comence should that first command be successful.
1762 for (targ_offset = 0;
1763 targ_offset < host->max_id * (host->max_channel + 1);
1764 targ_offset++) {
1765 u_int channel;
1766 u_int target;
1768 channel = 0;
1769 target = targ_offset;
1770 if (target > 7
1771 && (ahc->features & AHC_TWIN) != 0) {
1772 channel = 1;
1773 target &= 0x7;
1776 * Skip our own ID. Some Compaq/HP storage devices
1777 * have enclosure management devices that respond to
1778 * single bit selection (i.e. selecting ourselves).
1779 * It is expected that either an external application
1780 * or a modified kernel will be used to probe this
1781 * ID if it is appropriate. To accommodate these
1782 * installations, ahc_linux_alloc_target() will allocate
1783 * for our ID if asked to do so.
1785 if ((channel == 0 && target == ahc->our_id)
1786 || (channel == 1 && target == ahc->our_id_b))
1787 continue;
1789 ahc_linux_alloc_target(ahc, channel, target);
1791 ahc_intr_enable(ahc, TRUE);
1792 ahc_linux_start_dv(ahc);
1793 ahc_unlock(ahc, &s);
1795 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1796 scsi_add_host(host, (ahc->dev_softc ? &ahc->dev_softc->dev : NULL)); /* XXX handle failure */
1797 scsi_scan_host(host);
1798 #endif
1799 return (0);
1802 uint64_t
1803 ahc_linux_get_memsize(void)
1805 struct sysinfo si;
1807 si_meminfo(&si);
1808 return ((uint64_t)si.totalram << PAGE_SHIFT);
1812 * Find the smallest available unit number to use
1813 * for a new device. We don't just use a static
1814 * count to handle the "repeated hot-(un)plug"
1815 * scenario.
1817 static int
1818 ahc_linux_next_unit(void)
1820 struct ahc_softc *ahc;
1821 int unit;
1823 unit = 0;
1824 retry:
1825 TAILQ_FOREACH(ahc, &ahc_tailq, links) {
1826 if (ahc->unit == unit) {
1827 unit++;
1828 goto retry;
1831 return (unit);
1835 * Place the SCSI bus into a known state by either resetting it,
1836 * or forcing transfer negotiations on the next command to any
1837 * target.
1839 void
1840 ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc)
1842 int i;
1843 int numtarg;
1845 i = 0;
1846 numtarg = 0;
1848 if (aic7xxx_no_reset != 0)
1849 ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B);
1851 if ((ahc->flags & AHC_RESET_BUS_A) != 0)
1852 ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE);
1853 else
1854 numtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
1856 if ((ahc->features & AHC_TWIN) != 0) {
1858 if ((ahc->flags & AHC_RESET_BUS_B) != 0) {
1859 ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE);
1860 } else {
1861 if (numtarg == 0)
1862 i = 8;
1863 numtarg += 8;
1868 * Force negotiation to async for all targets that
1869 * will not see an initial bus reset.
1871 for (; i < numtarg; i++) {
1872 struct ahc_devinfo devinfo;
1873 struct ahc_initiator_tinfo *tinfo;
1874 struct ahc_tmode_tstate *tstate;
1875 u_int our_id;
1876 u_int target_id;
1877 char channel;
1879 channel = 'A';
1880 our_id = ahc->our_id;
1881 target_id = i;
1882 if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
1883 channel = 'B';
1884 our_id = ahc->our_id_b;
1885 target_id = i % 8;
1887 tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
1888 target_id, &tstate);
1889 ahc_compile_devinfo(&devinfo, our_id, target_id,
1890 CAM_LUN_WILDCARD, channel, ROLE_INITIATOR);
1891 ahc_update_neg_request(ahc, &devinfo, tstate,
1892 tinfo, AHC_NEG_ALWAYS);
1894 /* Give the bus some time to recover */
1895 if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) {
1896 ahc_linux_freeze_simq(ahc);
1897 init_timer(&ahc->platform_data->reset_timer);
1898 ahc->platform_data->reset_timer.data = (u_long)ahc;
1899 ahc->platform_data->reset_timer.expires =
1900 jiffies + (AIC7XXX_RESET_DELAY * HZ)/1000;
1901 ahc->platform_data->reset_timer.function =
1902 ahc_linux_release_simq;
1903 add_timer(&ahc->platform_data->reset_timer);
1908 ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg)
1911 ahc->platform_data =
1912 malloc(sizeof(struct ahc_platform_data), M_DEVBUF, M_NOWAIT);
1913 if (ahc->platform_data == NULL)
1914 return (ENOMEM);
1915 memset(ahc->platform_data, 0, sizeof(struct ahc_platform_data));
1916 TAILQ_INIT(&ahc->platform_data->completeq);
1917 TAILQ_INIT(&ahc->platform_data->device_runq);
1918 ahc->platform_data->irq = AHC_LINUX_NOIRQ;
1919 ahc->platform_data->hw_dma_mask = 0xFFFFFFFF;
1920 ahc_lockinit(ahc);
1921 ahc_done_lockinit(ahc);
1922 init_timer(&ahc->platform_data->completeq_timer);
1923 ahc->platform_data->completeq_timer.data = (u_long)ahc;
1924 ahc->platform_data->completeq_timer.function =
1925 (ahc_linux_callback_t *)ahc_linux_thread_run_complete_queue;
1926 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
1927 init_MUTEX_LOCKED(&ahc->platform_data->eh_sem);
1928 init_MUTEX_LOCKED(&ahc->platform_data->dv_sem);
1929 init_MUTEX_LOCKED(&ahc->platform_data->dv_cmd_sem);
1930 #else
1931 ahc->platform_data->eh_sem = MUTEX_LOCKED;
1932 ahc->platform_data->dv_sem = MUTEX_LOCKED;
1933 ahc->platform_data->dv_cmd_sem = MUTEX_LOCKED;
1934 #endif
1935 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1936 tasklet_init(&ahc->platform_data->runq_tasklet, ahc_runq_tasklet,
1937 (unsigned long)ahc);
1938 #endif
1939 ahc->seltime = (aic7xxx_seltime & 0x3) << 4;
1940 ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4;
1941 if (aic7xxx_pci_parity == 0)
1942 ahc->flags |= AHC_DISABLE_PCI_PERR;
1944 return (0);
1947 void
1948 ahc_platform_free(struct ahc_softc *ahc)
1950 struct ahc_linux_target *targ;
1951 struct ahc_linux_device *dev;
1952 int i, j;
1954 if (ahc->platform_data != NULL) {
1955 del_timer_sync(&ahc->platform_data->completeq_timer);
1956 ahc_linux_kill_dv_thread(ahc);
1957 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1958 tasklet_kill(&ahc->platform_data->runq_tasklet);
1959 #endif
1960 if (ahc->platform_data->host != NULL) {
1961 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1962 scsi_remove_host(ahc->platform_data->host);
1963 #endif
1964 scsi_host_put(ahc->platform_data->host);
1967 /* destroy all of the device and target objects */
1968 for (i = 0; i < AHC_NUM_TARGETS; i++) {
1969 targ = ahc->platform_data->targets[i];
1970 if (targ != NULL) {
1971 /* Keep target around through the loop. */
1972 targ->refcount++;
1973 for (j = 0; j < AHC_NUM_LUNS; j++) {
1975 if (targ->devices[j] == NULL)
1976 continue;
1977 dev = targ->devices[j];
1978 ahc_linux_free_device(ahc, dev);
1981 * Forcibly free the target now that
1982 * all devices are gone.
1984 ahc_linux_free_target(ahc, targ);
1988 if (ahc->platform_data->irq != AHC_LINUX_NOIRQ)
1989 free_irq(ahc->platform_data->irq, ahc);
1990 if (ahc->tag == BUS_SPACE_PIO
1991 && ahc->bsh.ioport != 0)
1992 release_region(ahc->bsh.ioport, 256);
1993 if (ahc->tag == BUS_SPACE_MEMIO
1994 && ahc->bsh.maddr != NULL) {
1995 u_long base_addr;
1997 base_addr = (u_long)ahc->bsh.maddr;
1998 base_addr &= PAGE_MASK;
1999 iounmap((void *)base_addr);
2000 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
2001 release_mem_region(ahc->platform_data->mem_busaddr,
2002 0x1000);
2003 #endif
2005 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) && \
2006 LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
2008 * In 2.4 we detach from the scsi midlayer before the PCI
2009 * layer invokes our remove callback. No per-instance
2010 * detach is provided, so we must reach inside the PCI
2011 * subsystem's internals and detach our driver manually.
2013 if (ahc->dev_softc != NULL)
2014 ahc->dev_softc->driver = NULL;
2015 #endif
2016 free(ahc->platform_data, M_DEVBUF);
2020 void
2021 ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
2023 ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb),
2024 SCB_GET_CHANNEL(ahc, scb),
2025 SCB_GET_LUN(scb), SCB_LIST_NULL,
2026 ROLE_UNKNOWN, CAM_REQUEUE_REQ);
2029 void
2030 ahc_platform_set_tags(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
2031 ahc_queue_alg alg)
2033 struct ahc_linux_device *dev;
2034 int was_queuing;
2035 int now_queuing;
2037 dev = ahc_linux_get_device(ahc, devinfo->channel - 'A',
2038 devinfo->target,
2039 devinfo->lun, /*alloc*/FALSE);
2040 if (dev == NULL)
2041 return;
2042 was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED);
2043 switch (alg) {
2044 default:
2045 case AHC_QUEUE_NONE:
2046 now_queuing = 0;
2047 break;
2048 case AHC_QUEUE_BASIC:
2049 now_queuing = AHC_DEV_Q_BASIC;
2050 break;
2051 case AHC_QUEUE_TAGGED:
2052 now_queuing = AHC_DEV_Q_TAGGED;
2053 break;
2055 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0
2056 && (was_queuing != now_queuing)
2057 && (dev->active != 0)) {
2058 dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY;
2059 dev->qfrozen++;
2062 dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG);
2063 if (now_queuing) {
2064 u_int usertags;
2066 usertags = ahc_linux_user_tagdepth(ahc, devinfo);
2067 if (!was_queuing) {
2069 * Start out agressively and allow our
2070 * dynamic queue depth algorithm to take
2071 * care of the rest.
2073 dev->maxtags = usertags;
2074 dev->openings = dev->maxtags - dev->active;
2076 if (dev->maxtags == 0) {
2078 * Queueing is disabled by the user.
2080 dev->openings = 1;
2081 } else if (alg == AHC_QUEUE_TAGGED) {
2082 dev->flags |= AHC_DEV_Q_TAGGED;
2083 if (aic7xxx_periodic_otag != 0)
2084 dev->flags |= AHC_DEV_PERIODIC_OTAG;
2085 } else
2086 dev->flags |= AHC_DEV_Q_BASIC;
2087 } else {
2088 /* We can only have one opening. */
2089 dev->maxtags = 0;
2090 dev->openings = 1 - dev->active;
2092 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2093 if (dev->scsi_device != NULL) {
2094 switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) {
2095 case AHC_DEV_Q_BASIC:
2096 scsi_adjust_queue_depth(dev->scsi_device,
2097 MSG_SIMPLE_TASK,
2098 dev->openings + dev->active);
2099 break;
2100 case AHC_DEV_Q_TAGGED:
2101 scsi_adjust_queue_depth(dev->scsi_device,
2102 MSG_ORDERED_TASK,
2103 dev->openings + dev->active);
2104 break;
2105 default:
2107 * We allow the OS to queue 2 untagged transactions to
2108 * us at any time even though we can only execute them
2109 * serially on the controller/device. This should
2110 * remove some latency.
2112 scsi_adjust_queue_depth(dev->scsi_device,
2113 /*NON-TAGGED*/0,
2114 /*queue depth*/2);
2115 break;
2118 #endif
2122 ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel,
2123 int lun, u_int tag, role_t role, uint32_t status)
2125 int chan;
2126 int maxchan;
2127 int targ;
2128 int maxtarg;
2129 int clun;
2130 int maxlun;
2131 int count;
2133 if (tag != SCB_LIST_NULL)
2134 return (0);
2136 chan = 0;
2137 if (channel != ALL_CHANNELS) {
2138 chan = channel - 'A';
2139 maxchan = chan + 1;
2140 } else {
2141 maxchan = (ahc->features & AHC_TWIN) ? 2 : 1;
2143 targ = 0;
2144 if (target != CAM_TARGET_WILDCARD) {
2145 targ = target;
2146 maxtarg = targ + 1;
2147 } else {
2148 maxtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
2150 clun = 0;
2151 if (lun != CAM_LUN_WILDCARD) {
2152 clun = lun;
2153 maxlun = clun + 1;
2154 } else {
2155 maxlun = AHC_NUM_LUNS;
2158 count = 0;
2159 for (; chan < maxchan; chan++) {
2161 for (; targ < maxtarg; targ++) {
2163 for (; clun < maxlun; clun++) {
2164 struct ahc_linux_device *dev;
2165 struct ahc_busyq *busyq;
2166 struct ahc_cmd *acmd;
2168 dev = ahc_linux_get_device(ahc, chan,
2169 targ, clun,
2170 /*alloc*/FALSE);
2171 if (dev == NULL)
2172 continue;
2174 busyq = &dev->busyq;
2175 while ((acmd = TAILQ_FIRST(busyq)) != NULL) {
2176 Scsi_Cmnd *cmd;
2178 cmd = &acmd_scsi_cmd(acmd);
2179 TAILQ_REMOVE(busyq, acmd,
2180 acmd_links.tqe);
2181 count++;
2182 cmd->result = status << 16;
2183 ahc_linux_queue_cmd_complete(ahc, cmd);
2189 return (count);
2192 static void
2193 ahc_linux_thread_run_complete_queue(struct ahc_softc *ahc)
2195 u_long flags;
2197 ahc_lock(ahc, &flags);
2198 del_timer(&ahc->platform_data->completeq_timer);
2199 ahc->platform_data->flags &= ~AHC_RUN_CMPLT_Q_TIMER;
2200 ahc_linux_run_complete_queue(ahc);
2201 ahc_unlock(ahc, &flags);
2204 static void
2205 ahc_linux_start_dv(struct ahc_softc *ahc)
2209 * Freeze the simq and signal ahc_linux_queue to not let any
2210 * more commands through.
2212 if ((ahc->platform_data->flags & AHC_DV_ACTIVE) == 0) {
2213 #ifdef AHC_DEBUG
2214 if (ahc_debug & AHC_SHOW_DV)
2215 printf("%s: Waking DV thread\n", ahc_name(ahc));
2216 #endif
2218 ahc->platform_data->flags |= AHC_DV_ACTIVE;
2219 ahc_linux_freeze_simq(ahc);
2221 /* Wake up the DV kthread */
2222 up(&ahc->platform_data->dv_sem);
2226 static void
2227 ahc_linux_kill_dv_thread(struct ahc_softc *ahc)
2229 u_long s;
2231 ahc_lock(ahc, &s);
2232 if (ahc->platform_data->dv_pid != 0) {
2233 ahc->platform_data->flags |= AHC_DV_SHUTDOWN;
2234 ahc_unlock(ahc, &s);
2235 up(&ahc->platform_data->dv_sem);
2238 * Use the eh_sem as an indicator that the
2239 * dv thread is exiting. Note that the dv
2240 * thread must still return after performing
2241 * the up on our semaphore before it has
2242 * completely exited this module. Unfortunately,
2243 * there seems to be no easy way to wait for the
2244 * exit of a thread for which you are not the
2245 * parent (dv threads are parented by init).
2246 * Cross your fingers...
2248 down(&ahc->platform_data->eh_sem);
2251 * Mark the dv thread as already dead. This
2252 * avoids attempting to kill it a second time.
2253 * This is necessary because we must kill the
2254 * DV thread before calling ahc_free() in the
2255 * module shutdown case to avoid bogus locking
2256 * in the SCSI mid-layer, but we ahc_free() is
2257 * called without killing the DV thread in the
2258 * instance detach case, so ahc_platform_free()
2259 * calls us again to verify that the DV thread
2260 * is dead.
2262 ahc->platform_data->dv_pid = 0;
2263 } else {
2264 ahc_unlock(ahc, &s);
2268 static int
2269 ahc_linux_dv_thread(void *data)
2271 struct ahc_softc *ahc;
2272 int target;
2273 u_long s;
2275 ahc = (struct ahc_softc *)data;
2277 #ifdef AHC_DEBUG
2278 if (ahc_debug & AHC_SHOW_DV)
2279 printf("Launching DV Thread\n");
2280 #endif
2283 * Complete thread creation.
2285 lock_kernel();
2286 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
2288 * Don't care about any signals.
2290 siginitsetinv(&current->blocked, 0);
2292 daemonize();
2293 sprintf(current->comm, "ahc_dv_%d", ahc->unit);
2294 #else
2295 daemonize("ahc_dv_%d", ahc->unit);
2296 current->flags |= PF_FREEZE;
2297 #endif
2298 unlock_kernel();
2300 while (1) {
2302 * Use down_interruptible() rather than down() to
2303 * avoid inclusion in the load average.
2305 down_interruptible(&ahc->platform_data->dv_sem);
2307 /* Check to see if we've been signaled to exit */
2308 ahc_lock(ahc, &s);
2309 if ((ahc->platform_data->flags & AHC_DV_SHUTDOWN) != 0) {
2310 ahc_unlock(ahc, &s);
2311 break;
2313 ahc_unlock(ahc, &s);
2315 #ifdef AHC_DEBUG
2316 if (ahc_debug & AHC_SHOW_DV)
2317 printf("%s: Beginning Domain Validation\n",
2318 ahc_name(ahc));
2319 #endif
2322 * Wait for any pending commands to drain before proceeding.
2324 ahc_lock(ahc, &s);
2325 while (LIST_FIRST(&ahc->pending_scbs) != NULL) {
2326 ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_EMPTY;
2327 ahc_unlock(ahc, &s);
2328 down_interruptible(&ahc->platform_data->dv_sem);
2329 ahc_lock(ahc, &s);
2333 * Wait for the SIMQ to be released so that DV is the
2334 * only reason the queue is frozen.
2336 while (AHC_DV_SIMQ_FROZEN(ahc) == 0) {
2337 ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_RELEASE;
2338 ahc_unlock(ahc, &s);
2339 down_interruptible(&ahc->platform_data->dv_sem);
2340 ahc_lock(ahc, &s);
2342 ahc_unlock(ahc, &s);
2344 for (target = 0; target < AHC_NUM_TARGETS; target++)
2345 ahc_linux_dv_target(ahc, target);
2347 ahc_lock(ahc, &s);
2348 ahc->platform_data->flags &= ~AHC_DV_ACTIVE;
2349 ahc_unlock(ahc, &s);
2352 * Release the SIMQ so that normal commands are
2353 * allowed to continue on the bus.
2355 ahc_linux_release_simq((u_long)ahc);
2357 up(&ahc->platform_data->eh_sem);
2358 return (0);
2361 #define AHC_LINUX_DV_INQ_SHORT_LEN 36
2362 #define AHC_LINUX_DV_INQ_LEN 256
2363 #define AHC_LINUX_DV_TIMEOUT (HZ / 4)
2365 #define AHC_SET_DV_STATE(ahc, targ, newstate) \
2366 ahc_set_dv_state(ahc, targ, newstate, __LINE__)
2368 static __inline void
2369 ahc_set_dv_state(struct ahc_softc *ahc, struct ahc_linux_target *targ,
2370 ahc_dv_state newstate, u_int line)
2372 ahc_dv_state oldstate;
2374 oldstate = targ->dv_state;
2375 #ifdef AHC_DEBUG
2376 if (ahc_debug & AHC_SHOW_DV)
2377 printf("%s:%d: Going from state %d to state %d\n",
2378 ahc_name(ahc), line, oldstate, newstate);
2379 #endif
2381 if (oldstate == newstate)
2382 targ->dv_state_retry++;
2383 else
2384 targ->dv_state_retry = 0;
2385 targ->dv_state = newstate;
2388 static void
2389 ahc_linux_dv_target(struct ahc_softc *ahc, u_int target_offset)
2391 struct ahc_devinfo devinfo;
2392 struct ahc_linux_target *targ;
2393 struct scsi_cmnd *cmd;
2394 struct scsi_device *scsi_dev;
2395 struct scsi_sense_data *sense;
2396 uint8_t *buffer;
2397 u_long s;
2398 u_int timeout;
2399 int echo_size;
2401 sense = NULL;
2402 buffer = NULL;
2403 echo_size = 0;
2404 ahc_lock(ahc, &s);
2405 targ = ahc->platform_data->targets[target_offset];
2406 if (targ == NULL || (targ->flags & AHC_DV_REQUIRED) == 0) {
2407 ahc_unlock(ahc, &s);
2408 return;
2410 ahc_compile_devinfo(&devinfo,
2411 targ->channel == 0 ? ahc->our_id : ahc->our_id_b,
2412 targ->target, /*lun*/0, targ->channel + 'A',
2413 ROLE_INITIATOR);
2414 #ifdef AHC_DEBUG
2415 if (ahc_debug & AHC_SHOW_DV) {
2416 ahc_print_devinfo(ahc, &devinfo);
2417 printf("Performing DV\n");
2419 #endif
2421 ahc_unlock(ahc, &s);
2423 cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK);
2424 scsi_dev = malloc(sizeof(struct scsi_device), M_DEVBUF, M_WAITOK);
2425 scsi_dev->host = ahc->platform_data->host;
2426 scsi_dev->id = devinfo.target;
2427 scsi_dev->lun = devinfo.lun;
2428 scsi_dev->channel = devinfo.channel - 'A';
2429 ahc->platform_data->dv_scsi_dev = scsi_dev;
2431 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC);
2433 while (targ->dv_state != AHC_DV_STATE_EXIT) {
2434 timeout = AHC_LINUX_DV_TIMEOUT;
2435 switch (targ->dv_state) {
2436 case AHC_DV_STATE_INQ_SHORT_ASYNC:
2437 case AHC_DV_STATE_INQ_ASYNC:
2438 case AHC_DV_STATE_INQ_ASYNC_VERIFY:
2440 * Set things to async narrow to reduce the
2441 * chance that the INQ will fail.
2443 ahc_lock(ahc, &s);
2444 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
2445 AHC_TRANS_GOAL, /*paused*/FALSE);
2446 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
2447 AHC_TRANS_GOAL, /*paused*/FALSE);
2448 ahc_unlock(ahc, &s);
2449 timeout = 10 * HZ;
2450 targ->flags &= ~AHC_INQ_VALID;
2451 /* FALLTHROUGH */
2452 case AHC_DV_STATE_INQ_VERIFY:
2454 u_int inq_len;
2456 if (targ->dv_state == AHC_DV_STATE_INQ_SHORT_ASYNC)
2457 inq_len = AHC_LINUX_DV_INQ_SHORT_LEN;
2458 else
2459 inq_len = targ->inq_data->additional_length + 5;
2460 ahc_linux_dv_inq(ahc, cmd, &devinfo, targ, inq_len);
2461 break;
2463 case AHC_DV_STATE_TUR:
2464 case AHC_DV_STATE_BUSY:
2465 timeout = 5 * HZ;
2466 ahc_linux_dv_tur(ahc, cmd, &devinfo);
2467 break;
2468 case AHC_DV_STATE_REBD:
2469 ahc_linux_dv_rebd(ahc, cmd, &devinfo, targ);
2470 break;
2471 case AHC_DV_STATE_WEB:
2472 ahc_linux_dv_web(ahc, cmd, &devinfo, targ);
2473 break;
2475 case AHC_DV_STATE_REB:
2476 ahc_linux_dv_reb(ahc, cmd, &devinfo, targ);
2477 break;
2479 case AHC_DV_STATE_SU:
2480 ahc_linux_dv_su(ahc, cmd, &devinfo, targ);
2481 timeout = 50 * HZ;
2482 break;
2484 default:
2485 ahc_print_devinfo(ahc, &devinfo);
2486 printf("Unknown DV state %d\n", targ->dv_state);
2487 goto out;
2490 /* Queue the command and wait for it to complete */
2491 /* Abuse eh_timeout in the scsi_cmnd struct for our purposes */
2492 init_timer(&cmd->eh_timeout);
2493 #ifdef AHC_DEBUG
2494 if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
2496 * All of the printfs during negotiation
2497 * really slow down the negotiation.
2498 * Add a bit of time just to be safe.
2500 timeout += HZ;
2501 #endif
2502 scsi_add_timer(cmd, timeout, ahc_linux_dv_timeout);
2504 * In 2.5.X, it is assumed that all calls from the
2505 * "midlayer" (which we are emulating) will have the
2506 * ahc host lock held. For other kernels, the
2507 * io_request_lock must be held.
2509 #if AHC_SCSI_HAS_HOST_LOCK != 0
2510 ahc_lock(ahc, &s);
2511 #else
2512 spin_lock_irqsave(&io_request_lock, s);
2513 #endif
2514 ahc_linux_queue(cmd, ahc_linux_dv_complete);
2515 #if AHC_SCSI_HAS_HOST_LOCK != 0
2516 ahc_unlock(ahc, &s);
2517 #else
2518 spin_unlock_irqrestore(&io_request_lock, s);
2519 #endif
2520 down_interruptible(&ahc->platform_data->dv_cmd_sem);
2522 * Wait for the SIMQ to be released so that DV is the
2523 * only reason the queue is frozen.
2525 ahc_lock(ahc, &s);
2526 while (AHC_DV_SIMQ_FROZEN(ahc) == 0) {
2527 ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_RELEASE;
2528 ahc_unlock(ahc, &s);
2529 down_interruptible(&ahc->platform_data->dv_sem);
2530 ahc_lock(ahc, &s);
2532 ahc_unlock(ahc, &s);
2534 ahc_linux_dv_transition(ahc, cmd, &devinfo, targ);
2537 out:
2538 if ((targ->flags & AHC_INQ_VALID) != 0
2539 && ahc_linux_get_device(ahc, devinfo.channel - 'A',
2540 devinfo.target, devinfo.lun,
2541 /*alloc*/FALSE) == NULL) {
2543 * The DV state machine failed to configure this device.
2544 * This is normal if DV is disabled. Since we have inquiry
2545 * data, filter it and use the "optimistic" negotiation
2546 * parameters found in the inquiry string.
2548 ahc_linux_filter_inquiry(ahc, &devinfo);
2549 if ((targ->flags & (AHC_BASIC_DV|AHC_ENHANCED_DV)) != 0) {
2550 ahc_print_devinfo(ahc, &devinfo);
2551 printf("DV failed to configure device. "
2552 "Please file a bug report against "
2553 "this driver.\n");
2557 if (cmd != NULL)
2558 free(cmd, M_DEVBUF);
2560 if (ahc->platform_data->dv_scsi_dev != NULL) {
2561 free(ahc->platform_data->dv_scsi_dev, M_DEVBUF);
2562 ahc->platform_data->dv_scsi_dev = NULL;
2565 ahc_lock(ahc, &s);
2566 if (targ->dv_buffer != NULL) {
2567 free(targ->dv_buffer, M_DEVBUF);
2568 targ->dv_buffer = NULL;
2570 if (targ->dv_buffer1 != NULL) {
2571 free(targ->dv_buffer1, M_DEVBUF);
2572 targ->dv_buffer1 = NULL;
2574 targ->flags &= ~AHC_DV_REQUIRED;
2575 if (targ->refcount == 0)
2576 ahc_linux_free_target(ahc, targ);
2577 ahc_unlock(ahc, &s);
2580 static void
2581 ahc_linux_dv_transition(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
2582 struct ahc_devinfo *devinfo,
2583 struct ahc_linux_target *targ)
2585 u_int32_t status;
2587 status = aic_error_action(cmd, targ->inq_data,
2588 ahc_cmd_get_transaction_status(cmd),
2589 ahc_cmd_get_scsi_status(cmd));
2591 #ifdef AHC_DEBUG
2592 if (ahc_debug & AHC_SHOW_DV) {
2593 ahc_print_devinfo(ahc, devinfo);
2594 printf("Entering ahc_linux_dv_transition, state= %d, "
2595 "status= 0x%x, cmd->result= 0x%x\n", targ->dv_state,
2596 status, cmd->result);
2598 #endif
2600 switch (targ->dv_state) {
2601 case AHC_DV_STATE_INQ_SHORT_ASYNC:
2602 case AHC_DV_STATE_INQ_ASYNC:
2603 switch (status & SS_MASK) {
2604 case SS_NOP:
2606 AHC_SET_DV_STATE(ahc, targ, targ->dv_state+1);
2607 break;
2609 case SS_INQ_REFRESH:
2610 AHC_SET_DV_STATE(ahc, targ,
2611 AHC_DV_STATE_INQ_SHORT_ASYNC);
2612 break;
2613 case SS_TUR:
2614 case SS_RETRY:
2615 AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
2616 if (ahc_cmd_get_transaction_status(cmd)
2617 == CAM_REQUEUE_REQ)
2618 targ->dv_state_retry--;
2619 if ((status & SS_ERRMASK) == EBUSY)
2620 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY);
2621 if (targ->dv_state_retry < 10)
2622 break;
2623 /* FALLTHROUGH */
2624 default:
2625 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2626 #ifdef AHC_DEBUG
2627 if (ahc_debug & AHC_SHOW_DV) {
2628 ahc_print_devinfo(ahc, devinfo);
2629 printf("Failed DV inquiry, skipping\n");
2631 #endif
2632 break;
2634 break;
2635 case AHC_DV_STATE_INQ_ASYNC_VERIFY:
2636 switch (status & SS_MASK) {
2637 case SS_NOP:
2639 u_int xportflags;
2640 u_int spi3data;
2642 if (memcmp(targ->inq_data, targ->dv_buffer,
2643 AHC_LINUX_DV_INQ_LEN) != 0) {
2645 * Inquiry data must have changed.
2646 * Try from the top again.
2648 AHC_SET_DV_STATE(ahc, targ,
2649 AHC_DV_STATE_INQ_SHORT_ASYNC);
2650 break;
2653 AHC_SET_DV_STATE(ahc, targ, targ->dv_state+1);
2654 targ->flags |= AHC_INQ_VALID;
2655 if (ahc_linux_user_dv_setting(ahc) == 0)
2656 break;
2658 xportflags = targ->inq_data->flags;
2659 if ((xportflags & (SID_Sync|SID_WBus16)) == 0)
2660 break;
2662 spi3data = targ->inq_data->spi3data;
2663 switch (spi3data & SID_SPI_CLOCK_DT_ST) {
2664 default:
2665 case SID_SPI_CLOCK_ST:
2666 /* Assume only basic DV is supported. */
2667 targ->flags |= AHC_BASIC_DV;
2668 break;
2669 case SID_SPI_CLOCK_DT:
2670 case SID_SPI_CLOCK_DT_ST:
2671 targ->flags |= AHC_ENHANCED_DV;
2672 break;
2674 break;
2676 case SS_INQ_REFRESH:
2677 AHC_SET_DV_STATE(ahc, targ,
2678 AHC_DV_STATE_INQ_SHORT_ASYNC);
2679 break;
2680 case SS_TUR:
2681 case SS_RETRY:
2682 AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
2683 if (ahc_cmd_get_transaction_status(cmd)
2684 == CAM_REQUEUE_REQ)
2685 targ->dv_state_retry--;
2687 if ((status & SS_ERRMASK) == EBUSY)
2688 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY);
2689 if (targ->dv_state_retry < 10)
2690 break;
2691 /* FALLTHROUGH */
2692 default:
2693 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2694 #ifdef AHC_DEBUG
2695 if (ahc_debug & AHC_SHOW_DV) {
2696 ahc_print_devinfo(ahc, devinfo);
2697 printf("Failed DV inquiry, skipping\n");
2699 #endif
2700 break;
2702 break;
2703 case AHC_DV_STATE_INQ_VERIFY:
2704 switch (status & SS_MASK) {
2705 case SS_NOP:
2708 if (memcmp(targ->inq_data, targ->dv_buffer,
2709 AHC_LINUX_DV_INQ_LEN) == 0) {
2710 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2711 break;
2713 #ifdef AHC_DEBUG
2714 if (ahc_debug & AHC_SHOW_DV) {
2715 int i;
2717 ahc_print_devinfo(ahc, devinfo);
2718 printf("Inquiry buffer mismatch:");
2719 for (i = 0; i < AHC_LINUX_DV_INQ_LEN; i++) {
2720 if ((i & 0xF) == 0)
2721 printf("\n ");
2722 printf("0x%x:0x0%x ",
2723 ((uint8_t *)targ->inq_data)[i],
2724 targ->dv_buffer[i]);
2726 printf("\n");
2728 #endif
2730 if (ahc_linux_fallback(ahc, devinfo) != 0) {
2731 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2732 break;
2735 * Do not count "falling back"
2736 * against our retries.
2738 targ->dv_state_retry = 0;
2739 AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
2740 break;
2742 case SS_INQ_REFRESH:
2743 AHC_SET_DV_STATE(ahc, targ,
2744 AHC_DV_STATE_INQ_SHORT_ASYNC);
2745 break;
2746 case SS_TUR:
2747 case SS_RETRY:
2748 AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
2749 if (ahc_cmd_get_transaction_status(cmd)
2750 == CAM_REQUEUE_REQ) {
2751 targ->dv_state_retry--;
2752 } else if ((status & SSQ_FALLBACK) != 0) {
2753 if (ahc_linux_fallback(ahc, devinfo) != 0) {
2754 AHC_SET_DV_STATE(ahc, targ,
2755 AHC_DV_STATE_EXIT);
2756 break;
2759 * Do not count "falling back"
2760 * against our retries.
2762 targ->dv_state_retry = 0;
2763 } else if ((status & SS_ERRMASK) == EBUSY)
2764 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY);
2765 if (targ->dv_state_retry < 10)
2766 break;
2767 /* FALLTHROUGH */
2768 default:
2769 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2770 #ifdef AHC_DEBUG
2771 if (ahc_debug & AHC_SHOW_DV) {
2772 ahc_print_devinfo(ahc, devinfo);
2773 printf("Failed DV inquiry, skipping\n");
2775 #endif
2776 break;
2778 break;
2780 case AHC_DV_STATE_TUR:
2781 switch (status & SS_MASK) {
2782 case SS_NOP:
2783 if ((targ->flags & AHC_BASIC_DV) != 0) {
2784 ahc_linux_filter_inquiry(ahc, devinfo);
2785 AHC_SET_DV_STATE(ahc, targ,
2786 AHC_DV_STATE_INQ_VERIFY);
2787 } else if ((targ->flags & AHC_ENHANCED_DV) != 0) {
2788 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_REBD);
2789 } else {
2790 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2792 break;
2793 case SS_RETRY:
2794 case SS_TUR:
2795 if ((status & SS_ERRMASK) == EBUSY) {
2796 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY);
2797 break;
2799 AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
2800 if (ahc_cmd_get_transaction_status(cmd)
2801 == CAM_REQUEUE_REQ) {
2802 targ->dv_state_retry--;
2803 } else if ((status & SSQ_FALLBACK) != 0) {
2804 if (ahc_linux_fallback(ahc, devinfo) != 0) {
2805 AHC_SET_DV_STATE(ahc, targ,
2806 AHC_DV_STATE_EXIT);
2807 break;
2810 * Do not count "falling back"
2811 * against our retries.
2813 targ->dv_state_retry = 0;
2815 if (targ->dv_state_retry >= 10) {
2816 #ifdef AHC_DEBUG
2817 if (ahc_debug & AHC_SHOW_DV) {
2818 ahc_print_devinfo(ahc, devinfo);
2819 printf("DV TUR reties exhausted\n");
2821 #endif
2822 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2823 break;
2825 if (status & SSQ_DELAY)
2826 ssleep(1);
2828 break;
2829 case SS_START:
2830 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_SU);
2831 break;
2832 case SS_INQ_REFRESH:
2833 AHC_SET_DV_STATE(ahc, targ,
2834 AHC_DV_STATE_INQ_SHORT_ASYNC);
2835 break;
2836 default:
2837 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2838 break;
2840 break;
2842 case AHC_DV_STATE_REBD:
2843 switch (status & SS_MASK) {
2844 case SS_NOP:
2846 uint32_t echo_size;
2848 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_WEB);
2849 echo_size = scsi_3btoul(&targ->dv_buffer[1]);
2850 echo_size &= 0x1FFF;
2851 #ifdef AHC_DEBUG
2852 if (ahc_debug & AHC_SHOW_DV) {
2853 ahc_print_devinfo(ahc, devinfo);
2854 printf("Echo buffer size= %d\n", echo_size);
2856 #endif
2857 if (echo_size == 0) {
2858 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2859 break;
2862 /* Generate the buffer pattern */
2863 targ->dv_echo_size = echo_size;
2864 ahc_linux_generate_dv_pattern(targ);
2866 * Setup initial negotiation values.
2868 ahc_linux_filter_inquiry(ahc, devinfo);
2869 break;
2871 case SS_INQ_REFRESH:
2872 AHC_SET_DV_STATE(ahc, targ,
2873 AHC_DV_STATE_INQ_SHORT_ASYNC);
2874 break;
2875 case SS_RETRY:
2876 AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
2877 if (ahc_cmd_get_transaction_status(cmd)
2878 == CAM_REQUEUE_REQ)
2879 targ->dv_state_retry--;
2880 if (targ->dv_state_retry <= 10)
2881 break;
2882 #ifdef AHC_DEBUG
2883 if (ahc_debug & AHC_SHOW_DV) {
2884 ahc_print_devinfo(ahc, devinfo);
2885 printf("DV REBD reties exhausted\n");
2887 #endif
2888 /* FALLTHROUGH */
2889 case SS_FATAL:
2890 default:
2892 * Setup initial negotiation values
2893 * and try level 1 DV.
2895 ahc_linux_filter_inquiry(ahc, devinfo);
2896 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_VERIFY);
2897 targ->dv_echo_size = 0;
2898 break;
2900 break;
2902 case AHC_DV_STATE_WEB:
2903 switch (status & SS_MASK) {
2904 case SS_NOP:
2905 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_REB);
2906 break;
2907 case SS_INQ_REFRESH:
2908 AHC_SET_DV_STATE(ahc, targ,
2909 AHC_DV_STATE_INQ_SHORT_ASYNC);
2910 break;
2911 case SS_RETRY:
2912 AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
2913 if (ahc_cmd_get_transaction_status(cmd)
2914 == CAM_REQUEUE_REQ) {
2915 targ->dv_state_retry--;
2916 } else if ((status & SSQ_FALLBACK) != 0) {
2917 if (ahc_linux_fallback(ahc, devinfo) != 0) {
2918 AHC_SET_DV_STATE(ahc, targ,
2919 AHC_DV_STATE_EXIT);
2920 break;
2923 * Do not count "falling back"
2924 * against our retries.
2926 targ->dv_state_retry = 0;
2928 if (targ->dv_state_retry <= 10)
2929 break;
2930 /* FALLTHROUGH */
2931 #ifdef AHC_DEBUG
2932 if (ahc_debug & AHC_SHOW_DV) {
2933 ahc_print_devinfo(ahc, devinfo);
2934 printf("DV WEB reties exhausted\n");
2936 #endif
2937 default:
2938 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2939 break;
2941 break;
2943 case AHC_DV_STATE_REB:
2944 switch (status & SS_MASK) {
2945 case SS_NOP:
2946 if (memcmp(targ->dv_buffer, targ->dv_buffer1,
2947 targ->dv_echo_size) != 0) {
2948 if (ahc_linux_fallback(ahc, devinfo) != 0)
2949 AHC_SET_DV_STATE(ahc, targ,
2950 AHC_DV_STATE_EXIT);
2951 else
2952 AHC_SET_DV_STATE(ahc, targ,
2953 AHC_DV_STATE_WEB);
2954 break;
2957 if (targ->dv_buffer != NULL) {
2958 free(targ->dv_buffer, M_DEVBUF);
2959 targ->dv_buffer = NULL;
2961 if (targ->dv_buffer1 != NULL) {
2962 free(targ->dv_buffer1, M_DEVBUF);
2963 targ->dv_buffer1 = NULL;
2965 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2966 break;
2967 case SS_INQ_REFRESH:
2968 AHC_SET_DV_STATE(ahc, targ,
2969 AHC_DV_STATE_INQ_SHORT_ASYNC);
2970 break;
2971 case SS_RETRY:
2972 AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
2973 if (ahc_cmd_get_transaction_status(cmd)
2974 == CAM_REQUEUE_REQ) {
2975 targ->dv_state_retry--;
2976 } else if ((status & SSQ_FALLBACK) != 0) {
2977 if (ahc_linux_fallback(ahc, devinfo) != 0) {
2978 AHC_SET_DV_STATE(ahc, targ,
2979 AHC_DV_STATE_EXIT);
2980 break;
2982 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_WEB);
2984 if (targ->dv_state_retry <= 10) {
2985 if ((status & (SSQ_DELAY_RANDOM|SSQ_DELAY))!= 0)
2986 msleep(ahc->our_id*1000/10);
2987 break;
2989 #ifdef AHC_DEBUG
2990 if (ahc_debug & AHC_SHOW_DV) {
2991 ahc_print_devinfo(ahc, devinfo);
2992 printf("DV REB reties exhausted\n");
2994 #endif
2995 /* FALLTHROUGH */
2996 default:
2997 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
2998 break;
3000 break;
3002 case AHC_DV_STATE_SU:
3003 switch (status & SS_MASK) {
3004 case SS_NOP:
3005 case SS_INQ_REFRESH:
3006 AHC_SET_DV_STATE(ahc, targ,
3007 AHC_DV_STATE_INQ_SHORT_ASYNC);
3008 break;
3009 default:
3010 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
3011 break;
3013 break;
3015 case AHC_DV_STATE_BUSY:
3016 switch (status & SS_MASK) {
3017 case SS_NOP:
3018 case SS_INQ_REFRESH:
3019 AHC_SET_DV_STATE(ahc, targ,
3020 AHC_DV_STATE_INQ_SHORT_ASYNC);
3021 break;
3022 case SS_TUR:
3023 case SS_RETRY:
3024 AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
3025 if (ahc_cmd_get_transaction_status(cmd)
3026 == CAM_REQUEUE_REQ) {
3027 targ->dv_state_retry--;
3028 } else if (targ->dv_state_retry < 60) {
3029 if ((status & SSQ_DELAY) != 0)
3030 ssleep(1);
3031 } else {
3032 #ifdef AHC_DEBUG
3033 if (ahc_debug & AHC_SHOW_DV) {
3034 ahc_print_devinfo(ahc, devinfo);
3035 printf("DV BUSY reties exhausted\n");
3037 #endif
3038 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
3040 break;
3041 default:
3042 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
3043 break;
3045 break;
3047 default:
3048 printf("%s: Invalid DV completion state %d\n", ahc_name(ahc),
3049 targ->dv_state);
3050 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
3051 break;
3055 static void
3056 ahc_linux_dv_fill_cmd(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
3057 struct ahc_devinfo *devinfo)
3059 memset(cmd, 0, sizeof(struct scsi_cmnd));
3060 cmd->device = ahc->platform_data->dv_scsi_dev;
3061 cmd->scsi_done = ahc_linux_dv_complete;
3065 * Synthesize an inquiry command. On the return trip, it'll be
3066 * sniffed and the device transfer settings set for us.
3068 static void
3069 ahc_linux_dv_inq(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
3070 struct ahc_devinfo *devinfo, struct ahc_linux_target *targ,
3071 u_int request_length)
3074 #ifdef AHC_DEBUG
3075 if (ahc_debug & AHC_SHOW_DV) {
3076 ahc_print_devinfo(ahc, devinfo);
3077 printf("Sending INQ\n");
3079 #endif
3080 if (targ->inq_data == NULL)
3081 targ->inq_data = malloc(AHC_LINUX_DV_INQ_LEN,
3082 M_DEVBUF, M_WAITOK);
3083 if (targ->dv_state > AHC_DV_STATE_INQ_ASYNC) {
3084 if (targ->dv_buffer != NULL)
3085 free(targ->dv_buffer, M_DEVBUF);
3086 targ->dv_buffer = malloc(AHC_LINUX_DV_INQ_LEN,
3087 M_DEVBUF, M_WAITOK);
3090 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
3091 cmd->sc_data_direction = SCSI_DATA_READ;
3092 cmd->cmd_len = 6;
3093 cmd->cmnd[0] = INQUIRY;
3094 cmd->cmnd[4] = request_length;
3095 cmd->request_bufflen = request_length;
3096 if (targ->dv_state > AHC_DV_STATE_INQ_ASYNC)
3097 cmd->request_buffer = targ->dv_buffer;
3098 else
3099 cmd->request_buffer = targ->inq_data;
3100 memset(cmd->request_buffer, 0, AHC_LINUX_DV_INQ_LEN);
3103 static void
3104 ahc_linux_dv_tur(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
3105 struct ahc_devinfo *devinfo)
3108 #ifdef AHC_DEBUG
3109 if (ahc_debug & AHC_SHOW_DV) {
3110 ahc_print_devinfo(ahc, devinfo);
3111 printf("Sending TUR\n");
3113 #endif
3114 /* Do a TUR to clear out any non-fatal transitional state */
3115 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
3116 cmd->sc_data_direction = SCSI_DATA_NONE;
3117 cmd->cmd_len = 6;
3118 cmd->cmnd[0] = TEST_UNIT_READY;
3121 #define AHC_REBD_LEN 4
3123 static void
3124 ahc_linux_dv_rebd(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
3125 struct ahc_devinfo *devinfo, struct ahc_linux_target *targ)
3128 #ifdef AHC_DEBUG
3129 if (ahc_debug & AHC_SHOW_DV) {
3130 ahc_print_devinfo(ahc, devinfo);
3131 printf("Sending REBD\n");
3133 #endif
3134 if (targ->dv_buffer != NULL)
3135 free(targ->dv_buffer, M_DEVBUF);
3136 targ->dv_buffer = malloc(AHC_REBD_LEN, M_DEVBUF, M_WAITOK);
3137 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
3138 cmd->sc_data_direction = SCSI_DATA_READ;
3139 cmd->cmd_len = 10;
3140 cmd->cmnd[0] = READ_BUFFER;
3141 cmd->cmnd[1] = 0x0b;
3142 scsi_ulto3b(AHC_REBD_LEN, &cmd->cmnd[6]);
3143 cmd->request_bufflen = AHC_REBD_LEN;
3144 cmd->underflow = cmd->request_bufflen;
3145 cmd->request_buffer = targ->dv_buffer;
3148 static void
3149 ahc_linux_dv_web(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
3150 struct ahc_devinfo *devinfo, struct ahc_linux_target *targ)
3153 #ifdef AHC_DEBUG
3154 if (ahc_debug & AHC_SHOW_DV) {
3155 ahc_print_devinfo(ahc, devinfo);
3156 printf("Sending WEB\n");
3158 #endif
3159 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
3160 cmd->sc_data_direction = SCSI_DATA_WRITE;
3161 cmd->cmd_len = 10;
3162 cmd->cmnd[0] = WRITE_BUFFER;
3163 cmd->cmnd[1] = 0x0a;
3164 scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
3165 cmd->request_bufflen = targ->dv_echo_size;
3166 cmd->underflow = cmd->request_bufflen;
3167 cmd->request_buffer = targ->dv_buffer;
3170 static void
3171 ahc_linux_dv_reb(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
3172 struct ahc_devinfo *devinfo, struct ahc_linux_target *targ)
3175 #ifdef AHC_DEBUG
3176 if (ahc_debug & AHC_SHOW_DV) {
3177 ahc_print_devinfo(ahc, devinfo);
3178 printf("Sending REB\n");
3180 #endif
3181 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
3182 cmd->sc_data_direction = SCSI_DATA_READ;
3183 cmd->cmd_len = 10;
3184 cmd->cmnd[0] = READ_BUFFER;
3185 cmd->cmnd[1] = 0x0a;
3186 scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
3187 cmd->request_bufflen = targ->dv_echo_size;
3188 cmd->underflow = cmd->request_bufflen;
3189 cmd->request_buffer = targ->dv_buffer1;
3192 static void
3193 ahc_linux_dv_su(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
3194 struct ahc_devinfo *devinfo,
3195 struct ahc_linux_target *targ)
3197 u_int le;
3199 le = SID_IS_REMOVABLE(targ->inq_data) ? SSS_LOEJ : 0;
3201 #ifdef AHC_DEBUG
3202 if (ahc_debug & AHC_SHOW_DV) {
3203 ahc_print_devinfo(ahc, devinfo);
3204 printf("Sending SU\n");
3206 #endif
3207 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
3208 cmd->sc_data_direction = SCSI_DATA_NONE;
3209 cmd->cmd_len = 6;
3210 cmd->cmnd[0] = START_STOP_UNIT;
3211 cmd->cmnd[4] = le | SSS_START;
3214 static int
3215 ahc_linux_fallback(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
3217 struct ahc_linux_target *targ;
3218 struct ahc_initiator_tinfo *tinfo;
3219 struct ahc_transinfo *goal;
3220 struct ahc_tmode_tstate *tstate;
3221 struct ahc_syncrate *syncrate;
3222 u_long s;
3223 u_int width;
3224 u_int period;
3225 u_int offset;
3226 u_int ppr_options;
3227 u_int cur_speed;
3228 u_int wide_speed;
3229 u_int narrow_speed;
3230 u_int fallback_speed;
3232 #ifdef AHC_DEBUG
3233 if (ahc_debug & AHC_SHOW_DV) {
3234 ahc_print_devinfo(ahc, devinfo);
3235 printf("Trying to fallback\n");
3237 #endif
3238 ahc_lock(ahc, &s);
3239 targ = ahc->platform_data->targets[devinfo->target_offset];
3240 tinfo = ahc_fetch_transinfo(ahc, devinfo->channel,
3241 devinfo->our_scsiid,
3242 devinfo->target, &tstate);
3243 goal = &tinfo->goal;
3244 width = goal->width;
3245 period = goal->period;
3246 offset = goal->offset;
3247 ppr_options = goal->ppr_options;
3248 if (offset == 0)
3249 period = AHC_ASYNC_XFER_PERIOD;
3250 if (targ->dv_next_narrow_period == 0)
3251 targ->dv_next_narrow_period = MAX(period, AHC_SYNCRATE_ULTRA2);
3252 if (targ->dv_next_wide_period == 0)
3253 targ->dv_next_wide_period = period;
3254 if (targ->dv_max_width == 0)
3255 targ->dv_max_width = width;
3256 if (targ->dv_max_ppr_options == 0)
3257 targ->dv_max_ppr_options = ppr_options;
3258 if (targ->dv_last_ppr_options == 0)
3259 targ->dv_last_ppr_options = ppr_options;
3261 cur_speed = aic_calc_speed(width, period, offset, AHC_SYNCRATE_MIN);
3262 wide_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_16_BIT,
3263 targ->dv_next_wide_period,
3264 MAX_OFFSET,
3265 AHC_SYNCRATE_MIN);
3266 narrow_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_8_BIT,
3267 targ->dv_next_narrow_period,
3268 MAX_OFFSET,
3269 AHC_SYNCRATE_MIN);
3270 fallback_speed = aic_calc_speed(width, period+1, offset,
3271 AHC_SYNCRATE_MIN);
3272 #ifdef AHC_DEBUG
3273 if (ahc_debug & AHC_SHOW_DV) {
3274 printf("cur_speed= %d, wide_speed= %d, narrow_speed= %d, "
3275 "fallback_speed= %d\n", cur_speed, wide_speed,
3276 narrow_speed, fallback_speed);
3278 #endif
3280 if (cur_speed > 160000) {
3282 * Paced/DT/IU_REQ only transfer speeds. All we
3283 * can do is fallback in terms of syncrate.
3285 period++;
3286 } else if (cur_speed > 80000) {
3287 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3289 * Try without IU_REQ as it may be confusing
3290 * an expander.
3292 ppr_options &= ~MSG_EXT_PPR_IU_REQ;
3293 } else {
3295 * Paced/DT only transfer speeds. All we
3296 * can do is fallback in terms of syncrate.
3298 period++;
3299 ppr_options = targ->dv_max_ppr_options;
3301 } else if (cur_speed > 3300) {
3304 * In this range we the following
3305 * options ordered from highest to
3306 * lowest desireability:
3308 * o Wide/DT
3309 * o Wide/non-DT
3310 * o Narrow at a potentally higher sync rate.
3312 * All modes are tested with and without IU_REQ
3313 * set since using IUs may confuse an expander.
3315 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3317 ppr_options &= ~MSG_EXT_PPR_IU_REQ;
3318 } else if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3320 * Try going non-DT.
3322 ppr_options = targ->dv_max_ppr_options;
3323 ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3324 } else if (targ->dv_last_ppr_options != 0) {
3326 * Try without QAS or any other PPR options.
3327 * We may need a non-PPR message to work with
3328 * an expander. We look at the "last PPR options"
3329 * so we will perform this fallback even if the
3330 * target responded to our PPR negotiation with
3331 * no option bits set.
3333 ppr_options = 0;
3334 } else if (width == MSG_EXT_WDTR_BUS_16_BIT) {
3336 * If the next narrow speed is greater than
3337 * the next wide speed, fallback to narrow.
3338 * Otherwise fallback to the next DT/Wide setting.
3339 * The narrow async speed will always be smaller
3340 * than the wide async speed, so handle this case
3341 * specifically.
3343 ppr_options = targ->dv_max_ppr_options;
3344 if (narrow_speed > fallback_speed
3345 || period >= AHC_ASYNC_XFER_PERIOD) {
3346 targ->dv_next_wide_period = period+1;
3347 width = MSG_EXT_WDTR_BUS_8_BIT;
3348 period = targ->dv_next_narrow_period;
3349 } else {
3350 period++;
3352 } else if ((ahc->features & AHC_WIDE) != 0
3353 && targ->dv_max_width != 0
3354 && wide_speed >= fallback_speed
3355 && (targ->dv_next_wide_period <= AHC_ASYNC_XFER_PERIOD
3356 || period >= AHC_ASYNC_XFER_PERIOD)) {
3359 * We are narrow. Try falling back
3360 * to the next wide speed with
3361 * all supported ppr options set.
3363 targ->dv_next_narrow_period = period+1;
3364 width = MSG_EXT_WDTR_BUS_16_BIT;
3365 period = targ->dv_next_wide_period;
3366 ppr_options = targ->dv_max_ppr_options;
3367 } else {
3368 /* Only narrow fallback is allowed. */
3369 period++;
3370 ppr_options = targ->dv_max_ppr_options;
3372 } else {
3373 ahc_unlock(ahc, &s);
3374 return (-1);
3376 offset = MAX_OFFSET;
3377 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
3378 AHC_SYNCRATE_DT);
3379 ahc_set_width(ahc, devinfo, width, AHC_TRANS_GOAL, FALSE);
3380 if (period == 0) {
3381 period = 0;
3382 offset = 0;
3383 ppr_options = 0;
3384 if (width == MSG_EXT_WDTR_BUS_8_BIT)
3385 targ->dv_next_narrow_period = AHC_ASYNC_XFER_PERIOD;
3386 else
3387 targ->dv_next_wide_period = AHC_ASYNC_XFER_PERIOD;
3389 ahc_set_syncrate(ahc, devinfo, syncrate, period, offset,
3390 ppr_options, AHC_TRANS_GOAL, FALSE);
3391 targ->dv_last_ppr_options = ppr_options;
3392 ahc_unlock(ahc, &s);
3393 return (0);
3396 static void
3397 ahc_linux_dv_timeout(struct scsi_cmnd *cmd)
3399 struct ahc_softc *ahc;
3400 struct scb *scb;
3401 u_long flags;
3403 ahc = *((struct ahc_softc **)cmd->device->host->hostdata);
3404 ahc_lock(ahc, &flags);
3406 #ifdef AHC_DEBUG
3407 if (ahc_debug & AHC_SHOW_DV) {
3408 printf("%s: Timeout while doing DV command %x.\n",
3409 ahc_name(ahc), cmd->cmnd[0]);
3410 ahc_dump_card_state(ahc);
3412 #endif
3415 * Guard against "done race". No action is
3416 * required if we just completed.
3418 if ((scb = (struct scb *)cmd->host_scribble) == NULL) {
3419 ahc_unlock(ahc, &flags);
3420 return;
3424 * Command has not completed. Mark this
3425 * SCB as having failing status prior to
3426 * resetting the bus, so we get the correct
3427 * error code.
3429 if ((scb->flags & SCB_SENSE) != 0)
3430 ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
3431 else
3432 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);
3433 ahc_reset_channel(ahc, cmd->device->channel + 'A', /*initiate*/TRUE);
3436 * Add a minimal bus settle delay for devices that are slow to
3437 * respond after bus resets.
3439 ahc_linux_freeze_simq(ahc);
3440 init_timer(&ahc->platform_data->reset_timer);
3441 ahc->platform_data->reset_timer.data = (u_long)ahc;
3442 ahc->platform_data->reset_timer.expires = jiffies + HZ / 2;
3443 ahc->platform_data->reset_timer.function =
3444 (ahc_linux_callback_t *)ahc_linux_release_simq;
3445 add_timer(&ahc->platform_data->reset_timer);
3446 if (ahc_linux_next_device_to_run(ahc) != NULL)
3447 ahc_schedule_runq(ahc);
3448 ahc_linux_run_complete_queue(ahc);
3449 ahc_unlock(ahc, &flags);
3452 static void
3453 ahc_linux_dv_complete(struct scsi_cmnd *cmd)
3455 struct ahc_softc *ahc;
3457 ahc = *((struct ahc_softc **)cmd->device->host->hostdata);
3459 /* Delete the DV timer before it goes off! */
3460 scsi_delete_timer(cmd);
3462 #ifdef AHC_DEBUG
3463 if (ahc_debug & AHC_SHOW_DV)
3464 printf("%s:%d:%d: Command completed, status= 0x%x\n",
3465 ahc_name(ahc), cmd->device->channel,
3466 cmd->device->id, cmd->result);
3467 #endif
3469 /* Wake up the state machine */
3470 up(&ahc->platform_data->dv_cmd_sem);
3473 static void
3474 ahc_linux_generate_dv_pattern(struct ahc_linux_target *targ)
3476 uint16_t b;
3477 u_int i;
3478 u_int j;
3480 if (targ->dv_buffer != NULL)
3481 free(targ->dv_buffer, M_DEVBUF);
3482 targ->dv_buffer = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
3483 if (targ->dv_buffer1 != NULL)
3484 free(targ->dv_buffer1, M_DEVBUF);
3485 targ->dv_buffer1 = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
3487 i = 0;
3488 b = 0x0001;
3489 for (j = 0 ; i < targ->dv_echo_size; j++) {
3490 if (j < 32) {
3492 * 32bytes of sequential numbers.
3494 targ->dv_buffer[i++] = j & 0xff;
3495 } else if (j < 48) {
3497 * 32bytes of repeating 0x0000, 0xffff.
3499 targ->dv_buffer[i++] = (j & 0x02) ? 0xff : 0x00;
3500 } else if (j < 64) {
3502 * 32bytes of repeating 0x5555, 0xaaaa.
3504 targ->dv_buffer[i++] = (j & 0x02) ? 0xaa : 0x55;
3505 } else {
3507 * Remaining buffer is filled with a repeating
3508 * patter of:
3510 * 0xffff
3511 * ~0x0001 << shifted once in each loop.
3513 if (j & 0x02) {
3514 if (j & 0x01) {
3515 targ->dv_buffer[i++] = ~(b >> 8) & 0xff;
3516 b <<= 1;
3517 if (b == 0x0000)
3518 b = 0x0001;
3519 } else {
3520 targ->dv_buffer[i++] = (~b & 0xff);
3522 } else {
3523 targ->dv_buffer[i++] = 0xff;
3529 static u_int
3530 ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
3532 static int warned_user;
3533 u_int tags;
3535 tags = 0;
3536 if ((ahc->user_discenable & devinfo->target_mask) != 0) {
3537 if (ahc->unit >= NUM_ELEMENTS(aic7xxx_tag_info)) {
3538 if (warned_user == 0) {
3540 printf(KERN_WARNING
3541 "aic7xxx: WARNING: Insufficient tag_info instances\n"
3542 "aic7xxx: for installed controllers. Using defaults\n"
3543 "aic7xxx: Please update the aic7xxx_tag_info array in\n"
3544 "aic7xxx: the aic7xxx_osm..c source file.\n");
3545 warned_user++;
3547 tags = AHC_MAX_QUEUE;
3548 } else {
3549 adapter_tag_info_t *tag_info;
3551 tag_info = &aic7xxx_tag_info[ahc->unit];
3552 tags = tag_info->tag_commands[devinfo->target_offset];
3553 if (tags > AHC_MAX_QUEUE)
3554 tags = AHC_MAX_QUEUE;
3557 return (tags);
3560 static u_int
3561 ahc_linux_user_dv_setting(struct ahc_softc *ahc)
3563 static int warned_user;
3564 int dv;
3566 if (ahc->unit >= NUM_ELEMENTS(aic7xxx_dv_settings)) {
3567 if (warned_user == 0) {
3569 printf(KERN_WARNING
3570 "aic7xxx: WARNING: Insufficient dv settings instances\n"
3571 "aic7xxx: for installed controllers. Using defaults\n"
3572 "aic7xxx: Please update the aic7xxx_dv_settings array\n"
3573 "aic7xxx: in the aic7xxx_osm.c source file.\n");
3574 warned_user++;
3576 dv = -1;
3577 } else {
3579 dv = aic7xxx_dv_settings[ahc->unit];
3582 if (dv < 0) {
3583 u_long s;
3586 * Apply the default.
3589 * XXX - Enable DV on non-U160 controllers once it
3590 * has been tested there.
3592 ahc_lock(ahc, &s);
3593 dv = (ahc->features & AHC_DT);
3594 if (ahc->seep_config != 0
3595 && ahc->seep_config->signature >= CFSIGNATURE2)
3596 dv = (ahc->seep_config->adapter_control & CFENABLEDV);
3597 ahc_unlock(ahc, &s);
3599 return (dv);
3603 * Determines the queue depth for a given device.
3605 static void
3606 ahc_linux_device_queue_depth(struct ahc_softc *ahc,
3607 struct ahc_linux_device *dev)
3609 struct ahc_devinfo devinfo;
3610 u_int tags;
3612 ahc_compile_devinfo(&devinfo,
3613 dev->target->channel == 0
3614 ? ahc->our_id : ahc->our_id_b,
3615 dev->target->target, dev->lun,
3616 dev->target->channel == 0 ? 'A' : 'B',
3617 ROLE_INITIATOR);
3618 tags = ahc_linux_user_tagdepth(ahc, &devinfo);
3619 if (tags != 0
3620 && dev->scsi_device != NULL
3621 && dev->scsi_device->tagged_supported != 0) {
3623 ahc_set_tags(ahc, &devinfo, AHC_QUEUE_TAGGED);
3624 ahc_print_devinfo(ahc, &devinfo);
3625 printf("Tagged Queuing enabled. Depth %d\n", tags);
3626 } else {
3627 ahc_set_tags(ahc, &devinfo, AHC_QUEUE_NONE);
3631 static void
3632 ahc_linux_run_device_queue(struct ahc_softc *ahc, struct ahc_linux_device *dev)
3634 struct ahc_cmd *acmd;
3635 struct scsi_cmnd *cmd;
3636 struct scb *scb;
3637 struct hardware_scb *hscb;
3638 struct ahc_initiator_tinfo *tinfo;
3639 struct ahc_tmode_tstate *tstate;
3640 uint16_t mask;
3642 if ((dev->flags & AHC_DEV_ON_RUN_LIST) != 0)
3643 panic("running device on run list");
3645 while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL
3646 && dev->openings > 0 && dev->qfrozen == 0) {
3649 * Schedule us to run later. The only reason we are not
3650 * running is because the whole controller Q is frozen.
3652 if (ahc->platform_data->qfrozen != 0
3653 && AHC_DV_SIMQ_FROZEN(ahc) == 0) {
3654 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq,
3655 dev, links);
3656 dev->flags |= AHC_DEV_ON_RUN_LIST;
3657 return;
3660 * Get an scb to use.
3662 if ((scb = ahc_get_scb(ahc)) == NULL) {
3663 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq,
3664 dev, links);
3665 dev->flags |= AHC_DEV_ON_RUN_LIST;
3666 ahc->flags |= AHC_RESOURCE_SHORTAGE;
3667 return;
3669 TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe);
3670 cmd = &acmd_scsi_cmd(acmd);
3671 scb->io_ctx = cmd;
3672 scb->platform_data->dev = dev;
3673 hscb = scb->hscb;
3674 cmd->host_scribble = (char *)scb;
3677 * Fill out basics of the HSCB.
3679 hscb->control = 0;
3680 hscb->scsiid = BUILD_SCSIID(ahc, cmd);
3681 hscb->lun = cmd->device->lun;
3682 mask = SCB_GET_TARGET_MASK(ahc, scb);
3683 tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb),
3684 SCB_GET_OUR_ID(scb),
3685 SCB_GET_TARGET(ahc, scb), &tstate);
3686 hscb->scsirate = tinfo->scsirate;
3687 hscb->scsioffset = tinfo->curr.offset;
3688 if ((tstate->ultraenb & mask) != 0)
3689 hscb->control |= ULTRAENB;
3691 if ((ahc->user_discenable & mask) != 0)
3692 hscb->control |= DISCENB;
3694 if (AHC_DV_CMD(cmd) != 0)
3695 scb->flags |= SCB_SILENT;
3697 if ((tstate->auto_negotiate & mask) != 0) {
3698 scb->flags |= SCB_AUTO_NEGOTIATE;
3699 scb->hscb->control |= MK_MESSAGE;
3702 if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) {
3703 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
3704 int msg_bytes;
3705 uint8_t tag_msgs[2];
3707 msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs);
3708 if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) {
3709 hscb->control |= tag_msgs[0];
3710 if (tag_msgs[0] == MSG_ORDERED_TASK)
3711 dev->commands_since_idle_or_otag = 0;
3712 } else
3713 #endif
3714 if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH
3715 && (dev->flags & AHC_DEV_Q_TAGGED) != 0) {
3716 hscb->control |= MSG_ORDERED_TASK;
3717 dev->commands_since_idle_or_otag = 0;
3718 } else {
3719 hscb->control |= MSG_SIMPLE_TASK;
3723 hscb->cdb_len = cmd->cmd_len;
3724 if (hscb->cdb_len <= 12) {
3725 memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len);
3726 } else {
3727 memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len);
3728 scb->flags |= SCB_CDB32_PTR;
3731 scb->platform_data->xfer_len = 0;
3732 ahc_set_residual(scb, 0);
3733 ahc_set_sense_residual(scb, 0);
3734 scb->sg_count = 0;
3735 if (cmd->use_sg != 0) {
3736 struct ahc_dma_seg *sg;
3737 struct scatterlist *cur_seg;
3738 struct scatterlist *end_seg;
3739 int nseg;
3741 cur_seg = (struct scatterlist *)cmd->request_buffer;
3742 nseg = pci_map_sg(ahc->dev_softc, cur_seg, cmd->use_sg,
3743 scsi_to_pci_dma_dir(cmd->sc_data_direction));
3744 end_seg = cur_seg + nseg;
3745 /* Copy the segments into the SG list. */
3746 sg = scb->sg_list;
3748 * The sg_count may be larger than nseg if
3749 * a transfer crosses a 32bit page.
3751 while (cur_seg < end_seg) {
3752 bus_addr_t addr;
3753 bus_size_t len;
3754 int consumed;
3756 addr = sg_dma_address(cur_seg);
3757 len = sg_dma_len(cur_seg);
3758 consumed = ahc_linux_map_seg(ahc, scb,
3759 sg, addr, len);
3760 sg += consumed;
3761 scb->sg_count += consumed;
3762 cur_seg++;
3764 sg--;
3765 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
3768 * Reset the sg list pointer.
3770 scb->hscb->sgptr =
3771 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
3774 * Copy the first SG into the "current"
3775 * data pointer area.
3777 scb->hscb->dataptr = scb->sg_list->addr;
3778 scb->hscb->datacnt = scb->sg_list->len;
3779 } else if (cmd->request_bufflen != 0) {
3780 struct ahc_dma_seg *sg;
3781 bus_addr_t addr;
3783 sg = scb->sg_list;
3784 addr = pci_map_single(ahc->dev_softc,
3785 cmd->request_buffer,
3786 cmd->request_bufflen,
3787 scsi_to_pci_dma_dir(cmd->sc_data_direction));
3788 scb->platform_data->buf_busaddr = addr;
3789 scb->sg_count = ahc_linux_map_seg(ahc, scb,
3790 sg, addr,
3791 cmd->request_bufflen);
3792 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
3795 * Reset the sg list pointer.
3797 scb->hscb->sgptr =
3798 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
3801 * Copy the first SG into the "current"
3802 * data pointer area.
3804 scb->hscb->dataptr = sg->addr;
3805 scb->hscb->datacnt = sg->len;
3806 } else {
3807 scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL);
3808 scb->hscb->dataptr = 0;
3809 scb->hscb->datacnt = 0;
3810 scb->sg_count = 0;
3813 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_PREWRITE);
3814 LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links);
3815 dev->openings--;
3816 dev->active++;
3817 dev->commands_issued++;
3818 if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0)
3819 dev->commands_since_idle_or_otag++;
3822 * We only allow one untagged transaction
3823 * per target in the initiator role unless
3824 * we are storing a full busy target *lun*
3825 * table in SCB space.
3827 if ((scb->hscb->control & (TARGET_SCB|TAG_ENB)) == 0
3828 && (ahc->features & AHC_SCB_BTT) == 0) {
3829 struct scb_tailq *untagged_q;
3830 int target_offset;
3832 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
3833 untagged_q = &(ahc->untagged_queues[target_offset]);
3834 TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe);
3835 scb->flags |= SCB_UNTAGGEDQ;
3836 if (TAILQ_FIRST(untagged_q) != scb)
3837 continue;
3839 scb->flags |= SCB_ACTIVE;
3840 ahc_queue_scb(ahc, scb);
3845 * SCSI controller interrupt handler.
3847 irqreturn_t
3848 ahc_linux_isr(int irq, void *dev_id, struct pt_regs * regs)
3850 struct ahc_softc *ahc;
3851 u_long flags;
3852 int ours;
3854 ahc = (struct ahc_softc *) dev_id;
3855 ahc_lock(ahc, &flags);
3856 ours = ahc_intr(ahc);
3857 if (ahc_linux_next_device_to_run(ahc) != NULL)
3858 ahc_schedule_runq(ahc);
3859 ahc_linux_run_complete_queue(ahc);
3860 ahc_unlock(ahc, &flags);
3861 return IRQ_RETVAL(ours);
3864 void
3865 ahc_platform_flushwork(struct ahc_softc *ahc)
3868 while (ahc_linux_run_complete_queue(ahc) != NULL)
3872 static struct ahc_linux_target*
3873 ahc_linux_alloc_target(struct ahc_softc *ahc, u_int channel, u_int target)
3875 struct ahc_linux_target *targ;
3876 u_int target_offset;
3878 target_offset = target;
3879 if (channel != 0)
3880 target_offset += 8;
3882 targ = malloc(sizeof(*targ), M_DEVBUG, M_NOWAIT);
3883 if (targ == NULL)
3884 return (NULL);
3885 memset(targ, 0, sizeof(*targ));
3886 targ->channel = channel;
3887 targ->target = target;
3888 targ->ahc = ahc;
3889 targ->flags = AHC_DV_REQUIRED;
3890 ahc->platform_data->targets[target_offset] = targ;
3891 return (targ);
3894 static void
3895 ahc_linux_free_target(struct ahc_softc *ahc, struct ahc_linux_target *targ)
3897 struct ahc_devinfo devinfo;
3898 struct ahc_initiator_tinfo *tinfo;
3899 struct ahc_tmode_tstate *tstate;
3900 u_int our_id;
3901 u_int target_offset;
3902 char channel;
3905 * Force a negotiation to async/narrow on any
3906 * future command to this device unless a bus
3907 * reset occurs between now and that command.
3909 channel = 'A' + targ->channel;
3910 our_id = ahc->our_id;
3911 target_offset = targ->target;
3912 if (targ->channel != 0) {
3913 target_offset += 8;
3914 our_id = ahc->our_id_b;
3916 tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
3917 targ->target, &tstate);
3918 ahc_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD,
3919 channel, ROLE_INITIATOR);
3920 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
3921 AHC_TRANS_GOAL, /*paused*/FALSE);
3922 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
3923 AHC_TRANS_GOAL, /*paused*/FALSE);
3924 ahc_update_neg_request(ahc, &devinfo, tstate, tinfo, AHC_NEG_ALWAYS);
3925 ahc->platform_data->targets[target_offset] = NULL;
3926 if (targ->inq_data != NULL)
3927 free(targ->inq_data, M_DEVBUF);
3928 if (targ->dv_buffer != NULL)
3929 free(targ->dv_buffer, M_DEVBUF);
3930 if (targ->dv_buffer1 != NULL)
3931 free(targ->dv_buffer1, M_DEVBUF);
3932 free(targ, M_DEVBUF);
3935 static struct ahc_linux_device*
3936 ahc_linux_alloc_device(struct ahc_softc *ahc,
3937 struct ahc_linux_target *targ, u_int lun)
3939 struct ahc_linux_device *dev;
3941 dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT);
3942 if (dev == NULL)
3943 return (NULL);
3944 memset(dev, 0, sizeof(*dev));
3945 init_timer(&dev->timer);
3946 TAILQ_INIT(&dev->busyq);
3947 dev->flags = AHC_DEV_UNCONFIGURED;
3948 dev->lun = lun;
3949 dev->target = targ;
3952 * We start out life using untagged
3953 * transactions of which we allow one.
3955 dev->openings = 1;
3958 * Set maxtags to 0. This will be changed if we
3959 * later determine that we are dealing with
3960 * a tagged queuing capable device.
3962 dev->maxtags = 0;
3964 targ->refcount++;
3965 targ->devices[lun] = dev;
3966 return (dev);
3969 static void
3970 __ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev)
3972 struct ahc_linux_target *targ;
3974 targ = dev->target;
3975 targ->devices[dev->lun] = NULL;
3976 free(dev, M_DEVBUF);
3977 targ->refcount--;
3978 if (targ->refcount == 0
3979 && (targ->flags & AHC_DV_REQUIRED) == 0)
3980 ahc_linux_free_target(ahc, targ);
3983 static void
3984 ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev)
3986 del_timer_sync(&dev->timer);
3987 __ahc_linux_free_device(ahc, dev);
3990 void
3991 ahc_send_async(struct ahc_softc *ahc, char channel,
3992 u_int target, u_int lun, ac_code code, void *arg)
3994 switch (code) {
3995 case AC_TRANSFER_NEG:
3997 char buf[80];
3998 struct ahc_linux_target *targ;
3999 struct info_str info;
4000 struct ahc_initiator_tinfo *tinfo;
4001 struct ahc_tmode_tstate *tstate;
4002 int target_offset;
4004 info.buffer = buf;
4005 info.length = sizeof(buf);
4006 info.offset = 0;
4007 info.pos = 0;
4008 tinfo = ahc_fetch_transinfo(ahc, channel,
4009 channel == 'A' ? ahc->our_id
4010 : ahc->our_id_b,
4011 target, &tstate);
4014 * Don't bother reporting results while
4015 * negotiations are still pending.
4017 if (tinfo->curr.period != tinfo->goal.period
4018 || tinfo->curr.width != tinfo->goal.width
4019 || tinfo->curr.offset != tinfo->goal.offset
4020 || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
4021 if (bootverbose == 0)
4022 break;
4025 * Don't bother reporting results that
4026 * are identical to those last reported.
4028 target_offset = target;
4029 if (channel == 'B')
4030 target_offset += 8;
4031 targ = ahc->platform_data->targets[target_offset];
4032 if (targ == NULL)
4033 break;
4034 if (tinfo->curr.period == targ->last_tinfo.period
4035 && tinfo->curr.width == targ->last_tinfo.width
4036 && tinfo->curr.offset == targ->last_tinfo.offset
4037 && tinfo->curr.ppr_options == targ->last_tinfo.ppr_options)
4038 if (bootverbose == 0)
4039 break;
4041 targ->last_tinfo.period = tinfo->curr.period;
4042 targ->last_tinfo.width = tinfo->curr.width;
4043 targ->last_tinfo.offset = tinfo->curr.offset;
4044 targ->last_tinfo.ppr_options = tinfo->curr.ppr_options;
4046 printf("(%s:%c:", ahc_name(ahc), channel);
4047 if (target == CAM_TARGET_WILDCARD)
4048 printf("*): ");
4049 else
4050 printf("%d): ", target);
4051 ahc_format_transinfo(&info, &tinfo->curr);
4052 if (info.pos < info.length)
4053 *info.buffer = '\0';
4054 else
4055 buf[info.length - 1] = '\0';
4056 printf("%s", buf);
4057 break;
4059 case AC_SENT_BDR:
4061 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
4062 WARN_ON(lun != CAM_LUN_WILDCARD);
4063 scsi_report_device_reset(ahc->platform_data->host,
4064 channel - 'A', target);
4065 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
4066 Scsi_Device *scsi_dev;
4069 * Find the SCSI device associated with this
4070 * request and indicate that a UA is expected.
4072 for (scsi_dev = ahc->platform_data->host->host_queue;
4073 scsi_dev != NULL; scsi_dev = scsi_dev->next) {
4074 if (channel - 'A' == scsi_dev->channel
4075 && target == scsi_dev->id
4076 && (lun == CAM_LUN_WILDCARD
4077 || lun == scsi_dev->lun)) {
4078 scsi_dev->was_reset = 1;
4079 scsi_dev->expecting_cc_ua = 1;
4082 #endif
4083 break;
4085 case AC_BUS_RESET:
4086 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
4087 if (ahc->platform_data->host != NULL) {
4088 scsi_report_bus_reset(ahc->platform_data->host,
4089 channel - 'A');
4091 #endif
4092 break;
4093 default:
4094 panic("ahc_send_async: Unexpected async event");
4099 * Calls the higher level scsi done function and frees the scb.
4101 void
4102 ahc_done(struct ahc_softc *ahc, struct scb *scb)
4104 Scsi_Cmnd *cmd;
4105 struct ahc_linux_device *dev;
4107 LIST_REMOVE(scb, pending_links);
4108 if ((scb->flags & SCB_UNTAGGEDQ) != 0) {
4109 struct scb_tailq *untagged_q;
4110 int target_offset;
4112 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
4113 untagged_q = &(ahc->untagged_queues[target_offset]);
4114 TAILQ_REMOVE(untagged_q, scb, links.tqe);
4115 ahc_run_untagged_queue(ahc, untagged_q);
4118 if ((scb->flags & SCB_ACTIVE) == 0) {
4119 printf("SCB %d done'd twice\n", scb->hscb->tag);
4120 ahc_dump_card_state(ahc);
4121 panic("Stopping for safety");
4123 cmd = scb->io_ctx;
4124 dev = scb->platform_data->dev;
4125 dev->active--;
4126 dev->openings++;
4127 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
4128 cmd->result &= ~(CAM_DEV_QFRZN << 16);
4129 dev->qfrozen--;
4131 ahc_linux_unmap_scb(ahc, scb);
4134 * Guard against stale sense data.
4135 * The Linux mid-layer assumes that sense
4136 * was retrieved anytime the first byte of
4137 * the sense buffer looks "sane".
4139 cmd->sense_buffer[0] = 0;
4140 if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) {
4141 uint32_t amount_xferred;
4143 amount_xferred =
4144 ahc_get_transfer_length(scb) - ahc_get_residual(scb);
4145 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
4146 #ifdef AHC_DEBUG
4147 if ((ahc_debug & AHC_SHOW_MISC) != 0) {
4148 ahc_print_path(ahc, scb);
4149 printf("Set CAM_UNCOR_PARITY\n");
4151 #endif
4152 ahc_set_transaction_status(scb, CAM_UNCOR_PARITY);
4153 #ifdef AHC_REPORT_UNDERFLOWS
4155 * This code is disabled by default as some
4156 * clients of the SCSI system do not properly
4157 * initialize the underflow parameter. This
4158 * results in spurious termination of commands
4159 * that complete as expected (e.g. underflow is
4160 * allowed as command can return variable amounts
4161 * of data.
4163 } else if (amount_xferred < scb->io_ctx->underflow) {
4164 u_int i;
4166 ahc_print_path(ahc, scb);
4167 printf("CDB:");
4168 for (i = 0; i < scb->io_ctx->cmd_len; i++)
4169 printf(" 0x%x", scb->io_ctx->cmnd[i]);
4170 printf("\n");
4171 ahc_print_path(ahc, scb);
4172 printf("Saw underflow (%ld of %ld bytes). "
4173 "Treated as error\n",
4174 ahc_get_residual(scb),
4175 ahc_get_transfer_length(scb));
4176 ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
4177 #endif
4178 } else {
4179 ahc_set_transaction_status(scb, CAM_REQ_CMP);
4181 } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
4182 ahc_linux_handle_scsi_status(ahc, dev, scb);
4183 } else if (ahc_get_transaction_status(scb) == CAM_SEL_TIMEOUT) {
4184 dev->flags |= AHC_DEV_UNCONFIGURED;
4185 if (AHC_DV_CMD(cmd) == FALSE)
4186 dev->target->flags &= ~AHC_DV_REQUIRED;
4189 * Start DV for devices that require it assuming the first command
4190 * sent does not result in a selection timeout.
4192 if (ahc_get_transaction_status(scb) != CAM_SEL_TIMEOUT
4193 && (dev->target->flags & AHC_DV_REQUIRED) != 0)
4194 ahc_linux_start_dv(ahc);
4196 if (dev->openings == 1
4197 && ahc_get_transaction_status(scb) == CAM_REQ_CMP
4198 && ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL)
4199 dev->tag_success_count++;
4201 * Some devices deal with temporary internal resource
4202 * shortages by returning queue full. When the queue
4203 * full occurrs, we throttle back. Slowly try to get
4204 * back to our previous queue depth.
4206 if ((dev->openings + dev->active) < dev->maxtags
4207 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) {
4208 dev->tag_success_count = 0;
4209 dev->openings++;
4212 if (dev->active == 0)
4213 dev->commands_since_idle_or_otag = 0;
4215 if (TAILQ_EMPTY(&dev->busyq)) {
4216 if ((dev->flags & AHC_DEV_UNCONFIGURED) != 0
4217 && dev->active == 0
4218 && (dev->flags & AHC_DEV_TIMER_ACTIVE) == 0)
4219 ahc_linux_free_device(ahc, dev);
4220 } else if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) {
4221 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links);
4222 dev->flags |= AHC_DEV_ON_RUN_LIST;
4225 if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
4226 printf("Recovery SCB completes\n");
4227 if (ahc_get_transaction_status(scb) == CAM_BDR_SENT
4228 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED)
4229 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);
4230 if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) {
4231 ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE;
4232 up(&ahc->platform_data->eh_sem);
4236 ahc_free_scb(ahc, scb);
4237 ahc_linux_queue_cmd_complete(ahc, cmd);
4239 if ((ahc->platform_data->flags & AHC_DV_WAIT_SIMQ_EMPTY) != 0
4240 && LIST_FIRST(&ahc->pending_scbs) == NULL) {
4241 ahc->platform_data->flags &= ~AHC_DV_WAIT_SIMQ_EMPTY;
4242 up(&ahc->platform_data->dv_sem);
4247 static void
4248 ahc_linux_handle_scsi_status(struct ahc_softc *ahc,
4249 struct ahc_linux_device *dev, struct scb *scb)
4251 struct ahc_devinfo devinfo;
4253 ahc_compile_devinfo(&devinfo,
4254 ahc->our_id,
4255 dev->target->target, dev->lun,
4256 dev->target->channel == 0 ? 'A' : 'B',
4257 ROLE_INITIATOR);
4260 * We don't currently trust the mid-layer to
4261 * properly deal with queue full or busy. So,
4262 * when one occurs, we tell the mid-layer to
4263 * unconditionally requeue the command to us
4264 * so that we can retry it ourselves. We also
4265 * implement our own throttling mechanism so
4266 * we don't clobber the device with too many
4267 * commands.
4269 switch (ahc_get_scsi_status(scb)) {
4270 default:
4271 break;
4272 case SCSI_STATUS_CHECK_COND:
4273 case SCSI_STATUS_CMD_TERMINATED:
4275 Scsi_Cmnd *cmd;
4278 * Copy sense information to the OS's cmd
4279 * structure if it is available.
4281 cmd = scb->io_ctx;
4282 if (scb->flags & SCB_SENSE) {
4283 u_int sense_size;
4285 sense_size = MIN(sizeof(struct scsi_sense_data)
4286 - ahc_get_sense_residual(scb),
4287 sizeof(cmd->sense_buffer));
4288 memcpy(cmd->sense_buffer,
4289 ahc_get_sense_buf(ahc, scb), sense_size);
4290 if (sense_size < sizeof(cmd->sense_buffer))
4291 memset(&cmd->sense_buffer[sense_size], 0,
4292 sizeof(cmd->sense_buffer) - sense_size);
4293 cmd->result |= (DRIVER_SENSE << 24);
4294 #ifdef AHC_DEBUG
4295 if (ahc_debug & AHC_SHOW_SENSE) {
4296 int i;
4298 printf("Copied %d bytes of sense data:",
4299 sense_size);
4300 for (i = 0; i < sense_size; i++) {
4301 if ((i & 0xF) == 0)
4302 printf("\n");
4303 printf("0x%x ", cmd->sense_buffer[i]);
4305 printf("\n");
4307 #endif
4309 break;
4311 case SCSI_STATUS_QUEUE_FULL:
4314 * By the time the core driver has returned this
4315 * command, all other commands that were queued
4316 * to us but not the device have been returned.
4317 * This ensures that dev->active is equal to
4318 * the number of commands actually queued to
4319 * the device.
4321 dev->tag_success_count = 0;
4322 if (dev->active != 0) {
4324 * Drop our opening count to the number
4325 * of commands currently outstanding.
4327 dev->openings = 0;
4329 ahc_print_path(ahc, scb);
4330 printf("Dropping tag count to %d\n", dev->active);
4332 if (dev->active == dev->tags_on_last_queuefull) {
4334 dev->last_queuefull_same_count++;
4336 * If we repeatedly see a queue full
4337 * at the same queue depth, this
4338 * device has a fixed number of tag
4339 * slots. Lock in this tag depth
4340 * so we stop seeing queue fulls from
4341 * this device.
4343 if (dev->last_queuefull_same_count
4344 == AHC_LOCK_TAGS_COUNT) {
4345 dev->maxtags = dev->active;
4346 ahc_print_path(ahc, scb);
4347 printf("Locking max tag count at %d\n",
4348 dev->active);
4350 } else {
4351 dev->tags_on_last_queuefull = dev->active;
4352 dev->last_queuefull_same_count = 0;
4354 ahc_set_transaction_status(scb, CAM_REQUEUE_REQ);
4355 ahc_set_scsi_status(scb, SCSI_STATUS_OK);
4356 ahc_platform_set_tags(ahc, &devinfo,
4357 (dev->flags & AHC_DEV_Q_BASIC)
4358 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
4359 break;
4362 * Drop down to a single opening, and treat this
4363 * as if the target returned BUSY SCSI status.
4365 dev->openings = 1;
4366 ahc_set_scsi_status(scb, SCSI_STATUS_BUSY);
4367 ahc_platform_set_tags(ahc, &devinfo,
4368 (dev->flags & AHC_DEV_Q_BASIC)
4369 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
4370 /* FALLTHROUGH */
4372 case SCSI_STATUS_BUSY:
4375 * Set a short timer to defer sending commands for
4376 * a bit since Linux will not delay in this case.
4378 if ((dev->flags & AHC_DEV_TIMER_ACTIVE) != 0) {
4379 printf("%s:%c:%d: Device Timer still active during "
4380 "busy processing\n", ahc_name(ahc),
4381 dev->target->channel, dev->target->target);
4382 break;
4384 dev->flags |= AHC_DEV_TIMER_ACTIVE;
4385 dev->qfrozen++;
4386 init_timer(&dev->timer);
4387 dev->timer.data = (u_long)dev;
4388 dev->timer.expires = jiffies + (HZ/2);
4389 dev->timer.function = ahc_linux_dev_timed_unfreeze;
4390 add_timer(&dev->timer);
4391 break;
4396 static void
4397 ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, Scsi_Cmnd *cmd)
4400 * Typically, the complete queue has very few entries
4401 * queued to it before the queue is emptied by
4402 * ahc_linux_run_complete_queue, so sorting the entries
4403 * by generation number should be inexpensive.
4404 * We perform the sort so that commands that complete
4405 * with an error are retuned in the order origionally
4406 * queued to the controller so that any subsequent retries
4407 * are performed in order. The underlying ahc routines do
4408 * not guarantee the order that aborted commands will be
4409 * returned to us.
4411 struct ahc_completeq *completeq;
4412 struct ahc_cmd *list_cmd;
4413 struct ahc_cmd *acmd;
4416 * Map CAM error codes into Linux Error codes. We
4417 * avoid the conversion so that the DV code has the
4418 * full error information available when making
4419 * state change decisions.
4421 if (AHC_DV_CMD(cmd) == FALSE) {
4422 u_int new_status;
4424 switch (ahc_cmd_get_transaction_status(cmd)) {
4425 case CAM_REQ_INPROG:
4426 case CAM_REQ_CMP:
4427 case CAM_SCSI_STATUS_ERROR:
4428 new_status = DID_OK;
4429 break;
4430 case CAM_REQ_ABORTED:
4431 new_status = DID_ABORT;
4432 break;
4433 case CAM_BUSY:
4434 new_status = DID_BUS_BUSY;
4435 break;
4436 case CAM_REQ_INVALID:
4437 case CAM_PATH_INVALID:
4438 new_status = DID_BAD_TARGET;
4439 break;
4440 case CAM_SEL_TIMEOUT:
4441 new_status = DID_NO_CONNECT;
4442 break;
4443 case CAM_SCSI_BUS_RESET:
4444 case CAM_BDR_SENT:
4445 new_status = DID_RESET;
4446 break;
4447 case CAM_UNCOR_PARITY:
4448 new_status = DID_PARITY;
4449 break;
4450 case CAM_CMD_TIMEOUT:
4451 new_status = DID_TIME_OUT;
4452 break;
4453 case CAM_UA_ABORT:
4454 case CAM_REQ_CMP_ERR:
4455 case CAM_AUTOSENSE_FAIL:
4456 case CAM_NO_HBA:
4457 case CAM_DATA_RUN_ERR:
4458 case CAM_UNEXP_BUSFREE:
4459 case CAM_SEQUENCE_FAIL:
4460 case CAM_CCB_LEN_ERR:
4461 case CAM_PROVIDE_FAIL:
4462 case CAM_REQ_TERMIO:
4463 case CAM_UNREC_HBA_ERROR:
4464 case CAM_REQ_TOO_BIG:
4465 new_status = DID_ERROR;
4466 break;
4467 case CAM_REQUEUE_REQ:
4469 * If we want the request requeued, make sure there
4470 * are sufficent retries. In the old scsi error code,
4471 * we used to be able to specify a result code that
4472 * bypassed the retry count. Now we must use this
4473 * hack. We also "fake" a check condition with
4474 * a sense code of ABORTED COMMAND. This seems to
4475 * evoke a retry even if this command is being sent
4476 * via the eh thread. Ick! Ick! Ick!
4478 if (cmd->retries > 0)
4479 cmd->retries--;
4480 new_status = DID_OK;
4481 ahc_cmd_set_scsi_status(cmd, SCSI_STATUS_CHECK_COND);
4482 cmd->result |= (DRIVER_SENSE << 24);
4483 memset(cmd->sense_buffer, 0,
4484 sizeof(cmd->sense_buffer));
4485 cmd->sense_buffer[0] = SSD_ERRCODE_VALID
4486 | SSD_CURRENT_ERROR;
4487 cmd->sense_buffer[2] = SSD_KEY_ABORTED_COMMAND;
4488 break;
4489 default:
4490 /* We should never get here */
4491 new_status = DID_ERROR;
4492 break;
4495 ahc_cmd_set_transaction_status(cmd, new_status);
4498 completeq = &ahc->platform_data->completeq;
4499 list_cmd = TAILQ_FIRST(completeq);
4500 acmd = (struct ahc_cmd *)cmd;
4501 while (list_cmd != NULL
4502 && acmd_scsi_cmd(list_cmd).serial_number
4503 < acmd_scsi_cmd(acmd).serial_number)
4504 list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe);
4505 if (list_cmd != NULL)
4506 TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe);
4507 else
4508 TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe);
4511 static void
4512 ahc_linux_filter_inquiry(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
4514 struct scsi_inquiry_data *sid;
4515 struct ahc_initiator_tinfo *tinfo;
4516 struct ahc_transinfo *user;
4517 struct ahc_transinfo *goal;
4518 struct ahc_transinfo *curr;
4519 struct ahc_tmode_tstate *tstate;
4520 struct ahc_syncrate *syncrate;
4521 struct ahc_linux_device *dev;
4522 u_int maxsync;
4523 u_int width;
4524 u_int period;
4525 u_int offset;
4526 u_int ppr_options;
4527 u_int trans_version;
4528 u_int prot_version;
4531 * Determine if this lun actually exists. If so,
4532 * hold on to its corresponding device structure.
4533 * If not, make sure we release the device and
4534 * don't bother processing the rest of this inquiry
4535 * command.
4537 dev = ahc_linux_get_device(ahc, devinfo->channel - 'A',
4538 devinfo->target, devinfo->lun,
4539 /*alloc*/TRUE);
4541 sid = (struct scsi_inquiry_data *)dev->target->inq_data;
4542 if (SID_QUAL(sid) == SID_QUAL_LU_CONNECTED) {
4544 dev->flags &= ~AHC_DEV_UNCONFIGURED;
4545 } else {
4546 dev->flags |= AHC_DEV_UNCONFIGURED;
4547 return;
4551 * Update our notion of this device's transfer
4552 * negotiation capabilities.
4554 tinfo = ahc_fetch_transinfo(ahc, devinfo->channel,
4555 devinfo->our_scsiid,
4556 devinfo->target, &tstate);
4557 user = &tinfo->user;
4558 goal = &tinfo->goal;
4559 curr = &tinfo->curr;
4560 width = user->width;
4561 period = user->period;
4562 offset = user->offset;
4563 ppr_options = user->ppr_options;
4564 trans_version = user->transport_version;
4565 prot_version = MIN(user->protocol_version, SID_ANSI_REV(sid));
4568 * Only attempt SPI3/4 once we've verified that
4569 * the device claims to support SPI3/4 features.
4571 if (prot_version < SCSI_REV_2)
4572 trans_version = SID_ANSI_REV(sid);
4573 else
4574 trans_version = SCSI_REV_2;
4576 if ((sid->flags & SID_WBus16) == 0)
4577 width = MSG_EXT_WDTR_BUS_8_BIT;
4578 if ((sid->flags & SID_Sync) == 0) {
4579 period = 0;
4580 offset = 0;
4581 ppr_options = 0;
4583 if ((sid->spi3data & SID_SPI_QAS) == 0)
4584 ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
4585 if ((sid->spi3data & SID_SPI_CLOCK_DT) == 0)
4586 ppr_options &= MSG_EXT_PPR_QAS_REQ;
4587 if ((sid->spi3data & SID_SPI_IUS) == 0)
4588 ppr_options &= (MSG_EXT_PPR_DT_REQ
4589 | MSG_EXT_PPR_QAS_REQ);
4591 if (prot_version > SCSI_REV_2
4592 && ppr_options != 0)
4593 trans_version = user->transport_version;
4595 ahc_validate_width(ahc, /*tinfo limit*/NULL, &width, ROLE_UNKNOWN);
4596 if ((ahc->features & AHC_ULTRA2) != 0)
4597 maxsync = AHC_SYNCRATE_DT;
4598 else if ((ahc->features & AHC_ULTRA) != 0)
4599 maxsync = AHC_SYNCRATE_ULTRA;
4600 else
4601 maxsync = AHC_SYNCRATE_FAST;
4603 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, maxsync);
4604 ahc_validate_offset(ahc, /*tinfo limit*/NULL, syncrate,
4605 &offset, width, ROLE_UNKNOWN);
4606 if (offset == 0 || period == 0) {
4607 period = 0;
4608 offset = 0;
4609 ppr_options = 0;
4611 /* Apply our filtered user settings. */
4612 curr->transport_version = trans_version;
4613 curr->protocol_version = prot_version;
4614 ahc_set_width(ahc, devinfo, width, AHC_TRANS_GOAL, /*paused*/FALSE);
4615 ahc_set_syncrate(ahc, devinfo, syncrate, period,
4616 offset, ppr_options, AHC_TRANS_GOAL,
4617 /*paused*/FALSE);
4620 static void
4621 ahc_linux_sem_timeout(u_long arg)
4623 struct ahc_softc *ahc;
4624 u_long s;
4626 ahc = (struct ahc_softc *)arg;
4628 ahc_lock(ahc, &s);
4629 if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) {
4630 ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE;
4631 up(&ahc->platform_data->eh_sem);
4633 ahc_unlock(ahc, &s);
4636 static void
4637 ahc_linux_freeze_simq(struct ahc_softc *ahc)
4639 ahc->platform_data->qfrozen++;
4640 if (ahc->platform_data->qfrozen == 1) {
4641 scsi_block_requests(ahc->platform_data->host);
4643 /* XXX What about Twin channels? */
4644 ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
4645 CAM_LUN_WILDCARD, SCB_LIST_NULL,
4646 ROLE_INITIATOR, CAM_REQUEUE_REQ);
4650 static void
4651 ahc_linux_release_simq(u_long arg)
4653 struct ahc_softc *ahc;
4654 u_long s;
4655 int unblock_reqs;
4657 ahc = (struct ahc_softc *)arg;
4659 unblock_reqs = 0;
4660 ahc_lock(ahc, &s);
4661 if (ahc->platform_data->qfrozen > 0)
4662 ahc->platform_data->qfrozen--;
4663 if (ahc->platform_data->qfrozen == 0)
4664 unblock_reqs = 1;
4665 if (AHC_DV_SIMQ_FROZEN(ahc)
4666 && ((ahc->platform_data->flags & AHC_DV_WAIT_SIMQ_RELEASE) != 0)) {
4667 ahc->platform_data->flags &= ~AHC_DV_WAIT_SIMQ_RELEASE;
4668 up(&ahc->platform_data->dv_sem);
4670 ahc_schedule_runq(ahc);
4671 ahc_unlock(ahc, &s);
4673 * There is still a race here. The mid-layer
4674 * should keep its own freeze count and use
4675 * a bottom half handler to run the queues
4676 * so we can unblock with our own lock held.
4678 if (unblock_reqs)
4679 scsi_unblock_requests(ahc->platform_data->host);
4682 static void
4683 ahc_linux_dev_timed_unfreeze(u_long arg)
4685 struct ahc_linux_device *dev;
4686 struct ahc_softc *ahc;
4687 u_long s;
4689 dev = (struct ahc_linux_device *)arg;
4690 ahc = dev->target->ahc;
4691 ahc_lock(ahc, &s);
4692 dev->flags &= ~AHC_DEV_TIMER_ACTIVE;
4693 if (dev->qfrozen > 0)
4694 dev->qfrozen--;
4695 if (dev->qfrozen == 0
4696 && (dev->flags & AHC_DEV_ON_RUN_LIST) == 0)
4697 ahc_linux_run_device_queue(ahc, dev);
4698 if (TAILQ_EMPTY(&dev->busyq)
4699 && dev->active == 0)
4700 __ahc_linux_free_device(ahc, dev);
4701 ahc_unlock(ahc, &s);
4704 static int
4705 ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag)
4707 struct ahc_softc *ahc;
4708 struct ahc_cmd *acmd;
4709 struct ahc_cmd *list_acmd;
4710 struct ahc_linux_device *dev;
4711 struct scb *pending_scb;
4712 u_long s;
4713 u_int saved_scbptr;
4714 u_int active_scb_index;
4715 u_int last_phase;
4716 u_int saved_scsiid;
4717 u_int cdb_byte;
4718 int retval;
4719 int was_paused;
4720 int paused;
4721 int wait;
4722 int disconnected;
4724 pending_scb = NULL;
4725 paused = FALSE;
4726 wait = FALSE;
4727 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
4728 acmd = (struct ahc_cmd *)cmd;
4730 printf("%s:%d:%d:%d: Attempting to queue a%s message\n",
4731 ahc_name(ahc), cmd->device->channel,
4732 cmd->device->id, cmd->device->lun,
4733 flag == SCB_ABORT ? "n ABORT" : " TARGET RESET");
4735 printf("CDB:");
4736 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
4737 printf(" 0x%x", cmd->cmnd[cdb_byte]);
4738 printf("\n");
4741 * In all versions of Linux, we have to work around
4742 * a major flaw in how the mid-layer is locked down
4743 * if we are to sleep successfully in our error handler
4744 * while allowing our interrupt handler to run. Since
4745 * the midlayer acquires either the io_request_lock or
4746 * our lock prior to calling us, we must use the
4747 * spin_unlock_irq() method for unlocking our lock.
4748 * This will force interrupts to be enabled on the
4749 * current CPU. Since the EH thread should not have
4750 * been running with CPU interrupts disabled other than
4751 * by acquiring either the io_request_lock or our own
4752 * lock, this *should* be safe.
4754 ahc_midlayer_entrypoint_lock(ahc, &s);
4757 * First determine if we currently own this command.
4758 * Start by searching the device queue. If not found
4759 * there, check the pending_scb list. If not found
4760 * at all, and the system wanted us to just abort the
4761 * command, return success.
4763 dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id,
4764 cmd->device->lun, /*alloc*/FALSE);
4766 if (dev == NULL) {
4768 * No target device for this command exists,
4769 * so we must not still own the command.
4771 printf("%s:%d:%d:%d: Is not an active device\n",
4772 ahc_name(ahc), cmd->device->channel, cmd->device->id,
4773 cmd->device->lun);
4774 retval = SUCCESS;
4775 goto no_cmd;
4778 TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) {
4779 if (list_acmd == acmd)
4780 break;
4783 if (list_acmd != NULL) {
4784 printf("%s:%d:%d:%d: Command found on device queue\n",
4785 ahc_name(ahc), cmd->device->channel, cmd->device->id,
4786 cmd->device->lun);
4787 if (flag == SCB_ABORT) {
4788 TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe);
4789 cmd->result = DID_ABORT << 16;
4790 ahc_linux_queue_cmd_complete(ahc, cmd);
4791 retval = SUCCESS;
4792 goto done;
4796 if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0
4797 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id,
4798 cmd->device->channel + 'A',
4799 cmd->device->lun,
4800 CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) {
4801 printf("%s:%d:%d:%d: Command found on untagged queue\n",
4802 ahc_name(ahc), cmd->device->channel, cmd->device->id,
4803 cmd->device->lun);
4804 retval = SUCCESS;
4805 goto done;
4809 * See if we can find a matching cmd in the pending list.
4811 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
4812 if (pending_scb->io_ctx == cmd)
4813 break;
4816 if (pending_scb == NULL && flag == SCB_DEVICE_RESET) {
4818 /* Any SCB for this device will do for a target reset */
4819 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
4820 if (ahc_match_scb(ahc, pending_scb, cmd->device->id,
4821 cmd->device->channel + 'A',
4822 CAM_LUN_WILDCARD,
4823 SCB_LIST_NULL, ROLE_INITIATOR) == 0)
4824 break;
4828 if (pending_scb == NULL) {
4829 printf("%s:%d:%d:%d: Command not found\n",
4830 ahc_name(ahc), cmd->device->channel, cmd->device->id,
4831 cmd->device->lun);
4832 goto no_cmd;
4835 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
4837 * We can't queue two recovery actions using the same SCB
4839 retval = FAILED;
4840 goto done;
4844 * Ensure that the card doesn't do anything
4845 * behind our back and that we didn't "just" miss
4846 * an interrupt that would affect this cmd.
4848 was_paused = ahc_is_paused(ahc);
4849 ahc_pause_and_flushwork(ahc);
4850 paused = TRUE;
4852 if ((pending_scb->flags & SCB_ACTIVE) == 0) {
4853 printf("%s:%d:%d:%d: Command already completed\n",
4854 ahc_name(ahc), cmd->device->channel, cmd->device->id,
4855 cmd->device->lun);
4856 goto no_cmd;
4859 printf("%s: At time of recovery, card was %spaused\n",
4860 ahc_name(ahc), was_paused ? "" : "not ");
4861 ahc_dump_card_state(ahc);
4863 disconnected = TRUE;
4864 if (flag == SCB_ABORT) {
4865 if (ahc_search_qinfifo(ahc, cmd->device->id,
4866 cmd->device->channel + 'A',
4867 cmd->device->lun,
4868 pending_scb->hscb->tag,
4869 ROLE_INITIATOR, CAM_REQ_ABORTED,
4870 SEARCH_COMPLETE) > 0) {
4871 printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
4872 ahc_name(ahc), cmd->device->channel,
4873 cmd->device->id, cmd->device->lun);
4874 retval = SUCCESS;
4875 goto done;
4877 } else if (ahc_search_qinfifo(ahc, cmd->device->id,
4878 cmd->device->channel + 'A',
4879 cmd->device->lun, pending_scb->hscb->tag,
4880 ROLE_INITIATOR, /*status*/0,
4881 SEARCH_COUNT) > 0) {
4882 disconnected = FALSE;
4885 if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
4886 struct scb *bus_scb;
4888 bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG));
4889 if (bus_scb == pending_scb)
4890 disconnected = FALSE;
4891 else if (flag != SCB_ABORT
4892 && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid
4893 && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb))
4894 disconnected = FALSE;
4898 * At this point, pending_scb is the scb associated with the
4899 * passed in command. That command is currently active on the
4900 * bus, is in the disconnected state, or we're hoping to find
4901 * a command for the same target active on the bus to abuse to
4902 * send a BDR. Queue the appropriate message based on which of
4903 * these states we are in.
4905 last_phase = ahc_inb(ahc, LASTPHASE);
4906 saved_scbptr = ahc_inb(ahc, SCBPTR);
4907 active_scb_index = ahc_inb(ahc, SCB_TAG);
4908 saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
4909 if (last_phase != P_BUSFREE
4910 && (pending_scb->hscb->tag == active_scb_index
4911 || (flag == SCB_DEVICE_RESET
4912 && SCSIID_TARGET(ahc, saved_scsiid) == cmd->device->id))) {
4915 * We're active on the bus, so assert ATN
4916 * and hope that the target responds.
4918 pending_scb = ahc_lookup_scb(ahc, active_scb_index);
4919 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
4920 ahc_outb(ahc, MSG_OUT, HOST_MSG);
4921 ahc_outb(ahc, SCSISIGO, last_phase|ATNO);
4922 printf("%s:%d:%d:%d: Device is active, asserting ATN\n",
4923 ahc_name(ahc), cmd->device->channel, cmd->device->id,
4924 cmd->device->lun);
4925 wait = TRUE;
4926 } else if (disconnected) {
4929 * Actually re-queue this SCB in an attempt
4930 * to select the device before it reconnects.
4931 * In either case (selection or reselection),
4932 * we will now issue the approprate message
4933 * to the timed-out device.
4935 * Set the MK_MESSAGE control bit indicating
4936 * that we desire to send a message. We
4937 * also set the disconnected flag since
4938 * in the paging case there is no guarantee
4939 * that our SCB control byte matches the
4940 * version on the card. We don't want the
4941 * sequencer to abort the command thinking
4942 * an unsolicited reselection occurred.
4944 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
4945 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
4948 * Remove any cached copy of this SCB in the
4949 * disconnected list in preparation for the
4950 * queuing of our abort SCB. We use the
4951 * same element in the SCB, SCB_NEXT, for
4952 * both the qinfifo and the disconnected list.
4954 ahc_search_disc_list(ahc, cmd->device->id,
4955 cmd->device->channel + 'A',
4956 cmd->device->lun, pending_scb->hscb->tag,
4957 /*stop_on_first*/TRUE,
4958 /*remove*/TRUE,
4959 /*save_state*/FALSE);
4962 * In the non-paging case, the sequencer will
4963 * never re-reference the in-core SCB.
4964 * To make sure we are notified during
4965 * reslection, set the MK_MESSAGE flag in
4966 * the card's copy of the SCB.
4968 if ((ahc->flags & AHC_PAGESCBS) == 0) {
4969 ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag);
4970 ahc_outb(ahc, SCB_CONTROL,
4971 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE);
4975 * Clear out any entries in the QINFIFO first
4976 * so we are the next SCB for this target
4977 * to run.
4979 ahc_search_qinfifo(ahc, cmd->device->id,
4980 cmd->device->channel + 'A',
4981 cmd->device->lun, SCB_LIST_NULL,
4982 ROLE_INITIATOR, CAM_REQUEUE_REQ,
4983 SEARCH_COMPLETE);
4984 ahc_qinfifo_requeue_tail(ahc, pending_scb);
4985 ahc_outb(ahc, SCBPTR, saved_scbptr);
4986 ahc_print_path(ahc, pending_scb);
4987 printf("Device is disconnected, re-queuing SCB\n");
4988 wait = TRUE;
4989 } else {
4990 printf("%s:%d:%d:%d: Unable to deliver message\n",
4991 ahc_name(ahc), cmd->device->channel, cmd->device->id,
4992 cmd->device->lun);
4993 retval = FAILED;
4994 goto done;
4997 no_cmd:
4999 * Our assumption is that if we don't have the command, no
5000 * recovery action was required, so we return success. Again,
5001 * the semantics of the mid-layer recovery engine are not
5002 * well defined, so this may change in time.
5004 retval = SUCCESS;
5005 done:
5006 if (paused)
5007 ahc_unpause(ahc);
5008 if (wait) {
5009 struct timer_list timer;
5010 int ret;
5012 ahc->platform_data->flags |= AHC_UP_EH_SEMAPHORE;
5013 spin_unlock_irq(&ahc->platform_data->spin_lock);
5014 init_timer(&timer);
5015 timer.data = (u_long)ahc;
5016 timer.expires = jiffies + (5 * HZ);
5017 timer.function = ahc_linux_sem_timeout;
5018 add_timer(&timer);
5019 printf("Recovery code sleeping\n");
5020 down(&ahc->platform_data->eh_sem);
5021 printf("Recovery code awake\n");
5022 ret = del_timer_sync(&timer);
5023 if (ret == 0) {
5024 printf("Timer Expired\n");
5025 retval = FAILED;
5027 spin_lock_irq(&ahc->platform_data->spin_lock);
5029 ahc_schedule_runq(ahc);
5030 ahc_linux_run_complete_queue(ahc);
5031 ahc_midlayer_entrypoint_unlock(ahc, &s);
5032 return (retval);
5035 void
5036 ahc_platform_dump_card_state(struct ahc_softc *ahc)
5038 struct ahc_linux_device *dev;
5039 int channel;
5040 int maxchannel;
5041 int target;
5042 int maxtarget;
5043 int lun;
5044 int i;
5046 maxchannel = (ahc->features & AHC_TWIN) ? 1 : 0;
5047 maxtarget = (ahc->features & AHC_WIDE) ? 15 : 7;
5048 for (channel = 0; channel <= maxchannel; channel++) {
5050 for (target = 0; target <=maxtarget; target++) {
5052 for (lun = 0; lun < AHC_NUM_LUNS; lun++) {
5053 struct ahc_cmd *acmd;
5055 dev = ahc_linux_get_device(ahc, channel, target,
5056 lun, /*alloc*/FALSE);
5057 if (dev == NULL)
5058 continue;
5060 printf("DevQ(%d:%d:%d): ",
5061 channel, target, lun);
5062 i = 0;
5063 TAILQ_FOREACH(acmd, &dev->busyq,
5064 acmd_links.tqe) {
5065 if (i++ > AHC_SCB_MAX)
5066 break;
5068 printf("%d waiting\n", i);
5074 static void ahc_linux_exit(void);
5076 static int __init
5077 ahc_linux_init(void)
5079 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
5080 int rc = ahc_linux_detect(&aic7xxx_driver_template);
5081 if (rc)
5082 return rc;
5083 ahc_linux_exit();
5084 return -ENODEV;
5085 #else
5086 scsi_register_module(MODULE_SCSI_HA, &aic7xxx_driver_template);
5087 if (aic7xxx_driver_template.present == 0) {
5088 scsi_unregister_module(MODULE_SCSI_HA,
5089 &aic7xxx_driver_template);
5090 return (-ENODEV);
5093 return (0);
5094 #endif
5097 static void
5098 ahc_linux_exit(void)
5100 struct ahc_softc *ahc;
5101 u_long l;
5104 * Shutdown DV threads before going into the SCSI mid-layer.
5105 * This avoids situations where the mid-layer locks the entire
5106 * kernel so that waiting for our DV threads to exit leads
5107 * to deadlock.
5109 ahc_list_lock(&l);
5110 TAILQ_FOREACH(ahc, &ahc_tailq, links) {
5112 ahc_linux_kill_dv_thread(ahc);
5114 ahc_list_unlock(&l);
5116 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
5118 * In 2.4 we have to unregister from the PCI core _after_
5119 * unregistering from the scsi midlayer to avoid dangling
5120 * references.
5122 scsi_unregister_module(MODULE_SCSI_HA, &aic7xxx_driver_template);
5123 #endif
5124 ahc_linux_pci_exit();
5125 ahc_linux_eisa_exit();
5128 module_init(ahc_linux_init);
5129 module_exit(ahc_linux_exit);