initial commit with v2.6.9
[linux-2.6.9-moxart.git] / drivers / scsi / aic7xxx / aic79xx_osm.c
blobc9f3a52f1a33e8f14f70528bc82f3f14e8a0eeb5
1 /*
2 * Adaptec AIC79xx device driver for Linux.
4 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic79xx_osm.c#171 $
6 * --------------------------------------------------------------------------
7 * Copyright (c) 1994-2000 Justin T. Gibbs.
8 * Copyright (c) 1997-1999 Doug Ledford
9 * Copyright (c) 2000-2003 Adaptec Inc.
10 * All rights reserved.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
45 #include "aic79xx_osm.h"
46 #include "aic79xx_inline.h"
47 #include <scsi/scsicam.h>
50 * Include aiclib.c as part of our
51 * "module dependencies are hard" work around.
53 #include "aiclib.c"
55 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
56 #include <linux/init.h> /* __setup */
57 #endif
59 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
60 #include "sd.h" /* For geometry detection */
61 #endif
63 #include <linux/mm.h> /* For fetching system memory size */
64 #include <linux/delay.h> /* For ssleep/msleep */
67 * Lock protecting manipulation of the ahd softc list.
69 spinlock_t ahd_list_spinlock;
71 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0)
72 struct proc_dir_entry proc_scsi_aic79xx = {
73 PROC_SCSI_AIC79XX, 7, "aic79xx",
74 S_IFDIR | S_IRUGO | S_IXUGO, 2,
75 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL
77 #endif
79 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
80 /* For dynamic sglist size calculation. */
81 u_int ahd_linux_nseg;
82 #endif
85 * Bucket size for counting good commands in between bad ones.
87 #define AHD_LINUX_ERR_THRESH 1000
90 * Set this to the delay in seconds after SCSI bus reset.
91 * Note, we honor this only for the initial bus reset.
92 * The scsi error recovery code performs its own bus settle
93 * delay handling for error recovery actions.
95 #ifdef CONFIG_AIC79XX_RESET_DELAY_MS
96 #define AIC79XX_RESET_DELAY CONFIG_AIC79XX_RESET_DELAY_MS
97 #else
98 #define AIC79XX_RESET_DELAY 5000
99 #endif
102 * To change the default number of tagged transactions allowed per-device,
103 * add a line to the lilo.conf file like:
104 * append="aic79xx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
105 * which will result in the first four devices on the first two
106 * controllers being set to a tagged queue depth of 32.
108 * The tag_commands is an array of 16 to allow for wide and twin adapters.
109 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
110 * for channel 1.
112 typedef struct {
113 uint16_t tag_commands[16]; /* Allow for wide/twin adapters. */
114 } adapter_tag_info_t;
117 * Modify this as you see fit for your system.
119 * 0 tagged queuing disabled
120 * 1 <= n <= 253 n == max tags ever dispatched.
122 * The driver will throttle the number of commands dispatched to a
123 * device if it returns queue full. For devices with a fixed maximum
124 * queue depth, the driver will eventually determine this depth and
125 * lock it in (a console message is printed to indicate that a lock
126 * has occurred). On some devices, queue full is returned for a temporary
127 * resource shortage. These devices will return queue full at varying
128 * depths. The driver will throttle back when the queue fulls occur and
129 * attempt to slowly increase the depth over time as the device recovers
130 * from the resource shortage.
132 * In this example, the first line will disable tagged queueing for all
133 * the devices on the first probed aic79xx adapter.
135 * The second line enables tagged queueing with 4 commands/LUN for IDs
136 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
137 * driver to attempt to use up to 64 tags for ID 1.
139 * The third line is the same as the first line.
141 * The fourth line disables tagged queueing for devices 0 and 3. It
142 * enables tagged queueing for the other IDs, with 16 commands/LUN
143 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
144 * IDs 2, 5-7, and 9-15.
148 * NOTE: The below structure is for reference only, the actual structure
149 * to modify in order to change things is just below this comment block.
150 adapter_tag_info_t aic79xx_tag_info[] =
152 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
153 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
154 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
155 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
159 #ifdef CONFIG_AIC79XX_CMDS_PER_DEVICE
160 #define AIC79XX_CMDS_PER_DEVICE CONFIG_AIC79XX_CMDS_PER_DEVICE
161 #else
162 #define AIC79XX_CMDS_PER_DEVICE AHD_MAX_QUEUE
163 #endif
165 #define AIC79XX_CONFIGED_TAG_COMMANDS { \
166 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
167 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
168 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
169 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
170 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
171 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
172 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
173 AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE \
177 * By default, use the number of commands specified by
178 * the users kernel configuration.
180 static adapter_tag_info_t aic79xx_tag_info[] =
182 {AIC79XX_CONFIGED_TAG_COMMANDS},
183 {AIC79XX_CONFIGED_TAG_COMMANDS},
184 {AIC79XX_CONFIGED_TAG_COMMANDS},
185 {AIC79XX_CONFIGED_TAG_COMMANDS},
186 {AIC79XX_CONFIGED_TAG_COMMANDS},
187 {AIC79XX_CONFIGED_TAG_COMMANDS},
188 {AIC79XX_CONFIGED_TAG_COMMANDS},
189 {AIC79XX_CONFIGED_TAG_COMMANDS},
190 {AIC79XX_CONFIGED_TAG_COMMANDS},
191 {AIC79XX_CONFIGED_TAG_COMMANDS},
192 {AIC79XX_CONFIGED_TAG_COMMANDS},
193 {AIC79XX_CONFIGED_TAG_COMMANDS},
194 {AIC79XX_CONFIGED_TAG_COMMANDS},
195 {AIC79XX_CONFIGED_TAG_COMMANDS},
196 {AIC79XX_CONFIGED_TAG_COMMANDS},
197 {AIC79XX_CONFIGED_TAG_COMMANDS}
201 * By default, read streaming is disabled. In theory,
202 * read streaming should enhance performance, but early
203 * U320 drive firmware actually performs slower with
204 * read streaming enabled.
206 #ifdef CONFIG_AIC79XX_ENABLE_RD_STRM
207 #define AIC79XX_CONFIGED_RD_STRM 0xFFFF
208 #else
209 #define AIC79XX_CONFIGED_RD_STRM 0
210 #endif
212 static uint16_t aic79xx_rd_strm_info[] =
214 AIC79XX_CONFIGED_RD_STRM,
215 AIC79XX_CONFIGED_RD_STRM,
216 AIC79XX_CONFIGED_RD_STRM,
217 AIC79XX_CONFIGED_RD_STRM,
218 AIC79XX_CONFIGED_RD_STRM,
219 AIC79XX_CONFIGED_RD_STRM,
220 AIC79XX_CONFIGED_RD_STRM,
221 AIC79XX_CONFIGED_RD_STRM,
222 AIC79XX_CONFIGED_RD_STRM,
223 AIC79XX_CONFIGED_RD_STRM,
224 AIC79XX_CONFIGED_RD_STRM,
225 AIC79XX_CONFIGED_RD_STRM,
226 AIC79XX_CONFIGED_RD_STRM,
227 AIC79XX_CONFIGED_RD_STRM,
228 AIC79XX_CONFIGED_RD_STRM,
229 AIC79XX_CONFIGED_RD_STRM
233 * DV option:
235 * positive value = DV Enabled
236 * zero = DV Disabled
237 * negative value = DV Default for adapter type/seeprom
239 #ifdef CONFIG_AIC79XX_DV_SETTING
240 #define AIC79XX_CONFIGED_DV CONFIG_AIC79XX_DV_SETTING
241 #else
242 #define AIC79XX_CONFIGED_DV -1
243 #endif
245 static int8_t aic79xx_dv_settings[] =
247 AIC79XX_CONFIGED_DV,
248 AIC79XX_CONFIGED_DV,
249 AIC79XX_CONFIGED_DV,
250 AIC79XX_CONFIGED_DV,
251 AIC79XX_CONFIGED_DV,
252 AIC79XX_CONFIGED_DV,
253 AIC79XX_CONFIGED_DV,
254 AIC79XX_CONFIGED_DV,
255 AIC79XX_CONFIGED_DV,
256 AIC79XX_CONFIGED_DV,
257 AIC79XX_CONFIGED_DV,
258 AIC79XX_CONFIGED_DV,
259 AIC79XX_CONFIGED_DV,
260 AIC79XX_CONFIGED_DV,
261 AIC79XX_CONFIGED_DV,
262 AIC79XX_CONFIGED_DV
266 * The I/O cell on the chip is very configurable in respect to its analog
267 * characteristics. Set the defaults here; they can be overriden with
268 * the proper insmod parameters.
270 struct ahd_linux_iocell_opts
272 uint8_t precomp;
273 uint8_t slewrate;
274 uint8_t amplitude;
276 #define AIC79XX_DEFAULT_PRECOMP 0xFF
277 #define AIC79XX_DEFAULT_SLEWRATE 0xFF
278 #define AIC79XX_DEFAULT_AMPLITUDE 0xFF
279 #define AIC79XX_DEFAULT_IOOPTS \
281 AIC79XX_DEFAULT_PRECOMP, \
282 AIC79XX_DEFAULT_SLEWRATE, \
283 AIC79XX_DEFAULT_AMPLITUDE \
285 #define AIC79XX_PRECOMP_INDEX 0
286 #define AIC79XX_SLEWRATE_INDEX 1
287 #define AIC79XX_AMPLITUDE_INDEX 2
288 static struct ahd_linux_iocell_opts aic79xx_iocell_info[] =
290 AIC79XX_DEFAULT_IOOPTS,
291 AIC79XX_DEFAULT_IOOPTS,
292 AIC79XX_DEFAULT_IOOPTS,
293 AIC79XX_DEFAULT_IOOPTS,
294 AIC79XX_DEFAULT_IOOPTS,
295 AIC79XX_DEFAULT_IOOPTS,
296 AIC79XX_DEFAULT_IOOPTS,
297 AIC79XX_DEFAULT_IOOPTS,
298 AIC79XX_DEFAULT_IOOPTS,
299 AIC79XX_DEFAULT_IOOPTS,
300 AIC79XX_DEFAULT_IOOPTS,
301 AIC79XX_DEFAULT_IOOPTS,
302 AIC79XX_DEFAULT_IOOPTS,
303 AIC79XX_DEFAULT_IOOPTS,
304 AIC79XX_DEFAULT_IOOPTS,
305 AIC79XX_DEFAULT_IOOPTS
309 * There should be a specific return value for this in scsi.h, but
310 * it seems that most drivers ignore it.
312 #define DID_UNDERFLOW DID_ERROR
314 void
315 ahd_print_path(struct ahd_softc *ahd, struct scb *scb)
317 printk("(scsi%d:%c:%d:%d): ",
318 ahd->platform_data->host->host_no,
319 scb != NULL ? SCB_GET_CHANNEL(ahd, scb) : 'X',
320 scb != NULL ? SCB_GET_TARGET(ahd, scb) : -1,
321 scb != NULL ? SCB_GET_LUN(scb) : -1);
325 * XXX - these options apply unilaterally to _all_ adapters
326 * cards in the system. This should be fixed. Exceptions to this
327 * rule are noted in the comments.
331 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
332 * has no effect on any later resets that might occur due to things like
333 * SCSI bus timeouts.
335 static uint32_t aic79xx_no_reset;
338 * Certain PCI motherboards will scan PCI devices from highest to lowest,
339 * others scan from lowest to highest, and they tend to do all kinds of
340 * strange things when they come into contact with PCI bridge chips. The
341 * net result of all this is that the PCI card that is actually used to boot
342 * the machine is very hard to detect. Most motherboards go from lowest
343 * PCI slot number to highest, and the first SCSI controller found is the
344 * one you boot from. The only exceptions to this are when a controller
345 * has its BIOS disabled. So, we by default sort all of our SCSI controllers
346 * from lowest PCI slot number to highest PCI slot number. We also force
347 * all controllers with their BIOS disabled to the end of the list. This
348 * works on *almost* all computers. Where it doesn't work, we have this
349 * option. Setting this option to non-0 will reverse the order of the sort
350 * to highest first, then lowest, but will still leave cards with their BIOS
351 * disabled at the very end. That should fix everyone up unless there are
352 * really strange cirumstances.
354 static uint32_t aic79xx_reverse_scan;
357 * Should we force EXTENDED translation on a controller.
358 * 0 == Use whatever is in the SEEPROM or default to off
359 * 1 == Use whatever is in the SEEPROM or default to on
361 static uint32_t aic79xx_extended;
364 * PCI bus parity checking of the Adaptec controllers. This is somewhat
365 * dubious at best. To my knowledge, this option has never actually
366 * solved a PCI parity problem, but on certain machines with broken PCI
367 * chipset configurations, it can generate tons of false error messages.
368 * It's included in the driver for completeness.
369 * 0 = Shut off PCI parity check
370 * non-0 = Enable PCI parity check
372 * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this
373 * variable to -1 you would actually want to simply pass the variable
374 * name without a number. That will invert the 0 which will result in
375 * -1.
377 static uint32_t aic79xx_pci_parity = ~0;
380 * There are lots of broken chipsets in the world. Some of them will
381 * violate the PCI spec when we issue byte sized memory writes to our
382 * controller. I/O mapped register access, if allowed by the given
383 * platform, will work in almost all cases.
385 uint32_t aic79xx_allow_memio = ~0;
388 * aic79xx_detect() has been run, so register all device arrivals
389 * immediately with the system rather than deferring to the sorted
390 * attachment performed by aic79xx_detect().
392 int aic79xx_detect_complete;
395 * So that we can set how long each device is given as a selection timeout.
396 * The table of values goes like this:
397 * 0 - 256ms
398 * 1 - 128ms
399 * 2 - 64ms
400 * 3 - 32ms
401 * We default to 256ms because some older devices need a longer time
402 * to respond to initial selection.
404 static uint32_t aic79xx_seltime;
407 * Certain devices do not perform any aging on commands. Should the
408 * device be saturated by commands in one portion of the disk, it is
409 * possible for transactions on far away sectors to never be serviced.
410 * To handle these devices, we can periodically send an ordered tag to
411 * force all outstanding transactions to be serviced prior to a new
412 * transaction.
414 uint32_t aic79xx_periodic_otag;
417 * Module information and settable options.
419 static char *aic79xx = NULL;
421 * Just in case someone uses commas to separate items on the insmod
422 * command line, we define a dummy buffer here to avoid having insmod
423 * write wild stuff into our code segment
425 static char dummy_buffer[60] = "Please don't trounce on me insmod!!\n";
427 MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>");
428 MODULE_DESCRIPTION("Adaptec Aic790X U320 SCSI Host Bus Adapter driver");
429 MODULE_LICENSE("Dual BSD/GPL");
430 MODULE_VERSION(AIC79XX_DRIVER_VERSION);
431 MODULE_PARM(aic79xx, "s");
432 MODULE_PARM_DESC(aic79xx,
433 "period delimited, options string.\n"
434 " verbose Enable verbose/diagnostic logging\n"
435 " allow_memio Allow device registers to be memory mapped\n"
436 " debug Bitmask of debug values to enable\n"
437 " no_reset Supress initial bus resets\n"
438 " extended Enable extended geometry on all controllers\n"
439 " periodic_otag Send an ordered tagged transaction\n"
440 " periodically to prevent tag starvation.\n"
441 " This may be required by some older disk\n"
442 " or drives/RAID arrays.\n"
443 " reverse_scan Sort PCI devices highest Bus/Slot to lowest\n"
444 " tag_info:<tag_str> Set per-target tag depth\n"
445 " global_tag_depth:<int> Global tag depth for all targets on all buses\n"
446 " rd_strm:<rd_strm_masks> Set per-target read streaming setting.\n"
447 " dv:<dv_settings> Set per-controller Domain Validation Setting.\n"
448 " slewrate:<slewrate_list>Set the signal slew rate (0-15).\n"
449 " precomp:<pcomp_list> Set the signal precompensation (0-7).\n"
450 " amplitude:<int> Set the signal amplitude (0-7).\n"
451 " seltime:<int> Selection Timeout:\n"
452 " (0/256ms,1/128ms,2/64ms,3/32ms)\n"
453 "\n"
454 " Sample /etc/modprobe.conf line:\n"
455 " Enable verbose logging\n"
456 " Set tag depth on Controller 2/Target 2 to 10 tags\n"
457 " Shorten the selection timeout to 128ms\n"
458 "\n"
459 " options aic79xx 'aic79xx=verbose.tag_info:{{}.{}.{..10}}.seltime:1'\n"
460 "\n"
461 " Sample /etc/modprobe.conf line:\n"
462 " Change Read Streaming for Controller's 2 and 3\n"
463 "\n"
464 " options aic79xx 'aic79xx=rd_strm:{..0xFFF0.0xC0F0}'");
466 static void ahd_linux_handle_scsi_status(struct ahd_softc *,
467 struct ahd_linux_device *,
468 struct scb *);
469 static void ahd_linux_queue_cmd_complete(struct ahd_softc *ahd,
470 Scsi_Cmnd *cmd);
471 static void ahd_linux_filter_inquiry(struct ahd_softc *ahd,
472 struct ahd_devinfo *devinfo);
473 static void ahd_linux_dev_timed_unfreeze(u_long arg);
474 static void ahd_linux_sem_timeout(u_long arg);
475 static void ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd);
476 static void ahd_linux_size_nseg(void);
477 static void ahd_linux_thread_run_complete_queue(struct ahd_softc *ahd);
478 static void ahd_linux_start_dv(struct ahd_softc *ahd);
479 static void ahd_linux_dv_timeout(struct scsi_cmnd *cmd);
480 static int ahd_linux_dv_thread(void *data);
481 static void ahd_linux_kill_dv_thread(struct ahd_softc *ahd);
482 static void ahd_linux_dv_target(struct ahd_softc *ahd, u_int target);
483 static void ahd_linux_dv_transition(struct ahd_softc *ahd,
484 struct scsi_cmnd *cmd,
485 struct ahd_devinfo *devinfo,
486 struct ahd_linux_target *targ);
487 static void ahd_linux_dv_fill_cmd(struct ahd_softc *ahd,
488 struct scsi_cmnd *cmd,
489 struct ahd_devinfo *devinfo);
490 static void ahd_linux_dv_inq(struct ahd_softc *ahd,
491 struct scsi_cmnd *cmd,
492 struct ahd_devinfo *devinfo,
493 struct ahd_linux_target *targ,
494 u_int request_length);
495 static void ahd_linux_dv_tur(struct ahd_softc *ahd,
496 struct scsi_cmnd *cmd,
497 struct ahd_devinfo *devinfo);
498 static void ahd_linux_dv_rebd(struct ahd_softc *ahd,
499 struct scsi_cmnd *cmd,
500 struct ahd_devinfo *devinfo,
501 struct ahd_linux_target *targ);
502 static void ahd_linux_dv_web(struct ahd_softc *ahd,
503 struct scsi_cmnd *cmd,
504 struct ahd_devinfo *devinfo,
505 struct ahd_linux_target *targ);
506 static void ahd_linux_dv_reb(struct ahd_softc *ahd,
507 struct scsi_cmnd *cmd,
508 struct ahd_devinfo *devinfo,
509 struct ahd_linux_target *targ);
510 static void ahd_linux_dv_su(struct ahd_softc *ahd,
511 struct scsi_cmnd *cmd,
512 struct ahd_devinfo *devinfo,
513 struct ahd_linux_target *targ);
514 static int ahd_linux_fallback(struct ahd_softc *ahd,
515 struct ahd_devinfo *devinfo);
516 static __inline int ahd_linux_dv_fallback(struct ahd_softc *ahd,
517 struct ahd_devinfo *devinfo);
518 static void ahd_linux_dv_complete(Scsi_Cmnd *cmd);
519 static void ahd_linux_generate_dv_pattern(struct ahd_linux_target *targ);
520 static u_int ahd_linux_user_tagdepth(struct ahd_softc *ahd,
521 struct ahd_devinfo *devinfo);
522 static u_int ahd_linux_user_dv_setting(struct ahd_softc *ahd);
523 static void ahd_linux_setup_user_rd_strm_settings(struct ahd_softc *ahd);
524 static void ahd_linux_device_queue_depth(struct ahd_softc *ahd,
525 struct ahd_linux_device *dev);
526 static struct ahd_linux_target* ahd_linux_alloc_target(struct ahd_softc*,
527 u_int, u_int);
528 static void ahd_linux_free_target(struct ahd_softc*,
529 struct ahd_linux_target*);
530 static struct ahd_linux_device* ahd_linux_alloc_device(struct ahd_softc*,
531 struct ahd_linux_target*,
532 u_int);
533 static void ahd_linux_free_device(struct ahd_softc*,
534 struct ahd_linux_device*);
535 static void ahd_linux_run_device_queue(struct ahd_softc*,
536 struct ahd_linux_device*);
537 static void ahd_linux_setup_tag_info_global(char *p);
538 static aic_option_callback_t ahd_linux_setup_tag_info;
539 static aic_option_callback_t ahd_linux_setup_rd_strm_info;
540 static aic_option_callback_t ahd_linux_setup_dv;
541 static aic_option_callback_t ahd_linux_setup_iocell_info;
542 static int ahd_linux_next_unit(void);
543 static void ahd_runq_tasklet(unsigned long data);
544 static int aic79xx_setup(char *c);
546 /****************************** Inlines ***************************************/
547 static __inline void ahd_schedule_completeq(struct ahd_softc *ahd);
548 static __inline void ahd_schedule_runq(struct ahd_softc *ahd);
549 static __inline void ahd_setup_runq_tasklet(struct ahd_softc *ahd);
550 static __inline void ahd_teardown_runq_tasklet(struct ahd_softc *ahd);
551 static __inline struct ahd_linux_device*
552 ahd_linux_get_device(struct ahd_softc *ahd, u_int channel,
553 u_int target, u_int lun, int alloc);
554 static struct ahd_cmd *ahd_linux_run_complete_queue(struct ahd_softc *ahd);
555 static __inline void ahd_linux_check_device_queue(struct ahd_softc *ahd,
556 struct ahd_linux_device *dev);
557 static __inline struct ahd_linux_device *
558 ahd_linux_next_device_to_run(struct ahd_softc *ahd);
559 static __inline void ahd_linux_run_device_queues(struct ahd_softc *ahd);
560 static __inline void ahd_linux_unmap_scb(struct ahd_softc*, struct scb*);
562 static __inline int ahd_linux_map_seg(struct ahd_softc *ahd, struct scb *scb,
563 struct ahd_dma_seg *sg,
564 bus_addr_t addr, bus_size_t len);
566 static __inline void
567 ahd_schedule_completeq(struct ahd_softc *ahd)
569 if ((ahd->platform_data->flags & AHD_RUN_CMPLT_Q_TIMER) == 0) {
570 ahd->platform_data->flags |= AHD_RUN_CMPLT_Q_TIMER;
571 ahd->platform_data->completeq_timer.expires = jiffies;
572 add_timer(&ahd->platform_data->completeq_timer);
577 * Must be called with our lock held.
579 static __inline void
580 ahd_schedule_runq(struct ahd_softc *ahd)
582 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
583 tasklet_schedule(&ahd->platform_data->runq_tasklet);
584 #else
586 * Tasklets are not available, so run inline.
588 ahd_runq_tasklet((unsigned long)ahd);
589 #endif
592 static __inline
593 void ahd_setup_runq_tasklet(struct ahd_softc *ahd)
595 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
596 tasklet_init(&ahd->platform_data->runq_tasklet, ahd_runq_tasklet,
597 (unsigned long)ahd);
598 #endif
601 static __inline void
602 ahd_teardown_runq_tasklet(struct ahd_softc *ahd)
604 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
605 tasklet_kill(&ahd->platform_data->runq_tasklet);
606 #endif
609 static __inline struct ahd_linux_device*
610 ahd_linux_get_device(struct ahd_softc *ahd, u_int channel, u_int target,
611 u_int lun, int alloc)
613 struct ahd_linux_target *targ;
614 struct ahd_linux_device *dev;
615 u_int target_offset;
617 target_offset = target;
618 if (channel != 0)
619 target_offset += 8;
620 targ = ahd->platform_data->targets[target_offset];
621 if (targ == NULL) {
622 if (alloc != 0) {
623 targ = ahd_linux_alloc_target(ahd, channel, target);
624 if (targ == NULL)
625 return (NULL);
626 } else
627 return (NULL);
629 dev = targ->devices[lun];
630 if (dev == NULL && alloc != 0)
631 dev = ahd_linux_alloc_device(ahd, targ, lun);
632 return (dev);
635 #define AHD_LINUX_MAX_RETURNED_ERRORS 4
636 static struct ahd_cmd *
637 ahd_linux_run_complete_queue(struct ahd_softc *ahd)
639 struct ahd_cmd *acmd;
640 u_long done_flags;
641 int with_errors;
643 with_errors = 0;
644 ahd_done_lock(ahd, &done_flags);
645 while ((acmd = TAILQ_FIRST(&ahd->platform_data->completeq)) != NULL) {
646 Scsi_Cmnd *cmd;
648 if (with_errors > AHD_LINUX_MAX_RETURNED_ERRORS) {
650 * Linux uses stack recursion to requeue
651 * commands that need to be retried. Avoid
652 * blowing out the stack by "spoon feeding"
653 * commands that completed with error back
654 * the operating system in case they are going
655 * to be retried. "ick"
657 ahd_schedule_completeq(ahd);
658 break;
660 TAILQ_REMOVE(&ahd->platform_data->completeq,
661 acmd, acmd_links.tqe);
662 cmd = &acmd_scsi_cmd(acmd);
663 cmd->host_scribble = NULL;
664 if (ahd_cmd_get_transaction_status(cmd) != DID_OK
665 || (cmd->result & 0xFF) != SCSI_STATUS_OK)
666 with_errors++;
668 cmd->scsi_done(cmd);
670 ahd_done_unlock(ahd, &done_flags);
671 return (acmd);
674 static __inline void
675 ahd_linux_check_device_queue(struct ahd_softc *ahd,
676 struct ahd_linux_device *dev)
678 if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) != 0
679 && dev->active == 0) {
680 dev->flags &= ~AHD_DEV_FREEZE_TIL_EMPTY;
681 dev->qfrozen--;
684 if (TAILQ_FIRST(&dev->busyq) == NULL
685 || dev->openings == 0 || dev->qfrozen != 0)
686 return;
688 ahd_linux_run_device_queue(ahd, dev);
691 static __inline struct ahd_linux_device *
692 ahd_linux_next_device_to_run(struct ahd_softc *ahd)
695 if ((ahd->flags & AHD_RESOURCE_SHORTAGE) != 0
696 || (ahd->platform_data->qfrozen != 0
697 && AHD_DV_SIMQ_FROZEN(ahd) == 0))
698 return (NULL);
699 return (TAILQ_FIRST(&ahd->platform_data->device_runq));
702 static __inline void
703 ahd_linux_run_device_queues(struct ahd_softc *ahd)
705 struct ahd_linux_device *dev;
707 while ((dev = ahd_linux_next_device_to_run(ahd)) != NULL) {
708 TAILQ_REMOVE(&ahd->platform_data->device_runq, dev, links);
709 dev->flags &= ~AHD_DEV_ON_RUN_LIST;
710 ahd_linux_check_device_queue(ahd, dev);
714 static __inline void
715 ahd_linux_unmap_scb(struct ahd_softc *ahd, struct scb *scb)
717 Scsi_Cmnd *cmd;
718 int direction;
720 cmd = scb->io_ctx;
721 direction = scsi_to_pci_dma_dir(cmd->sc_data_direction);
722 ahd_sync_sglist(ahd, scb, BUS_DMASYNC_POSTWRITE);
723 if (cmd->use_sg != 0) {
724 struct scatterlist *sg;
726 sg = (struct scatterlist *)cmd->request_buffer;
727 pci_unmap_sg(ahd->dev_softc, sg, cmd->use_sg, direction);
728 } else if (cmd->request_bufflen != 0) {
729 pci_unmap_single(ahd->dev_softc,
730 scb->platform_data->buf_busaddr,
731 cmd->request_bufflen, direction);
735 static __inline int
736 ahd_linux_map_seg(struct ahd_softc *ahd, struct scb *scb,
737 struct ahd_dma_seg *sg, bus_addr_t addr, bus_size_t len)
739 int consumed;
741 if ((scb->sg_count + 1) > AHD_NSEG)
742 panic("Too few segs for dma mapping. "
743 "Increase AHD_NSEG\n");
745 consumed = 1;
746 sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
747 scb->platform_data->xfer_len += len;
749 if (sizeof(bus_addr_t) > 4
750 && (ahd->flags & AHD_39BIT_ADDRESSING) != 0)
751 len |= (addr >> 8) & AHD_SG_HIGH_ADDR_MASK;
753 sg->len = ahd_htole32(len);
754 return (consumed);
757 /******************************** Macros **************************************/
758 #define BUILD_SCSIID(ahd, cmd) \
759 ((((cmd)->device->id << TID_SHIFT) & TID) | (ahd)->our_id)
761 /************************ Host template entry points *************************/
762 static int ahd_linux_detect(Scsi_Host_Template *);
763 static const char *ahd_linux_info(struct Scsi_Host *);
764 static int ahd_linux_queue(Scsi_Cmnd *, void (*)(Scsi_Cmnd *));
765 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
766 static int ahd_linux_slave_alloc(Scsi_Device *);
767 static int ahd_linux_slave_configure(Scsi_Device *);
768 static void ahd_linux_slave_destroy(Scsi_Device *);
769 #if defined(__i386__)
770 static int ahd_linux_biosparam(struct scsi_device*,
771 struct block_device*, sector_t, int[]);
772 #endif
773 #else
774 static int ahd_linux_release(struct Scsi_Host *);
775 static void ahd_linux_select_queue_depth(struct Scsi_Host *host,
776 Scsi_Device *scsi_devs);
777 #if defined(__i386__)
778 static int ahd_linux_biosparam(Disk *, kdev_t, int[]);
779 #endif
780 #endif
781 static int ahd_linux_bus_reset(Scsi_Cmnd *);
782 static int ahd_linux_dev_reset(Scsi_Cmnd *);
783 static int ahd_linux_abort(Scsi_Cmnd *);
786 * Calculate a safe value for AHD_NSEG (as expressed through ahd_linux_nseg).
788 * In pre-2.5.X...
789 * The midlayer allocates an S/G array dynamically when a command is issued
790 * using SCSI malloc. This array, which is in an OS dependent format that
791 * must later be copied to our private S/G list, is sized to house just the
792 * number of segments needed for the current transfer. Since the code that
793 * sizes the SCSI malloc pool does not take into consideration fragmentation
794 * of the pool, executing transactions numbering just a fraction of our
795 * concurrent transaction limit with SG list lengths aproaching AHC_NSEG will
796 * quickly depleat the SCSI malloc pool of usable space. Unfortunately, the
797 * mid-layer does not properly handle this scsi malloc failures for the S/G
798 * array and the result can be a lockup of the I/O subsystem. We try to size
799 * our S/G list so that it satisfies our drivers allocation requirements in
800 * addition to avoiding fragmentation of the SCSI malloc pool.
802 static void
803 ahd_linux_size_nseg(void)
805 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
806 u_int cur_size;
807 u_int best_size;
810 * The SCSI allocator rounds to the nearest 512 bytes
811 * an cannot allocate across a page boundary. Our algorithm
812 * is to start at 1K of scsi malloc space per-command and
813 * loop through all factors of the PAGE_SIZE and pick the best.
815 best_size = 0;
816 for (cur_size = 1024; cur_size <= PAGE_SIZE; cur_size *= 2) {
817 u_int nseg;
819 nseg = cur_size / sizeof(struct scatterlist);
820 if (nseg < AHD_LINUX_MIN_NSEG)
821 continue;
823 if (best_size == 0) {
824 best_size = cur_size;
825 ahd_linux_nseg = nseg;
826 } else {
827 u_int best_rem;
828 u_int cur_rem;
831 * Compare the traits of the current "best_size"
832 * with the current size to determine if the
833 * current size is a better size.
835 best_rem = best_size % sizeof(struct scatterlist);
836 cur_rem = cur_size % sizeof(struct scatterlist);
837 if (cur_rem < best_rem) {
838 best_size = cur_size;
839 ahd_linux_nseg = nseg;
843 #endif
847 * Try to detect an Adaptec 79XX controller.
849 static int
850 ahd_linux_detect(Scsi_Host_Template *template)
852 struct ahd_softc *ahd;
853 int found;
855 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
857 * It is a bug that the upper layer takes
858 * this lock just prior to calling us.
860 spin_unlock_irq(&io_request_lock);
861 #endif
864 * Sanity checking of Linux SCSI data structures so
865 * that some of our hacks^H^H^H^H^Hassumptions aren't
866 * violated.
868 if (offsetof(struct ahd_cmd_internal, end)
869 > offsetof(struct scsi_cmnd, host_scribble)) {
870 printf("ahd_linux_detect: SCSI data structures changed.\n");
871 printf("ahd_linux_detect: Unable to attach\n");
872 return (0);
875 * Determine an appropriate size for our Scatter Gatther lists.
877 ahd_linux_size_nseg();
878 #ifdef MODULE
880 * If we've been passed any parameters, process them now.
882 if (aic79xx)
883 aic79xx_setup(aic79xx);
884 if (dummy_buffer[0] != 'P')
885 printk(KERN_WARNING
886 "aic79xx: Please read the file /usr/src/linux/drivers/scsi/README.aic79xx\n"
887 "aic79xx: to see the proper way to specify options to the aic79xx module\n"
888 "aic79xx: Specifically, don't use any commas when passing arguments to\n"
889 "aic79xx: insmod or else it might trash certain memory areas.\n");
890 #endif
892 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0)
893 template->proc_name = "aic79xx";
894 #else
895 template->proc_dir = &proc_scsi_aic79xx;
896 #endif
899 * Initialize our softc list lock prior to
900 * probing for any adapters.
902 ahd_list_lockinit();
904 #ifdef CONFIG_PCI
905 ahd_linux_pci_init();
906 #endif
909 * Register with the SCSI layer all
910 * controllers we've found.
912 found = 0;
913 TAILQ_FOREACH(ahd, &ahd_tailq, links) {
915 if (ahd_linux_register_host(ahd, template) == 0)
916 found++;
918 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
919 spin_lock_irq(&io_request_lock);
920 #endif
921 aic79xx_detect_complete++;
922 return (found);
925 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
927 * Free the passed in Scsi_Host memory structures prior to unloading the
928 * module.
930 static int
931 ahd_linux_release(struct Scsi_Host * host)
933 struct ahd_softc *ahd;
934 u_long l;
936 ahd_list_lock(&l);
937 if (host != NULL) {
940 * We should be able to just perform
941 * the free directly, but check our
942 * list for extra sanity.
944 ahd = ahd_find_softc(*(struct ahd_softc **)host->hostdata);
945 if (ahd != NULL) {
946 u_long s;
948 ahd_lock(ahd, &s);
949 ahd_intr_enable(ahd, FALSE);
950 ahd_unlock(ahd, &s);
951 ahd_free(ahd);
954 ahd_list_unlock(&l);
955 return (0);
957 #endif
960 * Return a string describing the driver.
962 static const char *
963 ahd_linux_info(struct Scsi_Host *host)
965 static char buffer[512];
966 char ahd_info[256];
967 char *bp;
968 struct ahd_softc *ahd;
970 bp = &buffer[0];
971 ahd = *(struct ahd_softc **)host->hostdata;
972 memset(bp, 0, sizeof(buffer));
973 strcpy(bp, "Adaptec AIC79XX PCI-X SCSI HBA DRIVER, Rev ");
974 strcat(bp, AIC79XX_DRIVER_VERSION);
975 strcat(bp, "\n");
976 strcat(bp, " <");
977 strcat(bp, ahd->description);
978 strcat(bp, ">\n");
979 strcat(bp, " ");
980 ahd_controller_info(ahd, ahd_info);
981 strcat(bp, ahd_info);
982 strcat(bp, "\n");
984 return (bp);
988 * Queue an SCB to the controller.
990 static int
991 ahd_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *))
993 struct ahd_softc *ahd;
994 struct ahd_linux_device *dev;
995 u_long flags;
997 ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1000 * Save the callback on completion function.
1002 cmd->scsi_done = scsi_done;
1004 ahd_midlayer_entrypoint_lock(ahd, &flags);
1007 * Close the race of a command that was in the process of
1008 * being queued to us just as our simq was frozen. Let
1009 * DV commands through so long as we are only frozen to
1010 * perform DV.
1012 if (ahd->platform_data->qfrozen != 0
1013 && AHD_DV_CMD(cmd) == 0) {
1015 ahd_cmd_set_transaction_status(cmd, CAM_REQUEUE_REQ);
1016 ahd_linux_queue_cmd_complete(ahd, cmd);
1017 ahd_schedule_completeq(ahd);
1018 ahd_midlayer_entrypoint_unlock(ahd, &flags);
1019 return (0);
1021 dev = ahd_linux_get_device(ahd, cmd->device->channel,
1022 cmd->device->id, cmd->device->lun,
1023 /*alloc*/TRUE);
1024 if (dev == NULL) {
1025 ahd_cmd_set_transaction_status(cmd, CAM_RESRC_UNAVAIL);
1026 ahd_linux_queue_cmd_complete(ahd, cmd);
1027 ahd_schedule_completeq(ahd);
1028 ahd_midlayer_entrypoint_unlock(ahd, &flags);
1029 printf("%s: aic79xx_linux_queue - Unable to allocate device!\n",
1030 ahd_name(ahd));
1031 return (0);
1033 if (cmd->cmd_len > MAX_CDB_LEN)
1034 return (-EINVAL);
1035 cmd->result = CAM_REQ_INPROG << 16;
1036 TAILQ_INSERT_TAIL(&dev->busyq, (struct ahd_cmd *)cmd, acmd_links.tqe);
1037 if ((dev->flags & AHD_DEV_ON_RUN_LIST) == 0) {
1038 TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links);
1039 dev->flags |= AHD_DEV_ON_RUN_LIST;
1040 ahd_linux_run_device_queues(ahd);
1042 ahd_midlayer_entrypoint_unlock(ahd, &flags);
1043 return (0);
1046 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1047 static int
1048 ahd_linux_slave_alloc(Scsi_Device *device)
1050 struct ahd_softc *ahd;
1052 ahd = *((struct ahd_softc **)device->host->hostdata);
1053 if (bootverbose)
1054 printf("%s: Slave Alloc %d\n", ahd_name(ahd), device->id);
1055 return (0);
1058 static int
1059 ahd_linux_slave_configure(Scsi_Device *device)
1061 struct ahd_softc *ahd;
1062 struct ahd_linux_device *dev;
1063 u_long flags;
1065 ahd = *((struct ahd_softc **)device->host->hostdata);
1066 if (bootverbose)
1067 printf("%s: Slave Configure %d\n", ahd_name(ahd), device->id);
1068 ahd_midlayer_entrypoint_lock(ahd, &flags);
1070 * Since Linux has attached to the device, configure
1071 * it so we don't free and allocate the device
1072 * structure on every command.
1074 dev = ahd_linux_get_device(ahd, device->channel,
1075 device->id, device->lun,
1076 /*alloc*/TRUE);
1077 if (dev != NULL) {
1078 dev->flags &= ~AHD_DEV_UNCONFIGURED;
1079 dev->flags |= AHD_DEV_SLAVE_CONFIGURED;
1080 dev->scsi_device = device;
1081 ahd_linux_device_queue_depth(ahd, dev);
1083 ahd_midlayer_entrypoint_unlock(ahd, &flags);
1084 return (0);
1087 static void
1088 ahd_linux_slave_destroy(Scsi_Device *device)
1090 struct ahd_softc *ahd;
1091 struct ahd_linux_device *dev;
1092 u_long flags;
1094 ahd = *((struct ahd_softc **)device->host->hostdata);
1095 if (bootverbose)
1096 printf("%s: Slave Destroy %d\n", ahd_name(ahd), device->id);
1097 ahd_midlayer_entrypoint_lock(ahd, &flags);
1098 dev = ahd_linux_get_device(ahd, device->channel,
1099 device->id, device->lun,
1100 /*alloc*/FALSE);
1103 * Filter out "silly" deletions of real devices by only
1104 * deleting devices that have had slave_configure()
1105 * called on them. All other devices that have not
1106 * been configured will automatically be deleted by
1107 * the refcounting process.
1109 if (dev != NULL
1110 && (dev->flags & AHD_DEV_SLAVE_CONFIGURED) != 0) {
1111 dev->flags |= AHD_DEV_UNCONFIGURED;
1112 if (TAILQ_EMPTY(&dev->busyq)
1113 && dev->active == 0
1114 && (dev->flags & AHD_DEV_TIMER_ACTIVE) == 0)
1115 ahd_linux_free_device(ahd, dev);
1117 ahd_midlayer_entrypoint_unlock(ahd, &flags);
1119 #else
1121 * Sets the queue depth for each SCSI device hanging
1122 * off the input host adapter.
1124 static void
1125 ahd_linux_select_queue_depth(struct Scsi_Host * host,
1126 Scsi_Device * scsi_devs)
1128 Scsi_Device *device;
1129 Scsi_Device *ldev;
1130 struct ahd_softc *ahd;
1131 u_long flags;
1133 ahd = *((struct ahd_softc **)host->hostdata);
1134 ahd_lock(ahd, &flags);
1135 for (device = scsi_devs; device != NULL; device = device->next) {
1138 * Watch out for duplicate devices. This works around
1139 * some quirks in how the SCSI scanning code does its
1140 * device management.
1142 for (ldev = scsi_devs; ldev != device; ldev = ldev->next) {
1143 if (ldev->host == device->host
1144 && ldev->channel == device->channel
1145 && ldev->id == device->id
1146 && ldev->lun == device->lun)
1147 break;
1149 /* Skip duplicate. */
1150 if (ldev != device)
1151 continue;
1153 if (device->host == host) {
1154 struct ahd_linux_device *dev;
1157 * Since Linux has attached to the device, configure
1158 * it so we don't free and allocate the device
1159 * structure on every command.
1161 dev = ahd_linux_get_device(ahd, device->channel,
1162 device->id, device->lun,
1163 /*alloc*/TRUE);
1164 if (dev != NULL) {
1165 dev->flags &= ~AHD_DEV_UNCONFIGURED;
1166 dev->scsi_device = device;
1167 ahd_linux_device_queue_depth(ahd, dev);
1168 device->queue_depth = dev->openings
1169 + dev->active;
1170 if ((dev->flags & (AHD_DEV_Q_BASIC
1171 | AHD_DEV_Q_TAGGED)) == 0) {
1173 * We allow the OS to queue 2 untagged
1174 * transactions to us at any time even
1175 * though we can only execute them
1176 * serially on the controller/device.
1177 * This should remove some latency.
1179 device->queue_depth = 2;
1184 ahd_unlock(ahd, &flags);
1186 #endif
1188 #if defined(__i386__)
1190 * Return the disk geometry for the given SCSI device.
1192 static int
1193 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1194 ahd_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
1195 sector_t capacity, int geom[])
1197 uint8_t *bh;
1198 #else
1199 ahd_linux_biosparam(Disk *disk, kdev_t dev, int geom[])
1201 struct scsi_device *sdev = disk->device;
1202 u_long capacity = disk->capacity;
1203 struct buffer_head *bh;
1204 #endif
1205 int heads;
1206 int sectors;
1207 int cylinders;
1208 int ret;
1209 int extended;
1210 struct ahd_softc *ahd;
1212 ahd = *((struct ahd_softc **)sdev->host->hostdata);
1214 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1215 bh = scsi_bios_ptable(bdev);
1216 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,17)
1217 bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev));
1218 #else
1219 bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, 1024);
1220 #endif
1222 if (bh) {
1223 ret = scsi_partsize(bh, capacity,
1224 &geom[2], &geom[0], &geom[1]);
1225 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1226 kfree(bh);
1227 #else
1228 brelse(bh);
1229 #endif
1230 if (ret != -1)
1231 return (ret);
1233 heads = 64;
1234 sectors = 32;
1235 cylinders = aic_sector_div(capacity, heads, sectors);
1237 if (aic79xx_extended != 0)
1238 extended = 1;
1239 else
1240 extended = (ahd->flags & AHD_EXTENDED_TRANS_A) != 0;
1241 if (extended && cylinders >= 1024) {
1242 heads = 255;
1243 sectors = 63;
1244 cylinders = aic_sector_div(capacity, heads, sectors);
1246 geom[0] = heads;
1247 geom[1] = sectors;
1248 geom[2] = cylinders;
1249 return (0);
1251 #endif
1254 * Abort the current SCSI command(s).
1256 static int
1257 ahd_linux_abort(Scsi_Cmnd *cmd)
1259 struct ahd_softc *ahd;
1260 struct ahd_cmd *acmd;
1261 struct ahd_cmd *list_acmd;
1262 struct ahd_linux_device *dev;
1263 struct scb *pending_scb;
1264 u_long s;
1265 u_int saved_scbptr;
1266 u_int active_scbptr;
1267 u_int last_phase;
1268 u_int cdb_byte;
1269 int retval;
1270 int was_paused;
1271 int paused;
1272 int wait;
1273 int disconnected;
1274 ahd_mode_state saved_modes;
1276 pending_scb = NULL;
1277 paused = FALSE;
1278 wait = FALSE;
1279 ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1280 acmd = (struct ahd_cmd *)cmd;
1282 printf("%s:%d:%d:%d: Attempting to abort cmd %p:",
1283 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1284 cmd->device->lun, cmd);
1285 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
1286 printf(" 0x%x", cmd->cmnd[cdb_byte]);
1287 printf("\n");
1290 * In all versions of Linux, we have to work around
1291 * a major flaw in how the mid-layer is locked down
1292 * if we are to sleep successfully in our error handler
1293 * while allowing our interrupt handler to run. Since
1294 * the midlayer acquires either the io_request_lock or
1295 * our lock prior to calling us, we must use the
1296 * spin_unlock_irq() method for unlocking our lock.
1297 * This will force interrupts to be enabled on the
1298 * current CPU. Since the EH thread should not have
1299 * been running with CPU interrupts disabled other than
1300 * by acquiring either the io_request_lock or our own
1301 * lock, this *should* be safe.
1303 ahd_midlayer_entrypoint_lock(ahd, &s);
1306 * First determine if we currently own this command.
1307 * Start by searching the device queue. If not found
1308 * there, check the pending_scb list. If not found
1309 * at all, and the system wanted us to just abort the
1310 * command, return success.
1312 dev = ahd_linux_get_device(ahd, cmd->device->channel,
1313 cmd->device->id, cmd->device->lun,
1314 /*alloc*/FALSE);
1316 if (dev == NULL) {
1318 * No target device for this command exists,
1319 * so we must not still own the command.
1321 printf("%s:%d:%d:%d: Is not an active device\n",
1322 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1323 cmd->device->lun);
1324 retval = SUCCESS;
1325 goto no_cmd;
1328 TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) {
1329 if (list_acmd == acmd)
1330 break;
1333 if (list_acmd != NULL) {
1334 printf("%s:%d:%d:%d: Command found on device queue\n",
1335 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1336 cmd->device->lun);
1337 TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe);
1338 cmd->result = DID_ABORT << 16;
1339 ahd_linux_queue_cmd_complete(ahd, cmd);
1340 retval = SUCCESS;
1341 goto done;
1345 * See if we can find a matching cmd in the pending list.
1347 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
1348 if (pending_scb->io_ctx == cmd)
1349 break;
1352 if (pending_scb == NULL) {
1353 printf("%s:%d:%d:%d: Command not found\n",
1354 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1355 cmd->device->lun);
1356 goto no_cmd;
1359 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
1361 * We can't queue two recovery actions using the same SCB
1363 retval = FAILED;
1364 goto done;
1368 * Ensure that the card doesn't do anything
1369 * behind our back. Also make sure that we
1370 * didn't "just" miss an interrupt that would
1371 * affect this cmd.
1373 was_paused = ahd_is_paused(ahd);
1374 ahd_pause_and_flushwork(ahd);
1375 paused = TRUE;
1377 if ((pending_scb->flags & SCB_ACTIVE) == 0) {
1378 printf("%s:%d:%d:%d: Command already completed\n",
1379 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1380 cmd->device->lun);
1381 goto no_cmd;
1384 printf("%s: At time of recovery, card was %spaused\n",
1385 ahd_name(ahd), was_paused ? "" : "not ");
1386 ahd_dump_card_state(ahd);
1388 disconnected = TRUE;
1389 if (ahd_search_qinfifo(ahd, cmd->device->id, cmd->device->channel + 'A',
1390 cmd->device->lun, SCB_GET_TAG(pending_scb),
1391 ROLE_INITIATOR, CAM_REQ_ABORTED,
1392 SEARCH_COMPLETE) > 0) {
1393 printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
1394 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1395 cmd->device->lun);
1396 retval = SUCCESS;
1397 goto done;
1400 saved_modes = ahd_save_modes(ahd);
1401 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1402 last_phase = ahd_inb(ahd, LASTPHASE);
1403 saved_scbptr = ahd_get_scbptr(ahd);
1404 active_scbptr = saved_scbptr;
1405 if (disconnected && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
1406 struct scb *bus_scb;
1408 bus_scb = ahd_lookup_scb(ahd, active_scbptr);
1409 if (bus_scb == pending_scb)
1410 disconnected = FALSE;
1414 * At this point, pending_scb is the scb associated with the
1415 * passed in command. That command is currently active on the
1416 * bus or is in the disconnected state.
1418 if (last_phase != P_BUSFREE
1419 && SCB_GET_TAG(pending_scb) == active_scbptr) {
1422 * We're active on the bus, so assert ATN
1423 * and hope that the target responds.
1425 pending_scb = ahd_lookup_scb(ahd, active_scbptr);
1426 pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT;
1427 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1428 ahd_outb(ahd, SCSISIGO, last_phase|ATNO);
1429 printf("%s:%d:%d:%d: Device is active, asserting ATN\n",
1430 ahd_name(ahd), cmd->device->channel,
1431 cmd->device->id, cmd->device->lun);
1432 wait = TRUE;
1433 } else if (disconnected) {
1436 * Actually re-queue this SCB in an attempt
1437 * to select the device before it reconnects.
1439 pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT;
1440 ahd_set_scbptr(ahd, SCB_GET_TAG(pending_scb));
1441 pending_scb->hscb->cdb_len = 0;
1442 pending_scb->hscb->task_attribute = 0;
1443 pending_scb->hscb->task_management = SIU_TASKMGMT_ABORT_TASK;
1445 if ((pending_scb->flags & SCB_PACKETIZED) != 0) {
1447 * Mark the SCB has having an outstanding
1448 * task management function. Should the command
1449 * complete normally before the task management
1450 * function can be sent, the host will be notified
1451 * to abort our requeued SCB.
1453 ahd_outb(ahd, SCB_TASK_MANAGEMENT,
1454 pending_scb->hscb->task_management);
1455 } else {
1457 * If non-packetized, set the MK_MESSAGE control
1458 * bit indicating that we desire to send a message.
1459 * We also set the disconnected flag since there is
1460 * no guarantee that our SCB control byte matches
1461 * the version on the card. We don't want the
1462 * sequencer to abort the command thinking an
1463 * unsolicited reselection occurred.
1465 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
1468 * The sequencer will never re-reference the
1469 * in-core SCB. To make sure we are notified
1470 * during reslection, set the MK_MESSAGE flag in
1471 * the card's copy of the SCB.
1473 ahd_outb(ahd, SCB_CONTROL,
1474 ahd_inb(ahd, SCB_CONTROL)|MK_MESSAGE);
1478 * Clear out any entries in the QINFIFO first
1479 * so we are the next SCB for this target
1480 * to run.
1482 ahd_search_qinfifo(ahd, cmd->device->id,
1483 cmd->device->channel + 'A', cmd->device->lun,
1484 SCB_LIST_NULL, ROLE_INITIATOR,
1485 CAM_REQUEUE_REQ, SEARCH_COMPLETE);
1486 ahd_qinfifo_requeue_tail(ahd, pending_scb);
1487 ahd_set_scbptr(ahd, saved_scbptr);
1488 ahd_print_path(ahd, pending_scb);
1489 printf("Device is disconnected, re-queuing SCB\n");
1490 wait = TRUE;
1491 } else {
1492 printf("%s:%d:%d:%d: Unable to deliver message\n",
1493 ahd_name(ahd), cmd->device->channel,
1494 cmd->device->id, cmd->device->lun);
1495 retval = FAILED;
1496 goto done;
1499 no_cmd:
1501 * Our assumption is that if we don't have the command, no
1502 * recovery action was required, so we return success. Again,
1503 * the semantics of the mid-layer recovery engine are not
1504 * well defined, so this may change in time.
1506 retval = SUCCESS;
1507 done:
1508 if (paused)
1509 ahd_unpause(ahd);
1510 if (wait) {
1511 struct timer_list timer;
1512 int ret;
1514 pending_scb->platform_data->flags |= AHD_SCB_UP_EH_SEM;
1515 spin_unlock_irq(&ahd->platform_data->spin_lock);
1516 init_timer(&timer);
1517 timer.data = (u_long)pending_scb;
1518 timer.expires = jiffies + (5 * HZ);
1519 timer.function = ahd_linux_sem_timeout;
1520 add_timer(&timer);
1521 printf("Recovery code sleeping\n");
1522 down(&ahd->platform_data->eh_sem);
1523 printf("Recovery code awake\n");
1524 ret = del_timer_sync(&timer);
1525 if (ret == 0) {
1526 printf("Timer Expired\n");
1527 retval = FAILED;
1529 spin_lock_irq(&ahd->platform_data->spin_lock);
1531 ahd_schedule_runq(ahd);
1532 ahd_linux_run_complete_queue(ahd);
1533 ahd_midlayer_entrypoint_unlock(ahd, &s);
1534 return (retval);
1538 static void
1539 ahd_linux_dev_reset_complete(Scsi_Cmnd *cmd)
1541 free(cmd, M_DEVBUF);
1545 * Attempt to send a target reset message to the device that timed out.
1547 static int
1548 ahd_linux_dev_reset(Scsi_Cmnd *cmd)
1550 struct ahd_softc *ahd;
1551 struct scsi_cmnd *recovery_cmd;
1552 struct ahd_linux_device *dev;
1553 struct ahd_initiator_tinfo *tinfo;
1554 struct ahd_tmode_tstate *tstate;
1555 struct scb *scb;
1556 struct hardware_scb *hscb;
1557 u_long s;
1558 struct timer_list timer;
1559 int retval;
1561 ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1562 recovery_cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK);
1563 memset(recovery_cmd, 0, sizeof(struct scsi_cmnd));
1564 recovery_cmd->device = cmd->device;
1565 recovery_cmd->scsi_done = ahd_linux_dev_reset_complete;
1566 #if AHD_DEBUG
1567 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1568 printf("%s:%d:%d:%d: Device reset called for cmd %p\n",
1569 ahd_name(ahd), cmd->device->channel, cmd->device->id,
1570 cmd->device->lun, cmd);
1571 #endif
1572 ahd_midlayer_entrypoint_lock(ahd, &s);
1574 dev = ahd_linux_get_device(ahd, cmd->device->channel, cmd->device->id,
1575 cmd->device->lun, /*alloc*/FALSE);
1576 if (dev == NULL) {
1577 ahd_midlayer_entrypoint_unlock(ahd, &s);
1578 return (FAILED);
1580 if ((scb = ahd_get_scb(ahd, AHD_NEVER_COL_IDX)) == NULL) {
1581 ahd_midlayer_entrypoint_unlock(ahd, &s);
1582 return (FAILED);
1584 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
1585 cmd->device->id, &tstate);
1586 recovery_cmd->result = CAM_REQ_INPROG << 16;
1587 recovery_cmd->host_scribble = (char *)scb;
1588 scb->io_ctx = recovery_cmd;
1589 scb->platform_data->dev = dev;
1590 scb->sg_count = 0;
1591 ahd_set_residual(scb, 0);
1592 ahd_set_sense_residual(scb, 0);
1593 hscb = scb->hscb;
1594 hscb->control = 0;
1595 hscb->scsiid = BUILD_SCSIID(ahd, cmd);
1596 hscb->lun = cmd->device->lun;
1597 hscb->cdb_len = 0;
1598 hscb->task_management = SIU_TASKMGMT_LUN_RESET;
1599 scb->flags |= SCB_DEVICE_RESET|SCB_RECOVERY_SCB|SCB_ACTIVE;
1600 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
1601 scb->flags |= SCB_PACKETIZED;
1602 } else {
1603 hscb->control |= MK_MESSAGE;
1605 dev->openings--;
1606 dev->active++;
1607 dev->commands_issued++;
1608 LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links);
1609 ahd_queue_scb(ahd, scb);
1611 scb->platform_data->flags |= AHD_SCB_UP_EH_SEM;
1612 spin_unlock_irq(&ahd->platform_data->spin_lock);
1613 init_timer(&timer);
1614 timer.data = (u_long)scb;
1615 timer.expires = jiffies + (5 * HZ);
1616 timer.function = ahd_linux_sem_timeout;
1617 add_timer(&timer);
1618 printf("Recovery code sleeping\n");
1619 down(&ahd->platform_data->eh_sem);
1620 printf("Recovery code awake\n");
1621 retval = SUCCESS;
1622 if (del_timer_sync(&timer) == 0) {
1623 printf("Timer Expired\n");
1624 retval = FAILED;
1626 spin_lock_irq(&ahd->platform_data->spin_lock);
1627 ahd_schedule_runq(ahd);
1628 ahd_linux_run_complete_queue(ahd);
1629 ahd_midlayer_entrypoint_unlock(ahd, &s);
1630 printf("%s: Device reset returning 0x%x\n", ahd_name(ahd), retval);
1631 return (retval);
1635 * Reset the SCSI bus.
1637 static int
1638 ahd_linux_bus_reset(Scsi_Cmnd *cmd)
1640 struct ahd_softc *ahd;
1641 u_long s;
1642 int found;
1644 ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1645 #ifdef AHD_DEBUG
1646 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1647 printf("%s: Bus reset called for cmd %p\n",
1648 ahd_name(ahd), cmd);
1649 #endif
1650 ahd_midlayer_entrypoint_lock(ahd, &s);
1651 found = ahd_reset_channel(ahd, cmd->device->channel + 'A',
1652 /*initiate reset*/TRUE);
1653 ahd_linux_run_complete_queue(ahd);
1654 ahd_midlayer_entrypoint_unlock(ahd, &s);
1656 if (bootverbose)
1657 printf("%s: SCSI bus reset delivered. "
1658 "%d SCBs aborted.\n", ahd_name(ahd), found);
1660 return (SUCCESS);
1663 Scsi_Host_Template aic79xx_driver_template = {
1664 .module = THIS_MODULE,
1665 .name = "aic79xx",
1666 .proc_info = ahd_linux_proc_info,
1667 .info = ahd_linux_info,
1668 .queuecommand = ahd_linux_queue,
1669 .eh_abort_handler = ahd_linux_abort,
1670 .eh_device_reset_handler = ahd_linux_dev_reset,
1671 .eh_bus_reset_handler = ahd_linux_bus_reset,
1672 #if defined(__i386__)
1673 .bios_param = ahd_linux_biosparam,
1674 #endif
1675 .can_queue = AHD_MAX_QUEUE,
1676 .this_id = -1,
1677 .cmd_per_lun = 2,
1678 .use_clustering = ENABLE_CLUSTERING,
1679 .slave_alloc = ahd_linux_slave_alloc,
1680 .slave_configure = ahd_linux_slave_configure,
1681 .slave_destroy = ahd_linux_slave_destroy,
1684 /**************************** Tasklet Handler *********************************/
1687 * In 2.4.X and above, this routine is called from a tasklet,
1688 * so we must re-acquire our lock prior to executing this code.
1689 * In all prior kernels, ahd_schedule_runq() calls this routine
1690 * directly and ahd_schedule_runq() is called with our lock held.
1692 static void
1693 ahd_runq_tasklet(unsigned long data)
1695 struct ahd_softc* ahd;
1696 struct ahd_linux_device *dev;
1697 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1698 u_long flags;
1699 #endif
1701 ahd = (struct ahd_softc *)data;
1702 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1703 ahd_lock(ahd, &flags);
1704 #endif
1705 while ((dev = ahd_linux_next_device_to_run(ahd)) != NULL) {
1707 TAILQ_REMOVE(&ahd->platform_data->device_runq, dev, links);
1708 dev->flags &= ~AHD_DEV_ON_RUN_LIST;
1709 ahd_linux_check_device_queue(ahd, dev);
1710 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1711 /* Yeild to our interrupt handler */
1712 ahd_unlock(ahd, &flags);
1713 ahd_lock(ahd, &flags);
1714 #endif
1716 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1717 ahd_unlock(ahd, &flags);
1718 #endif
1721 /******************************** Bus DMA *************************************/
1723 ahd_dma_tag_create(struct ahd_softc *ahd, bus_dma_tag_t parent,
1724 bus_size_t alignment, bus_size_t boundary,
1725 bus_addr_t lowaddr, bus_addr_t highaddr,
1726 bus_dma_filter_t *filter, void *filterarg,
1727 bus_size_t maxsize, int nsegments,
1728 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
1730 bus_dma_tag_t dmat;
1732 dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT);
1733 if (dmat == NULL)
1734 return (ENOMEM);
1737 * Linux is very simplistic about DMA memory. For now don't
1738 * maintain all specification information. Once Linux supplies
1739 * better facilities for doing these operations, or the
1740 * needs of this particular driver change, we might need to do
1741 * more here.
1743 dmat->alignment = alignment;
1744 dmat->boundary = boundary;
1745 dmat->maxsize = maxsize;
1746 *ret_tag = dmat;
1747 return (0);
1750 void
1751 ahd_dma_tag_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat)
1753 free(dmat, M_DEVBUF);
1757 ahd_dmamem_alloc(struct ahd_softc *ahd, bus_dma_tag_t dmat, void** vaddr,
1758 int flags, bus_dmamap_t *mapp)
1760 bus_dmamap_t map;
1762 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
1763 map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT);
1764 if (map == NULL)
1765 return (ENOMEM);
1767 * Although we can dma data above 4GB, our
1768 * "consistent" memory is below 4GB for
1769 * space efficiency reasons (only need a 4byte
1770 * address). For this reason, we have to reset
1771 * our dma mask when doing allocations.
1773 if (ahd->dev_softc != NULL)
1774 if (ahd_pci_set_dma_mask(ahd->dev_softc, 0xFFFFFFFF)) {
1775 printk(KERN_WARNING "aic79xx: No suitable DMA available.\n");
1776 return (ENODEV);
1778 *vaddr = pci_alloc_consistent(ahd->dev_softc,
1779 dmat->maxsize, &map->bus_addr);
1780 if (ahd->dev_softc != NULL)
1781 if (ahd_pci_set_dma_mask(ahd->dev_softc,
1782 ahd->platform_data->hw_dma_mask)) {
1783 printk(KERN_WARNING "aic79xx: No suitable DMA available.\n");
1784 return (ENODEV);
1786 #else /* LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) */
1788 * At least in 2.2.14, malloc is a slab allocator so all
1789 * allocations are aligned. We assume for these kernel versions
1790 * that all allocations will be bellow 4Gig, physically contiguous,
1791 * and accessible via DMA by the controller.
1793 map = NULL; /* No additional information to store */
1794 *vaddr = malloc(dmat->maxsize, M_DEVBUF, M_NOWAIT);
1795 #endif
1796 if (*vaddr == NULL)
1797 return (ENOMEM);
1798 *mapp = map;
1799 return(0);
1802 void
1803 ahd_dmamem_free(struct ahd_softc *ahd, bus_dma_tag_t dmat,
1804 void* vaddr, bus_dmamap_t map)
1806 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
1807 pci_free_consistent(ahd->dev_softc, dmat->maxsize,
1808 vaddr, map->bus_addr);
1809 #else
1810 free(vaddr, M_DEVBUF);
1811 #endif
1815 ahd_dmamap_load(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map,
1816 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
1817 void *cb_arg, int flags)
1820 * Assume for now that this will only be used during
1821 * initialization and not for per-transaction buffer mapping.
1823 bus_dma_segment_t stack_sg;
1825 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
1826 stack_sg.ds_addr = map->bus_addr;
1827 #else
1828 #define VIRT_TO_BUS(a) (uint32_t)virt_to_bus((void *)(a))
1829 stack_sg.ds_addr = VIRT_TO_BUS(buf);
1830 #endif
1831 stack_sg.ds_len = dmat->maxsize;
1832 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
1833 return (0);
1836 void
1837 ahd_dmamap_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map)
1840 * The map may is NULL in our < 2.3.X implementation.
1842 if (map != NULL)
1843 free(map, M_DEVBUF);
1847 ahd_dmamap_unload(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map)
1849 /* Nothing to do */
1850 return (0);
1853 /********************* Platform Dependent Functions ***************************/
1855 * Compare "left hand" softc with "right hand" softc, returning:
1856 * < 0 - lahd has a lower priority than rahd
1857 * 0 - Softcs are equal
1858 * > 0 - lahd has a higher priority than rahd
1861 ahd_softc_comp(struct ahd_softc *lahd, struct ahd_softc *rahd)
1863 int value;
1866 * Under Linux, cards are ordered as follows:
1867 * 1) PCI devices that are marked as the boot controller.
1868 * 2) PCI devices with BIOS enabled sorted by bus/slot/func.
1869 * 3) All remaining PCI devices sorted by bus/slot/func.
1871 #if 0
1872 value = (lahd->flags & AHD_BOOT_CHANNEL)
1873 - (rahd->flags & AHD_BOOT_CHANNEL);
1874 if (value != 0)
1875 /* Controllers set for boot have a *higher* priority */
1876 return (value);
1877 #endif
1879 value = (lahd->flags & AHD_BIOS_ENABLED)
1880 - (rahd->flags & AHD_BIOS_ENABLED);
1881 if (value != 0)
1882 /* Controllers with BIOS enabled have a *higher* priority */
1883 return (value);
1885 /* Still equal. Sort by bus/slot/func. */
1886 if (aic79xx_reverse_scan != 0)
1887 value = ahd_get_pci_bus(lahd->dev_softc)
1888 - ahd_get_pci_bus(rahd->dev_softc);
1889 else
1890 value = ahd_get_pci_bus(rahd->dev_softc)
1891 - ahd_get_pci_bus(lahd->dev_softc);
1892 if (value != 0)
1893 return (value);
1894 if (aic79xx_reverse_scan != 0)
1895 value = ahd_get_pci_slot(lahd->dev_softc)
1896 - ahd_get_pci_slot(rahd->dev_softc);
1897 else
1898 value = ahd_get_pci_slot(rahd->dev_softc)
1899 - ahd_get_pci_slot(lahd->dev_softc);
1900 if (value != 0)
1901 return (value);
1903 value = rahd->channel - lahd->channel;
1904 return (value);
1907 static void
1908 ahd_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
1911 if ((instance >= 0) && (targ >= 0)
1912 && (instance < NUM_ELEMENTS(aic79xx_tag_info))
1913 && (targ < AHD_NUM_TARGETS)) {
1914 aic79xx_tag_info[instance].tag_commands[targ] = value & 0x1FF;
1915 if (bootverbose)
1916 printf("tag_info[%d:%d] = %d\n", instance, targ, value);
1920 static void
1921 ahd_linux_setup_rd_strm_info(u_long arg, int instance, int targ, int32_t value)
1923 if ((instance >= 0)
1924 && (instance < NUM_ELEMENTS(aic79xx_rd_strm_info))) {
1925 aic79xx_rd_strm_info[instance] = value & 0xFFFF;
1926 if (bootverbose)
1927 printf("rd_strm[%d] = 0x%x\n", instance, value);
1931 static void
1932 ahd_linux_setup_dv(u_long arg, int instance, int targ, int32_t value)
1934 if ((instance >= 0)
1935 && (instance < NUM_ELEMENTS(aic79xx_dv_settings))) {
1936 aic79xx_dv_settings[instance] = value;
1937 if (bootverbose)
1938 printf("dv[%d] = %d\n", instance, value);
1942 static void
1943 ahd_linux_setup_iocell_info(u_long index, int instance, int targ, int32_t value)
1946 if ((instance >= 0)
1947 && (instance < NUM_ELEMENTS(aic79xx_iocell_info))) {
1948 uint8_t *iocell_info;
1950 iocell_info = (uint8_t*)&aic79xx_iocell_info[instance];
1951 iocell_info[index] = value & 0xFFFF;
1952 if (bootverbose)
1953 printf("iocell[%d:%ld] = %d\n", instance, index, value);
1957 static void
1958 ahd_linux_setup_tag_info_global(char *p)
1960 int tags, i, j;
1962 tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
1963 printf("Setting Global Tags= %d\n", tags);
1965 for (i = 0; i < NUM_ELEMENTS(aic79xx_tag_info); i++) {
1966 for (j = 0; j < AHD_NUM_TARGETS; j++) {
1967 aic79xx_tag_info[i].tag_commands[j] = tags;
1973 * Handle Linux boot parameters. This routine allows for assigning a value
1974 * to a parameter with a ':' between the parameter and the value.
1975 * ie. aic79xx=stpwlev:1,extended
1977 static int
1978 aic79xx_setup(char *s)
1980 int i, n;
1981 char *p;
1982 char *end;
1984 static struct {
1985 const char *name;
1986 uint32_t *flag;
1987 } options[] = {
1988 { "extended", &aic79xx_extended },
1989 { "no_reset", &aic79xx_no_reset },
1990 { "verbose", &aic79xx_verbose },
1991 { "allow_memio", &aic79xx_allow_memio},
1992 #ifdef AHD_DEBUG
1993 { "debug", &ahd_debug },
1994 #endif
1995 { "reverse_scan", &aic79xx_reverse_scan },
1996 { "periodic_otag", &aic79xx_periodic_otag },
1997 { "pci_parity", &aic79xx_pci_parity },
1998 { "seltime", &aic79xx_seltime },
1999 { "tag_info", NULL },
2000 { "global_tag_depth", NULL},
2001 { "rd_strm", NULL },
2002 { "dv", NULL },
2003 { "slewrate", NULL },
2004 { "precomp", NULL },
2005 { "amplitude", NULL },
2008 end = strchr(s, '\0');
2011 * XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS
2012 * will never be 0 in this case.
2014 n = 0;
2016 while ((p = strsep(&s, ",.")) != NULL) {
2017 if (*p == '\0')
2018 continue;
2019 for (i = 0; i < NUM_ELEMENTS(options); i++) {
2021 n = strlen(options[i].name);
2022 if (strncmp(options[i].name, p, n) == 0)
2023 break;
2025 if (i == NUM_ELEMENTS(options))
2026 continue;
2028 if (strncmp(p, "global_tag_depth", n) == 0) {
2029 ahd_linux_setup_tag_info_global(p + n);
2030 } else if (strncmp(p, "tag_info", n) == 0) {
2031 s = aic_parse_brace_option("tag_info", p + n, end,
2032 2, ahd_linux_setup_tag_info, 0);
2033 } else if (strncmp(p, "rd_strm", n) == 0) {
2034 s = aic_parse_brace_option("rd_strm", p + n, end,
2035 1, ahd_linux_setup_rd_strm_info, 0);
2036 } else if (strncmp(p, "dv", n) == 0) {
2037 s = aic_parse_brace_option("dv", p + n, end, 1,
2038 ahd_linux_setup_dv, 0);
2039 } else if (strncmp(p, "slewrate", n) == 0) {
2040 s = aic_parse_brace_option("slewrate",
2041 p + n, end, 1, ahd_linux_setup_iocell_info,
2042 AIC79XX_SLEWRATE_INDEX);
2043 } else if (strncmp(p, "precomp", n) == 0) {
2044 s = aic_parse_brace_option("precomp",
2045 p + n, end, 1, ahd_linux_setup_iocell_info,
2046 AIC79XX_PRECOMP_INDEX);
2047 } else if (strncmp(p, "amplitude", n) == 0) {
2048 s = aic_parse_brace_option("amplitude",
2049 p + n, end, 1, ahd_linux_setup_iocell_info,
2050 AIC79XX_AMPLITUDE_INDEX);
2051 } else if (p[n] == ':') {
2052 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
2053 } else if (!strncmp(p, "verbose", n)) {
2054 *(options[i].flag) = 1;
2055 } else {
2056 *(options[i].flag) ^= 0xFFFFFFFF;
2059 return 1;
2062 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0)
2063 __setup("aic79xx=", aic79xx_setup);
2064 #endif
2066 uint32_t aic79xx_verbose;
2069 ahd_linux_register_host(struct ahd_softc *ahd, Scsi_Host_Template *template)
2071 char buf[80];
2072 struct Scsi_Host *host;
2073 char *new_name;
2074 u_long s;
2075 u_long target;
2077 template->name = ahd->description;
2078 host = scsi_host_alloc(template, sizeof(struct ahd_softc *));
2079 if (host == NULL)
2080 return (ENOMEM);
2082 *((struct ahd_softc **)host->hostdata) = ahd;
2083 ahd_lock(ahd, &s);
2084 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2085 scsi_assign_lock(host, &ahd->platform_data->spin_lock);
2086 #elif AHD_SCSI_HAS_HOST_LOCK != 0
2087 host->lock = &ahd->platform_data->spin_lock;
2088 #endif
2089 ahd->platform_data->host = host;
2090 host->can_queue = AHD_MAX_QUEUE;
2091 host->cmd_per_lun = 2;
2092 host->sg_tablesize = AHD_NSEG;
2093 host->this_id = ahd->our_id;
2094 host->irq = ahd->platform_data->irq;
2095 host->max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
2096 host->max_lun = AHD_NUM_LUNS;
2097 host->max_channel = 0;
2098 host->sg_tablesize = AHD_NSEG;
2099 ahd_set_unit(ahd, ahd_linux_next_unit());
2100 sprintf(buf, "scsi%d", host->host_no);
2101 new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT);
2102 if (new_name != NULL) {
2103 strcpy(new_name, buf);
2104 ahd_set_name(ahd, new_name);
2106 host->unique_id = ahd->unit;
2107 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,4) && \
2108 LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
2109 scsi_set_pci_device(host, ahd->dev_softc);
2110 #endif
2111 ahd_linux_setup_user_rd_strm_settings(ahd);
2112 ahd_linux_initialize_scsi_bus(ahd);
2113 ahd_unlock(ahd, &s);
2114 ahd->platform_data->dv_pid = kernel_thread(ahd_linux_dv_thread, ahd, 0);
2115 ahd_lock(ahd, &s);
2116 if (ahd->platform_data->dv_pid < 0) {
2117 printf("%s: Failed to create DV thread, error= %d\n",
2118 ahd_name(ahd), ahd->platform_data->dv_pid);
2119 return (-ahd->platform_data->dv_pid);
2122 * Initially allocate *all* of our linux target objects
2123 * so that the DV thread will scan them all in parallel
2124 * just after driver initialization. Any device that
2125 * does not exist will have its target object destroyed
2126 * by the selection timeout handler. In the case of a
2127 * device that appears after the initial DV scan, async
2128 * negotiation will occur for the first command, and DV
2129 * will comence should that first command be successful.
2131 for (target = 0; target < host->max_id; target++) {
2134 * Skip our own ID. Some Compaq/HP storage devices
2135 * have enclosure management devices that respond to
2136 * single bit selection (i.e. selecting ourselves).
2137 * It is expected that either an external application
2138 * or a modified kernel will be used to probe this
2139 * ID if it is appropriate. To accommodate these
2140 * installations, ahc_linux_alloc_target() will allocate
2141 * for our ID if asked to do so.
2143 if (target == ahd->our_id)
2144 continue;
2146 ahd_linux_alloc_target(ahd, 0, target);
2148 ahd_intr_enable(ahd, TRUE);
2149 ahd_linux_start_dv(ahd);
2150 ahd_unlock(ahd, &s);
2152 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2153 scsi_add_host(host, &ahd->dev_softc->dev); /* XXX handle failure */
2154 scsi_scan_host(host);
2155 #endif
2156 return (0);
2159 uint64_t
2160 ahd_linux_get_memsize(void)
2162 struct sysinfo si;
2164 si_meminfo(&si);
2165 return ((uint64_t)si.totalram << PAGE_SHIFT);
2169 * Find the smallest available unit number to use
2170 * for a new device. We don't just use a static
2171 * count to handle the "repeated hot-(un)plug"
2172 * scenario.
2174 static int
2175 ahd_linux_next_unit(void)
2177 struct ahd_softc *ahd;
2178 int unit;
2180 unit = 0;
2181 retry:
2182 TAILQ_FOREACH(ahd, &ahd_tailq, links) {
2183 if (ahd->unit == unit) {
2184 unit++;
2185 goto retry;
2188 return (unit);
2192 * Place the SCSI bus into a known state by either resetting it,
2193 * or forcing transfer negotiations on the next command to any
2194 * target.
2196 static void
2197 ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd)
2199 u_int target_id;
2200 u_int numtarg;
2202 target_id = 0;
2203 numtarg = 0;
2205 if (aic79xx_no_reset != 0)
2206 ahd->flags &= ~AHD_RESET_BUS_A;
2208 if ((ahd->flags & AHD_RESET_BUS_A) != 0)
2209 ahd_reset_channel(ahd, 'A', /*initiate_reset*/TRUE);
2210 else
2211 numtarg = (ahd->features & AHD_WIDE) ? 16 : 8;
2214 * Force negotiation to async for all targets that
2215 * will not see an initial bus reset.
2217 for (; target_id < numtarg; target_id++) {
2218 struct ahd_devinfo devinfo;
2219 struct ahd_initiator_tinfo *tinfo;
2220 struct ahd_tmode_tstate *tstate;
2222 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
2223 target_id, &tstate);
2224 ahd_compile_devinfo(&devinfo, ahd->our_id, target_id,
2225 CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR);
2226 ahd_update_neg_request(ahd, &devinfo, tstate,
2227 tinfo, AHD_NEG_ALWAYS);
2229 /* Give the bus some time to recover */
2230 if ((ahd->flags & AHD_RESET_BUS_A) != 0) {
2231 ahd_freeze_simq(ahd);
2232 init_timer(&ahd->platform_data->reset_timer);
2233 ahd->platform_data->reset_timer.data = (u_long)ahd;
2234 ahd->platform_data->reset_timer.expires =
2235 jiffies + (AIC79XX_RESET_DELAY * HZ)/1000;
2236 ahd->platform_data->reset_timer.function =
2237 (ahd_linux_callback_t *)ahd_release_simq;
2238 add_timer(&ahd->platform_data->reset_timer);
2243 ahd_platform_alloc(struct ahd_softc *ahd, void *platform_arg)
2245 ahd->platform_data =
2246 malloc(sizeof(struct ahd_platform_data), M_DEVBUF, M_NOWAIT);
2247 if (ahd->platform_data == NULL)
2248 return (ENOMEM);
2249 memset(ahd->platform_data, 0, sizeof(struct ahd_platform_data));
2250 TAILQ_INIT(&ahd->platform_data->completeq);
2251 TAILQ_INIT(&ahd->platform_data->device_runq);
2252 ahd->platform_data->irq = AHD_LINUX_NOIRQ;
2253 ahd->platform_data->hw_dma_mask = 0xFFFFFFFF;
2254 ahd_lockinit(ahd);
2255 ahd_done_lockinit(ahd);
2256 init_timer(&ahd->platform_data->completeq_timer);
2257 ahd->platform_data->completeq_timer.data = (u_long)ahd;
2258 ahd->platform_data->completeq_timer.function =
2259 (ahd_linux_callback_t *)ahd_linux_thread_run_complete_queue;
2260 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
2261 init_MUTEX_LOCKED(&ahd->platform_data->eh_sem);
2262 init_MUTEX_LOCKED(&ahd->platform_data->dv_sem);
2263 init_MUTEX_LOCKED(&ahd->platform_data->dv_cmd_sem);
2264 #else
2265 ahd->platform_data->eh_sem = MUTEX_LOCKED;
2266 ahd->platform_data->dv_sem = MUTEX_LOCKED;
2267 ahd->platform_data->dv_cmd_sem = MUTEX_LOCKED;
2268 #endif
2269 ahd_setup_runq_tasklet(ahd);
2270 ahd->seltime = (aic79xx_seltime & 0x3) << 4;
2271 return (0);
2274 void
2275 ahd_platform_free(struct ahd_softc *ahd)
2277 struct ahd_linux_target *targ;
2278 struct ahd_linux_device *dev;
2279 int i, j;
2281 if (ahd->platform_data != NULL) {
2282 del_timer_sync(&ahd->platform_data->completeq_timer);
2283 ahd_linux_kill_dv_thread(ahd);
2284 ahd_teardown_runq_tasklet(ahd);
2285 if (ahd->platform_data->host != NULL) {
2286 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2287 scsi_remove_host(ahd->platform_data->host);
2288 #endif
2289 scsi_host_put(ahd->platform_data->host);
2292 /* destroy all of the device and target objects */
2293 for (i = 0; i < AHD_NUM_TARGETS; i++) {
2294 targ = ahd->platform_data->targets[i];
2295 if (targ != NULL) {
2296 /* Keep target around through the loop. */
2297 targ->refcount++;
2298 for (j = 0; j < AHD_NUM_LUNS; j++) {
2300 if (targ->devices[j] == NULL)
2301 continue;
2302 dev = targ->devices[j];
2303 ahd_linux_free_device(ahd, dev);
2306 * Forcibly free the target now that
2307 * all devices are gone.
2309 ahd_linux_free_target(ahd, targ);
2313 if (ahd->platform_data->irq != AHD_LINUX_NOIRQ)
2314 free_irq(ahd->platform_data->irq, ahd);
2315 if (ahd->tags[0] == BUS_SPACE_PIO
2316 && ahd->bshs[0].ioport != 0)
2317 release_region(ahd->bshs[0].ioport, 256);
2318 if (ahd->tags[1] == BUS_SPACE_PIO
2319 && ahd->bshs[1].ioport != 0)
2320 release_region(ahd->bshs[1].ioport, 256);
2321 if (ahd->tags[0] == BUS_SPACE_MEMIO
2322 && ahd->bshs[0].maddr != NULL) {
2323 u_long base_addr;
2325 base_addr = (u_long)ahd->bshs[0].maddr;
2326 base_addr &= PAGE_MASK;
2327 iounmap((void *)base_addr);
2328 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
2329 release_mem_region(ahd->platform_data->mem_busaddr,
2330 0x1000);
2331 #endif
2333 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) && \
2334 LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
2336 * In 2.4 we detach from the scsi midlayer before the PCI
2337 * layer invokes our remove callback. No per-instance
2338 * detach is provided, so we must reach inside the PCI
2339 * subsystem's internals and detach our driver manually.
2341 if (ahd->dev_softc != NULL)
2342 ahd->dev_softc->driver = NULL;
2343 #endif
2344 free(ahd->platform_data, M_DEVBUF);
2348 void
2349 ahd_platform_init(struct ahd_softc *ahd)
2352 * Lookup and commit any modified IO Cell options.
2354 if (ahd->unit < NUM_ELEMENTS(aic79xx_iocell_info)) {
2355 struct ahd_linux_iocell_opts *iocell_opts;
2357 iocell_opts = &aic79xx_iocell_info[ahd->unit];
2358 if (iocell_opts->precomp != AIC79XX_DEFAULT_PRECOMP)
2359 AHD_SET_PRECOMP(ahd, iocell_opts->precomp);
2360 if (iocell_opts->slewrate != AIC79XX_DEFAULT_SLEWRATE)
2361 AHD_SET_SLEWRATE(ahd, iocell_opts->slewrate);
2362 if (iocell_opts->amplitude != AIC79XX_DEFAULT_AMPLITUDE)
2363 AHD_SET_AMPLITUDE(ahd, iocell_opts->amplitude);
2368 void
2369 ahd_platform_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
2371 ahd_platform_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2372 SCB_GET_CHANNEL(ahd, scb),
2373 SCB_GET_LUN(scb), SCB_LIST_NULL,
2374 ROLE_UNKNOWN, CAM_REQUEUE_REQ);
2377 void
2378 ahd_platform_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
2379 ahd_queue_alg alg)
2381 struct ahd_linux_device *dev;
2382 int was_queuing;
2383 int now_queuing;
2385 dev = ahd_linux_get_device(ahd, devinfo->channel - 'A',
2386 devinfo->target,
2387 devinfo->lun, /*alloc*/FALSE);
2388 if (dev == NULL)
2389 return;
2390 was_queuing = dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED);
2391 switch (alg) {
2392 default:
2393 case AHD_QUEUE_NONE:
2394 now_queuing = 0;
2395 break;
2396 case AHD_QUEUE_BASIC:
2397 now_queuing = AHD_DEV_Q_BASIC;
2398 break;
2399 case AHD_QUEUE_TAGGED:
2400 now_queuing = AHD_DEV_Q_TAGGED;
2401 break;
2403 if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) == 0
2404 && (was_queuing != now_queuing)
2405 && (dev->active != 0)) {
2406 dev->flags |= AHD_DEV_FREEZE_TIL_EMPTY;
2407 dev->qfrozen++;
2410 dev->flags &= ~(AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED|AHD_DEV_PERIODIC_OTAG);
2411 if (now_queuing) {
2412 u_int usertags;
2414 usertags = ahd_linux_user_tagdepth(ahd, devinfo);
2415 if (!was_queuing) {
2417 * Start out agressively and allow our
2418 * dynamic queue depth algorithm to take
2419 * care of the rest.
2421 dev->maxtags = usertags;
2422 dev->openings = dev->maxtags - dev->active;
2424 if (dev->maxtags == 0) {
2426 * Queueing is disabled by the user.
2428 dev->openings = 1;
2429 } else if (alg == AHD_QUEUE_TAGGED) {
2430 dev->flags |= AHD_DEV_Q_TAGGED;
2431 if (aic79xx_periodic_otag != 0)
2432 dev->flags |= AHD_DEV_PERIODIC_OTAG;
2433 } else
2434 dev->flags |= AHD_DEV_Q_BASIC;
2435 } else {
2436 /* We can only have one opening. */
2437 dev->maxtags = 0;
2438 dev->openings = 1 - dev->active;
2440 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2441 if (dev->scsi_device != NULL) {
2442 switch ((dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED))) {
2443 case AHD_DEV_Q_BASIC:
2444 scsi_adjust_queue_depth(dev->scsi_device,
2445 MSG_SIMPLE_TASK,
2446 dev->openings + dev->active);
2447 break;
2448 case AHD_DEV_Q_TAGGED:
2449 scsi_adjust_queue_depth(dev->scsi_device,
2450 MSG_ORDERED_TASK,
2451 dev->openings + dev->active);
2452 break;
2453 default:
2455 * We allow the OS to queue 2 untagged transactions to
2456 * us at any time even though we can only execute them
2457 * serially on the controller/device. This should
2458 * remove some latency.
2460 scsi_adjust_queue_depth(dev->scsi_device,
2461 /*NON-TAGGED*/0,
2462 /*queue depth*/2);
2463 break;
2466 #endif
2470 ahd_platform_abort_scbs(struct ahd_softc *ahd, int target, char channel,
2471 int lun, u_int tag, role_t role, uint32_t status)
2473 int targ;
2474 int maxtarg;
2475 int maxlun;
2476 int clun;
2477 int count;
2479 if (tag != SCB_LIST_NULL)
2480 return (0);
2482 targ = 0;
2483 if (target != CAM_TARGET_WILDCARD) {
2484 targ = target;
2485 maxtarg = targ + 1;
2486 } else {
2487 maxtarg = (ahd->features & AHD_WIDE) ? 16 : 8;
2489 clun = 0;
2490 if (lun != CAM_LUN_WILDCARD) {
2491 clun = lun;
2492 maxlun = clun + 1;
2493 } else {
2494 maxlun = AHD_NUM_LUNS;
2497 count = 0;
2498 for (; targ < maxtarg; targ++) {
2500 for (; clun < maxlun; clun++) {
2501 struct ahd_linux_device *dev;
2502 struct ahd_busyq *busyq;
2503 struct ahd_cmd *acmd;
2505 dev = ahd_linux_get_device(ahd, /*chan*/0, targ,
2506 clun, /*alloc*/FALSE);
2507 if (dev == NULL)
2508 continue;
2510 busyq = &dev->busyq;
2511 while ((acmd = TAILQ_FIRST(busyq)) != NULL) {
2512 Scsi_Cmnd *cmd;
2514 cmd = &acmd_scsi_cmd(acmd);
2515 TAILQ_REMOVE(busyq, acmd,
2516 acmd_links.tqe);
2517 count++;
2518 cmd->result = status << 16;
2519 ahd_linux_queue_cmd_complete(ahd, cmd);
2524 return (count);
2527 static void
2528 ahd_linux_thread_run_complete_queue(struct ahd_softc *ahd)
2530 u_long flags;
2532 ahd_lock(ahd, &flags);
2533 del_timer(&ahd->platform_data->completeq_timer);
2534 ahd->platform_data->flags &= ~AHD_RUN_CMPLT_Q_TIMER;
2535 ahd_linux_run_complete_queue(ahd);
2536 ahd_unlock(ahd, &flags);
2539 static void
2540 ahd_linux_start_dv(struct ahd_softc *ahd)
2544 * Freeze the simq and signal ahd_linux_queue to not let any
2545 * more commands through
2547 if ((ahd->platform_data->flags & AHD_DV_ACTIVE) == 0) {
2548 #ifdef AHD_DEBUG
2549 if (ahd_debug & AHD_SHOW_DV)
2550 printf("%s: Starting DV\n", ahd_name(ahd));
2551 #endif
2553 ahd->platform_data->flags |= AHD_DV_ACTIVE;
2554 ahd_freeze_simq(ahd);
2556 /* Wake up the DV kthread */
2557 up(&ahd->platform_data->dv_sem);
2561 static int
2562 ahd_linux_dv_thread(void *data)
2564 struct ahd_softc *ahd;
2565 int target;
2566 u_long s;
2568 ahd = (struct ahd_softc *)data;
2570 #ifdef AHD_DEBUG
2571 if (ahd_debug & AHD_SHOW_DV)
2572 printf("In DV Thread\n");
2573 #endif
2576 * Complete thread creation.
2578 lock_kernel();
2579 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,60)
2581 * Don't care about any signals.
2583 siginitsetinv(&current->blocked, 0);
2585 daemonize();
2586 sprintf(current->comm, "ahd_dv_%d", ahd->unit);
2587 #else
2588 daemonize("ahd_dv_%d", ahd->unit);
2589 current->flags |= PF_FREEZE;
2590 #endif
2591 unlock_kernel();
2593 while (1) {
2595 * Use down_interruptible() rather than down() to
2596 * avoid inclusion in the load average.
2598 down_interruptible(&ahd->platform_data->dv_sem);
2600 /* Check to see if we've been signaled to exit */
2601 ahd_lock(ahd, &s);
2602 if ((ahd->platform_data->flags & AHD_DV_SHUTDOWN) != 0) {
2603 ahd_unlock(ahd, &s);
2604 break;
2606 ahd_unlock(ahd, &s);
2608 #ifdef AHD_DEBUG
2609 if (ahd_debug & AHD_SHOW_DV)
2610 printf("%s: Beginning Domain Validation\n",
2611 ahd_name(ahd));
2612 #endif
2615 * Wait for any pending commands to drain before proceeding.
2617 ahd_lock(ahd, &s);
2618 while (LIST_FIRST(&ahd->pending_scbs) != NULL) {
2619 ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_EMPTY;
2620 ahd_unlock(ahd, &s);
2621 down_interruptible(&ahd->platform_data->dv_sem);
2622 ahd_lock(ahd, &s);
2626 * Wait for the SIMQ to be released so that DV is the
2627 * only reason the queue is frozen.
2629 while (AHD_DV_SIMQ_FROZEN(ahd) == 0) {
2630 ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_RELEASE;
2631 ahd_unlock(ahd, &s);
2632 down_interruptible(&ahd->platform_data->dv_sem);
2633 ahd_lock(ahd, &s);
2635 ahd_unlock(ahd, &s);
2637 for (target = 0; target < AHD_NUM_TARGETS; target++)
2638 ahd_linux_dv_target(ahd, target);
2640 ahd_lock(ahd, &s);
2641 ahd->platform_data->flags &= ~AHD_DV_ACTIVE;
2642 ahd_unlock(ahd, &s);
2645 * Release the SIMQ so that normal commands are
2646 * allowed to continue on the bus.
2648 ahd_release_simq(ahd);
2650 up(&ahd->platform_data->eh_sem);
2651 return (0);
2654 static void
2655 ahd_linux_kill_dv_thread(struct ahd_softc *ahd)
2657 u_long s;
2659 ahd_lock(ahd, &s);
2660 if (ahd->platform_data->dv_pid != 0) {
2661 ahd->platform_data->flags |= AHD_DV_SHUTDOWN;
2662 ahd_unlock(ahd, &s);
2663 up(&ahd->platform_data->dv_sem);
2666 * Use the eh_sem as an indicator that the
2667 * dv thread is exiting. Note that the dv
2668 * thread must still return after performing
2669 * the up on our semaphore before it has
2670 * completely exited this module. Unfortunately,
2671 * there seems to be no easy way to wait for the
2672 * exit of a thread for which you are not the
2673 * parent (dv threads are parented by init).
2674 * Cross your fingers...
2676 down(&ahd->platform_data->eh_sem);
2679 * Mark the dv thread as already dead. This
2680 * avoids attempting to kill it a second time.
2681 * This is necessary because we must kill the
2682 * DV thread before calling ahd_free() in the
2683 * module shutdown case to avoid bogus locking
2684 * in the SCSI mid-layer, but we ahd_free() is
2685 * called without killing the DV thread in the
2686 * instance detach case, so ahd_platform_free()
2687 * calls us again to verify that the DV thread
2688 * is dead.
2690 ahd->platform_data->dv_pid = 0;
2691 } else {
2692 ahd_unlock(ahd, &s);
2696 #define AHD_LINUX_DV_INQ_SHORT_LEN 36
2697 #define AHD_LINUX_DV_INQ_LEN 256
2698 #define AHD_LINUX_DV_TIMEOUT (HZ / 4)
2700 #define AHD_SET_DV_STATE(ahd, targ, newstate) \
2701 ahd_set_dv_state(ahd, targ, newstate, __LINE__)
2703 static __inline void
2704 ahd_set_dv_state(struct ahd_softc *ahd, struct ahd_linux_target *targ,
2705 ahd_dv_state newstate, u_int line)
2707 ahd_dv_state oldstate;
2709 oldstate = targ->dv_state;
2710 #ifdef AHD_DEBUG
2711 if (ahd_debug & AHD_SHOW_DV)
2712 printf("%s:%d: Going from state %d to state %d\n",
2713 ahd_name(ahd), line, oldstate, newstate);
2714 #endif
2716 if (oldstate == newstate)
2717 targ->dv_state_retry++;
2718 else
2719 targ->dv_state_retry = 0;
2720 targ->dv_state = newstate;
2723 static void
2724 ahd_linux_dv_target(struct ahd_softc *ahd, u_int target_offset)
2726 struct ahd_devinfo devinfo;
2727 struct ahd_linux_target *targ;
2728 struct scsi_cmnd *cmd;
2729 struct scsi_device *scsi_dev;
2730 struct scsi_sense_data *sense;
2731 uint8_t *buffer;
2732 u_long s;
2733 u_int timeout;
2734 int echo_size;
2736 sense = NULL;
2737 buffer = NULL;
2738 echo_size = 0;
2739 ahd_lock(ahd, &s);
2740 targ = ahd->platform_data->targets[target_offset];
2741 if (targ == NULL || (targ->flags & AHD_DV_REQUIRED) == 0) {
2742 ahd_unlock(ahd, &s);
2743 return;
2745 ahd_compile_devinfo(&devinfo, ahd->our_id, targ->target, /*lun*/0,
2746 targ->channel + 'A', ROLE_INITIATOR);
2747 #ifdef AHD_DEBUG
2748 if (ahd_debug & AHD_SHOW_DV) {
2749 ahd_print_devinfo(ahd, &devinfo);
2750 printf("Performing DV\n");
2752 #endif
2754 ahd_unlock(ahd, &s);
2756 cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK);
2757 scsi_dev = malloc(sizeof(struct scsi_device), M_DEVBUF, M_WAITOK);
2758 scsi_dev->host = ahd->platform_data->host;
2759 scsi_dev->id = devinfo.target;
2760 scsi_dev->lun = devinfo.lun;
2761 scsi_dev->channel = devinfo.channel - 'A';
2762 ahd->platform_data->dv_scsi_dev = scsi_dev;
2764 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC);
2766 while (targ->dv_state != AHD_DV_STATE_EXIT) {
2767 timeout = AHD_LINUX_DV_TIMEOUT;
2768 switch (targ->dv_state) {
2769 case AHD_DV_STATE_INQ_SHORT_ASYNC:
2770 case AHD_DV_STATE_INQ_ASYNC:
2771 case AHD_DV_STATE_INQ_ASYNC_VERIFY:
2773 * Set things to async narrow to reduce the
2774 * chance that the INQ will fail.
2776 ahd_lock(ahd, &s);
2777 ahd_set_syncrate(ahd, &devinfo, 0, 0, 0,
2778 AHD_TRANS_GOAL, /*paused*/FALSE);
2779 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
2780 AHD_TRANS_GOAL, /*paused*/FALSE);
2781 ahd_unlock(ahd, &s);
2782 timeout = 10 * HZ;
2783 targ->flags &= ~AHD_INQ_VALID;
2784 /* FALLTHROUGH */
2785 case AHD_DV_STATE_INQ_VERIFY:
2787 u_int inq_len;
2789 if (targ->dv_state == AHD_DV_STATE_INQ_SHORT_ASYNC)
2790 inq_len = AHD_LINUX_DV_INQ_SHORT_LEN;
2791 else
2792 inq_len = targ->inq_data->additional_length + 5;
2793 ahd_linux_dv_inq(ahd, cmd, &devinfo, targ, inq_len);
2794 break;
2796 case AHD_DV_STATE_TUR:
2797 case AHD_DV_STATE_BUSY:
2798 timeout = 5 * HZ;
2799 ahd_linux_dv_tur(ahd, cmd, &devinfo);
2800 break;
2801 case AHD_DV_STATE_REBD:
2802 ahd_linux_dv_rebd(ahd, cmd, &devinfo, targ);
2803 break;
2804 case AHD_DV_STATE_WEB:
2805 ahd_linux_dv_web(ahd, cmd, &devinfo, targ);
2806 break;
2808 case AHD_DV_STATE_REB:
2809 ahd_linux_dv_reb(ahd, cmd, &devinfo, targ);
2810 break;
2812 case AHD_DV_STATE_SU:
2813 ahd_linux_dv_su(ahd, cmd, &devinfo, targ);
2814 timeout = 50 * HZ;
2815 break;
2817 default:
2818 ahd_print_devinfo(ahd, &devinfo);
2819 printf("Unknown DV state %d\n", targ->dv_state);
2820 goto out;
2823 /* Queue the command and wait for it to complete */
2824 /* Abuse eh_timeout in the scsi_cmnd struct for our purposes */
2825 init_timer(&cmd->eh_timeout);
2826 #ifdef AHD_DEBUG
2827 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2829 * All of the printfs during negotiation
2830 * really slow down the negotiation.
2831 * Add a bit of time just to be safe.
2833 timeout += HZ;
2834 #endif
2835 scsi_add_timer(cmd, timeout, ahd_linux_dv_timeout);
2837 * In 2.5.X, it is assumed that all calls from the
2838 * "midlayer" (which we are emulating) will have the
2839 * ahd host lock held. For other kernels, the
2840 * io_request_lock must be held.
2842 #if AHD_SCSI_HAS_HOST_LOCK != 0
2843 ahd_lock(ahd, &s);
2844 #else
2845 spin_lock_irqsave(&io_request_lock, s);
2846 #endif
2847 ahd_linux_queue(cmd, ahd_linux_dv_complete);
2848 #if AHD_SCSI_HAS_HOST_LOCK != 0
2849 ahd_unlock(ahd, &s);
2850 #else
2851 spin_unlock_irqrestore(&io_request_lock, s);
2852 #endif
2853 down_interruptible(&ahd->platform_data->dv_cmd_sem);
2855 * Wait for the SIMQ to be released so that DV is the
2856 * only reason the queue is frozen.
2858 ahd_lock(ahd, &s);
2859 while (AHD_DV_SIMQ_FROZEN(ahd) == 0) {
2860 ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_RELEASE;
2861 ahd_unlock(ahd, &s);
2862 down_interruptible(&ahd->platform_data->dv_sem);
2863 ahd_lock(ahd, &s);
2865 ahd_unlock(ahd, &s);
2867 ahd_linux_dv_transition(ahd, cmd, &devinfo, targ);
2870 out:
2871 if ((targ->flags & AHD_INQ_VALID) != 0
2872 && ahd_linux_get_device(ahd, devinfo.channel - 'A',
2873 devinfo.target, devinfo.lun,
2874 /*alloc*/FALSE) == NULL) {
2876 * The DV state machine failed to configure this device.
2877 * This is normal if DV is disabled. Since we have inquiry
2878 * data, filter it and use the "optimistic" negotiation
2879 * parameters found in the inquiry string.
2881 ahd_linux_filter_inquiry(ahd, &devinfo);
2882 if ((targ->flags & (AHD_BASIC_DV|AHD_ENHANCED_DV)) != 0) {
2883 ahd_print_devinfo(ahd, &devinfo);
2884 printf("DV failed to configure device. "
2885 "Please file a bug report against "
2886 "this driver.\n");
2890 if (cmd != NULL)
2891 free(cmd, M_DEVBUF);
2893 if (ahd->platform_data->dv_scsi_dev != NULL) {
2894 free(ahd->platform_data->dv_scsi_dev, M_DEVBUF);
2895 ahd->platform_data->dv_scsi_dev = NULL;
2898 ahd_lock(ahd, &s);
2899 if (targ->dv_buffer != NULL) {
2900 free(targ->dv_buffer, M_DEVBUF);
2901 targ->dv_buffer = NULL;
2903 if (targ->dv_buffer1 != NULL) {
2904 free(targ->dv_buffer1, M_DEVBUF);
2905 targ->dv_buffer1 = NULL;
2907 targ->flags &= ~AHD_DV_REQUIRED;
2908 if (targ->refcount == 0)
2909 ahd_linux_free_target(ahd, targ);
2910 ahd_unlock(ahd, &s);
2913 static __inline int
2914 ahd_linux_dv_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
2916 u_long s;
2917 int retval;
2919 ahd_lock(ahd, &s);
2920 retval = ahd_linux_fallback(ahd, devinfo);
2921 ahd_unlock(ahd, &s);
2923 return (retval);
2926 static void
2927 ahd_linux_dv_transition(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
2928 struct ahd_devinfo *devinfo,
2929 struct ahd_linux_target *targ)
2931 u_int32_t status;
2933 status = aic_error_action(cmd, targ->inq_data,
2934 ahd_cmd_get_transaction_status(cmd),
2935 ahd_cmd_get_scsi_status(cmd));
2938 #ifdef AHD_DEBUG
2939 if (ahd_debug & AHD_SHOW_DV) {
2940 ahd_print_devinfo(ahd, devinfo);
2941 printf("Entering ahd_linux_dv_transition, state= %d, "
2942 "status= 0x%x, cmd->result= 0x%x\n", targ->dv_state,
2943 status, cmd->result);
2945 #endif
2947 switch (targ->dv_state) {
2948 case AHD_DV_STATE_INQ_SHORT_ASYNC:
2949 case AHD_DV_STATE_INQ_ASYNC:
2950 switch (status & SS_MASK) {
2951 case SS_NOP:
2953 AHD_SET_DV_STATE(ahd, targ, targ->dv_state+1);
2954 break;
2956 case SS_INQ_REFRESH:
2957 AHD_SET_DV_STATE(ahd, targ,
2958 AHD_DV_STATE_INQ_SHORT_ASYNC);
2959 break;
2960 case SS_TUR:
2961 case SS_RETRY:
2962 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
2963 if (ahd_cmd_get_transaction_status(cmd)
2964 == CAM_REQUEUE_REQ)
2965 targ->dv_state_retry--;
2966 if ((status & SS_ERRMASK) == EBUSY)
2967 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
2968 if (targ->dv_state_retry < 10)
2969 break;
2970 /* FALLTHROUGH */
2971 default:
2972 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
2973 #ifdef AHD_DEBUG
2974 if (ahd_debug & AHD_SHOW_DV) {
2975 ahd_print_devinfo(ahd, devinfo);
2976 printf("Failed DV inquiry, skipping\n");
2978 #endif
2979 break;
2981 break;
2982 case AHD_DV_STATE_INQ_ASYNC_VERIFY:
2983 switch (status & SS_MASK) {
2984 case SS_NOP:
2986 u_int xportflags;
2987 u_int spi3data;
2989 if (memcmp(targ->inq_data, targ->dv_buffer,
2990 AHD_LINUX_DV_INQ_LEN) != 0) {
2992 * Inquiry data must have changed.
2993 * Try from the top again.
2995 AHD_SET_DV_STATE(ahd, targ,
2996 AHD_DV_STATE_INQ_SHORT_ASYNC);
2997 break;
3000 AHD_SET_DV_STATE(ahd, targ, targ->dv_state+1);
3001 targ->flags |= AHD_INQ_VALID;
3002 if (ahd_linux_user_dv_setting(ahd) == 0)
3003 break;
3005 xportflags = targ->inq_data->flags;
3006 if ((xportflags & (SID_Sync|SID_WBus16)) == 0)
3007 break;
3009 spi3data = targ->inq_data->spi3data;
3010 switch (spi3data & SID_SPI_CLOCK_DT_ST) {
3011 default:
3012 case SID_SPI_CLOCK_ST:
3013 /* Assume only basic DV is supported. */
3014 targ->flags |= AHD_BASIC_DV;
3015 break;
3016 case SID_SPI_CLOCK_DT:
3017 case SID_SPI_CLOCK_DT_ST:
3018 targ->flags |= AHD_ENHANCED_DV;
3019 break;
3021 break;
3023 case SS_INQ_REFRESH:
3024 AHD_SET_DV_STATE(ahd, targ,
3025 AHD_DV_STATE_INQ_SHORT_ASYNC);
3026 break;
3027 case SS_TUR:
3028 case SS_RETRY:
3029 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3030 if (ahd_cmd_get_transaction_status(cmd)
3031 == CAM_REQUEUE_REQ)
3032 targ->dv_state_retry--;
3034 if ((status & SS_ERRMASK) == EBUSY)
3035 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
3036 if (targ->dv_state_retry < 10)
3037 break;
3038 /* FALLTHROUGH */
3039 default:
3040 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3041 #ifdef AHD_DEBUG
3042 if (ahd_debug & AHD_SHOW_DV) {
3043 ahd_print_devinfo(ahd, devinfo);
3044 printf("Failed DV inquiry, skipping\n");
3046 #endif
3047 break;
3049 break;
3050 case AHD_DV_STATE_INQ_VERIFY:
3051 switch (status & SS_MASK) {
3052 case SS_NOP:
3055 if (memcmp(targ->inq_data, targ->dv_buffer,
3056 AHD_LINUX_DV_INQ_LEN) == 0) {
3057 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3058 break;
3061 #ifdef AHD_DEBUG
3062 if (ahd_debug & AHD_SHOW_DV) {
3063 int i;
3065 ahd_print_devinfo(ahd, devinfo);
3066 printf("Inquiry buffer mismatch:");
3067 for (i = 0; i < AHD_LINUX_DV_INQ_LEN; i++) {
3068 if ((i & 0xF) == 0)
3069 printf("\n ");
3070 printf("0x%x:0x0%x ",
3071 ((uint8_t *)targ->inq_data)[i],
3072 targ->dv_buffer[i]);
3074 printf("\n");
3076 #endif
3078 if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3079 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3080 break;
3083 * Do not count "falling back"
3084 * against our retries.
3086 targ->dv_state_retry = 0;
3087 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3088 break;
3090 case SS_INQ_REFRESH:
3091 AHD_SET_DV_STATE(ahd, targ,
3092 AHD_DV_STATE_INQ_SHORT_ASYNC);
3093 break;
3094 case SS_TUR:
3095 case SS_RETRY:
3096 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3097 if (ahd_cmd_get_transaction_status(cmd)
3098 == CAM_REQUEUE_REQ) {
3099 targ->dv_state_retry--;
3100 } else if ((status & SSQ_FALLBACK) != 0) {
3101 if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3102 AHD_SET_DV_STATE(ahd, targ,
3103 AHD_DV_STATE_EXIT);
3104 break;
3107 * Do not count "falling back"
3108 * against our retries.
3110 targ->dv_state_retry = 0;
3111 } else if ((status & SS_ERRMASK) == EBUSY)
3112 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
3113 if (targ->dv_state_retry < 10)
3114 break;
3115 /* FALLTHROUGH */
3116 default:
3117 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3118 #ifdef AHD_DEBUG
3119 if (ahd_debug & AHD_SHOW_DV) {
3120 ahd_print_devinfo(ahd, devinfo);
3121 printf("Failed DV inquiry, skipping\n");
3123 #endif
3124 break;
3126 break;
3128 case AHD_DV_STATE_TUR:
3129 switch (status & SS_MASK) {
3130 case SS_NOP:
3131 if ((targ->flags & AHD_BASIC_DV) != 0) {
3132 ahd_linux_filter_inquiry(ahd, devinfo);
3133 AHD_SET_DV_STATE(ahd, targ,
3134 AHD_DV_STATE_INQ_VERIFY);
3135 } else if ((targ->flags & AHD_ENHANCED_DV) != 0) {
3136 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_REBD);
3137 } else {
3138 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3140 break;
3141 case SS_RETRY:
3142 case SS_TUR:
3143 if ((status & SS_ERRMASK) == EBUSY) {
3144 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
3145 break;
3147 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3148 if (ahd_cmd_get_transaction_status(cmd)
3149 == CAM_REQUEUE_REQ) {
3150 targ->dv_state_retry--;
3151 } else if ((status & SSQ_FALLBACK) != 0) {
3152 if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3153 AHD_SET_DV_STATE(ahd, targ,
3154 AHD_DV_STATE_EXIT);
3155 break;
3158 * Do not count "falling back"
3159 * against our retries.
3161 targ->dv_state_retry = 0;
3163 if (targ->dv_state_retry >= 10) {
3164 #ifdef AHD_DEBUG
3165 if (ahd_debug & AHD_SHOW_DV) {
3166 ahd_print_devinfo(ahd, devinfo);
3167 printf("DV TUR reties exhausted\n");
3169 #endif
3170 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3171 break;
3173 if (status & SSQ_DELAY)
3174 ssleep(1);
3176 break;
3177 case SS_START:
3178 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_SU);
3179 break;
3180 case SS_INQ_REFRESH:
3181 AHD_SET_DV_STATE(ahd, targ,
3182 AHD_DV_STATE_INQ_SHORT_ASYNC);
3183 break;
3184 default:
3185 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3186 break;
3188 break;
3190 case AHD_DV_STATE_REBD:
3191 switch (status & SS_MASK) {
3192 case SS_NOP:
3194 uint32_t echo_size;
3196 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB);
3197 echo_size = scsi_3btoul(&targ->dv_buffer[1]);
3198 echo_size &= 0x1FFF;
3199 #ifdef AHD_DEBUG
3200 if (ahd_debug & AHD_SHOW_DV) {
3201 ahd_print_devinfo(ahd, devinfo);
3202 printf("Echo buffer size= %d\n", echo_size);
3204 #endif
3205 if (echo_size == 0) {
3206 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3207 break;
3210 /* Generate the buffer pattern */
3211 targ->dv_echo_size = echo_size;
3212 ahd_linux_generate_dv_pattern(targ);
3214 * Setup initial negotiation values.
3216 ahd_linux_filter_inquiry(ahd, devinfo);
3217 break;
3219 case SS_INQ_REFRESH:
3220 AHD_SET_DV_STATE(ahd, targ,
3221 AHD_DV_STATE_INQ_SHORT_ASYNC);
3222 break;
3223 case SS_RETRY:
3224 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3225 if (ahd_cmd_get_transaction_status(cmd)
3226 == CAM_REQUEUE_REQ)
3227 targ->dv_state_retry--;
3228 if (targ->dv_state_retry <= 10)
3229 break;
3230 #ifdef AHD_DEBUG
3231 if (ahd_debug & AHD_SHOW_DV) {
3232 ahd_print_devinfo(ahd, devinfo);
3233 printf("DV REBD reties exhausted\n");
3235 #endif
3236 /* FALLTHROUGH */
3237 case SS_FATAL:
3238 default:
3240 * Setup initial negotiation values
3241 * and try level 1 DV.
3243 ahd_linux_filter_inquiry(ahd, devinfo);
3244 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_VERIFY);
3245 targ->dv_echo_size = 0;
3246 break;
3248 break;
3250 case AHD_DV_STATE_WEB:
3251 switch (status & SS_MASK) {
3252 case SS_NOP:
3253 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_REB);
3254 break;
3255 case SS_INQ_REFRESH:
3256 AHD_SET_DV_STATE(ahd, targ,
3257 AHD_DV_STATE_INQ_SHORT_ASYNC);
3258 break;
3259 case SS_RETRY:
3260 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3261 if (ahd_cmd_get_transaction_status(cmd)
3262 == CAM_REQUEUE_REQ) {
3263 targ->dv_state_retry--;
3264 } else if ((status & SSQ_FALLBACK) != 0) {
3265 if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3266 AHD_SET_DV_STATE(ahd, targ,
3267 AHD_DV_STATE_EXIT);
3268 break;
3271 * Do not count "falling back"
3272 * against our retries.
3274 targ->dv_state_retry = 0;
3276 if (targ->dv_state_retry <= 10)
3277 break;
3278 /* FALLTHROUGH */
3279 #ifdef AHD_DEBUG
3280 if (ahd_debug & AHD_SHOW_DV) {
3281 ahd_print_devinfo(ahd, devinfo);
3282 printf("DV WEB reties exhausted\n");
3284 #endif
3285 default:
3286 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3287 break;
3289 break;
3291 case AHD_DV_STATE_REB:
3292 switch (status & SS_MASK) {
3293 case SS_NOP:
3294 if (memcmp(targ->dv_buffer, targ->dv_buffer1,
3295 targ->dv_echo_size) != 0) {
3296 if (ahd_linux_dv_fallback(ahd, devinfo) != 0)
3297 AHD_SET_DV_STATE(ahd, targ,
3298 AHD_DV_STATE_EXIT);
3299 else
3300 AHD_SET_DV_STATE(ahd, targ,
3301 AHD_DV_STATE_WEB);
3302 break;
3305 if (targ->dv_buffer != NULL) {
3306 free(targ->dv_buffer, M_DEVBUF);
3307 targ->dv_buffer = NULL;
3309 if (targ->dv_buffer1 != NULL) {
3310 free(targ->dv_buffer1, M_DEVBUF);
3311 targ->dv_buffer1 = NULL;
3313 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3314 break;
3315 case SS_INQ_REFRESH:
3316 AHD_SET_DV_STATE(ahd, targ,
3317 AHD_DV_STATE_INQ_SHORT_ASYNC);
3318 break;
3319 case SS_RETRY:
3320 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3321 if (ahd_cmd_get_transaction_status(cmd)
3322 == CAM_REQUEUE_REQ) {
3323 targ->dv_state_retry--;
3324 } else if ((status & SSQ_FALLBACK) != 0) {
3325 if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3326 AHD_SET_DV_STATE(ahd, targ,
3327 AHD_DV_STATE_EXIT);
3328 break;
3330 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB);
3332 if (targ->dv_state_retry <= 10) {
3333 if ((status & (SSQ_DELAY_RANDOM|SSQ_DELAY))!= 0)
3334 msleep(ahd->our_id*1000/10);
3335 break;
3337 #ifdef AHD_DEBUG
3338 if (ahd_debug & AHD_SHOW_DV) {
3339 ahd_print_devinfo(ahd, devinfo);
3340 printf("DV REB reties exhausted\n");
3342 #endif
3343 /* FALLTHROUGH */
3344 default:
3345 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3346 break;
3348 break;
3350 case AHD_DV_STATE_SU:
3351 switch (status & SS_MASK) {
3352 case SS_NOP:
3353 case SS_INQ_REFRESH:
3354 AHD_SET_DV_STATE(ahd, targ,
3355 AHD_DV_STATE_INQ_SHORT_ASYNC);
3356 break;
3357 default:
3358 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3359 break;
3361 break;
3363 case AHD_DV_STATE_BUSY:
3364 switch (status & SS_MASK) {
3365 case SS_NOP:
3366 case SS_INQ_REFRESH:
3367 AHD_SET_DV_STATE(ahd, targ,
3368 AHD_DV_STATE_INQ_SHORT_ASYNC);
3369 break;
3370 case SS_TUR:
3371 case SS_RETRY:
3372 AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3373 if (ahd_cmd_get_transaction_status(cmd)
3374 == CAM_REQUEUE_REQ) {
3375 targ->dv_state_retry--;
3376 } else if (targ->dv_state_retry < 60) {
3377 if ((status & SSQ_DELAY) != 0)
3378 ssleep(1);
3379 } else {
3380 #ifdef AHD_DEBUG
3381 if (ahd_debug & AHD_SHOW_DV) {
3382 ahd_print_devinfo(ahd, devinfo);
3383 printf("DV BUSY reties exhausted\n");
3385 #endif
3386 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3388 break;
3389 default:
3390 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3391 break;
3393 break;
3395 default:
3396 printf("%s: Invalid DV completion state %d\n", ahd_name(ahd),
3397 targ->dv_state);
3398 AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3399 break;
3403 static void
3404 ahd_linux_dv_fill_cmd(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3405 struct ahd_devinfo *devinfo)
3407 memset(cmd, 0, sizeof(struct scsi_cmnd));
3408 cmd->device = ahd->platform_data->dv_scsi_dev;
3409 cmd->scsi_done = ahd_linux_dv_complete;
3413 * Synthesize an inquiry command. On the return trip, it'll be
3414 * sniffed and the device transfer settings set for us.
3416 static void
3417 ahd_linux_dv_inq(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3418 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ,
3419 u_int request_length)
3422 #ifdef AHD_DEBUG
3423 if (ahd_debug & AHD_SHOW_DV) {
3424 ahd_print_devinfo(ahd, devinfo);
3425 printf("Sending INQ\n");
3427 #endif
3428 if (targ->inq_data == NULL)
3429 targ->inq_data = malloc(AHD_LINUX_DV_INQ_LEN,
3430 M_DEVBUF, M_WAITOK);
3431 if (targ->dv_state > AHD_DV_STATE_INQ_ASYNC) {
3432 if (targ->dv_buffer != NULL)
3433 free(targ->dv_buffer, M_DEVBUF);
3434 targ->dv_buffer = malloc(AHD_LINUX_DV_INQ_LEN,
3435 M_DEVBUF, M_WAITOK);
3438 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3439 cmd->sc_data_direction = SCSI_DATA_READ;
3440 cmd->cmd_len = 6;
3441 cmd->cmnd[0] = INQUIRY;
3442 cmd->cmnd[4] = request_length;
3443 cmd->request_bufflen = request_length;
3444 if (targ->dv_state > AHD_DV_STATE_INQ_ASYNC)
3445 cmd->request_buffer = targ->dv_buffer;
3446 else
3447 cmd->request_buffer = targ->inq_data;
3448 memset(cmd->request_buffer, 0, AHD_LINUX_DV_INQ_LEN);
3451 static void
3452 ahd_linux_dv_tur(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3453 struct ahd_devinfo *devinfo)
3456 #ifdef AHD_DEBUG
3457 if (ahd_debug & AHD_SHOW_DV) {
3458 ahd_print_devinfo(ahd, devinfo);
3459 printf("Sending TUR\n");
3461 #endif
3462 /* Do a TUR to clear out any non-fatal transitional state */
3463 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3464 cmd->sc_data_direction = SCSI_DATA_NONE;
3465 cmd->cmd_len = 6;
3466 cmd->cmnd[0] = TEST_UNIT_READY;
3469 #define AHD_REBD_LEN 4
3471 static void
3472 ahd_linux_dv_rebd(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3473 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
3476 #ifdef AHD_DEBUG
3477 if (ahd_debug & AHD_SHOW_DV) {
3478 ahd_print_devinfo(ahd, devinfo);
3479 printf("Sending REBD\n");
3481 #endif
3482 if (targ->dv_buffer != NULL)
3483 free(targ->dv_buffer, M_DEVBUF);
3484 targ->dv_buffer = malloc(AHD_REBD_LEN, M_DEVBUF, M_WAITOK);
3485 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3486 cmd->sc_data_direction = SCSI_DATA_READ;
3487 cmd->cmd_len = 10;
3488 cmd->cmnd[0] = READ_BUFFER;
3489 cmd->cmnd[1] = 0x0b;
3490 scsi_ulto3b(AHD_REBD_LEN, &cmd->cmnd[6]);
3491 cmd->request_bufflen = AHD_REBD_LEN;
3492 cmd->underflow = cmd->request_bufflen;
3493 cmd->request_buffer = targ->dv_buffer;
3496 static void
3497 ahd_linux_dv_web(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3498 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
3501 #ifdef AHD_DEBUG
3502 if (ahd_debug & AHD_SHOW_DV) {
3503 ahd_print_devinfo(ahd, devinfo);
3504 printf("Sending WEB\n");
3506 #endif
3507 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3508 cmd->sc_data_direction = SCSI_DATA_WRITE;
3509 cmd->cmd_len = 10;
3510 cmd->cmnd[0] = WRITE_BUFFER;
3511 cmd->cmnd[1] = 0x0a;
3512 scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
3513 cmd->request_bufflen = targ->dv_echo_size;
3514 cmd->underflow = cmd->request_bufflen;
3515 cmd->request_buffer = targ->dv_buffer;
3518 static void
3519 ahd_linux_dv_reb(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3520 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
3523 #ifdef AHD_DEBUG
3524 if (ahd_debug & AHD_SHOW_DV) {
3525 ahd_print_devinfo(ahd, devinfo);
3526 printf("Sending REB\n");
3528 #endif
3529 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3530 cmd->sc_data_direction = SCSI_DATA_READ;
3531 cmd->cmd_len = 10;
3532 cmd->cmnd[0] = READ_BUFFER;
3533 cmd->cmnd[1] = 0x0a;
3534 scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
3535 cmd->request_bufflen = targ->dv_echo_size;
3536 cmd->underflow = cmd->request_bufflen;
3537 cmd->request_buffer = targ->dv_buffer1;
3540 static void
3541 ahd_linux_dv_su(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3542 struct ahd_devinfo *devinfo,
3543 struct ahd_linux_target *targ)
3545 u_int le;
3547 le = SID_IS_REMOVABLE(targ->inq_data) ? SSS_LOEJ : 0;
3549 #ifdef AHD_DEBUG
3550 if (ahd_debug & AHD_SHOW_DV) {
3551 ahd_print_devinfo(ahd, devinfo);
3552 printf("Sending SU\n");
3554 #endif
3555 ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3556 cmd->sc_data_direction = SCSI_DATA_NONE;
3557 cmd->cmd_len = 6;
3558 cmd->cmnd[0] = START_STOP_UNIT;
3559 cmd->cmnd[4] = le | SSS_START;
3562 static int
3563 ahd_linux_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3565 struct ahd_linux_target *targ;
3566 struct ahd_initiator_tinfo *tinfo;
3567 struct ahd_transinfo *goal;
3568 struct ahd_tmode_tstate *tstate;
3569 u_int width;
3570 u_int period;
3571 u_int offset;
3572 u_int ppr_options;
3573 u_int cur_speed;
3574 u_int wide_speed;
3575 u_int narrow_speed;
3576 u_int fallback_speed;
3578 #ifdef AHD_DEBUG
3579 if (ahd_debug & AHD_SHOW_DV) {
3580 ahd_print_devinfo(ahd, devinfo);
3581 printf("Trying to fallback\n");
3583 #endif
3584 targ = ahd->platform_data->targets[devinfo->target_offset];
3585 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
3586 devinfo->our_scsiid,
3587 devinfo->target, &tstate);
3588 goal = &tinfo->goal;
3589 width = goal->width;
3590 period = goal->period;
3591 offset = goal->offset;
3592 ppr_options = goal->ppr_options;
3593 if (offset == 0)
3594 period = AHD_ASYNC_XFER_PERIOD;
3595 if (targ->dv_next_narrow_period == 0)
3596 targ->dv_next_narrow_period = MAX(period, AHD_SYNCRATE_ULTRA2);
3597 if (targ->dv_next_wide_period == 0)
3598 targ->dv_next_wide_period = period;
3599 if (targ->dv_max_width == 0)
3600 targ->dv_max_width = width;
3601 if (targ->dv_max_ppr_options == 0)
3602 targ->dv_max_ppr_options = ppr_options;
3603 if (targ->dv_last_ppr_options == 0)
3604 targ->dv_last_ppr_options = ppr_options;
3606 cur_speed = aic_calc_speed(width, period, offset, AHD_SYNCRATE_MIN);
3607 wide_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_16_BIT,
3608 targ->dv_next_wide_period,
3609 MAX_OFFSET, AHD_SYNCRATE_MIN);
3610 narrow_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_8_BIT,
3611 targ->dv_next_narrow_period,
3612 MAX_OFFSET, AHD_SYNCRATE_MIN);
3613 fallback_speed = aic_calc_speed(width, period+1, offset,
3614 AHD_SYNCRATE_MIN);
3615 #ifdef AHD_DEBUG
3616 if (ahd_debug & AHD_SHOW_DV) {
3617 printf("cur_speed= %d, wide_speed= %d, narrow_speed= %d, "
3618 "fallback_speed= %d\n", cur_speed, wide_speed,
3619 narrow_speed, fallback_speed);
3621 #endif
3623 if (cur_speed > 160000) {
3625 * Paced/DT/IU_REQ only transfer speeds. All we
3626 * can do is fallback in terms of syncrate.
3628 period++;
3629 } else if (cur_speed > 80000) {
3630 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3632 * Try without IU_REQ as it may be confusing
3633 * an expander.
3635 ppr_options &= ~MSG_EXT_PPR_IU_REQ;
3636 } else {
3638 * Paced/DT only transfer speeds. All we
3639 * can do is fallback in terms of syncrate.
3641 period++;
3642 ppr_options = targ->dv_max_ppr_options;
3644 } else if (cur_speed > 3300) {
3647 * In this range we the following
3648 * options ordered from highest to
3649 * lowest desireability:
3651 * o Wide/DT
3652 * o Wide/non-DT
3653 * o Narrow at a potentally higher sync rate.
3655 * All modes are tested with and without IU_REQ
3656 * set since using IUs may confuse an expander.
3658 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3660 ppr_options &= ~MSG_EXT_PPR_IU_REQ;
3661 } else if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3663 * Try going non-DT.
3665 ppr_options = targ->dv_max_ppr_options;
3666 ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3667 } else if (targ->dv_last_ppr_options != 0) {
3669 * Try without QAS or any other PPR options.
3670 * We may need a non-PPR message to work with
3671 * an expander. We look at the "last PPR options"
3672 * so we will perform this fallback even if the
3673 * target responded to our PPR negotiation with
3674 * no option bits set.
3676 ppr_options = 0;
3677 } else if (width == MSG_EXT_WDTR_BUS_16_BIT) {
3679 * If the next narrow speed is greater than
3680 * the next wide speed, fallback to narrow.
3681 * Otherwise fallback to the next DT/Wide setting.
3682 * The narrow async speed will always be smaller
3683 * than the wide async speed, so handle this case
3684 * specifically.
3686 ppr_options = targ->dv_max_ppr_options;
3687 if (narrow_speed > fallback_speed
3688 || period >= AHD_ASYNC_XFER_PERIOD) {
3689 targ->dv_next_wide_period = period+1;
3690 width = MSG_EXT_WDTR_BUS_8_BIT;
3691 period = targ->dv_next_narrow_period;
3692 } else {
3693 period++;
3695 } else if ((ahd->features & AHD_WIDE) != 0
3696 && targ->dv_max_width != 0
3697 && wide_speed >= fallback_speed
3698 && (targ->dv_next_wide_period <= AHD_ASYNC_XFER_PERIOD
3699 || period >= AHD_ASYNC_XFER_PERIOD)) {
3702 * We are narrow. Try falling back
3703 * to the next wide speed with
3704 * all supported ppr options set.
3706 targ->dv_next_narrow_period = period+1;
3707 width = MSG_EXT_WDTR_BUS_16_BIT;
3708 period = targ->dv_next_wide_period;
3709 ppr_options = targ->dv_max_ppr_options;
3710 } else {
3711 /* Only narrow fallback is allowed. */
3712 period++;
3713 ppr_options = targ->dv_max_ppr_options;
3715 } else {
3716 return (-1);
3718 offset = MAX_OFFSET;
3719 ahd_find_syncrate(ahd, &period, &ppr_options, AHD_SYNCRATE_PACED);
3720 ahd_set_width(ahd, devinfo, width, AHD_TRANS_GOAL, FALSE);
3721 if (period == 0) {
3722 period = 0;
3723 offset = 0;
3724 ppr_options = 0;
3725 if (width == MSG_EXT_WDTR_BUS_8_BIT)
3726 targ->dv_next_narrow_period = AHD_ASYNC_XFER_PERIOD;
3727 else
3728 targ->dv_next_wide_period = AHD_ASYNC_XFER_PERIOD;
3730 ahd_set_syncrate(ahd, devinfo, period, offset,
3731 ppr_options, AHD_TRANS_GOAL, FALSE);
3732 targ->dv_last_ppr_options = ppr_options;
3733 return (0);
3736 static void
3737 ahd_linux_dv_timeout(struct scsi_cmnd *cmd)
3739 struct ahd_softc *ahd;
3740 struct scb *scb;
3741 u_long flags;
3743 ahd = *((struct ahd_softc **)cmd->device->host->hostdata);
3744 ahd_lock(ahd, &flags);
3746 #ifdef AHD_DEBUG
3747 if (ahd_debug & AHD_SHOW_DV) {
3748 printf("%s: Timeout while doing DV command %x.\n",
3749 ahd_name(ahd), cmd->cmnd[0]);
3750 ahd_dump_card_state(ahd);
3752 #endif
3755 * Guard against "done race". No action is
3756 * required if we just completed.
3758 if ((scb = (struct scb *)cmd->host_scribble) == NULL) {
3759 ahd_unlock(ahd, &flags);
3760 return;
3764 * Command has not completed. Mark this
3765 * SCB as having failing status prior to
3766 * resetting the bus, so we get the correct
3767 * error code.
3769 if ((scb->flags & SCB_SENSE) != 0)
3770 ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
3771 else
3772 ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT);
3773 ahd_reset_channel(ahd, cmd->device->channel + 'A', /*initiate*/TRUE);
3776 * Add a minimal bus settle delay for devices that are slow to
3777 * respond after bus resets.
3779 ahd_freeze_simq(ahd);
3780 init_timer(&ahd->platform_data->reset_timer);
3781 ahd->platform_data->reset_timer.data = (u_long)ahd;
3782 ahd->platform_data->reset_timer.expires = jiffies + HZ / 2;
3783 ahd->platform_data->reset_timer.function =
3784 (ahd_linux_callback_t *)ahd_release_simq;
3785 add_timer(&ahd->platform_data->reset_timer);
3786 if (ahd_linux_next_device_to_run(ahd) != NULL)
3787 ahd_schedule_runq(ahd);
3788 ahd_linux_run_complete_queue(ahd);
3789 ahd_unlock(ahd, &flags);
3792 static void
3793 ahd_linux_dv_complete(struct scsi_cmnd *cmd)
3795 struct ahd_softc *ahd;
3797 ahd = *((struct ahd_softc **)cmd->device->host->hostdata);
3799 /* Delete the DV timer before it goes off! */
3800 scsi_delete_timer(cmd);
3802 #ifdef AHD_DEBUG
3803 if (ahd_debug & AHD_SHOW_DV)
3804 printf("%s:%c:%d: Command completed, status= 0x%x\n",
3805 ahd_name(ahd), cmd->device->channel, cmd->device->id,
3806 cmd->result);
3807 #endif
3809 /* Wake up the state machine */
3810 up(&ahd->platform_data->dv_cmd_sem);
3813 static void
3814 ahd_linux_generate_dv_pattern(struct ahd_linux_target *targ)
3816 uint16_t b;
3817 u_int i;
3818 u_int j;
3820 if (targ->dv_buffer != NULL)
3821 free(targ->dv_buffer, M_DEVBUF);
3822 targ->dv_buffer = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
3823 if (targ->dv_buffer1 != NULL)
3824 free(targ->dv_buffer1, M_DEVBUF);
3825 targ->dv_buffer1 = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
3827 i = 0;
3829 b = 0x0001;
3830 for (j = 0 ; i < targ->dv_echo_size; j++) {
3831 if (j < 32) {
3833 * 32bytes of sequential numbers.
3835 targ->dv_buffer[i++] = j & 0xff;
3836 } else if (j < 48) {
3838 * 32bytes of repeating 0x0000, 0xffff.
3840 targ->dv_buffer[i++] = (j & 0x02) ? 0xff : 0x00;
3841 } else if (j < 64) {
3843 * 32bytes of repeating 0x5555, 0xaaaa.
3845 targ->dv_buffer[i++] = (j & 0x02) ? 0xaa : 0x55;
3846 } else {
3848 * Remaining buffer is filled with a repeating
3849 * patter of:
3851 * 0xffff
3852 * ~0x0001 << shifted once in each loop.
3854 if (j & 0x02) {
3855 if (j & 0x01) {
3856 targ->dv_buffer[i++] = ~(b >> 8) & 0xff;
3857 b <<= 1;
3858 if (b == 0x0000)
3859 b = 0x0001;
3860 } else {
3861 targ->dv_buffer[i++] = (~b & 0xff);
3863 } else {
3864 targ->dv_buffer[i++] = 0xff;
3870 static u_int
3871 ahd_linux_user_tagdepth(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3873 static int warned_user;
3874 u_int tags;
3876 tags = 0;
3877 if ((ahd->user_discenable & devinfo->target_mask) != 0) {
3878 if (ahd->unit >= NUM_ELEMENTS(aic79xx_tag_info)) {
3880 if (warned_user == 0) {
3881 printf(KERN_WARNING
3882 "aic79xx: WARNING: Insufficient tag_info instances\n"
3883 "aic79xx: for installed controllers. Using defaults\n"
3884 "aic79xx: Please update the aic79xx_tag_info array in\n"
3885 "aic79xx: the aic79xx_osm.c source file.\n");
3886 warned_user++;
3888 tags = AHD_MAX_QUEUE;
3889 } else {
3890 adapter_tag_info_t *tag_info;
3892 tag_info = &aic79xx_tag_info[ahd->unit];
3893 tags = tag_info->tag_commands[devinfo->target_offset];
3894 if (tags > AHD_MAX_QUEUE)
3895 tags = AHD_MAX_QUEUE;
3898 return (tags);
3901 static u_int
3902 ahd_linux_user_dv_setting(struct ahd_softc *ahd)
3904 static int warned_user;
3905 int dv;
3907 if (ahd->unit >= NUM_ELEMENTS(aic79xx_dv_settings)) {
3909 if (warned_user == 0) {
3910 printf(KERN_WARNING
3911 "aic79xx: WARNING: Insufficient dv settings instances\n"
3912 "aic79xx: for installed controllers. Using defaults\n"
3913 "aic79xx: Please update the aic79xx_dv_settings array in"
3914 "aic79xx: the aic79xx_osm.c source file.\n");
3915 warned_user++;
3917 dv = -1;
3918 } else {
3920 dv = aic79xx_dv_settings[ahd->unit];
3923 if (dv < 0) {
3925 * Apply the default.
3927 dv = 1;
3928 if (ahd->seep_config != 0)
3929 dv = (ahd->seep_config->bios_control & CFENABLEDV);
3931 return (dv);
3934 static void
3935 ahd_linux_setup_user_rd_strm_settings(struct ahd_softc *ahd)
3937 static int warned_user;
3938 u_int rd_strm_mask;
3939 u_int target_id;
3942 * If we have specific read streaming info for this controller,
3943 * apply it. Otherwise use the defaults.
3945 if (ahd->unit >= NUM_ELEMENTS(aic79xx_rd_strm_info)) {
3947 if (warned_user == 0) {
3949 printf(KERN_WARNING
3950 "aic79xx: WARNING: Insufficient rd_strm instances\n"
3951 "aic79xx: for installed controllers. Using defaults\n"
3952 "aic79xx: Please update the aic79xx_rd_strm_info array\n"
3953 "aic79xx: in the aic79xx_osm.c source file.\n");
3954 warned_user++;
3956 rd_strm_mask = AIC79XX_CONFIGED_RD_STRM;
3957 } else {
3959 rd_strm_mask = aic79xx_rd_strm_info[ahd->unit];
3961 for (target_id = 0; target_id < 16; target_id++) {
3962 struct ahd_devinfo devinfo;
3963 struct ahd_initiator_tinfo *tinfo;
3964 struct ahd_tmode_tstate *tstate;
3966 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
3967 target_id, &tstate);
3968 ahd_compile_devinfo(&devinfo, ahd->our_id, target_id,
3969 CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR);
3970 tinfo->user.ppr_options &= ~MSG_EXT_PPR_RD_STRM;
3971 if ((rd_strm_mask & devinfo.target_mask) != 0)
3972 tinfo->user.ppr_options |= MSG_EXT_PPR_RD_STRM;
3977 * Determines the queue depth for a given device.
3979 static void
3980 ahd_linux_device_queue_depth(struct ahd_softc *ahd,
3981 struct ahd_linux_device *dev)
3983 struct ahd_devinfo devinfo;
3984 u_int tags;
3986 ahd_compile_devinfo(&devinfo,
3987 ahd->our_id,
3988 dev->target->target, dev->lun,
3989 dev->target->channel == 0 ? 'A' : 'B',
3990 ROLE_INITIATOR);
3991 tags = ahd_linux_user_tagdepth(ahd, &devinfo);
3992 if (tags != 0
3993 && dev->scsi_device != NULL
3994 && dev->scsi_device->tagged_supported != 0) {
3996 ahd_set_tags(ahd, &devinfo, AHD_QUEUE_TAGGED);
3997 ahd_print_devinfo(ahd, &devinfo);
3998 printf("Tagged Queuing enabled. Depth %d\n", tags);
3999 } else {
4000 ahd_set_tags(ahd, &devinfo, AHD_QUEUE_NONE);
4004 static void
4005 ahd_linux_run_device_queue(struct ahd_softc *ahd, struct ahd_linux_device *dev)
4007 struct ahd_cmd *acmd;
4008 struct scsi_cmnd *cmd;
4009 struct scb *scb;
4010 struct hardware_scb *hscb;
4011 struct ahd_initiator_tinfo *tinfo;
4012 struct ahd_tmode_tstate *tstate;
4013 u_int col_idx;
4014 uint16_t mask;
4016 if ((dev->flags & AHD_DEV_ON_RUN_LIST) != 0)
4017 panic("running device on run list");
4019 while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL
4020 && dev->openings > 0 && dev->qfrozen == 0) {
4023 * Schedule us to run later. The only reason we are not
4024 * running is because the whole controller Q is frozen.
4026 if (ahd->platform_data->qfrozen != 0
4027 && AHD_DV_SIMQ_FROZEN(ahd) == 0) {
4029 TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq,
4030 dev, links);
4031 dev->flags |= AHD_DEV_ON_RUN_LIST;
4032 return;
4035 cmd = &acmd_scsi_cmd(acmd);
4038 * Get an scb to use.
4040 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
4041 cmd->device->id, &tstate);
4042 if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) == 0
4043 || (tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
4044 col_idx = AHD_NEVER_COL_IDX;
4045 } else {
4046 col_idx = AHD_BUILD_COL_IDX(cmd->device->id,
4047 cmd->device->lun);
4049 if ((scb = ahd_get_scb(ahd, col_idx)) == NULL) {
4050 TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq,
4051 dev, links);
4052 dev->flags |= AHD_DEV_ON_RUN_LIST;
4053 ahd->flags |= AHD_RESOURCE_SHORTAGE;
4054 return;
4056 TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe);
4057 scb->io_ctx = cmd;
4058 scb->platform_data->dev = dev;
4059 hscb = scb->hscb;
4060 cmd->host_scribble = (char *)scb;
4063 * Fill out basics of the HSCB.
4065 hscb->control = 0;
4066 hscb->scsiid = BUILD_SCSIID(ahd, cmd);
4067 hscb->lun = cmd->device->lun;
4068 scb->hscb->task_management = 0;
4069 mask = SCB_GET_TARGET_MASK(ahd, scb);
4071 if ((ahd->user_discenable & mask) != 0)
4072 hscb->control |= DISCENB;
4074 if (AHD_DV_CMD(cmd) != 0)
4075 scb->flags |= SCB_SILENT;
4077 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0)
4078 scb->flags |= SCB_PACKETIZED;
4080 if ((tstate->auto_negotiate & mask) != 0) {
4081 scb->flags |= SCB_AUTO_NEGOTIATE;
4082 scb->hscb->control |= MK_MESSAGE;
4085 if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) != 0) {
4086 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
4087 int msg_bytes;
4088 uint8_t tag_msgs[2];
4090 msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs);
4091 if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) {
4092 hscb->control |= tag_msgs[0];
4093 if (tag_msgs[0] == MSG_ORDERED_TASK)
4094 dev->commands_since_idle_or_otag = 0;
4095 } else
4096 #endif
4097 if (dev->commands_since_idle_or_otag == AHD_OTAG_THRESH
4098 && (dev->flags & AHD_DEV_Q_TAGGED) != 0) {
4099 hscb->control |= MSG_ORDERED_TASK;
4100 dev->commands_since_idle_or_otag = 0;
4101 } else {
4102 hscb->control |= MSG_SIMPLE_TASK;
4106 hscb->cdb_len = cmd->cmd_len;
4107 memcpy(hscb->shared_data.idata.cdb, cmd->cmnd, hscb->cdb_len);
4109 scb->sg_count = 0;
4110 ahd_set_residual(scb, 0);
4111 ahd_set_sense_residual(scb, 0);
4112 if (cmd->use_sg != 0) {
4113 void *sg;
4114 struct scatterlist *cur_seg;
4115 u_int nseg;
4116 int dir;
4118 cur_seg = (struct scatterlist *)cmd->request_buffer;
4119 dir = scsi_to_pci_dma_dir(cmd->sc_data_direction);
4120 nseg = pci_map_sg(ahd->dev_softc, cur_seg,
4121 cmd->use_sg, dir);
4122 scb->platform_data->xfer_len = 0;
4123 for (sg = scb->sg_list; nseg > 0; nseg--, cur_seg++) {
4124 bus_addr_t addr;
4125 bus_size_t len;
4127 addr = sg_dma_address(cur_seg);
4128 len = sg_dma_len(cur_seg);
4129 scb->platform_data->xfer_len += len;
4130 sg = ahd_sg_setup(ahd, scb, sg, addr, len,
4131 /*last*/nseg == 1);
4133 } else if (cmd->request_bufflen != 0) {
4134 void *sg;
4135 bus_addr_t addr;
4136 int dir;
4138 sg = scb->sg_list;
4139 dir = scsi_to_pci_dma_dir(cmd->sc_data_direction);
4140 addr = pci_map_single(ahd->dev_softc,
4141 cmd->request_buffer,
4142 cmd->request_bufflen, dir);
4143 scb->platform_data->xfer_len = cmd->request_bufflen;
4144 scb->platform_data->buf_busaddr = addr;
4145 sg = ahd_sg_setup(ahd, scb, sg, addr,
4146 cmd->request_bufflen, /*last*/TRUE);
4149 LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links);
4150 dev->openings--;
4151 dev->active++;
4152 dev->commands_issued++;
4154 /* Update the error counting bucket and dump if needed */
4155 if (dev->target->cmds_since_error) {
4156 dev->target->cmds_since_error++;
4157 if (dev->target->cmds_since_error >
4158 AHD_LINUX_ERR_THRESH)
4159 dev->target->cmds_since_error = 0;
4162 if ((dev->flags & AHD_DEV_PERIODIC_OTAG) != 0)
4163 dev->commands_since_idle_or_otag++;
4164 scb->flags |= SCB_ACTIVE;
4165 ahd_queue_scb(ahd, scb);
4170 * SCSI controller interrupt handler.
4172 irqreturn_t
4173 ahd_linux_isr(int irq, void *dev_id, struct pt_regs * regs)
4175 struct ahd_softc *ahd;
4176 u_long flags;
4177 int ours;
4179 ahd = (struct ahd_softc *) dev_id;
4180 ahd_lock(ahd, &flags);
4181 ours = ahd_intr(ahd);
4182 if (ahd_linux_next_device_to_run(ahd) != NULL)
4183 ahd_schedule_runq(ahd);
4184 ahd_linux_run_complete_queue(ahd);
4185 ahd_unlock(ahd, &flags);
4186 return IRQ_RETVAL(ours);
4189 void
4190 ahd_platform_flushwork(struct ahd_softc *ahd)
4193 while (ahd_linux_run_complete_queue(ahd) != NULL)
4197 static struct ahd_linux_target*
4198 ahd_linux_alloc_target(struct ahd_softc *ahd, u_int channel, u_int target)
4200 struct ahd_linux_target *targ;
4202 targ = malloc(sizeof(*targ), M_DEVBUF, M_NOWAIT);
4203 if (targ == NULL)
4204 return (NULL);
4205 memset(targ, 0, sizeof(*targ));
4206 targ->channel = channel;
4207 targ->target = target;
4208 targ->ahd = ahd;
4209 targ->flags = AHD_DV_REQUIRED;
4210 ahd->platform_data->targets[target] = targ;
4211 return (targ);
4214 static void
4215 ahd_linux_free_target(struct ahd_softc *ahd, struct ahd_linux_target *targ)
4217 struct ahd_devinfo devinfo;
4218 struct ahd_initiator_tinfo *tinfo;
4219 struct ahd_tmode_tstate *tstate;
4220 u_int our_id;
4221 u_int target_offset;
4222 char channel;
4225 * Force a negotiation to async/narrow on any
4226 * future command to this device unless a bus
4227 * reset occurs between now and that command.
4229 channel = 'A' + targ->channel;
4230 our_id = ahd->our_id;
4231 target_offset = targ->target;
4232 tinfo = ahd_fetch_transinfo(ahd, channel, our_id,
4233 targ->target, &tstate);
4234 ahd_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD,
4235 channel, ROLE_INITIATOR);
4236 ahd_set_syncrate(ahd, &devinfo, 0, 0, 0,
4237 AHD_TRANS_GOAL, /*paused*/FALSE);
4238 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
4239 AHD_TRANS_GOAL, /*paused*/FALSE);
4240 ahd_update_neg_request(ahd, &devinfo, tstate, tinfo, AHD_NEG_ALWAYS);
4241 ahd->platform_data->targets[target_offset] = NULL;
4242 if (targ->inq_data != NULL)
4243 free(targ->inq_data, M_DEVBUF);
4244 if (targ->dv_buffer != NULL)
4245 free(targ->dv_buffer, M_DEVBUF);
4246 if (targ->dv_buffer1 != NULL)
4247 free(targ->dv_buffer1, M_DEVBUF);
4248 free(targ, M_DEVBUF);
4251 static struct ahd_linux_device*
4252 ahd_linux_alloc_device(struct ahd_softc *ahd,
4253 struct ahd_linux_target *targ, u_int lun)
4255 struct ahd_linux_device *dev;
4257 dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT);
4258 if (dev == NULL)
4259 return (NULL);
4260 memset(dev, 0, sizeof(*dev));
4261 init_timer(&dev->timer);
4262 TAILQ_INIT(&dev->busyq);
4263 dev->flags = AHD_DEV_UNCONFIGURED;
4264 dev->lun = lun;
4265 dev->target = targ;
4268 * We start out life using untagged
4269 * transactions of which we allow one.
4271 dev->openings = 1;
4274 * Set maxtags to 0. This will be changed if we
4275 * later determine that we are dealing with
4276 * a tagged queuing capable device.
4278 dev->maxtags = 0;
4280 targ->refcount++;
4281 targ->devices[lun] = dev;
4282 return (dev);
4285 static void
4286 ahd_linux_free_device(struct ahd_softc *ahd, struct ahd_linux_device *dev)
4288 struct ahd_linux_target *targ;
4290 del_timer(&dev->timer);
4291 targ = dev->target;
4292 targ->devices[dev->lun] = NULL;
4293 free(dev, M_DEVBUF);
4294 targ->refcount--;
4295 if (targ->refcount == 0
4296 && (targ->flags & AHD_DV_REQUIRED) == 0)
4297 ahd_linux_free_target(ahd, targ);
4300 void
4301 ahd_send_async(struct ahd_softc *ahd, char channel,
4302 u_int target, u_int lun, ac_code code, void *arg)
4304 switch (code) {
4305 case AC_TRANSFER_NEG:
4307 char buf[80];
4308 struct ahd_linux_target *targ;
4309 struct info_str info;
4310 struct ahd_initiator_tinfo *tinfo;
4311 struct ahd_tmode_tstate *tstate;
4313 info.buffer = buf;
4314 info.length = sizeof(buf);
4315 info.offset = 0;
4316 info.pos = 0;
4317 tinfo = ahd_fetch_transinfo(ahd, channel, ahd->our_id,
4318 target, &tstate);
4321 * Don't bother reporting results while
4322 * negotiations are still pending.
4324 if (tinfo->curr.period != tinfo->goal.period
4325 || tinfo->curr.width != tinfo->goal.width
4326 || tinfo->curr.offset != tinfo->goal.offset
4327 || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
4328 if (bootverbose == 0)
4329 break;
4332 * Don't bother reporting results that
4333 * are identical to those last reported.
4335 targ = ahd->platform_data->targets[target];
4336 if (targ == NULL)
4337 break;
4338 if (tinfo->curr.period == targ->last_tinfo.period
4339 && tinfo->curr.width == targ->last_tinfo.width
4340 && tinfo->curr.offset == targ->last_tinfo.offset
4341 && tinfo->curr.ppr_options == targ->last_tinfo.ppr_options)
4342 if (bootverbose == 0)
4343 break;
4345 targ->last_tinfo.period = tinfo->curr.period;
4346 targ->last_tinfo.width = tinfo->curr.width;
4347 targ->last_tinfo.offset = tinfo->curr.offset;
4348 targ->last_tinfo.ppr_options = tinfo->curr.ppr_options;
4350 printf("(%s:%c:", ahd_name(ahd), channel);
4351 if (target == CAM_TARGET_WILDCARD)
4352 printf("*): ");
4353 else
4354 printf("%d): ", target);
4355 ahd_format_transinfo(&info, &tinfo->curr);
4356 if (info.pos < info.length)
4357 *info.buffer = '\0';
4358 else
4359 buf[info.length - 1] = '\0';
4360 printf("%s", buf);
4361 break;
4363 case AC_SENT_BDR:
4365 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
4366 WARN_ON(lun != CAM_LUN_WILDCARD);
4367 scsi_report_device_reset(ahd->platform_data->host,
4368 channel - 'A', target);
4369 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
4370 Scsi_Device *scsi_dev;
4373 * Find the SCSI device associated with this
4374 * request and indicate that a UA is expected.
4376 for (scsi_dev = ahd->platform_data->host->host_queue;
4377 scsi_dev != NULL; scsi_dev = scsi_dev->next) {
4378 if (channel - 'A' == scsi_dev->channel
4379 && target == scsi_dev->id
4380 && (lun == CAM_LUN_WILDCARD
4381 || lun == scsi_dev->lun)) {
4382 scsi_dev->was_reset = 1;
4383 scsi_dev->expecting_cc_ua = 1;
4386 #endif
4387 break;
4389 case AC_BUS_RESET:
4390 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
4391 if (ahd->platform_data->host != NULL) {
4392 scsi_report_bus_reset(ahd->platform_data->host,
4393 channel - 'A');
4395 #endif
4396 break;
4397 default:
4398 panic("ahd_send_async: Unexpected async event");
4403 * Calls the higher level scsi done function and frees the scb.
4405 void
4406 ahd_done(struct ahd_softc *ahd, struct scb *scb)
4408 Scsi_Cmnd *cmd;
4409 struct ahd_linux_device *dev;
4411 if ((scb->flags & SCB_ACTIVE) == 0) {
4412 printf("SCB %d done'd twice\n", SCB_GET_TAG(scb));
4413 ahd_dump_card_state(ahd);
4414 panic("Stopping for safety");
4416 LIST_REMOVE(scb, pending_links);
4417 cmd = scb->io_ctx;
4418 dev = scb->platform_data->dev;
4419 dev->active--;
4420 dev->openings++;
4421 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
4422 cmd->result &= ~(CAM_DEV_QFRZN << 16);
4423 dev->qfrozen--;
4425 ahd_linux_unmap_scb(ahd, scb);
4428 * Guard against stale sense data.
4429 * The Linux mid-layer assumes that sense
4430 * was retrieved anytime the first byte of
4431 * the sense buffer looks "sane".
4433 cmd->sense_buffer[0] = 0;
4434 if (ahd_get_transaction_status(scb) == CAM_REQ_INPROG) {
4435 uint32_t amount_xferred;
4437 amount_xferred =
4438 ahd_get_transfer_length(scb) - ahd_get_residual(scb);
4439 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
4440 #ifdef AHD_DEBUG
4441 if ((ahd_debug & AHD_SHOW_MISC) != 0) {
4442 ahd_print_path(ahd, scb);
4443 printf("Set CAM_UNCOR_PARITY\n");
4445 #endif
4446 ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
4447 #ifdef AHD_REPORT_UNDERFLOWS
4449 * This code is disabled by default as some
4450 * clients of the SCSI system do not properly
4451 * initialize the underflow parameter. This
4452 * results in spurious termination of commands
4453 * that complete as expected (e.g. underflow is
4454 * allowed as command can return variable amounts
4455 * of data.
4457 } else if (amount_xferred < scb->io_ctx->underflow) {
4458 u_int i;
4460 ahd_print_path(ahd, scb);
4461 printf("CDB:");
4462 for (i = 0; i < scb->io_ctx->cmd_len; i++)
4463 printf(" 0x%x", scb->io_ctx->cmnd[i]);
4464 printf("\n");
4465 ahd_print_path(ahd, scb);
4466 printf("Saw underflow (%ld of %ld bytes). "
4467 "Treated as error\n",
4468 ahd_get_residual(scb),
4469 ahd_get_transfer_length(scb));
4470 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
4471 #endif
4472 } else {
4473 ahd_set_transaction_status(scb, CAM_REQ_CMP);
4475 } else if (ahd_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
4476 ahd_linux_handle_scsi_status(ahd, dev, scb);
4477 } else if (ahd_get_transaction_status(scb) == CAM_SEL_TIMEOUT) {
4478 dev->flags |= AHD_DEV_UNCONFIGURED;
4479 if (AHD_DV_CMD(cmd) == FALSE)
4480 dev->target->flags &= ~AHD_DV_REQUIRED;
4483 * Start DV for devices that require it assuming the first command
4484 * sent does not result in a selection timeout.
4486 if (ahd_get_transaction_status(scb) != CAM_SEL_TIMEOUT
4487 && (dev->target->flags & AHD_DV_REQUIRED) != 0)
4488 ahd_linux_start_dv(ahd);
4490 if (dev->openings == 1
4491 && ahd_get_transaction_status(scb) == CAM_REQ_CMP
4492 && ahd_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL)
4493 dev->tag_success_count++;
4495 * Some devices deal with temporary internal resource
4496 * shortages by returning queue full. When the queue
4497 * full occurrs, we throttle back. Slowly try to get
4498 * back to our previous queue depth.
4500 if ((dev->openings + dev->active) < dev->maxtags
4501 && dev->tag_success_count > AHD_TAG_SUCCESS_INTERVAL) {
4502 dev->tag_success_count = 0;
4503 dev->openings++;
4506 if (dev->active == 0)
4507 dev->commands_since_idle_or_otag = 0;
4509 if (TAILQ_EMPTY(&dev->busyq)) {
4510 if ((dev->flags & AHD_DEV_UNCONFIGURED) != 0
4511 && dev->active == 0
4512 && (dev->flags & AHD_DEV_TIMER_ACTIVE) == 0)
4513 ahd_linux_free_device(ahd, dev);
4514 } else if ((dev->flags & AHD_DEV_ON_RUN_LIST) == 0) {
4515 TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links);
4516 dev->flags |= AHD_DEV_ON_RUN_LIST;
4519 if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
4520 printf("Recovery SCB completes\n");
4521 if (ahd_get_transaction_status(scb) == CAM_BDR_SENT
4522 || ahd_get_transaction_status(scb) == CAM_REQ_ABORTED)
4523 ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT);
4524 if ((scb->platform_data->flags & AHD_SCB_UP_EH_SEM) != 0) {
4525 scb->platform_data->flags &= ~AHD_SCB_UP_EH_SEM;
4526 up(&ahd->platform_data->eh_sem);
4530 ahd_free_scb(ahd, scb);
4531 ahd_linux_queue_cmd_complete(ahd, cmd);
4533 if ((ahd->platform_data->flags & AHD_DV_WAIT_SIMQ_EMPTY) != 0
4534 && LIST_FIRST(&ahd->pending_scbs) == NULL) {
4535 ahd->platform_data->flags &= ~AHD_DV_WAIT_SIMQ_EMPTY;
4536 up(&ahd->platform_data->dv_sem);
4540 static void
4541 ahd_linux_handle_scsi_status(struct ahd_softc *ahd,
4542 struct ahd_linux_device *dev, struct scb *scb)
4544 struct ahd_devinfo devinfo;
4546 ahd_compile_devinfo(&devinfo,
4547 ahd->our_id,
4548 dev->target->target, dev->lun,
4549 dev->target->channel == 0 ? 'A' : 'B',
4550 ROLE_INITIATOR);
4553 * We don't currently trust the mid-layer to
4554 * properly deal with queue full or busy. So,
4555 * when one occurs, we tell the mid-layer to
4556 * unconditionally requeue the command to us
4557 * so that we can retry it ourselves. We also
4558 * implement our own throttling mechanism so
4559 * we don't clobber the device with too many
4560 * commands.
4562 switch (ahd_get_scsi_status(scb)) {
4563 default:
4564 break;
4565 case SCSI_STATUS_CHECK_COND:
4566 case SCSI_STATUS_CMD_TERMINATED:
4568 Scsi_Cmnd *cmd;
4571 * Copy sense information to the OS's cmd
4572 * structure if it is available.
4574 cmd = scb->io_ctx;
4575 if ((scb->flags & (SCB_SENSE|SCB_PKT_SENSE)) != 0) {
4576 struct scsi_status_iu_header *siu;
4577 u_int sense_size;
4578 u_int sense_offset;
4580 if (scb->flags & SCB_SENSE) {
4581 sense_size = MIN(sizeof(struct scsi_sense_data)
4582 - ahd_get_sense_residual(scb),
4583 sizeof(cmd->sense_buffer));
4584 sense_offset = 0;
4585 } else {
4587 * Copy only the sense data into the provided
4588 * buffer.
4590 siu = (struct scsi_status_iu_header *)
4591 scb->sense_data;
4592 sense_size = MIN(scsi_4btoul(siu->sense_length),
4593 sizeof(cmd->sense_buffer));
4594 sense_offset = SIU_SENSE_OFFSET(siu);
4597 memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
4598 memcpy(cmd->sense_buffer,
4599 ahd_get_sense_buf(ahd, scb)
4600 + sense_offset, sense_size);
4601 cmd->result |= (DRIVER_SENSE << 24);
4603 #ifdef AHD_DEBUG
4604 if (ahd_debug & AHD_SHOW_SENSE) {
4605 int i;
4607 printf("Copied %d bytes of sense data at %d:",
4608 sense_size, sense_offset);
4609 for (i = 0; i < sense_size; i++) {
4610 if ((i & 0xF) == 0)
4611 printf("\n");
4612 printf("0x%x ", cmd->sense_buffer[i]);
4614 printf("\n");
4616 #endif
4618 break;
4620 case SCSI_STATUS_QUEUE_FULL:
4623 * By the time the core driver has returned this
4624 * command, all other commands that were queued
4625 * to us but not the device have been returned.
4626 * This ensures that dev->active is equal to
4627 * the number of commands actually queued to
4628 * the device.
4630 dev->tag_success_count = 0;
4631 if (dev->active != 0) {
4633 * Drop our opening count to the number
4634 * of commands currently outstanding.
4636 dev->openings = 0;
4637 #ifdef AHD_DEBUG
4638 if ((ahd_debug & AHD_SHOW_QFULL) != 0) {
4639 ahd_print_path(ahd, scb);
4640 printf("Dropping tag count to %d\n",
4641 dev->active);
4643 #endif
4644 if (dev->active == dev->tags_on_last_queuefull) {
4646 dev->last_queuefull_same_count++;
4648 * If we repeatedly see a queue full
4649 * at the same queue depth, this
4650 * device has a fixed number of tag
4651 * slots. Lock in this tag depth
4652 * so we stop seeing queue fulls from
4653 * this device.
4655 if (dev->last_queuefull_same_count
4656 == AHD_LOCK_TAGS_COUNT) {
4657 dev->maxtags = dev->active;
4658 ahd_print_path(ahd, scb);
4659 printf("Locking max tag count at %d\n",
4660 dev->active);
4662 } else {
4663 dev->tags_on_last_queuefull = dev->active;
4664 dev->last_queuefull_same_count = 0;
4666 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
4667 ahd_set_scsi_status(scb, SCSI_STATUS_OK);
4668 ahd_platform_set_tags(ahd, &devinfo,
4669 (dev->flags & AHD_DEV_Q_BASIC)
4670 ? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED);
4671 break;
4674 * Drop down to a single opening, and treat this
4675 * as if the target returned BUSY SCSI status.
4677 dev->openings = 1;
4678 ahd_platform_set_tags(ahd, &devinfo,
4679 (dev->flags & AHD_DEV_Q_BASIC)
4680 ? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED);
4681 ahd_set_scsi_status(scb, SCSI_STATUS_BUSY);
4682 /* FALLTHROUGH */
4684 case SCSI_STATUS_BUSY:
4686 * Set a short timer to defer sending commands for
4687 * a bit since Linux will not delay in this case.
4689 if ((dev->flags & AHD_DEV_TIMER_ACTIVE) != 0) {
4690 printf("%s:%c:%d: Device Timer still active during "
4691 "busy processing\n", ahd_name(ahd),
4692 dev->target->channel, dev->target->target);
4693 break;
4695 dev->flags |= AHD_DEV_TIMER_ACTIVE;
4696 dev->qfrozen++;
4697 init_timer(&dev->timer);
4698 dev->timer.data = (u_long)dev;
4699 dev->timer.expires = jiffies + (HZ/2);
4700 dev->timer.function = ahd_linux_dev_timed_unfreeze;
4701 add_timer(&dev->timer);
4702 break;
4706 static void
4707 ahd_linux_queue_cmd_complete(struct ahd_softc *ahd, Scsi_Cmnd *cmd)
4710 * Typically, the complete queue has very few entries
4711 * queued to it before the queue is emptied by
4712 * ahd_linux_run_complete_queue, so sorting the entries
4713 * by generation number should be inexpensive.
4714 * We perform the sort so that commands that complete
4715 * with an error are retuned in the order origionally
4716 * queued to the controller so that any subsequent retries
4717 * are performed in order. The underlying ahd routines do
4718 * not guarantee the order that aborted commands will be
4719 * returned to us.
4721 struct ahd_completeq *completeq;
4722 struct ahd_cmd *list_cmd;
4723 struct ahd_cmd *acmd;
4726 * Map CAM error codes into Linux Error codes. We
4727 * avoid the conversion so that the DV code has the
4728 * full error information available when making
4729 * state change decisions.
4731 if (AHD_DV_CMD(cmd) == FALSE) {
4732 uint32_t status;
4733 u_int new_status;
4735 status = ahd_cmd_get_transaction_status(cmd);
4736 if (status != CAM_REQ_CMP) {
4737 struct ahd_linux_device *dev;
4738 struct ahd_devinfo devinfo;
4739 cam_status cam_status;
4740 uint32_t action;
4741 u_int scsi_status;
4743 dev = ahd_linux_get_device(ahd, cmd->device->channel,
4744 cmd->device->id,
4745 cmd->device->lun,
4746 /*alloc*/FALSE);
4748 if (dev == NULL)
4749 goto no_fallback;
4751 ahd_compile_devinfo(&devinfo,
4752 ahd->our_id,
4753 dev->target->target, dev->lun,
4754 dev->target->channel == 0 ? 'A':'B',
4755 ROLE_INITIATOR);
4757 scsi_status = ahd_cmd_get_scsi_status(cmd);
4758 cam_status = ahd_cmd_get_transaction_status(cmd);
4759 action = aic_error_action(cmd, dev->target->inq_data,
4760 cam_status, scsi_status);
4761 if ((action & SSQ_FALLBACK) != 0) {
4763 /* Update stats */
4764 dev->target->errors_detected++;
4765 if (dev->target->cmds_since_error == 0)
4766 dev->target->cmds_since_error++;
4767 else {
4768 dev->target->cmds_since_error = 0;
4769 ahd_linux_fallback(ahd, &devinfo);
4773 no_fallback:
4774 switch (status) {
4775 case CAM_REQ_INPROG:
4776 case CAM_REQ_CMP:
4777 case CAM_SCSI_STATUS_ERROR:
4778 new_status = DID_OK;
4779 break;
4780 case CAM_REQ_ABORTED:
4781 new_status = DID_ABORT;
4782 break;
4783 case CAM_BUSY:
4784 new_status = DID_BUS_BUSY;
4785 break;
4786 case CAM_REQ_INVALID:
4787 case CAM_PATH_INVALID:
4788 new_status = DID_BAD_TARGET;
4789 break;
4790 case CAM_SEL_TIMEOUT:
4791 new_status = DID_NO_CONNECT;
4792 break;
4793 case CAM_SCSI_BUS_RESET:
4794 case CAM_BDR_SENT:
4795 new_status = DID_RESET;
4796 break;
4797 case CAM_UNCOR_PARITY:
4798 new_status = DID_PARITY;
4799 break;
4800 case CAM_CMD_TIMEOUT:
4801 new_status = DID_TIME_OUT;
4802 break;
4803 case CAM_UA_ABORT:
4804 case CAM_REQ_CMP_ERR:
4805 case CAM_AUTOSENSE_FAIL:
4806 case CAM_NO_HBA:
4807 case CAM_DATA_RUN_ERR:
4808 case CAM_UNEXP_BUSFREE:
4809 case CAM_SEQUENCE_FAIL:
4810 case CAM_CCB_LEN_ERR:
4811 case CAM_PROVIDE_FAIL:
4812 case CAM_REQ_TERMIO:
4813 case CAM_UNREC_HBA_ERROR:
4814 case CAM_REQ_TOO_BIG:
4815 new_status = DID_ERROR;
4816 break;
4817 case CAM_REQUEUE_REQ:
4819 * If we want the request requeued, make sure there
4820 * are sufficent retries. In the old scsi error code,
4821 * we used to be able to specify a result code that
4822 * bypassed the retry count. Now we must use this
4823 * hack. We also "fake" a check condition with
4824 * a sense code of ABORTED COMMAND. This seems to
4825 * evoke a retry even if this command is being sent
4826 * via the eh thread. Ick! Ick! Ick!
4828 if (cmd->retries > 0)
4829 cmd->retries--;
4830 new_status = DID_OK;
4831 ahd_cmd_set_scsi_status(cmd, SCSI_STATUS_CHECK_COND);
4832 cmd->result |= (DRIVER_SENSE << 24);
4833 memset(cmd->sense_buffer, 0,
4834 sizeof(cmd->sense_buffer));
4835 cmd->sense_buffer[0] = SSD_ERRCODE_VALID
4836 | SSD_CURRENT_ERROR;
4837 cmd->sense_buffer[2] = SSD_KEY_ABORTED_COMMAND;
4838 break;
4839 default:
4840 /* We should never get here */
4841 new_status = DID_ERROR;
4842 break;
4845 ahd_cmd_set_transaction_status(cmd, new_status);
4848 completeq = &ahd->platform_data->completeq;
4849 list_cmd = TAILQ_FIRST(completeq);
4850 acmd = (struct ahd_cmd *)cmd;
4851 while (list_cmd != NULL
4852 && acmd_scsi_cmd(list_cmd).serial_number
4853 < acmd_scsi_cmd(acmd).serial_number)
4854 list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe);
4855 if (list_cmd != NULL)
4856 TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe);
4857 else
4858 TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe);
4861 static void
4862 ahd_linux_filter_inquiry(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4864 struct scsi_inquiry_data *sid;
4865 struct ahd_initiator_tinfo *tinfo;
4866 struct ahd_transinfo *user;
4867 struct ahd_transinfo *goal;
4868 struct ahd_transinfo *curr;
4869 struct ahd_tmode_tstate *tstate;
4870 struct ahd_linux_device *dev;
4871 u_int width;
4872 u_int period;
4873 u_int offset;
4874 u_int ppr_options;
4875 u_int trans_version;
4876 u_int prot_version;
4879 * Determine if this lun actually exists. If so,
4880 * hold on to its corresponding device structure.
4881 * If not, make sure we release the device and
4882 * don't bother processing the rest of this inquiry
4883 * command.
4885 dev = ahd_linux_get_device(ahd, devinfo->channel - 'A',
4886 devinfo->target, devinfo->lun,
4887 /*alloc*/TRUE);
4889 sid = (struct scsi_inquiry_data *)dev->target->inq_data;
4890 if (SID_QUAL(sid) == SID_QUAL_LU_CONNECTED) {
4892 dev->flags &= ~AHD_DEV_UNCONFIGURED;
4893 } else {
4894 dev->flags |= AHD_DEV_UNCONFIGURED;
4895 return;
4899 * Update our notion of this device's transfer
4900 * negotiation capabilities.
4902 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
4903 devinfo->our_scsiid,
4904 devinfo->target, &tstate);
4905 user = &tinfo->user;
4906 goal = &tinfo->goal;
4907 curr = &tinfo->curr;
4908 width = user->width;
4909 period = user->period;
4910 offset = user->offset;
4911 ppr_options = user->ppr_options;
4912 trans_version = user->transport_version;
4913 prot_version = MIN(user->protocol_version, SID_ANSI_REV(sid));
4916 * Only attempt SPI3/4 once we've verified that
4917 * the device claims to support SPI3/4 features.
4919 if (prot_version < SCSI_REV_2)
4920 trans_version = SID_ANSI_REV(sid);
4921 else
4922 trans_version = SCSI_REV_2;
4924 if ((sid->flags & SID_WBus16) == 0)
4925 width = MSG_EXT_WDTR_BUS_8_BIT;
4926 if ((sid->flags & SID_Sync) == 0) {
4927 period = 0;
4928 offset = 0;
4929 ppr_options = 0;
4931 if ((sid->spi3data & SID_SPI_QAS) == 0)
4932 ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
4933 if ((sid->spi3data & SID_SPI_CLOCK_DT) == 0)
4934 ppr_options &= MSG_EXT_PPR_QAS_REQ;
4935 if ((sid->spi3data & SID_SPI_IUS) == 0)
4936 ppr_options &= (MSG_EXT_PPR_DT_REQ
4937 | MSG_EXT_PPR_QAS_REQ);
4939 if (prot_version > SCSI_REV_2
4940 && ppr_options != 0)
4941 trans_version = user->transport_version;
4943 ahd_validate_width(ahd, /*tinfo limit*/NULL, &width, ROLE_UNKNOWN);
4944 ahd_find_syncrate(ahd, &period, &ppr_options, AHD_SYNCRATE_MAX);
4945 ahd_validate_offset(ahd, /*tinfo limit*/NULL, period,
4946 &offset, width, ROLE_UNKNOWN);
4947 if (offset == 0 || period == 0) {
4948 period = 0;
4949 offset = 0;
4950 ppr_options = 0;
4952 /* Apply our filtered user settings. */
4953 curr->transport_version = trans_version;
4954 curr->protocol_version = prot_version;
4955 ahd_set_width(ahd, devinfo, width, AHD_TRANS_GOAL, /*paused*/FALSE);
4956 ahd_set_syncrate(ahd, devinfo, period, offset, ppr_options,
4957 AHD_TRANS_GOAL, /*paused*/FALSE);
4960 void
4961 ahd_freeze_simq(struct ahd_softc *ahd)
4963 ahd->platform_data->qfrozen++;
4964 if (ahd->platform_data->qfrozen == 1) {
4965 scsi_block_requests(ahd->platform_data->host);
4966 ahd_platform_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
4967 CAM_LUN_WILDCARD, SCB_LIST_NULL,
4968 ROLE_INITIATOR, CAM_REQUEUE_REQ);
4972 void
4973 ahd_release_simq(struct ahd_softc *ahd)
4975 u_long s;
4976 int unblock_reqs;
4978 unblock_reqs = 0;
4979 ahd_lock(ahd, &s);
4980 if (ahd->platform_data->qfrozen > 0)
4981 ahd->platform_data->qfrozen--;
4982 if (ahd->platform_data->qfrozen == 0) {
4983 unblock_reqs = 1;
4985 if (AHD_DV_SIMQ_FROZEN(ahd)
4986 && ((ahd->platform_data->flags & AHD_DV_WAIT_SIMQ_RELEASE) != 0)) {
4987 ahd->platform_data->flags &= ~AHD_DV_WAIT_SIMQ_RELEASE;
4988 up(&ahd->platform_data->dv_sem);
4990 ahd_schedule_runq(ahd);
4991 ahd_unlock(ahd, &s);
4993 * There is still a race here. The mid-layer
4994 * should keep its own freeze count and use
4995 * a bottom half handler to run the queues
4996 * so we can unblock with our own lock held.
4998 if (unblock_reqs)
4999 scsi_unblock_requests(ahd->platform_data->host);
5002 static void
5003 ahd_linux_sem_timeout(u_long arg)
5005 struct scb *scb;
5006 struct ahd_softc *ahd;
5007 u_long s;
5009 scb = (struct scb *)arg;
5010 ahd = scb->ahd_softc;
5011 ahd_lock(ahd, &s);
5012 if ((scb->platform_data->flags & AHD_SCB_UP_EH_SEM) != 0) {
5013 scb->platform_data->flags &= ~AHD_SCB_UP_EH_SEM;
5014 up(&ahd->platform_data->eh_sem);
5016 ahd_unlock(ahd, &s);
5019 static void
5020 ahd_linux_dev_timed_unfreeze(u_long arg)
5022 struct ahd_linux_device *dev;
5023 struct ahd_softc *ahd;
5024 u_long s;
5026 dev = (struct ahd_linux_device *)arg;
5027 ahd = dev->target->ahd;
5028 ahd_lock(ahd, &s);
5029 dev->flags &= ~AHD_DEV_TIMER_ACTIVE;
5030 if (dev->qfrozen > 0)
5031 dev->qfrozen--;
5032 if (dev->qfrozen == 0
5033 && (dev->flags & AHD_DEV_ON_RUN_LIST) == 0)
5034 ahd_linux_run_device_queue(ahd, dev);
5035 if ((dev->flags & AHD_DEV_UNCONFIGURED) != 0
5036 && dev->active == 0)
5037 ahd_linux_free_device(ahd, dev);
5038 ahd_unlock(ahd, &s);
5041 void
5042 ahd_platform_dump_card_state(struct ahd_softc *ahd)
5044 struct ahd_linux_device *dev;
5045 int target;
5046 int maxtarget;
5047 int lun;
5048 int i;
5050 maxtarget = (ahd->features & AHD_WIDE) ? 15 : 7;
5051 for (target = 0; target <=maxtarget; target++) {
5053 for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
5054 struct ahd_cmd *acmd;
5056 dev = ahd_linux_get_device(ahd, 0, target,
5057 lun, /*alloc*/FALSE);
5058 if (dev == NULL)
5059 continue;
5061 printf("DevQ(%d:%d:%d): ", 0, target, lun);
5062 i = 0;
5063 TAILQ_FOREACH(acmd, &dev->busyq, acmd_links.tqe) {
5064 if (i++ > AHD_SCB_MAX)
5065 break;
5067 printf("%d waiting\n", i);
5072 static int __init
5073 ahd_linux_init(void)
5075 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
5076 return (ahd_linux_detect(&aic79xx_driver_template) ? 0 : -ENODEV);
5077 #else
5078 scsi_register_module(MODULE_SCSI_HA, &aic79xx_driver_template);
5079 if (aic79xx_driver_template.present == 0) {
5080 scsi_unregister_module(MODULE_SCSI_HA,
5081 &aic79xx_driver_template);
5082 return (-ENODEV);
5085 return (0);
5086 #endif
5089 static void __exit
5090 ahd_linux_exit(void)
5092 struct ahd_softc *ahd;
5093 u_long l;
5096 * Shutdown DV threads before going into the SCSI mid-layer.
5097 * This avoids situations where the mid-layer locks the entire
5098 * kernel so that waiting for our DV threads to exit leads
5099 * to deadlock.
5101 ahd_list_lock(&l);
5102 TAILQ_FOREACH(ahd, &ahd_tailq, links) {
5104 ahd_linux_kill_dv_thread(ahd);
5106 ahd_list_unlock(&l);
5107 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
5109 * In 2.4 we have to unregister from the PCI core _after_
5110 * unregistering from the scsi midlayer to avoid dangling
5111 * references.
5113 scsi_unregister_module(MODULE_SCSI_HA, &aic79xx_driver_template);
5114 #endif
5115 ahd_linux_pci_exit();
5118 module_init(ahd_linux_init);
5119 module_exit(ahd_linux_exit);