initial commit with v2.6.9
[linux-2.6.9-moxart.git] / drivers / net / e1000 / e1000_ethtool.c
blob2e4544eca333c4be4281285717ccd96c6198a6f7
1 /*******************************************************************************
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include "e1000.h"
33 #include <asm/uaccess.h>
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
48 struct e1000_stats {
49 char stat_string[ETH_GSTRING_LEN];
50 int sizeof_stat;
51 int stat_offset;
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55 offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57 { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58 { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59 { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60 { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63 { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65 { "multicast", E1000_STAT(net_stats.multicast) },
66 { "collisions", E1000_STAT(net_stats.collisions) },
67 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69 { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71 { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72 { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
73 { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
74 { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
75 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
76 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
77 { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
78 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
79 { "tx_deferred_ok", E1000_STAT(stats.dc) },
80 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
81 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
82 { "rx_long_length_errors", E1000_STAT(stats.roc) },
83 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
84 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
85 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
86 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
87 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
88 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
89 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
90 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
91 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
92 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
93 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
95 #define E1000_STATS_LEN \
96 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
97 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
98 "Register test (offline)", "Eeprom test (offline)",
99 "Interrupt test (offline)", "Loopback test (offline)",
100 "Link test (on/offline)"
102 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
104 static int
105 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
107 struct e1000_adapter *adapter = netdev->priv;
108 struct e1000_hw *hw = &adapter->hw;
110 if(hw->media_type == e1000_media_type_copper) {
112 ecmd->supported = (SUPPORTED_10baseT_Half |
113 SUPPORTED_10baseT_Full |
114 SUPPORTED_100baseT_Half |
115 SUPPORTED_100baseT_Full |
116 SUPPORTED_1000baseT_Full|
117 SUPPORTED_Autoneg |
118 SUPPORTED_TP);
120 ecmd->advertising = ADVERTISED_TP;
122 if(hw->autoneg == 1) {
123 ecmd->advertising |= ADVERTISED_Autoneg;
125 /* the e1000 autoneg seems to match ethtool nicely */
127 ecmd->advertising |= hw->autoneg_advertised;
130 ecmd->port = PORT_TP;
131 ecmd->phy_address = hw->phy_addr;
133 if(hw->mac_type == e1000_82543)
134 ecmd->transceiver = XCVR_EXTERNAL;
135 else
136 ecmd->transceiver = XCVR_INTERNAL;
138 } else {
139 ecmd->supported = (SUPPORTED_1000baseT_Full |
140 SUPPORTED_FIBRE |
141 SUPPORTED_Autoneg);
143 ecmd->advertising = (SUPPORTED_1000baseT_Full |
144 SUPPORTED_FIBRE |
145 SUPPORTED_Autoneg);
147 ecmd->port = PORT_FIBRE;
149 if(hw->mac_type >= e1000_82545)
150 ecmd->transceiver = XCVR_INTERNAL;
151 else
152 ecmd->transceiver = XCVR_EXTERNAL;
155 if(netif_carrier_ok(adapter->netdev)) {
157 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
158 &adapter->link_duplex);
159 ecmd->speed = adapter->link_speed;
161 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
162 * and HALF_DUPLEX != DUPLEX_HALF */
164 if(adapter->link_duplex == FULL_DUPLEX)
165 ecmd->duplex = DUPLEX_FULL;
166 else
167 ecmd->duplex = DUPLEX_HALF;
168 } else {
169 ecmd->speed = -1;
170 ecmd->duplex = -1;
173 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
174 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
175 return 0;
178 static int
179 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
181 struct e1000_adapter *adapter = netdev->priv;
182 struct e1000_hw *hw = &adapter->hw;
184 if(ecmd->autoneg == AUTONEG_ENABLE) {
185 hw->autoneg = 1;
186 hw->autoneg_advertised = 0x002F;
187 ecmd->advertising = 0x002F;
188 } else
189 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
190 return -EINVAL;
192 /* reset the link */
194 if(netif_running(adapter->netdev)) {
195 e1000_down(adapter);
196 e1000_reset(adapter);
197 e1000_up(adapter);
198 } else
199 e1000_reset(adapter);
201 return 0;
204 static void
205 e1000_get_pauseparam(struct net_device *netdev,
206 struct ethtool_pauseparam *pause)
208 struct e1000_adapter *adapter = netdev->priv;
209 struct e1000_hw *hw = &adapter->hw;
211 pause->autoneg =
212 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
214 if(hw->fc == e1000_fc_rx_pause)
215 pause->rx_pause = 1;
216 else if(hw->fc == e1000_fc_tx_pause)
217 pause->tx_pause = 1;
218 else if(hw->fc == e1000_fc_full) {
219 pause->rx_pause = 1;
220 pause->tx_pause = 1;
224 static int
225 e1000_set_pauseparam(struct net_device *netdev,
226 struct ethtool_pauseparam *pause)
228 struct e1000_adapter *adapter = netdev->priv;
229 struct e1000_hw *hw = &adapter->hw;
231 adapter->fc_autoneg = pause->autoneg;
233 if(pause->rx_pause && pause->tx_pause)
234 hw->fc = e1000_fc_full;
235 else if(pause->rx_pause && !pause->tx_pause)
236 hw->fc = e1000_fc_rx_pause;
237 else if(!pause->rx_pause && pause->tx_pause)
238 hw->fc = e1000_fc_tx_pause;
239 else if(!pause->rx_pause && !pause->tx_pause)
240 hw->fc = e1000_fc_none;
242 hw->original_fc = hw->fc;
244 if(adapter->fc_autoneg == AUTONEG_ENABLE) {
245 if(netif_running(adapter->netdev)) {
246 e1000_down(adapter);
247 e1000_up(adapter);
248 } else
249 e1000_reset(adapter);
251 else
252 return e1000_force_mac_fc(hw);
254 return 0;
257 static uint32_t
258 e1000_get_rx_csum(struct net_device *netdev)
260 struct e1000_adapter *adapter = netdev->priv;
261 return adapter->rx_csum;
264 static int
265 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
267 struct e1000_adapter *adapter = netdev->priv;
268 adapter->rx_csum = data;
270 if(netif_running(netdev)) {
271 e1000_down(adapter);
272 e1000_up(adapter);
273 } else
274 e1000_reset(adapter);
275 return 0;
278 static uint32_t
279 e1000_get_tx_csum(struct net_device *netdev)
281 return (netdev->features & NETIF_F_HW_CSUM) != 0;
284 static int
285 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
287 struct e1000_adapter *adapter = netdev->priv;
289 if(adapter->hw.mac_type < e1000_82543) {
290 if (!data)
291 return -EINVAL;
292 return 0;
295 if (data)
296 netdev->features |= NETIF_F_HW_CSUM;
297 else
298 netdev->features &= ~NETIF_F_HW_CSUM;
300 return 0;
303 #ifdef NETIF_F_TSO
304 static int
305 e1000_set_tso(struct net_device *netdev, uint32_t data)
307 struct e1000_adapter *adapter = netdev->priv;
308 if ((adapter->hw.mac_type < e1000_82544) ||
309 (adapter->hw.mac_type == e1000_82547))
310 return data ? -EINVAL : 0;
312 if (data)
313 netdev->features |= NETIF_F_TSO;
314 else
315 netdev->features &= ~NETIF_F_TSO;
316 return 0;
318 #endif /* NETIF_F_TSO */
320 static uint32_t
321 e1000_get_msglevel(struct net_device *netdev)
323 struct e1000_adapter *adapter = netdev->priv;
324 return adapter->msg_enable;
327 static void
328 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
330 struct e1000_adapter *adapter = netdev->priv;
331 adapter->msg_enable = data;
334 static int
335 e1000_get_regs_len(struct net_device *netdev)
337 #define E1000_REGS_LEN 32
338 return E1000_REGS_LEN * sizeof(uint32_t);
341 static void
342 e1000_get_regs(struct net_device *netdev,
343 struct ethtool_regs *regs, void *p)
345 struct e1000_adapter *adapter = netdev->priv;
346 struct e1000_hw *hw = &adapter->hw;
347 uint32_t *regs_buff = p;
348 uint16_t phy_data;
350 memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
352 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
354 regs_buff[0] = E1000_READ_REG(hw, CTRL);
355 regs_buff[1] = E1000_READ_REG(hw, STATUS);
357 regs_buff[2] = E1000_READ_REG(hw, RCTL);
358 regs_buff[3] = E1000_READ_REG(hw, RDLEN);
359 regs_buff[4] = E1000_READ_REG(hw, RDH);
360 regs_buff[5] = E1000_READ_REG(hw, RDT);
361 regs_buff[6] = E1000_READ_REG(hw, RDTR);
363 regs_buff[7] = E1000_READ_REG(hw, TCTL);
364 regs_buff[8] = E1000_READ_REG(hw, TDLEN);
365 regs_buff[9] = E1000_READ_REG(hw, TDH);
366 regs_buff[10] = E1000_READ_REG(hw, TDT);
367 regs_buff[11] = E1000_READ_REG(hw, TIDV);
369 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
370 if(hw->phy_type == e1000_phy_igp) {
371 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
372 IGP01E1000_PHY_AGC_A);
373 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
374 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
375 regs_buff[13] = (uint32_t)phy_data; /* cable length */
376 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
377 IGP01E1000_PHY_AGC_B);
378 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
379 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
380 regs_buff[14] = (uint32_t)phy_data; /* cable length */
381 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
382 IGP01E1000_PHY_AGC_C);
383 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
384 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
385 regs_buff[15] = (uint32_t)phy_data; /* cable length */
386 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387 IGP01E1000_PHY_AGC_D);
388 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
389 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390 regs_buff[16] = (uint32_t)phy_data; /* cable length */
391 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
392 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
393 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
394 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
396 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
397 IGP01E1000_PHY_PCS_INIT_REG);
398 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
399 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
401 regs_buff[20] = 0; /* polarity correction enabled (always) */
402 regs_buff[22] = 0; /* phy receive errors (unavailable) */
403 regs_buff[23] = regs_buff[18]; /* mdix mode */
404 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
405 } else {
406 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
407 regs_buff[13] = (uint32_t)phy_data; /* cable length */
408 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
409 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
410 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
411 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
412 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
413 regs_buff[18] = regs_buff[13]; /* cable polarity */
414 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
415 regs_buff[20] = regs_buff[17]; /* polarity correction */
416 /* phy receive errors */
417 regs_buff[22] = adapter->phy_stats.receive_errors;
418 regs_buff[23] = regs_buff[13]; /* mdix mode */
420 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
421 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
422 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
423 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
424 if(hw->mac_type >= e1000_82540 &&
425 hw->media_type == e1000_media_type_copper) {
426 regs_buff[26] = E1000_READ_REG(hw, MANC);
430 static int
431 e1000_get_eeprom_len(struct net_device *netdev)
433 struct e1000_adapter *adapter = netdev->priv;
434 return adapter->hw.eeprom.word_size * 2;
437 static int
438 e1000_get_eeprom(struct net_device *netdev,
439 struct ethtool_eeprom *eeprom, uint8_t *bytes)
441 struct e1000_adapter *adapter = netdev->priv;
442 struct e1000_hw *hw = &adapter->hw;
443 uint16_t *eeprom_buff;
444 int first_word, last_word;
445 int ret_val = 0;
446 uint16_t i;
448 if(eeprom->len == 0)
449 return -EINVAL;
451 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
453 first_word = eeprom->offset >> 1;
454 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
456 eeprom_buff = kmalloc(sizeof(uint16_t) *
457 (last_word - first_word + 1), GFP_KERNEL);
458 if(!eeprom_buff)
459 return -ENOMEM;
461 if(hw->eeprom.type == e1000_eeprom_spi)
462 ret_val = e1000_read_eeprom(hw, first_word,
463 last_word - first_word + 1,
464 eeprom_buff);
465 else {
466 for (i = 0; i < last_word - first_word + 1; i++)
467 if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
468 &eeprom_buff[i])))
469 break;
472 /* Device's eeprom is always little-endian, word addressable */
473 for (i = 0; i < last_word - first_word + 1; i++)
474 le16_to_cpus(&eeprom_buff[i]);
476 memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
477 eeprom->len);
478 kfree(eeprom_buff);
480 return ret_val;
483 static int
484 e1000_set_eeprom(struct net_device *netdev,
485 struct ethtool_eeprom *eeprom, uint8_t *bytes)
487 struct e1000_adapter *adapter = netdev->priv;
488 struct e1000_hw *hw = &adapter->hw;
489 uint16_t *eeprom_buff;
490 void *ptr;
491 int max_len, first_word, last_word, ret_val = 0;
492 uint16_t i;
494 if(eeprom->len == 0)
495 return -EOPNOTSUPP;
497 if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
498 return -EFAULT;
500 max_len = hw->eeprom.word_size * 2;
502 first_word = eeprom->offset >> 1;
503 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
504 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
505 if(!eeprom_buff)
506 return -ENOMEM;
508 ptr = (void *)eeprom_buff;
510 if(eeprom->offset & 1) {
511 /* need read/modify/write of first changed EEPROM word */
512 /* only the second byte of the word is being modified */
513 ret_val = e1000_read_eeprom(hw, first_word, 1,
514 &eeprom_buff[0]);
515 ptr++;
517 if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
518 /* need read/modify/write of last changed EEPROM word */
519 /* only the first byte of the word is being modified */
520 ret_val = e1000_read_eeprom(hw, last_word, 1,
521 &eeprom_buff[last_word - first_word]);
524 /* Device's eeprom is always little-endian, word addressable */
525 for (i = 0; i < last_word - first_word + 1; i++)
526 le16_to_cpus(&eeprom_buff[i]);
528 memcpy(ptr, bytes, eeprom->len);
530 for (i = 0; i < last_word - first_word + 1; i++)
531 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
533 ret_val = e1000_write_eeprom(hw, first_word,
534 last_word - first_word + 1, eeprom_buff);
536 /* Update the checksum over the first part of the EEPROM if needed */
537 if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
538 e1000_update_eeprom_checksum(hw);
540 kfree(eeprom_buff);
541 return ret_val;
544 static void
545 e1000_get_drvinfo(struct net_device *netdev,
546 struct ethtool_drvinfo *drvinfo)
548 struct e1000_adapter *adapter = netdev->priv;
550 strncpy(drvinfo->driver, e1000_driver_name, 32);
551 strncpy(drvinfo->version, e1000_driver_version, 32);
552 strncpy(drvinfo->fw_version, "N/A", 32);
553 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
554 drvinfo->n_stats = E1000_STATS_LEN;
555 drvinfo->testinfo_len = E1000_TEST_LEN;
556 drvinfo->regdump_len = e1000_get_regs_len(netdev);
557 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
560 static void
561 e1000_get_ringparam(struct net_device *netdev,
562 struct ethtool_ringparam *ring)
564 struct e1000_adapter *adapter = netdev->priv;
565 e1000_mac_type mac_type = adapter->hw.mac_type;
566 struct e1000_desc_ring *txdr = &adapter->tx_ring;
567 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
569 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
570 E1000_MAX_82544_RXD;
571 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
572 E1000_MAX_82544_TXD;
573 ring->rx_mini_max_pending = 0;
574 ring->rx_jumbo_max_pending = 0;
575 ring->rx_pending = rxdr->count;
576 ring->tx_pending = txdr->count;
577 ring->rx_mini_pending = 0;
578 ring->rx_jumbo_pending = 0;
581 static int
582 e1000_set_ringparam(struct net_device *netdev,
583 struct ethtool_ringparam *ring)
585 struct e1000_adapter *adapter = netdev->priv;
586 e1000_mac_type mac_type = adapter->hw.mac_type;
587 struct e1000_desc_ring *txdr = &adapter->tx_ring;
588 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
589 struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
590 int err;
592 tx_old = adapter->tx_ring;
593 rx_old = adapter->rx_ring;
595 if(netif_running(adapter->netdev))
596 e1000_down(adapter);
598 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
599 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
600 E1000_MAX_RXD : E1000_MAX_82544_RXD));
601 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
603 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
604 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
605 E1000_MAX_TXD : E1000_MAX_82544_TXD));
606 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
608 if(netif_running(adapter->netdev)) {
609 /* Try to get new resources before deleting old */
610 if((err = e1000_setup_rx_resources(adapter)))
611 goto err_setup_rx;
612 if((err = e1000_setup_tx_resources(adapter)))
613 goto err_setup_tx;
615 /* save the new, restore the old in order to free it,
616 * then restore the new back again */
618 rx_new = adapter->rx_ring;
619 tx_new = adapter->tx_ring;
620 adapter->rx_ring = rx_old;
621 adapter->tx_ring = tx_old;
622 e1000_free_rx_resources(adapter);
623 e1000_free_tx_resources(adapter);
624 adapter->rx_ring = rx_new;
625 adapter->tx_ring = tx_new;
626 if((err = e1000_up(adapter)))
627 return err;
630 return 0;
631 err_setup_tx:
632 e1000_free_rx_resources(adapter);
633 err_setup_rx:
634 adapter->rx_ring = rx_old;
635 adapter->tx_ring = tx_old;
636 e1000_up(adapter);
637 return err;
641 #define REG_PATTERN_TEST(R, M, W) \
643 uint32_t pat, value; \
644 uint32_t test[] = \
645 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
646 for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
647 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
648 value = E1000_READ_REG(&adapter->hw, R); \
649 if(value != (test[pat] & W & M)) { \
650 *data = (adapter->hw.mac_type < e1000_82543) ? \
651 E1000_82542_##R : E1000_##R; \
652 return 1; \
657 #define REG_SET_AND_CHECK(R, M, W) \
659 uint32_t value; \
660 E1000_WRITE_REG(&adapter->hw, R, W & M); \
661 value = E1000_READ_REG(&adapter->hw, R); \
662 if ((W & M) != (value & M)) { \
663 *data = (adapter->hw.mac_type < e1000_82543) ? \
664 E1000_82542_##R : E1000_##R; \
665 return 1; \
669 static int
670 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
672 uint32_t value;
673 uint32_t i;
675 /* The status register is Read Only, so a write should fail.
676 * Some bits that get toggled are ignored.
678 value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833));
679 E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF));
680 if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) {
681 *data = 1;
682 return 1;
685 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
686 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
687 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
688 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
689 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
690 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
691 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
692 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
693 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
694 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
695 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
696 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
697 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
698 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
700 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
701 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
702 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
704 if(adapter->hw.mac_type >= e1000_82543) {
706 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
707 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
708 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
709 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
710 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
712 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
713 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
714 0xFFFFFFFF);
715 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
716 0xFFFFFFFF);
719 } else {
721 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
722 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
723 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
724 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
728 for(i = 0; i < E1000_MC_TBL_SIZE; i++)
729 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
731 *data = 0;
732 return 0;
735 static int
736 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
738 uint16_t temp;
739 uint16_t checksum = 0;
740 uint16_t i;
742 *data = 0;
743 /* Read and add up the contents of the EEPROM */
744 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
745 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
746 *data = 1;
747 break;
749 checksum += temp;
752 /* If Checksum is not Correct return error else test passed */
753 if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
754 *data = 2;
756 return *data;
759 static irqreturn_t
760 e1000_test_intr(int irq,
761 void *data,
762 struct pt_regs *regs)
764 struct net_device *netdev = (struct net_device *) data;
765 struct e1000_adapter *adapter = netdev->priv;
767 adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
769 return IRQ_HANDLED;
772 static int
773 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
775 struct net_device *netdev = adapter->netdev;
776 uint32_t icr, mask, i=0, shared_int = TRUE;
777 uint32_t irq = adapter->pdev->irq;
779 *data = 0;
781 /* Hook up test interrupt handler just for this test */
782 if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
783 shared_int = FALSE;
784 } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, netdev->name, netdev)){
785 *data = 1;
786 return -1;
789 /* Disable all the interrupts */
790 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
791 msec_delay(10);
793 /* Interrupts are disabled, so read interrupt cause
794 * register (icr) twice to verify that there are no interrupts
795 * pending. icr is clear on read.
797 icr = E1000_READ_REG(&adapter->hw, ICR);
798 icr = E1000_READ_REG(&adapter->hw, ICR);
800 if(icr != 0) {
801 /* if icr is non-zero, there is no point
802 * running other interrupt tests.
804 *data = 2;
805 i = 10;
808 /* Test each interrupt */
809 for(; i < 10; i++) {
811 /* Interrupt to test */
812 mask = 1 << i;
814 if(!shared_int) {
815 /* Disable the interrupt to be reported in
816 * the cause register and then force the same
817 * interrupt and see if one gets posted. If
818 * an interrupt was posted to the bus, the
819 * test failed.
821 adapter->test_icr = 0;
822 E1000_WRITE_REG(&adapter->hw, IMC, mask);
823 E1000_WRITE_REG(&adapter->hw, ICS, mask);
824 msec_delay(10);
826 if(adapter->test_icr & mask) {
827 *data = 3;
828 break;
832 /* Enable the interrupt to be reported in
833 * the cause register and then force the same
834 * interrupt and see if one gets posted. If
835 * an interrupt was not posted to the bus, the
836 * test failed.
838 adapter->test_icr = 0;
839 E1000_WRITE_REG(&adapter->hw, IMS, mask);
840 E1000_WRITE_REG(&adapter->hw, ICS, mask);
841 msec_delay(10);
843 if(!(adapter->test_icr & mask)) {
844 *data = 4;
845 break;
848 if(!shared_int) {
849 /* Disable the other interrupts to be reported in
850 * the cause register and then force the other
851 * interrupts and see if any get posted. If
852 * an interrupt was posted to the bus, the
853 * test failed.
855 adapter->test_icr = 0;
856 E1000_WRITE_REG(&adapter->hw, IMC, ~mask);
857 E1000_WRITE_REG(&adapter->hw, ICS, ~mask);
858 msec_delay(10);
860 if(adapter->test_icr) {
861 *data = 5;
862 break;
867 /* Disable all the interrupts */
868 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
869 msec_delay(10);
871 /* Unhook test interrupt handler */
872 free_irq(irq, netdev);
874 return *data;
877 static void
878 e1000_free_desc_rings(struct e1000_adapter *adapter)
880 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
881 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
882 struct pci_dev *pdev = adapter->pdev;
883 int i;
885 if(txdr->desc && txdr->buffer_info) {
886 for(i = 0; i < txdr->count; i++) {
887 if(txdr->buffer_info[i].dma)
888 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
889 txdr->buffer_info[i].length,
890 PCI_DMA_TODEVICE);
891 if(txdr->buffer_info[i].skb)
892 dev_kfree_skb(txdr->buffer_info[i].skb);
896 if(rxdr->desc && rxdr->buffer_info) {
897 for(i = 0; i < rxdr->count; i++) {
898 if(rxdr->buffer_info[i].dma)
899 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
900 rxdr->buffer_info[i].length,
901 PCI_DMA_FROMDEVICE);
902 if(rxdr->buffer_info[i].skb)
903 dev_kfree_skb(rxdr->buffer_info[i].skb);
907 if(txdr->desc)
908 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
909 if(rxdr->desc)
910 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
912 if(txdr->buffer_info)
913 kfree(txdr->buffer_info);
914 if(rxdr->buffer_info)
915 kfree(rxdr->buffer_info);
917 return;
920 static int
921 e1000_setup_desc_rings(struct e1000_adapter *adapter)
923 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
924 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
925 struct pci_dev *pdev = adapter->pdev;
926 uint32_t rctl;
927 int size, i, ret_val;
929 /* Setup Tx descriptor ring and Tx buffers */
931 txdr->count = 80;
933 size = txdr->count * sizeof(struct e1000_buffer);
934 if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
935 ret_val = 1;
936 goto err_nomem;
938 memset(txdr->buffer_info, 0, size);
940 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
941 E1000_ROUNDUP(txdr->size, 4096);
942 if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
943 ret_val = 2;
944 goto err_nomem;
946 memset(txdr->desc, 0, txdr->size);
947 txdr->next_to_use = txdr->next_to_clean = 0;
949 E1000_WRITE_REG(&adapter->hw, TDBAL,
950 ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
951 E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
952 E1000_WRITE_REG(&adapter->hw, TDLEN,
953 txdr->count * sizeof(struct e1000_tx_desc));
954 E1000_WRITE_REG(&adapter->hw, TDH, 0);
955 E1000_WRITE_REG(&adapter->hw, TDT, 0);
956 E1000_WRITE_REG(&adapter->hw, TCTL,
957 E1000_TCTL_PSP | E1000_TCTL_EN |
958 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
959 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
961 for(i = 0; i < txdr->count; i++) {
962 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
963 struct sk_buff *skb;
964 unsigned int size = 1024;
966 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
967 ret_val = 3;
968 goto err_nomem;
970 skb_put(skb, size);
971 txdr->buffer_info[i].skb = skb;
972 txdr->buffer_info[i].length = skb->len;
973 txdr->buffer_info[i].dma =
974 pci_map_single(pdev, skb->data, skb->len,
975 PCI_DMA_TODEVICE);
976 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
977 tx_desc->lower.data = cpu_to_le32(skb->len);
978 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
979 E1000_TXD_CMD_IFCS |
980 E1000_TXD_CMD_RPS);
981 tx_desc->upper.data = 0;
984 /* Setup Rx descriptor ring and Rx buffers */
986 rxdr->count = 80;
988 size = rxdr->count * sizeof(struct e1000_buffer);
989 if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
990 ret_val = 4;
991 goto err_nomem;
993 memset(rxdr->buffer_info, 0, size);
995 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
996 if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
997 ret_val = 5;
998 goto err_nomem;
1000 memset(rxdr->desc, 0, rxdr->size);
1001 rxdr->next_to_use = rxdr->next_to_clean = 0;
1003 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1004 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1005 E1000_WRITE_REG(&adapter->hw, RDBAL,
1006 ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1007 E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1008 E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1009 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1010 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1011 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1012 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1013 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1014 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1016 for(i = 0; i < rxdr->count; i++) {
1017 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1018 struct sk_buff *skb;
1020 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1021 GFP_KERNEL))) {
1022 ret_val = 6;
1023 goto err_nomem;
1025 skb_reserve(skb, NET_IP_ALIGN);
1026 rxdr->buffer_info[i].skb = skb;
1027 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1028 rxdr->buffer_info[i].dma =
1029 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1030 PCI_DMA_FROMDEVICE);
1031 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1032 memset(skb->data, 0x00, skb->len);
1035 return 0;
1037 err_nomem:
1038 e1000_free_desc_rings(adapter);
1039 return ret_val;
1042 static void
1043 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1045 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1046 e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1047 e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1048 e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1049 e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1052 static void
1053 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1055 uint16_t phy_reg;
1057 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1058 * Extended PHY Specific Control Register to 25MHz clock. This
1059 * value defaults back to a 2.5MHz clock when the PHY is reset.
1061 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1062 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1063 e1000_write_phy_reg(&adapter->hw,
1064 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1066 /* In addition, because of the s/w reset above, we need to enable
1067 * CRS on TX. This must be set for both full and half duplex
1068 * operation.
1070 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1071 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1072 e1000_write_phy_reg(&adapter->hw,
1073 M88E1000_PHY_SPEC_CTRL, phy_reg);
1076 static int
1077 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1079 uint32_t ctrl_reg;
1080 uint16_t phy_reg;
1082 /* Setup the Device Control Register for PHY loopback test. */
1084 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1085 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1086 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1087 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1088 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1089 E1000_CTRL_FD); /* Force Duplex to FULL */
1091 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1093 /* Read the PHY Specific Control Register (0x10) */
1094 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1096 /* Clear Auto-Crossover bits in PHY Specific Control Register
1097 * (bits 6:5).
1099 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1100 e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1102 /* Perform software reset on the PHY */
1103 e1000_phy_reset(&adapter->hw);
1105 /* Have to setup TX_CLK and TX_CRS after software reset */
1106 e1000_phy_reset_clk_and_crs(adapter);
1108 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1110 /* Wait for reset to complete. */
1111 udelay(500);
1113 /* Have to setup TX_CLK and TX_CRS after software reset */
1114 e1000_phy_reset_clk_and_crs(adapter);
1116 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1117 e1000_phy_disable_receiver(adapter);
1119 /* Set the loopback bit in the PHY control register. */
1120 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1121 phy_reg |= MII_CR_LOOPBACK;
1122 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1124 /* Setup TX_CLK and TX_CRS one more time. */
1125 e1000_phy_reset_clk_and_crs(adapter);
1127 /* Check Phy Configuration */
1128 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1129 if(phy_reg != 0x4100)
1130 return 9;
1132 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1133 if(phy_reg != 0x0070)
1134 return 10;
1136 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1137 if(phy_reg != 0x001A)
1138 return 11;
1140 return 0;
1143 static int
1144 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1146 uint32_t ctrl_reg = 0;
1147 uint32_t stat_reg = 0;
1149 adapter->hw.autoneg = FALSE;
1151 if(adapter->hw.phy_type == e1000_phy_m88) {
1152 /* Auto-MDI/MDIX Off */
1153 e1000_write_phy_reg(&adapter->hw,
1154 M88E1000_PHY_SPEC_CTRL, 0x0808);
1155 /* reset to update Auto-MDI/MDIX */
1156 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1157 /* autoneg off */
1158 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1160 /* force 1000, set loopback */
1161 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1163 /* Now set up the MAC to the same speed/duplex as the PHY. */
1164 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1165 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1166 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1167 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1168 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1169 E1000_CTRL_FD); /* Force Duplex to FULL */
1171 if(adapter->hw.media_type == e1000_media_type_copper &&
1172 adapter->hw.phy_type == e1000_phy_m88) {
1173 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1174 } else {
1175 /* Set the ILOS bit on the fiber Nic is half
1176 * duplex link is detected. */
1177 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1178 if((stat_reg & E1000_STATUS_FD) == 0)
1179 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1182 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1184 /* Disable the receiver on the PHY so when a cable is plugged in, the
1185 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1187 if(adapter->hw.phy_type == e1000_phy_m88)
1188 e1000_phy_disable_receiver(adapter);
1190 udelay(500);
1192 return 0;
1195 static int
1196 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1198 uint16_t phy_reg = 0;
1199 uint16_t count = 0;
1201 switch (adapter->hw.mac_type) {
1202 case e1000_82543:
1203 if(adapter->hw.media_type == e1000_media_type_copper) {
1204 /* Attempt to setup Loopback mode on Non-integrated PHY.
1205 * Some PHY registers get corrupted at random, so
1206 * attempt this 10 times.
1208 while(e1000_nonintegrated_phy_loopback(adapter) &&
1209 count++ < 10);
1210 if(count < 11)
1211 return 0;
1213 break;
1215 case e1000_82544:
1216 case e1000_82540:
1217 case e1000_82545:
1218 case e1000_82545_rev_3:
1219 case e1000_82546:
1220 case e1000_82546_rev_3:
1221 case e1000_82541:
1222 case e1000_82541_rev_2:
1223 case e1000_82547:
1224 case e1000_82547_rev_2:
1225 return e1000_integrated_phy_loopback(adapter);
1226 break;
1228 default:
1229 /* Default PHY loopback work is to read the MII
1230 * control register and assert bit 14 (loopback mode).
1232 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1233 phy_reg |= MII_CR_LOOPBACK;
1234 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1235 return 0;
1236 break;
1239 return 8;
1242 static int
1243 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1245 uint32_t rctl;
1247 if(adapter->hw.media_type == e1000_media_type_fiber ||
1248 adapter->hw.media_type == e1000_media_type_internal_serdes) {
1249 if(adapter->hw.mac_type == e1000_82545 ||
1250 adapter->hw.mac_type == e1000_82546 ||
1251 adapter->hw.mac_type == e1000_82545_rev_3 ||
1252 adapter->hw.mac_type == e1000_82546_rev_3)
1253 return e1000_set_phy_loopback(adapter);
1254 else {
1255 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1256 rctl |= E1000_RCTL_LBM_TCVR;
1257 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1258 return 0;
1260 } else if(adapter->hw.media_type == e1000_media_type_copper)
1261 return e1000_set_phy_loopback(adapter);
1263 return 7;
1266 static void
1267 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1269 uint32_t rctl;
1270 uint16_t phy_reg;
1272 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1273 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1274 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1276 if(adapter->hw.media_type == e1000_media_type_copper ||
1277 ((adapter->hw.media_type == e1000_media_type_fiber ||
1278 adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1279 (adapter->hw.mac_type == e1000_82545 ||
1280 adapter->hw.mac_type == e1000_82546 ||
1281 adapter->hw.mac_type == e1000_82545_rev_3 ||
1282 adapter->hw.mac_type == e1000_82546_rev_3))) {
1283 adapter->hw.autoneg = TRUE;
1284 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1285 if(phy_reg & MII_CR_LOOPBACK) {
1286 phy_reg &= ~MII_CR_LOOPBACK;
1287 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1288 e1000_phy_reset(&adapter->hw);
1293 static void
1294 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1296 memset(skb->data, 0xFF, frame_size);
1297 frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1298 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1299 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1300 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1303 static int
1304 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1306 frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1307 if(*(skb->data + 3) == 0xFF) {
1308 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1309 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1310 return 0;
1313 return 13;
1316 static int
1317 e1000_run_loopback_test(struct e1000_adapter *adapter)
1319 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1320 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1321 struct pci_dev *pdev = adapter->pdev;
1322 int i;
1324 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1326 for(i = 0; i < 64; i++) {
1327 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024);
1328 pci_dma_sync_single_for_device(pdev, txdr->buffer_info[i].dma,
1329 txdr->buffer_info[i].length,
1330 PCI_DMA_TODEVICE);
1332 E1000_WRITE_REG(&adapter->hw, TDT, i);
1334 msec_delay(200);
1336 pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[0].dma,
1337 rxdr->buffer_info[0].length, PCI_DMA_FROMDEVICE);
1339 return e1000_check_lbtest_frame(rxdr->buffer_info[0].skb, 1024);
1342 static int
1343 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1345 if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1346 if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1347 *data = e1000_run_loopback_test(adapter);
1348 e1000_loopback_cleanup(adapter);
1349 e1000_free_desc_rings(adapter);
1350 err_loopback:
1351 return *data;
1354 static int
1355 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1357 *data = 0;
1358 e1000_check_for_link(&adapter->hw);
1360 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1361 *data = 1;
1363 return *data;
1366 static int
1367 e1000_diag_test_count(struct net_device *netdev)
1369 return E1000_TEST_LEN;
1372 static void
1373 e1000_diag_test(struct net_device *netdev,
1374 struct ethtool_test *eth_test, uint64_t *data)
1376 struct e1000_adapter *adapter = netdev->priv;
1377 boolean_t if_running = netif_running(netdev);
1379 if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1380 /* Offline tests */
1382 /* save speed, duplex, autoneg settings */
1383 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1384 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1385 uint8_t autoneg = adapter->hw.autoneg;
1387 /* Link test performed before hardware reset so autoneg doesn't
1388 * interfere with test result */
1389 if(e1000_link_test(adapter, &data[4]))
1390 eth_test->flags |= ETH_TEST_FL_FAILED;
1392 if(if_running)
1393 e1000_down(adapter);
1394 else
1395 e1000_reset(adapter);
1397 if(e1000_reg_test(adapter, &data[0]))
1398 eth_test->flags |= ETH_TEST_FL_FAILED;
1400 e1000_reset(adapter);
1401 if(e1000_eeprom_test(adapter, &data[1]))
1402 eth_test->flags |= ETH_TEST_FL_FAILED;
1404 e1000_reset(adapter);
1405 if(e1000_intr_test(adapter, &data[2]))
1406 eth_test->flags |= ETH_TEST_FL_FAILED;
1408 e1000_reset(adapter);
1409 if(e1000_loopback_test(adapter, &data[3]))
1410 eth_test->flags |= ETH_TEST_FL_FAILED;
1412 /* restore speed, duplex, autoneg settings */
1413 adapter->hw.autoneg_advertised = autoneg_advertised;
1414 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1415 adapter->hw.autoneg = autoneg;
1417 e1000_reset(adapter);
1418 if(if_running)
1419 e1000_up(adapter);
1420 } else {
1421 /* Online tests */
1422 if(e1000_link_test(adapter, &data[4]))
1423 eth_test->flags |= ETH_TEST_FL_FAILED;
1425 /* Offline tests aren't run; pass by default */
1426 data[0] = 0;
1427 data[1] = 0;
1428 data[2] = 0;
1429 data[3] = 0;
1433 static void
1434 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1436 struct e1000_adapter *adapter = netdev->priv;
1437 struct e1000_hw *hw = &adapter->hw;
1439 switch(adapter->hw.device_id) {
1440 case E1000_DEV_ID_82542:
1441 case E1000_DEV_ID_82543GC_FIBER:
1442 case E1000_DEV_ID_82543GC_COPPER:
1443 case E1000_DEV_ID_82544EI_FIBER:
1444 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1445 wol->supported = 0;
1446 wol->wolopts = 0;
1447 return;
1449 case E1000_DEV_ID_82546EB_FIBER:
1450 case E1000_DEV_ID_82546GB_FIBER:
1451 /* Wake events only supported on port A for dual fiber */
1452 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1453 wol->supported = 0;
1454 wol->wolopts = 0;
1455 return;
1457 /* Fall Through */
1459 default:
1460 wol->supported = WAKE_UCAST | WAKE_MCAST |
1461 WAKE_BCAST | WAKE_MAGIC;
1463 wol->wolopts = 0;
1464 if(adapter->wol & E1000_WUFC_EX)
1465 wol->wolopts |= WAKE_UCAST;
1466 if(adapter->wol & E1000_WUFC_MC)
1467 wol->wolopts |= WAKE_MCAST;
1468 if(adapter->wol & E1000_WUFC_BC)
1469 wol->wolopts |= WAKE_BCAST;
1470 if(adapter->wol & E1000_WUFC_MAG)
1471 wol->wolopts |= WAKE_MAGIC;
1472 return;
1476 static int
1477 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1479 struct e1000_adapter *adapter = netdev->priv;
1480 struct e1000_hw *hw = &adapter->hw;
1482 switch(adapter->hw.device_id) {
1483 case E1000_DEV_ID_82542:
1484 case E1000_DEV_ID_82543GC_FIBER:
1485 case E1000_DEV_ID_82543GC_COPPER:
1486 case E1000_DEV_ID_82544EI_FIBER:
1487 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1488 return wol->wolopts ? -EOPNOTSUPP : 0;
1490 case E1000_DEV_ID_82546EB_FIBER:
1491 case E1000_DEV_ID_82546GB_FIBER:
1492 /* Wake events only supported on port A for dual fiber */
1493 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1494 return wol->wolopts ? -EOPNOTSUPP : 0;
1495 /* Fall Through */
1497 default:
1498 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1499 return -EOPNOTSUPP;
1501 adapter->wol = 0;
1503 if(wol->wolopts & WAKE_UCAST)
1504 adapter->wol |= E1000_WUFC_EX;
1505 if(wol->wolopts & WAKE_MCAST)
1506 adapter->wol |= E1000_WUFC_MC;
1507 if(wol->wolopts & WAKE_BCAST)
1508 adapter->wol |= E1000_WUFC_BC;
1509 if(wol->wolopts & WAKE_MAGIC)
1510 adapter->wol |= E1000_WUFC_MAG;
1513 return 0;
1516 /* toggle LED 4 times per second = 2 "blinks" per second */
1517 #define E1000_ID_INTERVAL (HZ/4)
1519 /* bit defines for adapter->led_status */
1520 #define E1000_LED_ON 0
1522 static void
1523 e1000_led_blink_callback(unsigned long data)
1525 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1527 if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1528 e1000_led_off(&adapter->hw);
1529 else
1530 e1000_led_on(&adapter->hw);
1532 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1535 static int
1536 e1000_phys_id(struct net_device *netdev, uint32_t data)
1538 struct e1000_adapter *adapter = netdev->priv;
1540 if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1541 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1543 if(!adapter->blink_timer.function) {
1544 init_timer(&adapter->blink_timer);
1545 adapter->blink_timer.function = e1000_led_blink_callback;
1546 adapter->blink_timer.data = (unsigned long) adapter;
1549 e1000_setup_led(&adapter->hw);
1550 mod_timer(&adapter->blink_timer, jiffies);
1552 set_current_state(TASK_INTERRUPTIBLE);
1554 schedule_timeout(data * HZ);
1555 del_timer_sync(&adapter->blink_timer);
1556 e1000_led_off(&adapter->hw);
1557 clear_bit(E1000_LED_ON, &adapter->led_status);
1558 e1000_cleanup_led(&adapter->hw);
1560 return 0;
1563 static int
1564 e1000_nway_reset(struct net_device *netdev)
1566 struct e1000_adapter *adapter = netdev->priv;
1567 if(netif_running(netdev)) {
1568 e1000_down(adapter);
1569 e1000_up(adapter);
1571 return 0;
1574 static int
1575 e1000_get_stats_count(struct net_device *netdev)
1577 return E1000_STATS_LEN;
1580 static void
1581 e1000_get_ethtool_stats(struct net_device *netdev,
1582 struct ethtool_stats *stats, uint64_t *data)
1584 struct e1000_adapter *adapter = netdev->priv;
1585 int i;
1587 e1000_update_stats(adapter);
1588 for(i = 0; i < E1000_STATS_LEN; i++) {
1589 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1590 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1591 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1595 static void
1596 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1598 int i;
1600 switch(stringset) {
1601 case ETH_SS_TEST:
1602 memcpy(data, *e1000_gstrings_test,
1603 E1000_TEST_LEN*ETH_GSTRING_LEN);
1604 break;
1605 case ETH_SS_STATS:
1606 for (i=0; i < E1000_STATS_LEN; i++) {
1607 memcpy(data + i * ETH_GSTRING_LEN,
1608 e1000_gstrings_stats[i].stat_string,
1609 ETH_GSTRING_LEN);
1611 break;
1615 struct ethtool_ops e1000_ethtool_ops = {
1616 .get_settings = e1000_get_settings,
1617 .set_settings = e1000_set_settings,
1618 .get_drvinfo = e1000_get_drvinfo,
1619 .get_regs_len = e1000_get_regs_len,
1620 .get_regs = e1000_get_regs,
1621 .get_wol = e1000_get_wol,
1622 .set_wol = e1000_set_wol,
1623 .get_msglevel = e1000_get_msglevel,
1624 .set_msglevel = e1000_set_msglevel,
1625 .nway_reset = e1000_nway_reset,
1626 .get_link = ethtool_op_get_link,
1627 .get_eeprom_len = e1000_get_eeprom_len,
1628 .get_eeprom = e1000_get_eeprom,
1629 .set_eeprom = e1000_set_eeprom,
1630 .get_ringparam = e1000_get_ringparam,
1631 .set_ringparam = e1000_set_ringparam,
1632 .get_pauseparam = e1000_get_pauseparam,
1633 .set_pauseparam = e1000_set_pauseparam,
1634 .get_rx_csum = e1000_get_rx_csum,
1635 .set_rx_csum = e1000_set_rx_csum,
1636 .get_tx_csum = e1000_get_tx_csum,
1637 .set_tx_csum = e1000_set_tx_csum,
1638 .get_sg = ethtool_op_get_sg,
1639 .set_sg = ethtool_op_set_sg,
1640 #ifdef NETIF_F_TSO
1641 .get_tso = ethtool_op_get_tso,
1642 .set_tso = e1000_set_tso,
1643 #endif
1644 .self_test_count = e1000_diag_test_count,
1645 .self_test = e1000_diag_test,
1646 .get_strings = e1000_get_strings,
1647 .phys_id = e1000_phys_id,
1648 .get_stats_count = e1000_get_stats_count,
1649 .get_ethtool_stats = e1000_get_ethtool_stats,
1652 void set_ethtool_ops(struct net_device *netdev)
1654 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);