initial commit with v2.6.9
[linux-2.6.9-moxart.git] / drivers / ieee1394 / eth1394.c
blob798537f68bbed3a82a67b907702dda2cda763c96
1 /*
2 * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 /* This driver intends to support RFC 2734, which describes a method for
26 * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27 * will ultimately support that method, but currently falls short in
28 * several areas.
30 * TODO:
31 * RFC 2734 related:
32 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
34 * Non-RFC 2734 related:
35 * - Handle fragmented skb's coming from the networking layer.
36 * - Move generic GASP reception to core 1394 code
37 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38 * - Stability improvements
39 * - Performance enhancements
40 * - Consider garbage collecting old partial datagrams after X amount of time
44 #include <linux/module.h>
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/slab.h>
49 #include <linux/errno.h>
50 #include <linux/types.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
54 #include <linux/netdevice.h>
55 #include <linux/inetdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/if_arp.h>
58 #include <linux/if_ether.h>
59 #include <linux/ip.h>
60 #include <linux/in.h>
61 #include <linux/tcp.h>
62 #include <linux/skbuff.h>
63 #include <linux/bitops.h>
64 #include <linux/ethtool.h>
65 #include <asm/uaccess.h>
66 #include <asm/delay.h>
67 #include <asm/semaphore.h>
68 #include <net/arp.h>
70 #include "csr1212.h"
71 #include "ieee1394_types.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_transactions.h"
74 #include "ieee1394.h"
75 #include "highlevel.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78 #include "eth1394.h"
79 #include "config_roms.h"
81 #define ETH1394_PRINT_G(level, fmt, args...) \
82 printk(level "%s: " fmt, driver_name, ## args)
84 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
85 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
87 #define DEBUG(fmt, args...) \
88 printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
91 static char version[] __devinitdata =
92 "$Rev: 1224 $ Ben Collins <bcollins@debian.org>";
94 struct fragment_info {
95 struct list_head list;
96 int offset;
97 int len;
100 struct partial_datagram {
101 struct list_head list;
102 u16 dgl;
103 u16 dg_size;
104 u16 ether_type;
105 struct sk_buff *skb;
106 char *pbuf;
107 struct list_head frag_info;
110 struct pdg_list {
111 struct list_head list; /* partial datagram list per node */
112 unsigned int sz; /* partial datagram list size per node */
113 spinlock_t lock; /* partial datagram lock */
116 struct eth1394_host_info {
117 struct hpsb_host *host;
118 struct net_device *dev;
121 struct eth1394_node_ref {
122 struct unit_directory *ud;
123 struct list_head list;
126 struct eth1394_node_info {
127 u16 maxpayload; /* Max payload */
128 u8 sspd; /* Max speed */
129 u64 fifo; /* FIFO address */
130 struct pdg_list pdg; /* partial RX datagram lists */
131 int dgl; /* Outgoing datagram label */
134 /* Our ieee1394 highlevel driver */
135 #define ETH1394_DRIVER_NAME "eth1394"
136 static const char driver_name[] = ETH1394_DRIVER_NAME;
138 static kmem_cache_t *packet_task_cache;
140 static struct hpsb_highlevel eth1394_highlevel;
142 /* Use common.lf to determine header len */
143 static const int hdr_type_len[] = {
144 sizeof (struct eth1394_uf_hdr),
145 sizeof (struct eth1394_ff_hdr),
146 sizeof (struct eth1394_sf_hdr),
147 sizeof (struct eth1394_sf_hdr)
150 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
151 #define ETH1394_SPEED_DEF IEEE1394_SPEED_MAX
153 /* For now, this needs to be 1500, so that XP works with us */
154 #define ETH1394_DATA_LEN ETH_DATA_LEN
156 static const u16 eth1394_speedto_maxpayload[] = {
157 /* S100, S200, S400, S800, S1600, S3200 */
158 512, 1024, 2048, 4096, 4096, 4096
161 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
162 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
163 MODULE_LICENSE("GPL");
165 /* The max_partial_datagrams parameter is the maximum number of fragmented
166 * datagrams per node that eth1394 will keep in memory. Providing an upper
167 * bound allows us to limit the amount of memory that partial datagrams
168 * consume in the event that some partial datagrams are never completed. This
169 * should probably change to a sysctl item or the like if possible.
171 MODULE_PARM(max_partial_datagrams, "i");
172 MODULE_PARM_DESC(max_partial_datagrams,
173 "Maximum number of partially received fragmented datagrams "
174 "(default = 25).");
175 static int max_partial_datagrams = 25;
178 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
179 unsigned short type, void *daddr, void *saddr,
180 unsigned len);
181 static int ether1394_rebuild_header(struct sk_buff *skb);
182 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
183 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
184 static void ether1394_header_cache_update(struct hh_cache *hh,
185 struct net_device *dev,
186 unsigned char * haddr);
187 static int ether1394_mac_addr(struct net_device *dev, void *p);
189 static inline void purge_partial_datagram(struct list_head *old);
190 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
191 static void ether1394_iso(struct hpsb_iso *iso);
193 static int ether1394_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
194 static int ether1394_ethtool_ioctl(struct net_device *dev, void __user *useraddr);
196 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
197 quadlet_t *data, u64 addr, size_t len, u16 flags);
198 static void ether1394_add_host (struct hpsb_host *host);
199 static void ether1394_remove_host (struct hpsb_host *host);
200 static void ether1394_host_reset (struct hpsb_host *host);
202 /* Function for incoming 1394 packets */
203 static struct hpsb_address_ops addr_ops = {
204 .write = ether1394_write,
207 /* Ieee1394 highlevel driver functions */
208 static struct hpsb_highlevel eth1394_highlevel = {
209 .name = driver_name,
210 .add_host = ether1394_add_host,
211 .remove_host = ether1394_remove_host,
212 .host_reset = ether1394_host_reset,
216 /* This is called after an "ifup" */
217 static int ether1394_open (struct net_device *dev)
219 struct eth1394_priv *priv = dev->priv;
220 int ret = 0;
222 /* Something bad happened, don't even try */
223 if (priv->bc_state == ETHER1394_BC_ERROR) {
224 /* we'll try again */
225 priv->iso = hpsb_iso_recv_init(priv->host,
226 ETHER1394_GASP_BUFFERS * 2 *
227 (1 << (priv->host->csr.max_rec +
228 1)),
229 ETHER1394_GASP_BUFFERS,
230 priv->broadcast_channel,
231 HPSB_ISO_DMA_PACKET_PER_BUFFER,
232 1, ether1394_iso);
233 if (priv->iso == NULL) {
234 ETH1394_PRINT(KERN_ERR, dev->name,
235 "Could not allocate isochronous receive "
236 "context for the broadcast channel\n");
237 priv->bc_state = ETHER1394_BC_ERROR;
238 ret = -EAGAIN;
239 } else {
240 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
241 priv->bc_state = ETHER1394_BC_STOPPED;
242 else
243 priv->bc_state = ETHER1394_BC_RUNNING;
247 if (ret)
248 return ret;
250 netif_start_queue (dev);
251 return 0;
254 /* This is called after an "ifdown" */
255 static int ether1394_stop (struct net_device *dev)
257 netif_stop_queue (dev);
258 return 0;
261 /* Return statistics to the caller */
262 static struct net_device_stats *ether1394_stats (struct net_device *dev)
264 return &(((struct eth1394_priv *)dev->priv)->stats);
267 /* What to do if we timeout. I think a host reset is probably in order, so
268 * that's what we do. Should we increment the stat counters too? */
269 static void ether1394_tx_timeout (struct net_device *dev)
271 ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
272 ((struct eth1394_priv *)(dev->priv))->host->driver->name);
274 highlevel_host_reset (((struct eth1394_priv *)(dev->priv))->host);
276 netif_wake_queue (dev);
279 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
281 struct eth1394_priv *priv = dev->priv;
283 if ((new_mtu < 68) ||
284 (new_mtu > min(ETH1394_DATA_LEN,
285 (int)((1 << (priv->host->csr.max_rec + 1)) -
286 (sizeof(union eth1394_hdr) +
287 ETHER1394_GASP_OVERHEAD)))))
288 return -EINVAL;
289 dev->mtu = new_mtu;
290 return 0;
293 static inline void purge_partial_datagram(struct list_head *old)
295 struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
296 struct list_head *lh, *n;
298 list_for_each_safe(lh, n, &pd->frag_info) {
299 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
300 list_del(lh);
301 kfree(fi);
303 list_del(old);
304 kfree_skb(pd->skb);
305 kfree(pd);
308 /******************************************
309 * 1394 bus activity functions
310 ******************************************/
312 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
313 struct unit_directory *ud)
315 struct eth1394_node_ref *node;
317 list_for_each_entry(node, inl, list)
318 if (node->ud == ud)
319 return node;
321 return NULL;
324 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
325 u64 guid)
327 struct eth1394_node_ref *node;
329 list_for_each_entry(node, inl, list)
330 if (node->ud->ne->guid == guid)
331 return node;
333 return NULL;
336 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
337 nodeid_t nodeid)
339 struct eth1394_node_ref *node;
340 list_for_each_entry(node, inl, list) {
341 if (node->ud->ne->nodeid == nodeid)
342 return node;
345 return NULL;
348 static int eth1394_probe(struct device *dev)
350 struct unit_directory *ud;
351 struct eth1394_host_info *hi;
352 struct eth1394_priv *priv;
353 struct eth1394_node_ref *new_node;
354 struct eth1394_node_info *node_info;
356 ud = container_of(dev, struct unit_directory, device);
358 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
359 if (!hi)
360 return -ENOENT;
362 new_node = kmalloc(sizeof(struct eth1394_node_ref),
363 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
364 if (!new_node)
365 return -ENOMEM;
367 node_info = kmalloc(sizeof(struct eth1394_node_info),
368 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
369 if (!node_info) {
370 kfree(new_node);
371 return -ENOMEM;
374 spin_lock_init(&node_info->pdg.lock);
375 INIT_LIST_HEAD(&node_info->pdg.list);
376 node_info->pdg.sz = 0;
377 node_info->fifo = ETHER1394_INVALID_ADDR;
379 ud->device.driver_data = node_info;
380 new_node->ud = ud;
382 priv = (struct eth1394_priv *)hi->dev->priv;
383 list_add_tail(&new_node->list, &priv->ip_node_list);
385 return 0;
388 static int eth1394_remove(struct device *dev)
390 struct unit_directory *ud;
391 struct eth1394_host_info *hi;
392 struct eth1394_priv *priv;
393 struct eth1394_node_ref *old_node;
394 struct eth1394_node_info *node_info;
395 struct list_head *lh, *n;
396 unsigned long flags;
398 ud = container_of(dev, struct unit_directory, device);
399 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
400 if (!hi)
401 return -ENOENT;
403 priv = (struct eth1394_priv *)hi->dev->priv;
405 old_node = eth1394_find_node(&priv->ip_node_list, ud);
407 if (old_node) {
408 list_del(&old_node->list);
409 kfree(old_node);
411 node_info = (struct eth1394_node_info*)ud->device.driver_data;
413 spin_lock_irqsave(&node_info->pdg.lock, flags);
414 /* The partial datagram list should be empty, but we'll just
415 * make sure anyway... */
416 list_for_each_safe(lh, n, &node_info->pdg.list) {
417 purge_partial_datagram(lh);
419 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
421 kfree(node_info);
422 ud->device.driver_data = NULL;
424 return 0;
427 static int eth1394_update(struct unit_directory *ud)
429 struct eth1394_host_info *hi;
430 struct eth1394_priv *priv;
431 struct eth1394_node_ref *node;
432 struct eth1394_node_info *node_info;
434 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
435 if (!hi)
436 return -ENOENT;
438 priv = (struct eth1394_priv *)hi->dev->priv;
440 node = eth1394_find_node(&priv->ip_node_list, ud);
442 if (!node) {
443 node = kmalloc(sizeof(struct eth1394_node_ref),
444 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
445 if (!node)
446 return -ENOMEM;
448 node_info = kmalloc(sizeof(struct eth1394_node_info),
449 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
450 if (!node_info) {
451 kfree(node);
452 return -ENOMEM;
455 spin_lock_init(&node_info->pdg.lock);
456 INIT_LIST_HEAD(&node_info->pdg.list);
457 node_info->pdg.sz = 0;
459 ud->device.driver_data = node_info;
460 node->ud = ud;
462 priv = (struct eth1394_priv *)hi->dev->priv;
463 list_add_tail(&node->list, &priv->ip_node_list);
466 return 0;
470 static struct ieee1394_device_id eth1394_id_table[] = {
472 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
473 IEEE1394_MATCH_VERSION),
474 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
475 .version = ETHER1394_GASP_VERSION,
480 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
482 static struct hpsb_protocol_driver eth1394_proto_driver = {
483 .name = "IPv4 over 1394 Driver",
484 .id_table = eth1394_id_table,
485 .update = eth1394_update,
486 .driver = {
487 .name = ETH1394_DRIVER_NAME,
488 .bus = &ieee1394_bus_type,
489 .probe = eth1394_probe,
490 .remove = eth1394_remove,
495 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
497 unsigned long flags;
498 int i;
499 struct eth1394_priv *priv = dev->priv;
500 struct hpsb_host *host = priv->host;
501 u64 guid = *((u64*)&(host->csr.rom->bus_info_data[3]));
502 u16 maxpayload = 1 << (host->csr.max_rec + 1);
503 int max_speed = IEEE1394_SPEED_MAX;
505 spin_lock_irqsave (&priv->lock, flags);
507 memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
508 priv->bc_maxpayload = 512;
510 /* Determine speed limit */
511 for (i = 0; i < host->node_count; i++)
512 if (max_speed > host->speed_map[NODEID_TO_NODE(host->node_id) *
513 64 + i])
514 max_speed = host->speed_map[NODEID_TO_NODE(host->node_id) *
515 64 + i];
516 priv->bc_sspd = max_speed;
518 /* We'll use our maxpayload as the default mtu */
519 if (set_mtu) {
520 dev->mtu = min(ETH1394_DATA_LEN,
521 (int)(maxpayload -
522 (sizeof(union eth1394_hdr) +
523 ETHER1394_GASP_OVERHEAD)));
525 /* Set our hardware address while we're at it */
526 *(u64*)dev->dev_addr = guid;
527 *(u64*)dev->broadcast = ~0x0ULL;
530 spin_unlock_irqrestore (&priv->lock, flags);
533 /* This function is called right before register_netdev */
534 static void ether1394_init_dev (struct net_device *dev)
536 /* Our functions */
537 dev->open = ether1394_open;
538 dev->stop = ether1394_stop;
539 dev->hard_start_xmit = ether1394_tx;
540 dev->get_stats = ether1394_stats;
541 dev->tx_timeout = ether1394_tx_timeout;
542 dev->change_mtu = ether1394_change_mtu;
544 dev->hard_header = ether1394_header;
545 dev->rebuild_header = ether1394_rebuild_header;
546 dev->hard_header_cache = ether1394_header_cache;
547 dev->header_cache_update= ether1394_header_cache_update;
548 dev->hard_header_parse = ether1394_header_parse;
549 dev->set_mac_address = ether1394_mac_addr;
550 dev->do_ioctl = ether1394_do_ioctl;
552 /* Some constants */
553 dev->watchdog_timeo = ETHER1394_TIMEOUT;
554 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
555 dev->features = NETIF_F_HIGHDMA;
556 dev->addr_len = ETH1394_ALEN;
557 dev->hard_header_len = ETH1394_HLEN;
558 dev->type = ARPHRD_IEEE1394;
560 ether1394_reset_priv (dev, 1);
564 * This function is called every time a card is found. It is generally called
565 * when the module is installed. This is where we add all of our ethernet
566 * devices. One for each host.
568 static void ether1394_add_host (struct hpsb_host *host)
570 struct eth1394_host_info *hi = NULL;
571 struct net_device *dev = NULL;
572 struct eth1394_priv *priv;
573 static int version_printed = 0;
574 u64 fifo_addr;
576 if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
577 return;
579 fifo_addr = hpsb_allocate_and_register_addrspace(&eth1394_highlevel,
580 host,
581 &addr_ops,
582 ETHER1394_REGION_ADDR_LEN,
583 ETHER1394_REGION_ADDR_LEN,
584 -1, -1);
585 if (fifo_addr == ~0ULL)
586 goto out;
588 if (version_printed++ == 0)
589 ETH1394_PRINT_G (KERN_INFO, "%s\n", version);
591 /* We should really have our own alloc_hpsbdev() function in
592 * net_init.c instead of calling the one for ethernet then hijacking
593 * it for ourselves. That way we'd be a real networking device. */
594 dev = alloc_etherdev(sizeof (struct eth1394_priv));
596 if (dev == NULL) {
597 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
598 "etherdevice for IEEE 1394 device %s-%d\n",
599 host->driver->name, host->id);
600 goto out;
603 SET_MODULE_OWNER(dev);
605 priv = (struct eth1394_priv *)dev->priv;
607 INIT_LIST_HEAD(&priv->ip_node_list);
609 spin_lock_init(&priv->lock);
610 priv->host = host;
611 priv->local_fifo = fifo_addr;
613 hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
615 if (hi == NULL) {
616 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
617 "hostinfo for IEEE 1394 device %s-%d\n",
618 host->driver->name, host->id);
619 goto out;
622 ether1394_init_dev(dev);
624 if (register_netdev (dev)) {
625 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
626 goto out;
629 ETH1394_PRINT (KERN_ERR, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
630 host->id);
632 hi->host = host;
633 hi->dev = dev;
635 /* Ignore validity in hopes that it will be set in the future. It'll
636 * be checked when the eth device is opened. */
637 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
639 priv->iso = hpsb_iso_recv_init(host, (ETHER1394_GASP_BUFFERS * 2 *
640 (1 << (host->csr.max_rec + 1))),
641 ETHER1394_GASP_BUFFERS,
642 priv->broadcast_channel,
643 HPSB_ISO_DMA_PACKET_PER_BUFFER,
644 1, ether1394_iso);
645 if (priv->iso == NULL) {
646 ETH1394_PRINT(KERN_ERR, dev->name,
647 "Could not allocate isochronous receive context "
648 "for the broadcast channel\n");
649 priv->bc_state = ETHER1394_BC_ERROR;
650 } else {
651 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
652 priv->bc_state = ETHER1394_BC_STOPPED;
653 else
654 priv->bc_state = ETHER1394_BC_RUNNING;
657 return;
659 out:
660 if (dev != NULL)
661 free_netdev(dev);
662 if (hi)
663 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
665 return;
668 /* Remove a card from our list */
669 static void ether1394_remove_host (struct hpsb_host *host)
671 struct eth1394_host_info *hi;
673 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
674 if (hi != NULL) {
675 struct eth1394_priv *priv = (struct eth1394_priv *)hi->dev->priv;
677 hpsb_unregister_addrspace(&eth1394_highlevel, host,
678 priv->local_fifo);
680 if (priv->iso != NULL)
681 hpsb_iso_shutdown(priv->iso);
683 if (hi->dev) {
684 unregister_netdev (hi->dev);
685 free_netdev(hi->dev);
689 return;
692 /* A reset has just arisen */
693 static void ether1394_host_reset (struct hpsb_host *host)
695 struct eth1394_host_info *hi;
696 struct eth1394_priv *priv;
697 struct net_device *dev;
698 struct list_head *lh, *n;
699 struct eth1394_node_ref *node;
700 struct eth1394_node_info *node_info;
701 unsigned long flags;
703 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
705 /* This can happen for hosts that we don't use */
706 if (hi == NULL)
707 return;
709 dev = hi->dev;
710 priv = (struct eth1394_priv *)dev->priv;
712 /* Reset our private host data, but not our mtu */
713 netif_stop_queue (dev);
714 ether1394_reset_priv (dev, 0);
716 list_for_each_entry(node, &priv->ip_node_list, list) {
717 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
719 spin_lock_irqsave(&node_info->pdg.lock, flags);
721 list_for_each_safe(lh, n, &node_info->pdg.list) {
722 purge_partial_datagram(lh);
725 INIT_LIST_HEAD(&(node_info->pdg.list));
726 node_info->pdg.sz = 0;
728 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
731 netif_wake_queue (dev);
734 /******************************************
735 * HW Header net device functions
736 ******************************************/
737 /* These functions have been adapted from net/ethernet/eth.c */
740 /* Create a fake MAC header for an arbitrary protocol layer.
741 * saddr=NULL means use device source address
742 * daddr=NULL means leave destination address (eg unresolved arp). */
743 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
744 unsigned short type, void *daddr, void *saddr,
745 unsigned len)
747 struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
749 eth->h_proto = htons(type);
751 if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
752 memset(eth->h_dest, 0, dev->addr_len);
753 return(dev->hard_header_len);
756 if (daddr) {
757 memcpy(eth->h_dest,daddr,dev->addr_len);
758 return dev->hard_header_len;
761 return -dev->hard_header_len;
766 /* Rebuild the faked MAC header. This is called after an ARP
767 * (or in future other address resolution) has completed on this
768 * sk_buff. We now let ARP fill in the other fields.
770 * This routine CANNOT use cached dst->neigh!
771 * Really, it is used only when dst->neigh is wrong.
773 static int ether1394_rebuild_header(struct sk_buff *skb)
775 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
776 struct net_device *dev = skb->dev;
778 switch (eth->h_proto) {
780 #ifdef CONFIG_INET
781 case __constant_htons(ETH_P_IP):
782 return arp_find((unsigned char*)&eth->h_dest, skb);
783 #endif
784 default:
785 ETH1394_PRINT(KERN_DEBUG, dev->name,
786 "unable to resolve type %04x addresses.\n",
787 eth->h_proto);
788 break;
791 return 0;
794 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
796 struct net_device *dev = skb->dev;
797 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
798 return ETH1394_ALEN;
802 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
804 unsigned short type = hh->hh_type;
805 struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
806 (16 - ETH1394_HLEN));
807 struct net_device *dev = neigh->dev;
809 if (type == __constant_htons(ETH_P_802_3)) {
810 return -1;
813 eth->h_proto = type;
814 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
816 hh->hh_len = ETH1394_HLEN;
817 return 0;
820 /* Called by Address Resolution module to notify changes in address. */
821 static void ether1394_header_cache_update(struct hh_cache *hh,
822 struct net_device *dev,
823 unsigned char * haddr)
825 memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
828 static int ether1394_mac_addr(struct net_device *dev, void *p)
830 if (netif_running(dev))
831 return -EBUSY;
833 /* Not going to allow setting the MAC address, we really need to use
834 * the real one supplied by the hardware */
835 return -EINVAL;
840 /******************************************
841 * Datagram reception code
842 ******************************************/
844 /* Copied from net/ethernet/eth.c */
845 static inline u16 ether1394_type_trans(struct sk_buff *skb,
846 struct net_device *dev)
848 struct eth1394hdr *eth;
849 unsigned char *rawp;
851 skb->mac.raw = skb->data;
852 skb_pull (skb, ETH1394_HLEN);
853 eth = eth1394_hdr(skb);
855 if (*eth->h_dest & 1) {
856 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
857 skb->pkt_type = PACKET_BROADCAST;
858 #if 0
859 else
860 skb->pkt_type = PACKET_MULTICAST;
861 #endif
862 } else {
863 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
864 skb->pkt_type = PACKET_OTHERHOST;
867 if (ntohs (eth->h_proto) >= 1536)
868 return eth->h_proto;
870 rawp = skb->data;
872 if (*(unsigned short *)rawp == 0xFFFF)
873 return htons (ETH_P_802_3);
875 return htons (ETH_P_802_2);
878 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
879 * We also perform ARP translation here, if need be. */
880 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
881 struct net_device *dev,
882 nodeid_t srcid, nodeid_t destid,
883 u16 ether_type)
885 struct eth1394_priv *priv = dev->priv;
886 u64 dest_hw;
887 unsigned short ret = 0;
889 /* Setup our hw addresses. We use these to build the
890 * ethernet header. */
891 if (destid == (LOCAL_BUS | ALL_NODES))
892 dest_hw = ~0ULL; /* broadcast */
893 else
894 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
895 priv->host->csr.guid_lo);
897 /* If this is an ARP packet, convert it. First, we want to make
898 * use of some of the fields, since they tell us a little bit
899 * about the sending machine. */
900 if (ether_type == __constant_htons (ETH_P_ARP)) {
901 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
902 struct arphdr *arp = (struct arphdr *)skb->data;
903 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
904 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
905 ntohl(arp1394->fifo_lo);
906 u8 max_rec = min(priv->host->csr.max_rec,
907 (u8)(arp1394->max_rec));
908 int sspd = arp1394->sspd;
909 u16 maxpayload;
910 struct eth1394_node_ref *node;
911 struct eth1394_node_info *node_info;
913 /* Sanity check. MacOSX seems to be sending us 131 in this
914 * field (atleast on my Panther G5). Not sure why. */
915 if (sspd > 5 || sspd < 0)
916 sspd = 0;
918 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
920 node = eth1394_find_node_guid(&priv->ip_node_list,
921 be64_to_cpu(arp1394->s_uniq_id));
922 if (!node) {
923 return 0;
926 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
928 /* Update our speed/payload/fifo_offset table */
929 node_info->maxpayload = maxpayload;
930 node_info->sspd = sspd;
931 node_info->fifo = fifo_addr;
933 /* Now that we're done with the 1394 specific stuff, we'll
934 * need to alter some of the data. Believe it or not, all
935 * that needs to be done is sender_IP_address needs to be
936 * moved, the destination hardware address get stuffed
937 * in and the hardware address length set to 8.
939 * IMPORTANT: The code below overwrites 1394 specific data
940 * needed above so keep the munging of the data for the
941 * higher level IP stack last. */
943 arp->ar_hln = 8;
944 arp_ptr += arp->ar_hln; /* skip over sender unique id */
945 *(u32*)arp_ptr = arp1394->sip; /* move sender IP addr */
946 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
948 if (arp->ar_op == 1)
949 /* just set ARP req target unique ID to 0 */
950 *((u64*)arp_ptr) = 0;
951 else
952 *((u64*)arp_ptr) = *((u64*)dev->dev_addr);
955 /* Now add the ethernet header. */
956 if (dev->hard_header (skb, dev, __constant_ntohs (ether_type),
957 &dest_hw, NULL, skb->len) >= 0)
958 ret = ether1394_type_trans(skb, dev);
960 return ret;
963 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
965 struct fragment_info *fi;
967 list_for_each_entry(fi, frag_list, list) {
968 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
969 ((offset + len - 1) < fi->offset)))
970 return 1;
972 return 0;
975 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
977 struct partial_datagram *pd;
979 list_for_each_entry(pd, pdgl, list) {
980 if (pd->dgl == dgl)
981 return &pd->list;
983 return NULL;
986 /* Assumes that new fragment does not overlap any existing fragments */
987 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
989 struct list_head *lh;
990 struct fragment_info *fi, *fi2, *new;
992 list_for_each(lh, frag_info) {
993 fi = list_entry(lh, struct fragment_info, list);
994 if ((fi->offset + fi->len) == offset) {
995 /* The new fragment can be tacked on to the end */
996 fi->len += len;
997 /* Did the new fragment plug a hole? */
998 fi2 = list_entry(lh->next, struct fragment_info, list);
999 if ((fi->offset + fi->len) == fi2->offset) {
1000 /* glue fragments together */
1001 fi->len += fi2->len;
1002 list_del(lh->next);
1003 kfree(fi2);
1005 return 0;
1006 } else if ((offset + len) == fi->offset) {
1007 /* The new fragment can be tacked on to the beginning */
1008 fi->offset = offset;
1009 fi->len += len;
1010 /* Did the new fragment plug a hole? */
1011 fi2 = list_entry(lh->prev, struct fragment_info, list);
1012 if ((fi2->offset + fi2->len) == fi->offset) {
1013 /* glue fragments together */
1014 fi2->len += fi->len;
1015 list_del(lh);
1016 kfree(fi);
1018 return 0;
1019 } else if (offset > (fi->offset + fi->len)) {
1020 break;
1021 } else if ((offset + len) < fi->offset) {
1022 lh = lh->prev;
1023 break;
1027 new = kmalloc(sizeof(struct fragment_info), GFP_ATOMIC);
1028 if (!new)
1029 return -ENOMEM;
1031 new->offset = offset;
1032 new->len = len;
1034 list_add(&new->list, lh);
1036 return 0;
1039 static inline int new_partial_datagram(struct net_device *dev,
1040 struct list_head *pdgl, int dgl,
1041 int dg_size, char *frag_buf,
1042 int frag_off, int frag_len)
1044 struct partial_datagram *new;
1046 new = kmalloc(sizeof(struct partial_datagram), GFP_ATOMIC);
1047 if (!new)
1048 return -ENOMEM;
1050 INIT_LIST_HEAD(&new->frag_info);
1052 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1053 kfree(new);
1054 return -ENOMEM;
1057 new->dgl = dgl;
1058 new->dg_size = dg_size;
1060 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1061 if (!new->skb) {
1062 struct fragment_info *fi = list_entry(new->frag_info.next,
1063 struct fragment_info,
1064 list);
1065 kfree(fi);
1066 kfree(new);
1067 return -ENOMEM;
1070 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1071 new->pbuf = skb_put(new->skb, dg_size);
1072 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1074 list_add(&new->list, pdgl);
1076 return 0;
1079 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1080 char *frag_buf, int frag_off, int frag_len)
1082 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1084 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1085 return -ENOMEM;
1088 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1090 /* Move list entry to beginnig of list so that oldest partial
1091 * datagrams percolate to the end of the list */
1092 list_del(lh);
1093 list_add(lh, pdgl);
1095 return 0;
1098 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1100 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1101 struct fragment_info *fi = list_entry(pd->frag_info.next,
1102 struct fragment_info, list);
1104 return (fi->len == dg_size);
1107 /* Packet reception. We convert the IP1394 encapsulation header to an
1108 * ethernet header, and fill it with some of our other fields. This is
1109 * an incoming packet from the 1394 bus. */
1110 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1111 char *buf, int len)
1113 struct sk_buff *skb;
1114 unsigned long flags;
1115 struct eth1394_priv *priv = (struct eth1394_priv *)dev->priv;
1116 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1117 u16 ether_type = 0; /* initialized to clear warning */
1118 int hdr_len;
1119 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1120 struct eth1394_node_info *node_info;
1122 if (!ud) {
1123 struct eth1394_node_ref *node;
1124 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1125 if (!node) {
1126 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1127 "lookup failure: " NODE_BUS_FMT,
1128 NODE_BUS_ARGS(priv->host, srcid));
1129 priv->stats.rx_dropped++;
1130 return -1;
1132 ud = node->ud;
1134 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1137 node_info = (struct eth1394_node_info*)ud->device.driver_data;
1139 /* First, did we receive a fragmented or unfragmented datagram? */
1140 hdr->words.word1 = ntohs(hdr->words.word1);
1142 hdr_len = hdr_type_len[hdr->common.lf];
1144 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1145 /* An unfragmented datagram has been received by the ieee1394
1146 * bus. Build an skbuff around it so we can pass it to the
1147 * high level network layer. */
1149 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1150 if (!skb) {
1151 HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1152 priv->stats.rx_dropped++;
1153 return -1;
1155 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1156 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1157 ether_type = hdr->uf.ether_type;
1158 } else {
1159 /* A datagram fragment has been received, now the fun begins. */
1161 struct list_head *pdgl, *lh;
1162 struct partial_datagram *pd;
1163 int fg_off;
1164 int fg_len = len - hdr_len;
1165 int dg_size;
1166 int dgl;
1167 int retval;
1168 struct pdg_list *pdg = &(node_info->pdg);
1170 hdr->words.word3 = ntohs(hdr->words.word3);
1171 /* The 4th header word is reserved so no need to do ntohs() */
1173 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1174 ether_type = hdr->ff.ether_type;
1175 dgl = hdr->ff.dgl;
1176 dg_size = hdr->ff.dg_size + 1;
1177 fg_off = 0;
1178 } else {
1179 hdr->words.word2 = ntohs(hdr->words.word2);
1180 dgl = hdr->sf.dgl;
1181 dg_size = hdr->sf.dg_size + 1;
1182 fg_off = hdr->sf.fg_off;
1184 spin_lock_irqsave(&pdg->lock, flags);
1186 pdgl = &(pdg->list);
1187 lh = find_partial_datagram(pdgl, dgl);
1189 if (lh == NULL) {
1190 if (pdg->sz == max_partial_datagrams) {
1191 /* remove the oldest */
1192 purge_partial_datagram(pdgl->prev);
1193 pdg->sz--;
1196 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1197 buf + hdr_len, fg_off,
1198 fg_len);
1199 if (retval < 0) {
1200 spin_unlock_irqrestore(&pdg->lock, flags);
1201 goto bad_proto;
1203 pdg->sz++;
1204 lh = find_partial_datagram(pdgl, dgl);
1205 } else {
1206 struct partial_datagram *pd;
1208 pd = list_entry(lh, struct partial_datagram, list);
1210 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1211 /* Overlapping fragments, obliterate old
1212 * datagram and start new one. */
1213 purge_partial_datagram(lh);
1214 retval = new_partial_datagram(dev, pdgl, dgl,
1215 dg_size,
1216 buf + hdr_len,
1217 fg_off, fg_len);
1218 if (retval < 0) {
1219 pdg->sz--;
1220 spin_unlock_irqrestore(&pdg->lock, flags);
1221 goto bad_proto;
1223 } else {
1224 retval = update_partial_datagram(pdgl, lh,
1225 buf + hdr_len,
1226 fg_off, fg_len);
1227 if (retval < 0) {
1228 /* Couldn't save off fragment anyway
1229 * so might as well obliterate the
1230 * datagram now. */
1231 purge_partial_datagram(lh);
1232 pdg->sz--;
1233 spin_unlock_irqrestore(&pdg->lock, flags);
1234 goto bad_proto;
1236 } /* fragment overlap */
1237 } /* new datagram or add to existing one */
1239 pd = list_entry(lh, struct partial_datagram, list);
1241 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1242 pd->ether_type = ether_type;
1245 if (is_datagram_complete(lh, dg_size)) {
1246 ether_type = pd->ether_type;
1247 pdg->sz--;
1248 skb = skb_get(pd->skb);
1249 purge_partial_datagram(lh);
1250 spin_unlock_irqrestore(&pdg->lock, flags);
1251 } else {
1252 /* Datagram is not complete, we're done for the
1253 * moment. */
1254 spin_unlock_irqrestore(&pdg->lock, flags);
1255 return 0;
1257 } /* unframgented datagram or fragmented one */
1259 /* Write metadata, and then pass to the receive level */
1260 skb->dev = dev;
1261 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1263 /* Parse the encapsulation header. This actually does the job of
1264 * converting to an ethernet frame header, aswell as arp
1265 * conversion if needed. ARP conversion is easier in this
1266 * direction, since we are using ethernet as our backend. */
1267 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1268 ether_type);
1271 spin_lock_irqsave(&priv->lock, flags);
1272 if (!skb->protocol) {
1273 priv->stats.rx_errors++;
1274 priv->stats.rx_dropped++;
1275 dev_kfree_skb_any(skb);
1276 goto bad_proto;
1279 if (netif_rx(skb) == NET_RX_DROP) {
1280 priv->stats.rx_errors++;
1281 priv->stats.rx_dropped++;
1282 goto bad_proto;
1285 /* Statistics */
1286 priv->stats.rx_packets++;
1287 priv->stats.rx_bytes += skb->len;
1289 bad_proto:
1290 if (netif_queue_stopped(dev))
1291 netif_wake_queue(dev);
1292 spin_unlock_irqrestore(&priv->lock, flags);
1294 dev->last_rx = jiffies;
1296 return 0;
1299 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1300 quadlet_t *data, u64 addr, size_t len, u16 flags)
1302 struct eth1394_host_info *hi;
1304 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1305 if (hi == NULL) {
1306 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1307 host->driver->name);
1308 return RCODE_ADDRESS_ERROR;
1311 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1312 return RCODE_ADDRESS_ERROR;
1313 else
1314 return RCODE_COMPLETE;
1317 static void ether1394_iso(struct hpsb_iso *iso)
1319 quadlet_t *data;
1320 char *buf;
1321 struct eth1394_host_info *hi;
1322 struct net_device *dev;
1323 struct eth1394_priv *priv;
1324 unsigned int len;
1325 u32 specifier_id;
1326 u16 source_id;
1327 int i;
1328 int nready;
1330 hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1331 if (hi == NULL) {
1332 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1333 iso->host->driver->name);
1334 return;
1337 dev = hi->dev;
1339 nready = hpsb_iso_n_ready(iso);
1340 for (i = 0; i < nready; i++) {
1341 struct hpsb_iso_packet_info *info =
1342 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1343 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1345 /* skip over GASP header */
1346 buf = (char *)data + 8;
1347 len = info->len - 8;
1349 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1350 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1351 source_id = be32_to_cpu(data[0]) >> 16;
1353 priv = (struct eth1394_priv *)dev->priv;
1355 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1356 specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1357 /* This packet is not for us */
1358 continue;
1360 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1361 buf, len);
1364 hpsb_iso_recv_release_packets(iso, i);
1366 dev->last_rx = jiffies;
1369 /******************************************
1370 * Datagram transmission code
1371 ******************************************/
1373 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1374 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1375 * needs to be munged a bit. The remainder of the arphdr is formatted based
1376 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1377 * judge.
1379 * Now that the EUI is used for the hardware address all we need to do to make
1380 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1381 * speed, and unicast FIFO address information between the sender_unique_id
1382 * and the IP addresses.
1384 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1385 struct net_device *dev)
1387 struct eth1394_priv *priv = (struct eth1394_priv *)(dev->priv);
1389 struct arphdr *arp = (struct arphdr *)skb->data;
1390 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1391 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1393 /* Believe it or not, all that need to happen is sender IP get moved
1394 * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo. */
1395 arp1394->hw_addr_len = 16;
1396 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1397 arp1394->max_rec = priv->host->csr.max_rec;
1398 arp1394->sspd = priv->host->csr.lnk_spd;
1399 arp1394->fifo_hi = htons (priv->local_fifo >> 32);
1400 arp1394->fifo_lo = htonl (priv->local_fifo & ~0x0);
1402 return;
1405 /* We need to encapsulate the standard header with our own. We use the
1406 * ethernet header's proto for our own. */
1407 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1408 int proto,
1409 union eth1394_hdr *hdr,
1410 u16 dg_size, u16 dgl)
1412 unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1414 /* Does it all fit in one packet? */
1415 if (dg_size <= adj_max_payload) {
1416 hdr->uf.lf = ETH1394_HDR_LF_UF;
1417 hdr->uf.ether_type = proto;
1418 } else {
1419 hdr->ff.lf = ETH1394_HDR_LF_FF;
1420 hdr->ff.ether_type = proto;
1421 hdr->ff.dg_size = dg_size - 1;
1422 hdr->ff.dgl = dgl;
1423 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1425 return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1428 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1429 unsigned int max_payload,
1430 union eth1394_hdr *hdr)
1432 union eth1394_hdr *bufhdr;
1433 int ftype = hdr->common.lf;
1434 int hdrsz = hdr_type_len[ftype];
1435 unsigned int adj_max_payload = max_payload - hdrsz;
1437 switch(ftype) {
1438 case ETH1394_HDR_LF_UF:
1439 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1440 bufhdr->words.word1 = htons(hdr->words.word1);
1441 bufhdr->words.word2 = hdr->words.word2;
1442 break;
1444 case ETH1394_HDR_LF_FF:
1445 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1446 bufhdr->words.word1 = htons(hdr->words.word1);
1447 bufhdr->words.word2 = hdr->words.word2;
1448 bufhdr->words.word3 = htons(hdr->words.word3);
1449 bufhdr->words.word4 = 0;
1451 /* Set frag type here for future interior fragments */
1452 hdr->common.lf = ETH1394_HDR_LF_IF;
1453 hdr->sf.fg_off = 0;
1454 break;
1456 default:
1457 hdr->sf.fg_off += adj_max_payload;
1458 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1459 if (max_payload >= skb->len)
1460 hdr->common.lf = ETH1394_HDR_LF_LF;
1461 bufhdr->words.word1 = htons(hdr->words.word1);
1462 bufhdr->words.word2 = htons(hdr->words.word2);
1463 bufhdr->words.word3 = htons(hdr->words.word3);
1464 bufhdr->words.word4 = 0;
1467 return min(max_payload, skb->len);
1470 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1472 struct hpsb_packet *p;
1474 p = hpsb_alloc_packet(0);
1475 if (p) {
1476 p->host = host;
1477 p->generation = get_hpsb_generation(host);
1478 p->type = hpsb_async;
1480 return p;
1483 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1484 struct hpsb_host *host,
1485 nodeid_t node, u64 addr,
1486 void * data, int tx_len)
1488 p->node_id = node;
1489 p->data = NULL;
1491 p->tcode = TCODE_WRITEB;
1492 p->header[1] = (host->node_id << 16) | (addr >> 32);
1493 p->header[2] = addr & 0xffffffff;
1495 p->header_size = 16;
1496 p->expect_response = 1;
1498 if (hpsb_get_tlabel(p)) {
1499 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1500 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1501 return -1;
1503 p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1504 | (1 << 8) | (TCODE_WRITEB << 4);
1506 p->header[3] = tx_len << 16;
1507 p->data_size = (tx_len + 3) & ~3;
1508 p->data = (quadlet_t*)data;
1510 return 0;
1513 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1514 struct eth1394_priv *priv,
1515 struct sk_buff *skb, int length)
1517 p->header_size = 4;
1518 p->tcode = TCODE_STREAM_DATA;
1520 p->header[0] = (length << 16) | (3 << 14)
1521 | ((priv->broadcast_channel) << 8)
1522 | (TCODE_STREAM_DATA << 4);
1523 p->data_size = length;
1524 p->data = ((quadlet_t*)skb->data) - 2;
1525 p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1526 ETHER1394_GASP_SPECIFIER_ID_HI);
1527 p->data[1] = __constant_cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1528 ETHER1394_GASP_VERSION);
1530 /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1531 * prevents hpsb_send_packet() from setting the speed to an arbitrary
1532 * value based on packet->node_id if packet->node_id is not set. */
1533 p->node_id = ALL_NODES;
1534 p->speed_code = priv->bc_sspd;
1537 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1539 if (packet->tcode != TCODE_STREAM_DATA)
1540 hpsb_free_tlabel(packet);
1541 hpsb_free_packet(packet);
1544 static void ether1394_complete_cb(void *__ptask);
1546 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1548 struct eth1394_priv *priv = ptask->priv;
1549 struct hpsb_packet *packet = NULL;
1551 packet = ether1394_alloc_common_packet(priv->host);
1552 if (!packet)
1553 return -1;
1555 if (ptask->tx_type == ETH1394_GASP) {
1556 int length = tx_len + (2 * sizeof(quadlet_t));
1558 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1559 } else if (ether1394_prep_write_packet(packet, priv->host,
1560 ptask->dest_node,
1561 ptask->addr, ptask->skb->data,
1562 tx_len)) {
1563 hpsb_free_packet(packet);
1564 return -1;
1567 ptask->packet = packet;
1568 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1569 ptask);
1571 if (hpsb_send_packet(packet) < 0) {
1572 ether1394_free_packet(packet);
1573 return -1;
1576 return 0;
1580 /* Task function to be run when a datagram transmission is completed */
1581 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1583 struct sk_buff *skb = ptask->skb;
1584 struct net_device *dev = skb->dev;
1585 struct eth1394_priv *priv = dev->priv;
1586 unsigned long flags;
1588 /* Statistics */
1589 spin_lock_irqsave(&priv->lock, flags);
1590 if (fail) {
1591 priv->stats.tx_dropped++;
1592 priv->stats.tx_errors++;
1593 } else {
1594 priv->stats.tx_bytes += skb->len;
1595 priv->stats.tx_packets++;
1597 spin_unlock_irqrestore(&priv->lock, flags);
1599 dev_kfree_skb_any(skb);
1600 kmem_cache_free(packet_task_cache, ptask);
1604 /* Callback for when a packet has been sent and the status of that packet is
1605 * known */
1606 static void ether1394_complete_cb(void *__ptask)
1608 struct packet_task *ptask = (struct packet_task *)__ptask;
1609 struct hpsb_packet *packet = ptask->packet;
1610 int fail = 0;
1612 if (packet->tcode != TCODE_STREAM_DATA)
1613 fail = hpsb_packet_success(packet);
1615 ether1394_free_packet(packet);
1617 ptask->outstanding_pkts--;
1618 if (ptask->outstanding_pkts > 0 && !fail) {
1619 int tx_len;
1621 /* Add the encapsulation header to the fragment */
1622 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1623 &ptask->hdr);
1624 if (ether1394_send_packet(ptask, tx_len))
1625 ether1394_dg_complete(ptask, 1);
1626 } else {
1627 ether1394_dg_complete(ptask, fail);
1633 /* Transmit a packet (called by kernel) */
1634 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1636 int kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1637 struct eth1394hdr *eth;
1638 struct eth1394_priv *priv = dev->priv;
1639 int proto;
1640 unsigned long flags;
1641 nodeid_t dest_node;
1642 eth1394_tx_type tx_type;
1643 int ret = 0;
1644 unsigned int tx_len;
1645 unsigned int max_payload;
1646 u16 dg_size;
1647 u16 dgl;
1648 struct packet_task *ptask;
1649 struct eth1394_node_ref *node;
1650 struct eth1394_node_info *node_info = NULL;
1652 ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1653 if (ptask == NULL) {
1654 ret = -ENOMEM;
1655 goto fail;
1658 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1659 * it does not set our validity bit. We need to compensate for
1660 * that somewhere else, but not in eth1394. */
1661 #if 0
1662 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1663 ret = -EAGAIN;
1664 goto fail;
1666 #endif
1668 if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1669 ret = -ENOMEM;
1670 goto fail;
1673 /* Get rid of the fake eth1394 header, but save a pointer */
1674 eth = (struct eth1394hdr*)skb->data;
1675 skb_pull(skb, ETH1394_HLEN);
1677 proto = eth->h_proto;
1678 dg_size = skb->len;
1680 /* Set the transmission type for the packet. ARP packets and IP
1681 * broadcast packets are sent via GASP. */
1682 if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1683 proto == __constant_htons(ETH_P_ARP) ||
1684 (proto == __constant_htons(ETH_P_IP) &&
1685 IN_MULTICAST(__constant_ntohl(skb->nh.iph->daddr)))) {
1686 tx_type = ETH1394_GASP;
1687 dest_node = LOCAL_BUS | ALL_NODES;
1688 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1689 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1690 dgl = priv->bc_dgl;
1691 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1692 priv->bc_dgl++;
1693 } else {
1694 node = eth1394_find_node_guid(&priv->ip_node_list,
1695 be64_to_cpu(*(u64*)eth->h_dest));
1696 if (!node) {
1697 ret = -EAGAIN;
1698 goto fail;
1700 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1701 if (node_info->fifo == ETHER1394_INVALID_ADDR) {
1702 ret = -EAGAIN;
1703 goto fail;
1706 dest_node = node->ud->ne->nodeid;
1707 max_payload = node_info->maxpayload;
1708 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1710 dgl = node_info->dgl;
1711 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1712 node_info->dgl++;
1713 tx_type = ETH1394_WRREQ;
1716 /* If this is an ARP packet, convert it */
1717 if (proto == __constant_htons (ETH_P_ARP))
1718 ether1394_arp_to_1394arp (skb, dev);
1720 ptask->hdr.words.word1 = 0;
1721 ptask->hdr.words.word2 = 0;
1722 ptask->hdr.words.word3 = 0;
1723 ptask->hdr.words.word4 = 0;
1724 ptask->skb = skb;
1725 ptask->priv = priv;
1726 ptask->tx_type = tx_type;
1728 if (tx_type != ETH1394_GASP) {
1729 u64 addr;
1731 spin_lock_irqsave(&priv->lock, flags);
1732 addr = node_info->fifo;
1733 spin_unlock_irqrestore(&priv->lock, flags);
1735 ptask->addr = addr;
1736 ptask->dest_node = dest_node;
1739 ptask->tx_type = tx_type;
1740 ptask->max_payload = max_payload;
1741 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1742 &ptask->hdr, dg_size,
1743 dgl);
1745 /* Add the encapsulation header to the fragment */
1746 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1747 dev->trans_start = jiffies;
1748 if (ether1394_send_packet(ptask, tx_len))
1749 goto fail;
1751 netif_wake_queue(dev);
1752 return 0;
1753 fail:
1754 if (ptask)
1755 kmem_cache_free(packet_task_cache, ptask);
1757 if (skb != NULL)
1758 dev_kfree_skb(skb);
1760 spin_lock_irqsave (&priv->lock, flags);
1761 priv->stats.tx_dropped++;
1762 priv->stats.tx_errors++;
1763 spin_unlock_irqrestore (&priv->lock, flags);
1765 if (netif_queue_stopped(dev))
1766 netif_wake_queue(dev);
1768 return 0; /* returning non-zero causes serious problems */
1771 static int ether1394_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1773 switch(cmd) {
1774 case SIOCETHTOOL:
1775 return ether1394_ethtool_ioctl(dev, ifr->ifr_data);
1777 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1778 case SIOCGMIIREG: /* Read MII PHY register. */
1779 case SIOCSMIIREG: /* Write MII PHY register. */
1780 default:
1781 return -EOPNOTSUPP;
1784 return 0;
1787 static int ether1394_ethtool_ioctl(struct net_device *dev, void __user *useraddr)
1789 u32 ethcmd;
1791 if (get_user(ethcmd, (u32 __user *)useraddr))
1792 return -EFAULT;
1794 switch (ethcmd) {
1795 case ETHTOOL_GDRVINFO: {
1796 struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO };
1797 strcpy (info.driver, driver_name);
1798 strcpy (info.version, "$Rev: 1224 $");
1799 /* FIXME XXX provide sane businfo */
1800 strcpy (info.bus_info, "ieee1394");
1801 if (copy_to_user (useraddr, &info, sizeof (info)))
1802 return -EFAULT;
1803 break;
1805 case ETHTOOL_GSET:
1806 case ETHTOOL_SSET:
1807 case ETHTOOL_NWAY_RST:
1808 case ETHTOOL_GLINK:
1809 case ETHTOOL_GMSGLVL:
1810 case ETHTOOL_SMSGLVL:
1811 default:
1812 return -EOPNOTSUPP;
1815 return 0;
1819 static int __init ether1394_init_module (void)
1821 packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1822 0, 0, NULL, NULL);
1824 /* Register ourselves as a highlevel driver */
1825 hpsb_register_highlevel(&eth1394_highlevel);
1827 return hpsb_register_protocol(&eth1394_proto_driver);
1830 static void __exit ether1394_exit_module (void)
1832 hpsb_unregister_protocol(&eth1394_proto_driver);
1833 hpsb_unregister_highlevel(&eth1394_highlevel);
1834 kmem_cache_destroy(packet_task_cache);
1837 module_init(ether1394_init_module);
1838 module_exit(ether1394_exit_module);