initial commit with v2.6.9
[linux-2.6.9-moxart.git] / drivers / char / mem.c
blob9d8dbded270e15310f4444b87864d941b344d94a
1 /*
2 * linux/drivers/char/mem.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Added devfs support.
7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8 * Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
9 */
11 #include <linux/config.h>
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/smp_lock.h>
23 #include <linux/devfs_fs_kernel.h>
24 #include <linux/ptrace.h>
25 #include <linux/device.h>
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
30 #ifdef CONFIG_IA64
31 # include <linux/efi.h>
32 #endif
34 #if defined(CONFIG_S390_TAPE) && defined(CONFIG_S390_TAPE_CHAR)
35 extern void tapechar_init(void);
36 #endif
39 * Architectures vary in how they handle caching for addresses
40 * outside of main memory.
43 static inline int uncached_access(struct file *file, unsigned long addr)
45 #if defined(__i386__)
47 * On the PPro and successors, the MTRRs are used to set
48 * memory types for physical addresses outside main memory,
49 * so blindly setting PCD or PWT on those pages is wrong.
50 * For Pentiums and earlier, the surround logic should disable
51 * caching for the high addresses through the KEN pin, but
52 * we maintain the tradition of paranoia in this code.
54 if (file->f_flags & O_SYNC)
55 return 1;
56 return !( test_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability) ||
57 test_bit(X86_FEATURE_K6_MTRR, boot_cpu_data.x86_capability) ||
58 test_bit(X86_FEATURE_CYRIX_ARR, boot_cpu_data.x86_capability) ||
59 test_bit(X86_FEATURE_CENTAUR_MCR, boot_cpu_data.x86_capability) )
60 && addr >= __pa(high_memory);
61 #elif defined(__x86_64__)
62 /*
63 * This is broken because it can generate memory type aliases,
64 * which can cause cache corruptions
65 * But it is only available for root and we have to be bug-to-bug
66 * compatible with i386.
68 if (file->f_flags & O_SYNC)
69 return 1;
70 /* same behaviour as i386. PAT always set to cached and MTRRs control the
71 caching behaviour.
72 Hopefully a full PAT implementation will fix that soon. */
73 return 0;
74 #elif defined(CONFIG_IA64)
76 * On ia64, we ignore O_SYNC because we cannot tolerate memory attribute aliases.
78 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
79 #elif defined(CONFIG_PPC64)
80 /* On PPC64, we always do non-cacheable access to the IO hole and
81 * cacheable elsewhere. Cache paradox can checkstop the CPU and
82 * the high_memory heuristic below is wrong on machines with memory
83 * above the IO hole... Ah, and of course, XFree86 doesn't pass
84 * O_SYNC when mapping us to tap IO space. Surprised ?
86 return !page_is_ram(addr >> PAGE_SHIFT);
87 #else
89 * Accessing memory above the top the kernel knows about or through a file pointer
90 * that was marked O_SYNC will be done non-cached.
92 if (file->f_flags & O_SYNC)
93 return 1;
94 return addr >= __pa(high_memory);
95 #endif
98 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
99 static inline int valid_phys_addr_range(unsigned long addr, size_t *count)
101 unsigned long end_mem;
103 end_mem = __pa(high_memory);
104 if (addr >= end_mem)
105 return 0;
107 if (*count > end_mem - addr)
108 *count = end_mem - addr;
110 return 1;
112 #endif
114 static ssize_t do_write_mem(void *p, unsigned long realp,
115 const char __user * buf, size_t count, loff_t *ppos)
117 ssize_t written;
118 unsigned long copied;
120 written = 0;
121 #if defined(__sparc__) || (defined(__mc68000__) && defined(CONFIG_MMU))
122 /* we don't have page 0 mapped on sparc and m68k.. */
123 if (realp < PAGE_SIZE) {
124 unsigned long sz = PAGE_SIZE-realp;
125 if (sz > count) sz = count;
126 /* Hmm. Do something? */
127 buf+=sz;
128 p+=sz;
129 count-=sz;
130 written+=sz;
132 #endif
133 copied = copy_from_user(p, buf, count);
134 if (copied) {
135 ssize_t ret = written + (count - copied);
137 if (ret)
138 return ret;
139 return -EFAULT;
141 written += count;
142 *ppos += written;
143 return written;
148 * This funcion reads the *physical* memory. The f_pos points directly to the
149 * memory location.
151 static ssize_t read_mem(struct file * file, char __user * buf,
152 size_t count, loff_t *ppos)
154 unsigned long p = *ppos;
155 ssize_t read;
157 if (!valid_phys_addr_range(p, &count))
158 return -EFAULT;
159 read = 0;
160 #if defined(__sparc__) || (defined(__mc68000__) && defined(CONFIG_MMU))
161 /* we don't have page 0 mapped on sparc and m68k.. */
162 if (p < PAGE_SIZE) {
163 unsigned long sz = PAGE_SIZE-p;
164 if (sz > count)
165 sz = count;
166 if (sz > 0) {
167 if (clear_user(buf, sz))
168 return -EFAULT;
169 buf += sz;
170 p += sz;
171 count -= sz;
172 read += sz;
175 #endif
176 if (copy_to_user(buf, __va(p), count))
177 return -EFAULT;
178 read += count;
179 *ppos += read;
180 return read;
183 static ssize_t write_mem(struct file * file, const char __user * buf,
184 size_t count, loff_t *ppos)
186 unsigned long p = *ppos;
188 if (!valid_phys_addr_range(p, &count))
189 return -EFAULT;
190 return do_write_mem(__va(p), p, buf, count, ppos);
193 static int mmap_mem(struct file * file, struct vm_area_struct * vma)
195 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
196 int uncached;
198 uncached = uncached_access(file, offset);
199 #ifdef pgprot_noncached
200 if (uncached)
201 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
202 #endif
204 /* Don't try to swap out physical pages.. */
205 vma->vm_flags |= VM_RESERVED;
208 * Don't dump addresses that are not real memory to a core file.
210 if (uncached)
211 vma->vm_flags |= VM_IO;
213 if (remap_page_range(vma, vma->vm_start, offset, vma->vm_end-vma->vm_start,
214 vma->vm_page_prot))
215 return -EAGAIN;
216 return 0;
219 extern long vread(char *buf, char *addr, unsigned long count);
220 extern long vwrite(char *buf, char *addr, unsigned long count);
223 * This function reads the *virtual* memory as seen by the kernel.
225 static ssize_t read_kmem(struct file *file, char __user *buf,
226 size_t count, loff_t *ppos)
228 unsigned long p = *ppos;
229 ssize_t read = 0;
230 ssize_t virtr = 0;
231 char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
233 if (p < (unsigned long) high_memory) {
234 read = count;
235 if (count > (unsigned long) high_memory - p)
236 read = (unsigned long) high_memory - p;
238 #if defined(__sparc__) || (defined(__mc68000__) && defined(CONFIG_MMU))
239 /* we don't have page 0 mapped on sparc and m68k.. */
240 if (p < PAGE_SIZE && read > 0) {
241 size_t tmp = PAGE_SIZE - p;
242 if (tmp > read) tmp = read;
243 if (clear_user(buf, tmp))
244 return -EFAULT;
245 buf += tmp;
246 p += tmp;
247 read -= tmp;
248 count -= tmp;
250 #endif
251 if (copy_to_user(buf, (char *)p, read))
252 return -EFAULT;
253 p += read;
254 buf += read;
255 count -= read;
258 if (count > 0) {
259 kbuf = (char *)__get_free_page(GFP_KERNEL);
260 if (!kbuf)
261 return -ENOMEM;
262 while (count > 0) {
263 int len = count;
265 if (len > PAGE_SIZE)
266 len = PAGE_SIZE;
267 len = vread(kbuf, (char *)p, len);
268 if (!len)
269 break;
270 if (copy_to_user(buf, kbuf, len)) {
271 free_page((unsigned long)kbuf);
272 return -EFAULT;
274 count -= len;
275 buf += len;
276 virtr += len;
277 p += len;
279 free_page((unsigned long)kbuf);
281 *ppos = p;
282 return virtr + read;
286 * This function writes to the *virtual* memory as seen by the kernel.
288 static ssize_t write_kmem(struct file * file, const char __user * buf,
289 size_t count, loff_t *ppos)
291 unsigned long p = *ppos;
292 ssize_t wrote = 0;
293 ssize_t virtr = 0;
294 ssize_t written;
295 char * kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
297 if (p < (unsigned long) high_memory) {
299 wrote = count;
300 if (count > (unsigned long) high_memory - p)
301 wrote = (unsigned long) high_memory - p;
303 written = do_write_mem((void*)p, p, buf, wrote, ppos);
304 if (written != wrote)
305 return written;
306 wrote = written;
307 p += wrote;
308 buf += wrote;
309 count -= wrote;
312 if (count > 0) {
313 kbuf = (char *)__get_free_page(GFP_KERNEL);
314 if (!kbuf)
315 return wrote ? wrote : -ENOMEM;
316 while (count > 0) {
317 int len = count;
319 if (len > PAGE_SIZE)
320 len = PAGE_SIZE;
321 if (len) {
322 written = copy_from_user(kbuf, buf, len);
323 if (written) {
324 ssize_t ret;
326 free_page((unsigned long)kbuf);
327 ret = wrote + virtr + (len - written);
328 return ret ? ret : -EFAULT;
331 len = vwrite(kbuf, (char *)p, len);
332 count -= len;
333 buf += len;
334 virtr += len;
335 p += len;
337 free_page((unsigned long)kbuf);
340 *ppos = p;
341 return virtr + wrote;
344 #if defined(CONFIG_ISA) || !defined(__mc68000__)
345 static ssize_t read_port(struct file * file, char __user * buf,
346 size_t count, loff_t *ppos)
348 unsigned long i = *ppos;
349 char __user *tmp = buf;
351 if (verify_area(VERIFY_WRITE,buf,count))
352 return -EFAULT;
353 while (count-- > 0 && i < 65536) {
354 if (__put_user(inb(i),tmp) < 0)
355 return -EFAULT;
356 i++;
357 tmp++;
359 *ppos = i;
360 return tmp-buf;
363 static ssize_t write_port(struct file * file, const char __user * buf,
364 size_t count, loff_t *ppos)
366 unsigned long i = *ppos;
367 const char __user * tmp = buf;
369 if (verify_area(VERIFY_READ,buf,count))
370 return -EFAULT;
371 while (count-- > 0 && i < 65536) {
372 char c;
373 if (__get_user(c, tmp))
374 return -EFAULT;
375 outb(c,i);
376 i++;
377 tmp++;
379 *ppos = i;
380 return tmp-buf;
382 #endif
384 static ssize_t read_null(struct file * file, char __user * buf,
385 size_t count, loff_t *ppos)
387 return 0;
390 static ssize_t write_null(struct file * file, const char __user * buf,
391 size_t count, loff_t *ppos)
393 return count;
396 #ifdef CONFIG_MMU
398 * For fun, we are using the MMU for this.
400 static inline size_t read_zero_pagealigned(char __user * buf, size_t size)
402 struct mm_struct *mm;
403 struct vm_area_struct * vma;
404 unsigned long addr=(unsigned long)buf;
406 mm = current->mm;
407 /* Oops, this was forgotten before. -ben */
408 down_read(&mm->mmap_sem);
410 /* For private mappings, just map in zero pages. */
411 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
412 unsigned long count;
414 if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0)
415 goto out_up;
416 if (vma->vm_flags & (VM_SHARED | VM_HUGETLB))
417 break;
418 count = vma->vm_end - addr;
419 if (count > size)
420 count = size;
422 zap_page_range(vma, addr, count, NULL);
423 zeromap_page_range(vma, addr, count, PAGE_COPY);
425 size -= count;
426 buf += count;
427 addr += count;
428 if (size == 0)
429 goto out_up;
432 up_read(&mm->mmap_sem);
434 /* The shared case is hard. Let's do the conventional zeroing. */
435 do {
436 unsigned long unwritten = clear_user(buf, PAGE_SIZE);
437 if (unwritten)
438 return size + unwritten - PAGE_SIZE;
439 cond_resched();
440 buf += PAGE_SIZE;
441 size -= PAGE_SIZE;
442 } while (size);
444 return size;
445 out_up:
446 up_read(&mm->mmap_sem);
447 return size;
450 static ssize_t read_zero(struct file * file, char __user * buf,
451 size_t count, loff_t *ppos)
453 unsigned long left, unwritten, written = 0;
455 if (!count)
456 return 0;
458 if (!access_ok(VERIFY_WRITE, buf, count))
459 return -EFAULT;
461 left = count;
463 /* do we want to be clever? Arbitrary cut-off */
464 if (count >= PAGE_SIZE*4) {
465 unsigned long partial;
467 /* How much left of the page? */
468 partial = (PAGE_SIZE-1) & -(unsigned long) buf;
469 unwritten = clear_user(buf, partial);
470 written = partial - unwritten;
471 if (unwritten)
472 goto out;
473 left -= partial;
474 buf += partial;
475 unwritten = read_zero_pagealigned(buf, left & PAGE_MASK);
476 written += (left & PAGE_MASK) - unwritten;
477 if (unwritten)
478 goto out;
479 buf += left & PAGE_MASK;
480 left &= ~PAGE_MASK;
482 unwritten = clear_user(buf, left);
483 written += left - unwritten;
484 out:
485 return written ? written : -EFAULT;
488 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
490 if (vma->vm_flags & VM_SHARED)
491 return shmem_zero_setup(vma);
492 if (zeromap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot))
493 return -EAGAIN;
494 return 0;
496 #else /* CONFIG_MMU */
497 static ssize_t read_zero(struct file * file, char * buf,
498 size_t count, loff_t *ppos)
500 size_t todo = count;
502 while (todo) {
503 size_t chunk = todo;
505 if (chunk > 4096)
506 chunk = 4096; /* Just for latency reasons */
507 if (clear_user(buf, chunk))
508 return -EFAULT;
509 buf += chunk;
510 todo -= chunk;
511 cond_resched();
513 return count;
516 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
518 return -ENOSYS;
520 #endif /* CONFIG_MMU */
522 static ssize_t write_full(struct file * file, const char __user * buf,
523 size_t count, loff_t *ppos)
525 return -ENOSPC;
529 * Special lseek() function for /dev/null and /dev/zero. Most notably, you
530 * can fopen() both devices with "a" now. This was previously impossible.
531 * -- SRB.
534 static loff_t null_lseek(struct file * file, loff_t offset, int orig)
536 return file->f_pos = 0;
540 * The memory devices use the full 32/64 bits of the offset, and so we cannot
541 * check against negative addresses: they are ok. The return value is weird,
542 * though, in that case (0).
544 * also note that seeking relative to the "end of file" isn't supported:
545 * it has no meaning, so it returns -EINVAL.
547 static loff_t memory_lseek(struct file * file, loff_t offset, int orig)
549 loff_t ret;
551 down(&file->f_dentry->d_inode->i_sem);
552 switch (orig) {
553 case 0:
554 file->f_pos = offset;
555 ret = file->f_pos;
556 force_successful_syscall_return();
557 break;
558 case 1:
559 file->f_pos += offset;
560 ret = file->f_pos;
561 force_successful_syscall_return();
562 break;
563 default:
564 ret = -EINVAL;
566 up(&file->f_dentry->d_inode->i_sem);
567 return ret;
570 static int open_port(struct inode * inode, struct file * filp)
572 return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
575 #define mmap_kmem mmap_mem
576 #define zero_lseek null_lseek
577 #define full_lseek null_lseek
578 #define write_zero write_null
579 #define read_full read_zero
580 #define open_mem open_port
581 #define open_kmem open_mem
583 static struct file_operations mem_fops = {
584 .llseek = memory_lseek,
585 .read = read_mem,
586 .write = write_mem,
587 .mmap = mmap_mem,
588 .open = open_mem,
591 static struct file_operations kmem_fops = {
592 .llseek = memory_lseek,
593 .read = read_kmem,
594 .write = write_kmem,
595 .mmap = mmap_kmem,
596 .open = open_kmem,
599 static struct file_operations null_fops = {
600 .llseek = null_lseek,
601 .read = read_null,
602 .write = write_null,
605 #if defined(CONFIG_ISA) || !defined(__mc68000__)
606 static struct file_operations port_fops = {
607 .llseek = memory_lseek,
608 .read = read_port,
609 .write = write_port,
610 .open = open_port,
612 #endif
614 static struct file_operations zero_fops = {
615 .llseek = zero_lseek,
616 .read = read_zero,
617 .write = write_zero,
618 .mmap = mmap_zero,
621 static struct file_operations full_fops = {
622 .llseek = full_lseek,
623 .read = read_full,
624 .write = write_full,
627 static ssize_t kmsg_write(struct file * file, const char __user * buf,
628 size_t count, loff_t *ppos)
630 char *tmp;
631 int ret;
633 tmp = kmalloc(count + 1, GFP_KERNEL);
634 if (tmp == NULL)
635 return -ENOMEM;
636 ret = -EFAULT;
637 if (!copy_from_user(tmp, buf, count)) {
638 tmp[count] = 0;
639 ret = printk("%s", tmp);
641 kfree(tmp);
642 return ret;
645 static struct file_operations kmsg_fops = {
646 .write = kmsg_write,
649 static int memory_open(struct inode * inode, struct file * filp)
651 switch (iminor(inode)) {
652 case 1:
653 filp->f_op = &mem_fops;
654 break;
655 case 2:
656 filp->f_op = &kmem_fops;
657 break;
658 case 3:
659 filp->f_op = &null_fops;
660 break;
661 #if defined(CONFIG_ISA) || !defined(__mc68000__)
662 case 4:
663 filp->f_op = &port_fops;
664 break;
665 #endif
666 case 5:
667 filp->f_op = &zero_fops;
668 break;
669 case 7:
670 filp->f_op = &full_fops;
671 break;
672 case 8:
673 filp->f_op = &random_fops;
674 break;
675 case 9:
676 filp->f_op = &urandom_fops;
677 break;
678 case 11:
679 filp->f_op = &kmsg_fops;
680 break;
681 default:
682 return -ENXIO;
684 if (filp->f_op && filp->f_op->open)
685 return filp->f_op->open(inode,filp);
686 return 0;
689 static struct file_operations memory_fops = {
690 .open = memory_open, /* just a selector for the real open */
693 static const struct {
694 unsigned int minor;
695 char *name;
696 umode_t mode;
697 struct file_operations *fops;
698 } devlist[] = { /* list of minor devices */
699 {1, "mem", S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops},
700 {2, "kmem", S_IRUSR | S_IWUSR | S_IRGRP, &kmem_fops},
701 {3, "null", S_IRUGO | S_IWUGO, &null_fops},
702 #if defined(CONFIG_ISA) || !defined(__mc68000__)
703 {4, "port", S_IRUSR | S_IWUSR | S_IRGRP, &port_fops},
704 #endif
705 {5, "zero", S_IRUGO | S_IWUGO, &zero_fops},
706 {7, "full", S_IRUGO | S_IWUGO, &full_fops},
707 {8, "random", S_IRUGO | S_IWUSR, &random_fops},
708 {9, "urandom", S_IRUGO | S_IWUSR, &urandom_fops},
709 {11,"kmsg", S_IRUGO | S_IWUSR, &kmsg_fops},
712 static struct class_simple *mem_class;
714 static int __init chr_dev_init(void)
716 int i;
718 if (register_chrdev(MEM_MAJOR,"mem",&memory_fops))
719 printk("unable to get major %d for memory devs\n", MEM_MAJOR);
721 mem_class = class_simple_create(THIS_MODULE, "mem");
722 for (i = 0; i < ARRAY_SIZE(devlist); i++) {
723 class_simple_device_add(mem_class,
724 MKDEV(MEM_MAJOR, devlist[i].minor),
725 NULL, devlist[i].name);
726 devfs_mk_cdev(MKDEV(MEM_MAJOR, devlist[i].minor),
727 S_IFCHR | devlist[i].mode, devlist[i].name);
730 return 0;
733 fs_initcall(chr_dev_init);