initial commit with v2.6.9
[linux-2.6.9-moxart.git] / arch / ppc / kernel / time.c
blob60e7ef5ad9abc4e69b088830723e1e30b1f243d9
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
9 * to make clock more stable (2.4.0-test5). The only thing
10 * that this code assumes is that the timebases have been synchronized
11 * by firmware on SMP and are never stopped (never do sleep
12 * on SMP then, nap and doze are OK).
14 * TODO (not necessarily in this file):
15 * - improve precision and reproducibility of timebase frequency
16 * measurement at boot time.
17 * - get rid of xtime_lock for gettimeofday (generic kernel problem
18 * to be implemented on all architectures for SMP scalability and
19 * eventually implementing gettimeofday without entering the kernel).
20 * - put all time/clock related variables in a single structure
21 * to minimize number of cache lines touched by gettimeofday()
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
27 * The following comment is partially obsolete (at least the long wait
28 * is no more a valid reason):
29 * Since the MPC8xx has a programmable interrupt timer, I decided to
30 * use that rather than the decrementer. Two reasons: 1.) the clock
31 * frequency is low, causing 2.) a long wait in the timer interrupt
32 * while ((d = get_dec()) == dval)
33 * loop. The MPC8xx can be driven from a variety of input clocks,
34 * so a number of assumptions have been made here because the kernel
35 * parameter HZ is a constant. We assume (correctly, today :-) that
36 * the MPC8xx on the MBX board is driven from a 32.768 kHz crystal.
37 * This is then divided by 4, providing a 8192 Hz clock into the PIT.
38 * Since it is not possible to get a nice 100 Hz clock out of this, without
39 * creating a software PLL, I have set HZ to 128. -- Dan
41 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
42 * "A Kernel Model for Precision Timekeeping" by Dave Mills
45 #include <linux/config.h>
46 #include <linux/errno.h>
47 #include <linux/sched.h>
48 #include <linux/kernel.h>
49 #include <linux/param.h>
50 #include <linux/string.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/interrupt.h>
54 #include <linux/timex.h>
55 #include <linux/kernel_stat.h>
56 #include <linux/mc146818rtc.h>
57 #include <linux/time.h>
58 #include <linux/init.h>
59 #include <linux/profile.h>
61 #include <asm/segment.h>
62 #include <asm/io.h>
63 #include <asm/nvram.h>
64 #include <asm/cache.h>
65 #include <asm/8xx_immap.h>
66 #include <asm/machdep.h>
68 #include <asm/time.h>
70 /* XXX false sharing with below? */
71 u64 jiffies_64 = INITIAL_JIFFIES;
73 EXPORT_SYMBOL(jiffies_64);
75 unsigned long disarm_decr[NR_CPUS];
77 extern struct timezone sys_tz;
79 /* keep track of when we need to update the rtc */
80 time_t last_rtc_update;
82 /* The decrementer counts down by 128 every 128ns on a 601. */
83 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
85 unsigned tb_ticks_per_jiffy;
86 unsigned tb_to_us;
87 unsigned tb_last_stamp;
88 unsigned long tb_to_ns_scale;
90 extern unsigned long wall_jiffies;
92 static long time_offset;
94 spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED;
96 EXPORT_SYMBOL(rtc_lock);
98 /* Timer interrupt helper function */
99 static inline int tb_delta(unsigned *jiffy_stamp) {
100 int delta;
101 if (__USE_RTC()) {
102 delta = get_rtcl();
103 if (delta < *jiffy_stamp) *jiffy_stamp -= 1000000000;
104 delta -= *jiffy_stamp;
105 } else {
106 delta = get_tbl() - *jiffy_stamp;
108 return delta;
111 #ifdef CONFIG_SMP
112 unsigned long profile_pc(struct pt_regs *regs)
114 unsigned long pc = instruction_pointer(regs);
116 if (in_lock_functions(pc))
117 return regs->link;
119 return pc;
121 EXPORT_SYMBOL(profile_pc);
122 #endif
125 * timer_interrupt - gets called when the decrementer overflows,
126 * with interrupts disabled.
127 * We set it up to overflow again in 1/HZ seconds.
129 void timer_interrupt(struct pt_regs * regs)
131 int next_dec;
132 unsigned long cpu = smp_processor_id();
133 unsigned jiffy_stamp = last_jiffy_stamp(cpu);
134 extern void do_IRQ(struct pt_regs *);
136 if (atomic_read(&ppc_n_lost_interrupts) != 0)
137 do_IRQ(regs);
139 irq_enter();
141 while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) <= 0) {
142 jiffy_stamp += tb_ticks_per_jiffy;
144 profile_tick(CPU_PROFILING, regs);
146 if (smp_processor_id())
147 continue;
149 /* We are in an interrupt, no need to save/restore flags */
150 write_seqlock(&xtime_lock);
151 tb_last_stamp = jiffy_stamp;
152 do_timer(regs);
155 * update the rtc when needed, this should be performed on the
156 * right fraction of a second. Half or full second ?
157 * Full second works on mk48t59 clocks, others need testing.
158 * Note that this update is basically only used through
159 * the adjtimex system calls. Setting the HW clock in
160 * any other way is a /dev/rtc and userland business.
161 * This is still wrong by -0.5/+1.5 jiffies because of the
162 * timer interrupt resolution and possible delay, but here we
163 * hit a quantization limit which can only be solved by higher
164 * resolution timers and decoupling time management from timer
165 * interrupts. This is also wrong on the clocks
166 * which require being written at the half second boundary.
167 * We should have an rtc call that only sets the minutes and
168 * seconds like on Intel to avoid problems with non UTC clocks.
170 if ( ppc_md.set_rtc_time && (time_status & STA_UNSYNC) == 0 &&
171 xtime.tv_sec - last_rtc_update >= 659 &&
172 abs((xtime.tv_nsec / 1000) - (1000000-1000000/HZ)) < 500000/HZ &&
173 jiffies - wall_jiffies == 1) {
174 if (ppc_md.set_rtc_time(xtime.tv_sec+1 + time_offset) == 0)
175 last_rtc_update = xtime.tv_sec+1;
176 else
177 /* Try again one minute later */
178 last_rtc_update += 60;
180 write_sequnlock(&xtime_lock);
182 if ( !disarm_decr[smp_processor_id()] )
183 set_dec(next_dec);
184 last_jiffy_stamp(cpu) = jiffy_stamp;
186 #ifdef CONFIG_SMP
187 smp_local_timer_interrupt(regs);
188 #endif /* CONFIG_SMP */
190 if (ppc_md.heartbeat && !ppc_md.heartbeat_count--)
191 ppc_md.heartbeat();
193 irq_exit();
197 * This version of gettimeofday has microsecond resolution.
199 void do_gettimeofday(struct timeval *tv)
201 unsigned long flags;
202 unsigned long seq;
203 unsigned delta, lost_ticks, usec, sec;
205 do {
206 seq = read_seqbegin_irqsave(&xtime_lock, flags);
207 sec = xtime.tv_sec;
208 usec = (xtime.tv_nsec / 1000);
209 delta = tb_ticks_since(tb_last_stamp);
210 #ifdef CONFIG_SMP
211 /* As long as timebases are not in sync, gettimeofday can only
212 * have jiffy resolution on SMP.
214 if (!smp_tb_synchronized)
215 delta = 0;
216 #endif /* CONFIG_SMP */
217 lost_ticks = jiffies - wall_jiffies;
218 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
220 usec += mulhwu(tb_to_us, tb_ticks_per_jiffy * lost_ticks + delta);
221 while (usec >= 1000000) {
222 sec++;
223 usec -= 1000000;
225 tv->tv_sec = sec;
226 tv->tv_usec = usec;
229 EXPORT_SYMBOL(do_gettimeofday);
231 int do_settimeofday(struct timespec *tv)
233 time_t wtm_sec, new_sec = tv->tv_sec;
234 long wtm_nsec, new_nsec = tv->tv_nsec;
235 unsigned long flags;
236 int tb_delta;
238 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
239 return -EINVAL;
241 write_seqlock_irqsave(&xtime_lock, flags);
242 /* Updating the RTC is not the job of this code. If the time is
243 * stepped under NTP, the RTC will be update after STA_UNSYNC
244 * is cleared. Tool like clock/hwclock either copy the RTC
245 * to the system time, in which case there is no point in writing
246 * to the RTC again, or write to the RTC but then they don't call
247 * settimeofday to perform this operation. Note also that
248 * we don't touch the decrementer since:
249 * a) it would lose timer interrupt synchronization on SMP
250 * (if it is working one day)
251 * b) it could make one jiffy spuriously shorter or longer
252 * which would introduce another source of uncertainty potentially
253 * harmful to relatively short timers.
256 /* This works perfectly on SMP only if the tb are in sync but
257 * guarantees an error < 1 jiffy even if they are off by eons,
258 * still reasonable when gettimeofday resolution is 1 jiffy.
260 tb_delta = tb_ticks_since(last_jiffy_stamp(smp_processor_id()));
261 tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
263 new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);
265 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
266 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
268 set_normalized_timespec(&xtime, new_sec, new_nsec);
269 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
271 /* In case of a large backwards jump in time with NTP, we want the
272 * clock to be updated as soon as the PLL is again in lock.
274 last_rtc_update = new_sec - 658;
276 time_adjust = 0; /* stop active adjtime() */
277 time_status |= STA_UNSYNC;
278 time_state = TIME_ERROR; /* p. 24, (a) */
279 time_maxerror = NTP_PHASE_LIMIT;
280 time_esterror = NTP_PHASE_LIMIT;
281 write_sequnlock_irqrestore(&xtime_lock, flags);
282 clock_was_set();
283 return 0;
286 EXPORT_SYMBOL(do_settimeofday);
288 /* This function is only called on the boot processor */
289 void __init time_init(void)
291 time_t sec, old_sec;
292 unsigned old_stamp, stamp, elapsed;
294 if (ppc_md.time_init != NULL)
295 time_offset = ppc_md.time_init();
297 if (__USE_RTC()) {
298 /* 601 processor: dec counts down by 128 every 128ns */
299 tb_ticks_per_jiffy = DECREMENTER_COUNT_601;
300 /* mulhwu_scale_factor(1000000000, 1000000) is 0x418937 */
301 tb_to_us = 0x418937;
302 } else {
303 ppc_md.calibrate_decr();
304 tb_to_ns_scale = mulhwu(tb_to_us, 1000 << 10);
307 /* Now that the decrementer is calibrated, it can be used in case the
308 * clock is stuck, but the fact that we have to handle the 601
309 * makes things more complex. Repeatedly read the RTC until the
310 * next second boundary to try to achieve some precision. If there
311 * is no RTC, we still need to set tb_last_stamp and
312 * last_jiffy_stamp(cpu 0) to the current stamp.
314 stamp = get_native_tbl();
315 if (ppc_md.get_rtc_time) {
316 sec = ppc_md.get_rtc_time();
317 elapsed = 0;
318 do {
319 old_stamp = stamp;
320 old_sec = sec;
321 stamp = get_native_tbl();
322 if (__USE_RTC() && stamp < old_stamp)
323 old_stamp -= 1000000000;
324 elapsed += stamp - old_stamp;
325 sec = ppc_md.get_rtc_time();
326 } while ( sec == old_sec && elapsed < 2*HZ*tb_ticks_per_jiffy);
327 if (sec==old_sec)
328 printk("Warning: real time clock seems stuck!\n");
329 xtime.tv_sec = sec;
330 xtime.tv_nsec = 0;
331 /* No update now, we just read the time from the RTC ! */
332 last_rtc_update = xtime.tv_sec;
334 last_jiffy_stamp(0) = tb_last_stamp = stamp;
336 /* Not exact, but the timer interrupt takes care of this */
337 set_dec(tb_ticks_per_jiffy);
339 /* If platform provided a timezone (pmac), we correct the time */
340 if (time_offset) {
341 sys_tz.tz_minuteswest = -time_offset / 60;
342 sys_tz.tz_dsttime = 0;
343 xtime.tv_sec -= time_offset;
345 set_normalized_timespec(&wall_to_monotonic,
346 -xtime.tv_sec, -xtime.tv_nsec);
349 #define FEBRUARY 2
350 #define STARTOFTIME 1970
351 #define SECDAY 86400L
352 #define SECYR (SECDAY * 365)
355 * Note: this is wrong for 2100, but our signed 32-bit time_t will
356 * have overflowed long before that, so who cares. -- paulus
358 #define leapyear(year) ((year) % 4 == 0)
359 #define days_in_year(a) (leapyear(a) ? 366 : 365)
360 #define days_in_month(a) (month_days[(a) - 1])
362 static int month_days[12] = {
363 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
366 void to_tm(int tim, struct rtc_time * tm)
368 register int i;
369 register long hms, day, gday;
371 gday = day = tim / SECDAY;
372 hms = tim % SECDAY;
374 /* Hours, minutes, seconds are easy */
375 tm->tm_hour = hms / 3600;
376 tm->tm_min = (hms % 3600) / 60;
377 tm->tm_sec = (hms % 3600) % 60;
379 /* Number of years in days */
380 for (i = STARTOFTIME; day >= days_in_year(i); i++)
381 day -= days_in_year(i);
382 tm->tm_year = i;
384 /* Number of months in days left */
385 if (leapyear(tm->tm_year))
386 days_in_month(FEBRUARY) = 29;
387 for (i = 1; day >= days_in_month(i); i++)
388 day -= days_in_month(i);
389 days_in_month(FEBRUARY) = 28;
390 tm->tm_mon = i;
392 /* Days are what is left over (+1) from all that. */
393 tm->tm_mday = day + 1;
396 * Determine the day of week. Jan. 1, 1970 was a Thursday.
398 tm->tm_wday = (gday + 4) % 7;
401 /* Auxiliary function to compute scaling factors */
402 /* Actually the choice of a timebase running at 1/4 the of the bus
403 * frequency giving resolution of a few tens of nanoseconds is quite nice.
404 * It makes this computation very precise (27-28 bits typically) which
405 * is optimistic considering the stability of most processor clock
406 * oscillators and the precision with which the timebase frequency
407 * is measured but does not harm.
409 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) {
410 unsigned mlt=0, tmp, err;
411 /* No concern for performance, it's done once: use a stupid
412 * but safe and compact method to find the multiplier.
414 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
415 if (mulhwu(inscale, mlt|tmp) < outscale) mlt|=tmp;
417 /* We might still be off by 1 for the best approximation.
418 * A side effect of this is that if outscale is too large
419 * the returned value will be zero.
420 * Many corner cases have been checked and seem to work,
421 * some might have been forgotten in the test however.
423 err = inscale*(mlt+1);
424 if (err <= inscale/2) mlt++;
425 return mlt;
428 unsigned long long sched_clock(void)
430 unsigned long lo, hi, hi2;
431 unsigned long long tb;
433 if (!__USE_RTC()) {
434 do {
435 hi = get_tbu();
436 lo = get_tbl();
437 hi2 = get_tbu();
438 } while (hi2 != hi);
439 tb = ((unsigned long long) hi << 32) | lo;
440 tb = (tb * tb_to_ns_scale) >> 10;
441 } else {
442 do {
443 hi = get_rtcu();
444 lo = get_rtcl();
445 hi2 = get_rtcu();
446 } while (hi2 != hi);
447 tb = ((unsigned long long) hi) * 1000000000 + lo;
449 return tb;