4 | The entry point sSIN computes the sine of an input argument
5 | sCOS computes the cosine, and sSINCOS computes both. The
6 | corresponding entry points with a "d" computes the same
7 | corresponding function values for denormalized inputs.
9 | Input: Double-extended number X in location pointed to
10 | by address register a0.
12 | Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
13 | COS is requested. Otherwise, for SINCOS, sin(X) is returned
14 | in Fp0, and cos(X) is returned in Fp1.
16 | Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
18 | Accuracy and Monotonicity: The returned result is within 1 ulp in
19 | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
20 | result is subsequently rounded to double precision. The
21 | result is provably monotonic in double precision.
23 | Speed: The programs sSIN and sCOS take approximately 150 cycles for
24 | input argument X such that |X| < 15Pi, which is the usual
25 | situation. The speed for sSINCOS is approximately 190 cycles.
30 | 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
32 | 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
34 | 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
35 | k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
38 | 4. If k is even, go to 6.
40 | 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
41 | where cos(r) is approximated by an even polynomial in r,
42 | 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r.
45 | 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
46 | where sin(r) is approximated by an odd polynomial in r
47 | r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r.
50 | 7. If |X| > 1, go to 9.
52 | 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
54 | 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
57 | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
59 | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
60 | k = N mod 4, so in particular, k = 0,1,2,or 3.
62 | 3. If k is even, go to 5.
64 | 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
65 | j1 exclusive or with the l.s.b. of k.
66 | sgn1 := (-1)**j1, sgn2 := (-1)**j2.
67 | SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
68 | sin(r) and cos(r) are computed as odd and even polynomials
69 | in r, respectively. Exit
71 | 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
72 | SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
73 | sin(r) and cos(r) are computed as odd and even polynomials
74 | in r, respectively. Exit
76 | 6. If |X| > 1, go to 8.
78 | 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
80 | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
83 | Copyright (C) Motorola, Inc. 1990
86 | THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
87 | The copyright notice above does not evidence any
88 | actual or intended publication of such source code.
90 |SSIN idnt 2,1 | Motorola 040 Floating Point Software Package
96 BOUNDS1: .long 0x3FD78000,0x4004BC7E
97 TWOBYPI: .long 0x3FE45F30,0x6DC9C883
99 SINA7: .long 0xBD6AAA77,0xCCC994F5
100 SINA6: .long 0x3DE61209,0x7AAE8DA1
102 SINA5: .long 0xBE5AE645,0x2A118AE4
103 SINA4: .long 0x3EC71DE3,0xA5341531
105 SINA3: .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
107 SINA2: .long 0x3FF80000,0x88888888,0x888859AF,0x00000000
109 SINA1: .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
111 COSB8: .long 0x3D2AC4D0,0xD6011EE3
112 COSB7: .long 0xBDA9396F,0x9F45AC19
114 COSB6: .long 0x3E21EED9,0x0612C972
115 COSB5: .long 0xBE927E4F,0xB79D9FCF
117 COSB4: .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
119 COSB3: .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
121 COSB2: .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
122 COSB1: .long 0xBF000000
124 INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A
126 TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
127 TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
154 |--SIN(X) = X FOR DENORMALIZED X
159 |--COS(X) = 1 FOR DENORMALIZED X
161 fmoves #0x3F800000,%fp0
163 | 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
181 |--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
183 fmovex (%a0),%fp0 | ...LOAD INPUT
188 andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X
190 cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
195 cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
200 |--THIS IS THE USUAL CASE, |X| <= 15 PI.
201 |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
203 fmuld TWOBYPI,%fp1 | ...X*2/PI
205 |--HIDE THE NEXT THREE INSTRUCTIONS
206 lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
210 fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER
214 addal %d0,%a1 | ...A1 IS THE ADDRESS OF N*PIBY2
215 | ...WHICH IS IN TWO PIECES Y1 & Y2
217 fsubx (%a1)+,%fp0 | ...X-Y1
219 fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
222 |--continuation from REDUCEX
224 |--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
226 addl ADJN(%a6),%d0 | ...SEE IF D0 IS ODD OR EVEN
227 rorl #1,%d0 | ...D0 WAS ODD IFF D0 IS NEGATIVE
232 |--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
233 |--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
234 |--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
235 |--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
236 |--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
238 |--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
239 |--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
240 fmovex %fp0,X(%a6) | ...X IS R
241 fmulx %fp0,%fp0 | ...FP0 IS S
242 |---HIDE THE NEXT TWO WHILE WAITING FOR FP0
247 fmulx %fp1,%fp1 | ...FP1 IS T
248 |--HIDE THE NEXT TWO WHILE WAITING FOR FP1
251 andil #0x80000000,%d0
252 | ...LEAST SIG. BIT OF D0 IN SIGN POSITION
253 eorl %d0,X(%a6) | ...X IS NOW R'= SGN*R
255 fmulx %fp1,%fp3 | ...TA7
256 fmulx %fp1,%fp2 | ...TA6
258 faddd SINA5,%fp3 | ...A5+TA7
259 faddd SINA4,%fp2 | ...A4+TA6
261 fmulx %fp1,%fp3 | ...T(A5+TA7)
262 fmulx %fp1,%fp2 | ...T(A4+TA6)
264 faddd SINA3,%fp3 | ...A3+T(A5+TA7)
265 faddx SINA2,%fp2 | ...A2+T(A4+TA6)
267 fmulx %fp3,%fp1 | ...T(A3+T(A5+TA7))
269 fmulx %fp0,%fp2 | ...S(A2+T(A4+TA6))
270 faddx SINA1,%fp1 | ...A1+T(A3+T(A5+TA7))
271 fmulx X(%a6),%fp0 | ...R'*S
273 faddx %fp2,%fp1 | ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
274 |--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
275 |--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING
278 fmulx %fp1,%fp0 | ...SIN(R')-R'
281 fmovel %d1,%FPCR |restore users exceptions
282 faddx X(%a6),%fp0 |last inst - possible exception set
287 |--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
288 |--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
289 |--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
290 |--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
291 |--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
293 |--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
294 |--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
295 |--AND IS THEREFORE STORED AS SINGLE PRECISION.
297 fmulx %fp0,%fp0 | ...FP0 IS S
298 |---HIDE THE NEXT TWO WHILE WAITING FOR FP0
303 fmulx %fp1,%fp1 | ...FP1 IS T
304 |--HIDE THE NEXT TWO WHILE WAITING FOR FP1
305 fmovex %fp0,X(%a6) | ...X IS S
307 andil #0x80000000,%d0
308 | ...LEAST SIG. BIT OF D0 IN SIGN POSITION
310 fmulx %fp1,%fp2 | ...TB8
311 |--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
312 eorl %d0,X(%a6) | ...X IS NOW S'= SGN*S
313 andil #0x80000000,%d0
315 fmulx %fp1,%fp3 | ...TB7
316 |--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
317 oril #0x3F800000,%d0 | ...D0 IS SGN IN SINGLE
318 movel %d0,POSNEG1(%a6)
320 faddd COSB6,%fp2 | ...B6+TB8
321 faddd COSB5,%fp3 | ...B5+TB7
323 fmulx %fp1,%fp2 | ...T(B6+TB8)
324 fmulx %fp1,%fp3 | ...T(B5+TB7)
326 faddd COSB4,%fp2 | ...B4+T(B6+TB8)
327 faddx COSB3,%fp3 | ...B3+T(B5+TB7)
329 fmulx %fp1,%fp2 | ...T(B4+T(B6+TB8))
330 fmulx %fp3,%fp1 | ...T(B3+T(B5+TB7))
332 faddx COSB2,%fp2 | ...B2+T(B4+T(B6+TB8))
333 fadds COSB1,%fp1 | ...B1+T(B3+T(B5+TB7))
335 fmulx %fp2,%fp0 | ...S(B2+T(B4+T(B6+TB8)))
336 |--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
345 fmovel %d1,%FPCR |restore users exceptions
346 fadds POSNEG1(%a6),%fp0 |last inst - possible exception set
351 |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
352 |--IF |X| < 2**(-40), RETURN X OR 1.
353 cmpil #0x3FFF8000,%d0
363 movew #0x0000,XDCARE(%a6) | ...JUST IN CASE
364 fmovel %d1,%FPCR |restore users exceptions
365 fmovex X(%a6),%fp0 |last inst - possible exception set
370 fmoves #0x3F800000,%fp0
372 fmovel %d1,%FPCR |restore users exceptions
373 fsubs #0x00800000,%fp0 |last inst - possible exception set
378 |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
379 |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
380 |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
382 fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5
384 fmoves #0x00000000,%fp1
385 |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
386 |--there is a danger of unwanted overflow in first LOOP iteration. In this
387 |--case, reduce argument by one remainder step to make subsequent reduction
389 cmpil #0x7ffeffff,%d0 |is argument dangerously large?
391 movel #0x7ffe0000,FP_SCR2(%a6) |yes
392 | ;create 2**16383*PI/2
393 movel #0xc90fdaa2,FP_SCR2+4(%a6)
395 ftstx %fp0 |test sign of argument
396 movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383*
398 movel #0x85a308d3,FP_SCR3+4(%a6)
401 orw #0x8000,FP_SCR2(%a6) |positive arg
402 orw #0x8000,FP_SCR3(%a6)
404 faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact
405 fmovex %fp0,%fp1 |save high result in fp1
406 faddx FP_SCR3(%a6),%fp0 |low part of reduction
407 fsubx %fp0,%fp1 |determine low component of result
408 faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument.
410 |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
411 |--integer quotient will be stored in N
412 |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
415 fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2
417 movel %d0,%a1 | ...save a copy of D0
418 andil #0x00007FFF,%d0
419 subil #0x00003FFF,%d0 | ...D0 IS K
423 subil #27,%d0 | ...D0 IS L := K-27
424 movel #0,ENDFLAG(%a6)
427 clrl %d0 | ...D0 IS L := 0
428 movel #1,ENDFLAG(%a6)
431 |--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
432 |--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
434 |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
435 |--2**L * (PIby2_1), 2**L * (PIby2_2)
437 movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI
438 subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI)
440 movel #0xA2F9836E,FP_SCR1+4(%a6)
441 movel #0x4E44152A,FP_SCR1+8(%a6)
442 movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI)
445 fmulx FP_SCR1(%a6),%fp2
446 |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
447 |--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
448 |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
449 |--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
450 |--US THE DESIRED VALUE IN FLOATING POINT.
452 |--HIDE SIX CYCLES OF INSTRUCTION
455 andil #0x80000000,%d2
456 oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL
457 movel %d2,TWOTO63(%a6)
460 addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2)
463 fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED
465 |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
466 movew %d2,FP_SCR2(%a6)
468 movel #0xC90FDAA2,FP_SCR2+4(%a6)
469 clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1
472 fsubs TWOTO63(%a6),%fp2 | ...FP2 is N
474 addil #0x00003FDD,%d0
475 movew %d0,FP_SCR3(%a6)
477 movel #0x85A308D3,FP_SCR3+4(%a6)
478 clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2
480 movel ENDFLAG(%a6),%d0
482 |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
483 |--P2 = 2**(L) * Piby2_2
485 fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1
487 fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2
489 |--we want P+p = W+w but |p| <= half ulp of P
490 |--Then, we need to compute A := R-P and a := r-p
491 faddx %fp5,%fp3 | ...FP3 is P
492 fsubx %fp3,%fp4 | ...W-P
494 fsubx %fp3,%fp0 | ...FP0 is A := R - P
495 faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w
497 fmovex %fp0,%fp3 | ...FP3 A
498 fsubx %fp4,%fp1 | ...FP1 is a := r - p
500 |--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
501 |--|r| <= half ulp of R.
502 faddx %fp1,%fp0 | ...FP0 is R := A+a
503 |--No need to calculate r if this is the last loop
507 |--Need to calculate r
508 fsubx %fp0,%fp3 | ...A-R
509 faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a
515 fmovemx (%a7)+,%fp2-%fp5
526 |--SIN AND COS OF X FOR DENORMALIZED X
528 fmoves #0x3F800000,%fp1
529 bsr sto_cos |store cosine result
537 fmovex (%a0),%fp0 | ...LOAD INPUT
542 andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X
544 cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
549 cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
555 |--THIS IS THE USUAL CASE, |X| <= 15 PI.
556 |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
558 fmuld TWOBYPI,%fp1 | ...X*2/PI
560 |--HIDE THE NEXT THREE INSTRUCTIONS
561 lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
565 fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER
569 addal %d0,%a1 | ...ADDRESS OF N*PIBY2, IN Y1, Y2
571 fsubx (%a1)+,%fp0 | ...X-Y1
572 fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
575 |--continuation point from REDUCEX
581 cmpil #0,%d0 | ...D0 < 0 IFF N IS ODD
585 |--REGISTERS SAVED SO FAR: D0, A0, FP2.
587 fmovex %fp0,RPRIME(%a6)
588 fmulx %fp0,%fp0 | ...FP0 IS S = R*R
589 fmoved SINA7,%fp1 | ...A7
590 fmoved COSB8,%fp2 | ...B8
591 fmulx %fp0,%fp1 | ...SA7
594 fmulx %fp0,%fp2 | ...SB8
596 andil #0x80000000,%d2
598 faddd SINA6,%fp1 | ...A6+SA7
600 andil #0x80000000,%d2
601 faddd COSB7,%fp2 | ...B7+SB8
603 fmulx %fp0,%fp1 | ...S(A6+SA7)
606 fmulx %fp0,%fp2 | ...S(B7+SB8)
608 andil #0x80000000,%d0
610 faddd SINA5,%fp1 | ...A5+S(A6+SA7)
611 movel #0x3F800000,POSNEG1(%a6)
612 eorl %d0,POSNEG1(%a6)
613 faddd COSB6,%fp2 | ...B6+S(B7+SB8)
615 fmulx %fp0,%fp1 | ...S(A5+S(A6+SA7))
616 fmulx %fp0,%fp2 | ...S(B6+S(B7+SB8))
617 fmovex %fp0,SPRIME(%a6)
619 faddd SINA4,%fp1 | ...A4+S(A5+S(A6+SA7))
621 faddd COSB5,%fp2 | ...B5+S(B6+S(B7+SB8))
623 fmulx %fp0,%fp1 | ...S(A4+...)
624 fmulx %fp0,%fp2 | ...S(B5+...)
626 faddd SINA3,%fp1 | ...A3+S(A4+...)
627 faddd COSB4,%fp2 | ...B4+S(B5+...)
629 fmulx %fp0,%fp1 | ...S(A3+...)
630 fmulx %fp0,%fp2 | ...S(B4+...)
632 faddx SINA2,%fp1 | ...A2+S(A3+...)
633 faddx COSB3,%fp2 | ...B3+S(B4+...)
635 fmulx %fp0,%fp1 | ...S(A2+...)
636 fmulx %fp0,%fp2 | ...S(B3+...)
638 faddx SINA1,%fp1 | ...A1+S(A2+...)
639 faddx COSB2,%fp2 | ...B2+S(B3+...)
641 fmulx %fp0,%fp1 | ...S(A1+...)
642 fmulx %fp2,%fp0 | ...S(B2+...)
646 fmulx RPRIME(%a6),%fp1 | ...R'S(A1+...)
647 fadds COSB1,%fp0 | ...B1+S(B2...)
648 fmulx SPRIME(%a6),%fp0 | ...S'(B1+S(B2+...))
650 movel %d1,-(%sp) |restore users mode & precision
651 andil #0xff,%d1 |mask off all exceptions
653 faddx RPRIME(%a6),%fp1 | ...COS(X)
654 bsr sto_cos |store cosine result
655 fmovel (%sp)+,%FPCR |restore users exceptions
656 fadds POSNEG1(%a6),%fp0 | ...SIN(X)
662 |--REGISTERS SAVED SO FAR: FP2.
664 fmovex %fp0,RPRIME(%a6)
665 fmulx %fp0,%fp0 | ...FP0 IS S = R*R
666 fmoved COSB8,%fp1 | ...B8
667 fmoved SINA7,%fp2 | ...A7
668 fmulx %fp0,%fp1 | ...SB8
669 fmovex %fp0,SPRIME(%a6)
670 fmulx %fp0,%fp2 | ...SA7
672 andil #0x80000000,%d0
673 faddd COSB7,%fp1 | ...B7+SB8
674 faddd SINA6,%fp2 | ...A6+SA7
677 fmulx %fp0,%fp1 | ...S(B7+SB8)
679 movel %d0,POSNEG1(%a6)
680 fmulx %fp0,%fp2 | ...S(A6+SA7)
682 faddd COSB6,%fp1 | ...B6+S(B7+SB8)
683 faddd SINA5,%fp2 | ...A5+S(A6+SA7)
685 fmulx %fp0,%fp1 | ...S(B6+S(B7+SB8))
686 fmulx %fp0,%fp2 | ...S(A5+S(A6+SA7))
688 faddd COSB5,%fp1 | ...B5+S(B6+S(B7+SB8))
689 faddd SINA4,%fp2 | ...A4+S(A5+S(A6+SA7))
691 fmulx %fp0,%fp1 | ...S(B5+...)
692 fmulx %fp0,%fp2 | ...S(A4+...)
694 faddd COSB4,%fp1 | ...B4+S(B5+...)
695 faddd SINA3,%fp2 | ...A3+S(A4+...)
697 fmulx %fp0,%fp1 | ...S(B4+...)
698 fmulx %fp0,%fp2 | ...S(A3+...)
700 faddx COSB3,%fp1 | ...B3+S(B4+...)
701 faddx SINA2,%fp2 | ...A2+S(A3+...)
703 fmulx %fp0,%fp1 | ...S(B3+...)
704 fmulx %fp0,%fp2 | ...S(A2+...)
706 faddx COSB2,%fp1 | ...B2+S(B3+...)
707 faddx SINA1,%fp2 | ...A1+S(A2+...)
709 fmulx %fp0,%fp1 | ...S(B2+...)
710 fmulx %fp2,%fp0 | ...s(a1+...)
714 fadds COSB1,%fp1 | ...B1+S(B2...)
715 fmulx RPRIME(%a6),%fp0 | ...R'S(A1+...)
716 fmulx SPRIME(%a6),%fp1 | ...S'(B1+S(B2+...))
718 movel %d1,-(%sp) |save users mode & precision
719 andil #0xff,%d1 |mask off all exceptions
721 fadds POSNEG1(%a6),%fp1 | ...COS(X)
722 bsr sto_cos |store cosine result
723 fmovel (%sp)+,%FPCR |restore users exceptions
724 faddx RPRIME(%a6),%fp0 | ...SIN(X)
729 cmpil #0x3FFF8000,%d0
734 movew #0x0000,XDCARE(%a6)
735 fmoves #0x3F800000,%fp1
737 movel %d1,-(%sp) |save users mode & precision
738 andil #0xff,%d1 |mask off all exceptions
740 fsubs #0x00800000,%fp1
741 bsr sto_cos |store cosine result
742 fmovel (%sp)+,%FPCR |restore users exceptions