initial commit with v2.6.9
[linux-2.6.9-moxart.git] / arch / i386 / kernel / efi.c
blobfd4988dcc7aa5de8273c9f561fc8f2832a813c65
1 /*
2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 1.0
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
12 * All EFI Runtime Services are not implemented yet as EFI only
13 * supports physical mode addressing on SoftSDV. This is to be fixed
14 * in a future version. --drummond 1999-07-20
16 * Implemented EFI runtime services and virtual mode calls. --davidm
18 * Goutham Rao: <goutham.rao@intel.com>
19 * Skip non-WB memory and ignore empty memory ranges.
22 #include <linux/config.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/types.h>
27 #include <linux/time.h>
28 #include <linux/spinlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/ioport.h>
31 #include <linux/module.h>
32 #include <linux/efi.h>
34 #include <asm/setup.h>
35 #include <asm/io.h>
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/desc.h>
40 #include <asm/tlbflush.h>
42 #define EFI_DEBUG 0
43 #define PFX "EFI: "
45 extern efi_status_t asmlinkage efi_call_phys(void *, ...);
47 struct efi efi;
48 EXPORT_SYMBOL(efi);
49 struct efi efi_phys __initdata;
50 struct efi_memory_map memmap __initdata;
53 * We require an early boot_ioremap mapping mechanism initially
55 extern void * boot_ioremap(unsigned long, unsigned long);
58 * To make EFI call EFI runtime service in physical addressing mode we need
59 * prelog/epilog before/after the invocation to disable interrupt, to
60 * claim EFI runtime service handler exclusively and to duplicate a memory in
61 * low memory space say 0 - 3G.
64 static unsigned long efi_rt_eflags;
65 static spinlock_t efi_rt_lock = SPIN_LOCK_UNLOCKED;
66 static pgd_t efi_bak_pg_dir_pointer[2];
68 static void efi_call_phys_prelog(void)
70 unsigned long cr4;
71 unsigned long temp;
73 spin_lock(&efi_rt_lock);
74 local_irq_save(efi_rt_eflags);
77 * If I don't have PSE, I should just duplicate two entries in page
78 * directory. If I have PSE, I just need to duplicate one entry in
79 * page directory.
81 __asm__ __volatile__("movl %%cr4, %0":"=r"(cr4));
83 if (cr4 & X86_CR4_PSE) {
84 efi_bak_pg_dir_pointer[0].pgd =
85 swapper_pg_dir[pgd_index(0)].pgd;
86 swapper_pg_dir[0].pgd =
87 swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
88 } else {
89 efi_bak_pg_dir_pointer[0].pgd =
90 swapper_pg_dir[pgd_index(0)].pgd;
91 efi_bak_pg_dir_pointer[1].pgd =
92 swapper_pg_dir[pgd_index(0x400000)].pgd;
93 swapper_pg_dir[pgd_index(0)].pgd =
94 swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
95 temp = PAGE_OFFSET + 0x400000;
96 swapper_pg_dir[pgd_index(0x400000)].pgd =
97 swapper_pg_dir[pgd_index(temp)].pgd;
101 * After the lock is released, the original page table is restored.
103 local_flush_tlb();
105 cpu_gdt_descr[0].address = __pa(cpu_gdt_descr[0].address);
106 __asm__ __volatile__("lgdt %0":"=m"
107 (*(struct Xgt_desc_struct *) __pa(&cpu_gdt_descr[0])));
110 static void efi_call_phys_epilog(void)
112 unsigned long cr4;
114 cpu_gdt_descr[0].address =
115 (unsigned long) __va(cpu_gdt_descr[0].address);
116 __asm__ __volatile__("lgdt %0":"=m"(cpu_gdt_descr));
117 __asm__ __volatile__("movl %%cr4, %0":"=r"(cr4));
119 if (cr4 & X86_CR4_PSE) {
120 swapper_pg_dir[pgd_index(0)].pgd =
121 efi_bak_pg_dir_pointer[0].pgd;
122 } else {
123 swapper_pg_dir[pgd_index(0)].pgd =
124 efi_bak_pg_dir_pointer[0].pgd;
125 swapper_pg_dir[pgd_index(0x400000)].pgd =
126 efi_bak_pg_dir_pointer[1].pgd;
130 * After the lock is released, the original page table is restored.
132 local_flush_tlb();
134 local_irq_restore(efi_rt_eflags);
135 spin_unlock(&efi_rt_lock);
138 static efi_status_t
139 phys_efi_set_virtual_address_map(unsigned long memory_map_size,
140 unsigned long descriptor_size,
141 u32 descriptor_version,
142 efi_memory_desc_t *virtual_map)
144 efi_status_t status;
146 efi_call_phys_prelog();
147 status = efi_call_phys(efi_phys.set_virtual_address_map,
148 memory_map_size, descriptor_size,
149 descriptor_version, virtual_map);
150 efi_call_phys_epilog();
151 return status;
154 efi_status_t
155 phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
157 efi_status_t status;
159 efi_call_phys_prelog();
160 status = efi_call_phys(efi_phys.get_time, tm, tc);
161 efi_call_phys_epilog();
162 return status;
165 inline int efi_set_rtc_mmss(unsigned long nowtime)
167 int real_seconds, real_minutes;
168 efi_status_t status;
169 efi_time_t eft;
170 efi_time_cap_t cap;
172 spin_lock(&efi_rt_lock);
173 status = efi.get_time(&eft, &cap);
174 spin_unlock(&efi_rt_lock);
175 if (status != EFI_SUCCESS)
176 panic("Ooops, efitime: can't read time!\n");
177 real_seconds = nowtime % 60;
178 real_minutes = nowtime / 60;
180 if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
181 real_minutes += 30;
182 real_minutes %= 60;
184 eft.minute = real_minutes;
185 eft.second = real_seconds;
187 if (status != EFI_SUCCESS) {
188 printk("Ooops: efitime: can't read time!\n");
189 return -1;
191 return 0;
194 * This should only be used during kernel init and before runtime
195 * services have been remapped, therefore, we'll need to call in physical
196 * mode. Note, this call isn't used later, so mark it __init.
198 inline unsigned long __init efi_get_time(void)
200 efi_status_t status;
201 efi_time_t eft;
202 efi_time_cap_t cap;
204 status = phys_efi_get_time(&eft, &cap);
205 if (status != EFI_SUCCESS)
206 printk("Oops: efitime: can't read time status: 0x%lx\n",status);
208 return mktime(eft.year, eft.month, eft.day, eft.hour,
209 eft.minute, eft.second);
212 int is_available_memory(efi_memory_desc_t * md)
214 if (!(md->attribute & EFI_MEMORY_WB))
215 return 0;
217 switch (md->type) {
218 case EFI_LOADER_CODE:
219 case EFI_LOADER_DATA:
220 case EFI_BOOT_SERVICES_CODE:
221 case EFI_BOOT_SERVICES_DATA:
222 case EFI_CONVENTIONAL_MEMORY:
223 return 1;
225 return 0;
229 * We need to map the EFI memory map again after paging_init().
231 void __init efi_map_memmap(void)
233 memmap.map = NULL;
235 memmap.map = (efi_memory_desc_t *)
236 bt_ioremap((unsigned long) memmap.phys_map,
237 (memmap.nr_map * sizeof(efi_memory_desc_t)));
239 if (memmap.map == NULL)
240 printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
243 void __init print_efi_memmap(void)
245 efi_memory_desc_t *md;
246 int i;
248 for (i = 0; i < memmap.nr_map; i++) {
249 md = &memmap.map[i];
250 printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
251 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
252 i, md->type, md->attribute, md->phys_addr,
253 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
254 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
259 * Walks the EFI memory map and calls CALLBACK once for each EFI
260 * memory descriptor that has memory that is available for kernel use.
262 void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
264 int prev_valid = 0;
265 struct range {
266 unsigned long start;
267 unsigned long end;
268 } prev, curr;
269 efi_memory_desc_t *md;
270 unsigned long start, end;
271 int i;
273 for (i = 0; i < memmap.nr_map; i++) {
274 md = &memmap.map[i];
276 if ((md->num_pages == 0) || (!is_available_memory(md)))
277 continue;
279 curr.start = md->phys_addr;
280 curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
282 if (!prev_valid) {
283 prev = curr;
284 prev_valid = 1;
285 } else {
286 if (curr.start < prev.start)
287 printk(KERN_INFO PFX "Unordered memory map\n");
288 if (prev.end == curr.start)
289 prev.end = curr.end;
290 else {
291 start =
292 (unsigned long) (PAGE_ALIGN(prev.start));
293 end = (unsigned long) (prev.end & PAGE_MASK);
294 if ((end > start)
295 && (*callback) (start, end, arg) < 0)
296 return;
297 prev = curr;
301 if (prev_valid) {
302 start = (unsigned long) PAGE_ALIGN(prev.start);
303 end = (unsigned long) (prev.end & PAGE_MASK);
304 if (end > start)
305 (*callback) (start, end, arg);
309 void __init efi_init(void)
311 efi_config_table_t *config_tables;
312 efi_runtime_services_t *runtime;
313 efi_char16_t *c16;
314 char vendor[100] = "unknown";
315 unsigned long num_config_tables;
316 int i = 0;
318 memset(&efi, 0, sizeof(efi) );
319 memset(&efi_phys, 0, sizeof(efi_phys));
321 efi_phys.systab = EFI_SYSTAB;
322 memmap.phys_map = EFI_MEMMAP;
323 memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
324 memmap.desc_version = EFI_MEMDESC_VERSION;
326 efi.systab = (efi_system_table_t *)
327 boot_ioremap((unsigned long) efi_phys.systab,
328 sizeof(efi_system_table_t));
330 * Verify the EFI Table
332 if (efi.systab == NULL)
333 printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
334 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
335 printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
336 if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
337 printk(KERN_ERR PFX
338 "Warning: EFI system table major version mismatch: "
339 "got %d.%02d, expected %d.%02d\n",
340 efi.systab->hdr.revision >> 16,
341 efi.systab->hdr.revision & 0xffff,
342 EFI_SYSTEM_TABLE_REVISION >> 16,
343 EFI_SYSTEM_TABLE_REVISION & 0xffff);
345 * Grab some details from the system table
347 num_config_tables = efi.systab->nr_tables;
348 config_tables = (efi_config_table_t *)efi.systab->tables;
349 runtime = efi.systab->runtime;
352 * Show what we know for posterity
354 c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
355 if (c16) {
356 for (i = 0; i < sizeof(vendor) && *c16; ++i)
357 vendor[i] = *c16++;
358 vendor[i] = '\0';
359 } else
360 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
362 printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
363 efi.systab->hdr.revision >> 16,
364 efi.systab->hdr.revision & 0xffff, vendor);
367 * Let's see what config tables the firmware passed to us.
369 config_tables = (efi_config_table_t *)
370 boot_ioremap((unsigned long) config_tables,
371 num_config_tables * sizeof(efi_config_table_t));
373 if (config_tables == NULL)
374 printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
376 for (i = 0; i < num_config_tables; i++) {
377 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
378 efi.mps = (void *)config_tables[i].table;
379 printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
380 } else
381 if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
382 efi.acpi20 = __va(config_tables[i].table);
383 printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
384 } else
385 if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
386 efi.acpi = __va(config_tables[i].table);
387 printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
388 } else
389 if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
390 efi.smbios = (void *) config_tables[i].table;
391 printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
392 } else
393 if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
394 efi.hcdp = (void *)config_tables[i].table;
395 printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
396 } else
397 if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
398 efi.uga = (void *)config_tables[i].table;
399 printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
402 printk("\n");
405 * Check out the runtime services table. We need to map
406 * the runtime services table so that we can grab the physical
407 * address of several of the EFI runtime functions, needed to
408 * set the firmware into virtual mode.
411 runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
412 runtime,
413 sizeof(efi_runtime_services_t));
414 if (runtime != NULL) {
416 * We will only need *early* access to the following
417 * two EFI runtime services before set_virtual_address_map
418 * is invoked.
420 efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
421 efi_phys.set_virtual_address_map =
422 (efi_set_virtual_address_map_t *)
423 runtime->set_virtual_address_map;
424 } else
425 printk(KERN_ERR PFX "Could not map the runtime service table!\n");
427 /* Map the EFI memory map for use until paging_init() */
429 memmap.map = (efi_memory_desc_t *)
430 boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
432 if (memmap.map == NULL)
433 printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
435 if (EFI_MEMDESC_SIZE != sizeof(efi_memory_desc_t)) {
436 printk(KERN_WARNING PFX "Warning! Kernel-defined memdesc doesn't "
437 "match the one from EFI!\n");
439 #if EFI_DEBUG
440 print_efi_memmap();
441 #endif
445 * This function will switch the EFI runtime services to virtual mode.
446 * Essentially, look through the EFI memmap and map every region that
447 * has the runtime attribute bit set in its memory descriptor and update
448 * that memory descriptor with the virtual address obtained from ioremap().
449 * This enables the runtime services to be called without having to
450 * thunk back into physical mode for every invocation.
453 void __init efi_enter_virtual_mode(void)
455 efi_memory_desc_t *md;
456 efi_status_t status;
457 int i;
459 efi.systab = NULL;
461 for (i = 0; i < memmap.nr_map; i++) {
462 md = &memmap.map[i];
464 if (md->attribute & EFI_MEMORY_RUNTIME) {
465 md->virt_addr =
466 (unsigned long)ioremap(md->phys_addr,
467 md->num_pages << EFI_PAGE_SHIFT);
468 if (!(unsigned long)md->virt_addr) {
469 printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
470 (unsigned long)md->phys_addr);
473 if (((unsigned long)md->phys_addr <=
474 (unsigned long)efi_phys.systab) &&
475 ((unsigned long)efi_phys.systab <
476 md->phys_addr +
477 ((unsigned long)md->num_pages <<
478 EFI_PAGE_SHIFT))) {
479 unsigned long addr;
481 addr = md->virt_addr - md->phys_addr +
482 (unsigned long)efi_phys.systab;
483 efi.systab = (efi_system_table_t *)addr;
488 if (!efi.systab)
489 BUG();
491 status = phys_efi_set_virtual_address_map(
492 sizeof(efi_memory_desc_t) * memmap.nr_map,
493 sizeof(efi_memory_desc_t),
494 memmap.desc_version,
495 memmap.phys_map);
497 if (status != EFI_SUCCESS) {
498 printk (KERN_ALERT "You are screwed! "
499 "Unable to switch EFI into virtual mode "
500 "(status=%lx)\n", status);
501 panic("EFI call to SetVirtualAddressMap() failed!");
505 * Now that EFI is in virtual mode, update the function
506 * pointers in the runtime service table to the new virtual addresses.
509 efi.get_time = (efi_get_time_t *) efi.systab->runtime->get_time;
510 efi.set_time = (efi_set_time_t *) efi.systab->runtime->set_time;
511 efi.get_wakeup_time = (efi_get_wakeup_time_t *)
512 efi.systab->runtime->get_wakeup_time;
513 efi.set_wakeup_time = (efi_set_wakeup_time_t *)
514 efi.systab->runtime->set_wakeup_time;
515 efi.get_variable = (efi_get_variable_t *)
516 efi.systab->runtime->get_variable;
517 efi.get_next_variable = (efi_get_next_variable_t *)
518 efi.systab->runtime->get_next_variable;
519 efi.set_variable = (efi_set_variable_t *)
520 efi.systab->runtime->set_variable;
521 efi.get_next_high_mono_count = (efi_get_next_high_mono_count_t *)
522 efi.systab->runtime->get_next_high_mono_count;
523 efi.reset_system = (efi_reset_system_t *)
524 efi.systab->runtime->reset_system;
527 void __init
528 efi_initialize_iomem_resources(struct resource *code_resource,
529 struct resource *data_resource)
531 struct resource *res;
532 efi_memory_desc_t *md;
533 int i;
535 for (i = 0; i < memmap.nr_map; i++) {
536 md = &memmap.map[i];
538 if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
539 0x100000000ULL)
540 continue;
541 res = alloc_bootmem_low(sizeof(struct resource));
542 switch (md->type) {
543 case EFI_RESERVED_TYPE:
544 res->name = "Reserved Memory";
545 break;
546 case EFI_LOADER_CODE:
547 res->name = "Loader Code";
548 break;
549 case EFI_LOADER_DATA:
550 res->name = "Loader Data";
551 break;
552 case EFI_BOOT_SERVICES_DATA:
553 res->name = "BootServices Data";
554 break;
555 case EFI_BOOT_SERVICES_CODE:
556 res->name = "BootServices Code";
557 break;
558 case EFI_RUNTIME_SERVICES_CODE:
559 res->name = "Runtime Service Code";
560 break;
561 case EFI_RUNTIME_SERVICES_DATA:
562 res->name = "Runtime Service Data";
563 break;
564 case EFI_CONVENTIONAL_MEMORY:
565 res->name = "Conventional Memory";
566 break;
567 case EFI_UNUSABLE_MEMORY:
568 res->name = "Unusable Memory";
569 break;
570 case EFI_ACPI_RECLAIM_MEMORY:
571 res->name = "ACPI Reclaim";
572 break;
573 case EFI_ACPI_MEMORY_NVS:
574 res->name = "ACPI NVS";
575 break;
576 case EFI_MEMORY_MAPPED_IO:
577 res->name = "Memory Mapped IO";
578 break;
579 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
580 res->name = "Memory Mapped IO Port Space";
581 break;
582 default:
583 res->name = "Reserved";
584 break;
586 res->start = md->phys_addr;
587 res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
588 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
589 if (request_resource(&iomem_resource, res) < 0)
590 printk(KERN_ERR PFX "Failed to allocate res %s : 0x%lx-0x%lx\n",
591 res->name, res->start, res->end);
593 * We don't know which region contains kernel data so we try
594 * it repeatedly and let the resource manager test it.
596 if (md->type == EFI_CONVENTIONAL_MEMORY) {
597 request_resource(res, code_resource);
598 request_resource(res, data_resource);
604 * Convenience functions to obtain memory types and attributes
607 u32 efi_mem_type(unsigned long phys_addr)
609 efi_memory_desc_t *md;
610 int i;
612 for (i = 0; i < memmap.nr_map; i++) {
613 md = &memmap.map[i];
614 if ((md->phys_addr <= phys_addr) && (phys_addr <
615 (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
616 return md->type;
618 return 0;
621 u64 efi_mem_attributes(unsigned long phys_addr)
623 efi_memory_desc_t *md;
624 int i;
626 for (i = 0; i < memmap.nr_map; i++) {
627 md = &memmap.map[i];
628 if ((md->phys_addr <= phys_addr) && (phys_addr <
629 (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
630 return md->attribute;
632 return 0;