initial commit with v2.6.9
[linux-2.6.9-moxart.git] / arch / arm / mach-versatile / core.c
blob239d9897d6745838d0a2a7d97270e405efc61fa2
1 /*
2 * linux/arch/arm/mach-versatile/core.c
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
28 #include <asm/system.h>
29 #include <asm/hardware.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/leds.h>
33 #include <asm/mach-types.h>
34 #include <asm/hardware/amba.h>
35 #include <asm/hardware/amba_clcd.h>
37 #include <asm/mach/arch.h>
38 #include <asm/mach/flash.h>
39 #include <asm/mach/irq.h>
40 #include <asm/mach/time.h>
41 #include <asm/mach/map.h>
42 #ifdef CONFIG_MMC
43 #include <asm/mach/mmc.h>
44 #endif
47 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
48 * is the (PA >> 12).
50 * Setup a VA for the Versatile Vectored Interrupt Controller.
52 #define VA_VIC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
53 #define VA_SIC_BASE IO_ADDRESS(VERSATILE_SIC_BASE)
55 static void vic_mask_irq(unsigned int irq)
57 irq -= IRQ_VIC_START;
58 writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
61 static void vic_unmask_irq(unsigned int irq)
63 irq -= IRQ_VIC_START;
64 writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
67 static struct irqchip vic_chip = {
68 .ack = vic_mask_irq,
69 .mask = vic_mask_irq,
70 .unmask = vic_unmask_irq,
73 static void sic_mask_irq(unsigned int irq)
75 irq -= IRQ_SIC_START;
76 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
79 static void sic_unmask_irq(unsigned int irq)
81 irq -= IRQ_SIC_START;
82 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
85 static struct irqchip sic_chip = {
86 .ack = sic_mask_irq,
87 .mask = sic_mask_irq,
88 .unmask = sic_unmask_irq,
91 static void
92 sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
94 unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
96 if (status == 0) {
97 do_bad_IRQ(irq, desc, regs);
98 return;
101 do {
102 irq = ffs(status) - 1;
103 status &= ~(1 << irq);
105 irq += IRQ_SIC_START;
107 desc = irq_desc + irq;
108 desc->handle(irq, desc, regs);
109 } while (status);
112 #if 1
113 #define IRQ_MMCI0A IRQ_VICSOURCE22
114 #define IRQ_MMCI1A IRQ_VICSOURCE23
115 #define IRQ_AACI IRQ_VICSOURCE24
116 #define IRQ_ETH IRQ_VICSOURCE25
117 #define PIC_MASK 0xFFD00000
118 #else
119 #define IRQ_MMCI0A IRQ_SIC_MMCI0A
120 #define IRQ_MMCI1A IRQ_SIC_MMCI1A
121 #define IRQ_AACI IRQ_SIC_AACI
122 #define IRQ_ETH IRQ_SIC_ETH
123 #define PIC_MASK 0
124 #endif
126 static void __init versatile_init_irq(void)
128 unsigned int i, value;
130 /* Disable all interrupts initially. */
132 writel(0, VA_VIC_BASE + VIC_INT_SELECT);
133 writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
134 writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
135 writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
136 writel(0, VA_VIC_BASE + VIC_ITCR);
137 writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
140 * Make sure we clear all existing interrupts
142 writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
143 for (i = 0; i < 19; i++) {
144 value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
145 writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
148 for (i = 0; i < 16; i++) {
149 value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
150 writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
153 writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
155 for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
156 if (i != IRQ_VICSOURCE31) {
157 set_irq_chip(i, &vic_chip);
158 set_irq_handler(i, do_level_IRQ);
159 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
163 set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
164 vic_unmask_irq(IRQ_VICSOURCE31);
166 /* Do second interrupt controller */
167 writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
169 for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
170 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
171 set_irq_chip(i, &sic_chip);
172 set_irq_handler(i, do_level_IRQ);
173 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
178 * Interrupts on secondary controller from 0 to 8 are routed to
179 * source 31 on PIC.
180 * Interrupts from 21 to 31 are routed directly to the VIC on
181 * the corresponding number on primary controller. This is controlled
182 * by setting PIC_ENABLEx.
184 writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
187 static struct map_desc versatile_io_desc[] __initdata = {
188 { IO_ADDRESS(VERSATILE_SYS_BASE), VERSATILE_SYS_BASE, SZ_4K, MT_DEVICE },
189 { IO_ADDRESS(VERSATILE_SIC_BASE), VERSATILE_SIC_BASE, SZ_4K, MT_DEVICE },
190 { IO_ADDRESS(VERSATILE_VIC_BASE), VERSATILE_VIC_BASE, SZ_4K, MT_DEVICE },
191 { IO_ADDRESS(VERSATILE_SCTL_BASE), VERSATILE_SCTL_BASE, SZ_4K * 9, MT_DEVICE },
192 #ifdef CONFIG_DEBUG_LL
193 { IO_ADDRESS(VERSATILE_UART0_BASE), VERSATILE_UART0_BASE, SZ_4K, MT_DEVICE },
194 #endif
195 #ifdef FIXME
196 { PCI_MEMORY_VADDR, PHYS_PCI_MEM_BASE, SZ_16M, MT_DEVICE },
197 { PCI_CONFIG_VADDR, PHYS_PCI_CONFIG_BASE, SZ_16M, MT_DEVICE },
198 { PCI_V3_VADDR, PHYS_PCI_V3_BASE, SZ_512K, MT_DEVICE },
199 { PCI_IO_VADDR, PHYS_PCI_IO_BASE, SZ_64K, MT_DEVICE },
200 #endif
203 static void __init versatile_map_io(void)
205 iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
208 #define VERSATILE_REFCOUNTER (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
211 * This is the VersatilePB sched_clock implementation. This has
212 * a resolution of 41.7ns, and a maximum value of about 179s.
214 unsigned long long sched_clock(void)
216 unsigned long long v;
218 v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
219 do_div(v, 3);
221 return v;
225 #define VERSATILE_FLASHCTRL (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
227 static int versatile_flash_init(void)
229 u32 val;
231 val = __raw_readl(VERSATILE_FLASHCTRL);
232 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
233 __raw_writel(val, VERSATILE_FLASHCTRL);
235 return 0;
238 static void versatile_flash_exit(void)
240 u32 val;
242 val = __raw_readl(VERSATILE_FLASHCTRL);
243 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
244 __raw_writel(val, VERSATILE_FLASHCTRL);
247 static void versatile_flash_set_vpp(int on)
249 u32 val;
251 val = __raw_readl(VERSATILE_FLASHCTRL);
252 if (on)
253 val |= VERSATILE_FLASHPROG_FLVPPEN;
254 else
255 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
256 __raw_writel(val, VERSATILE_FLASHCTRL);
259 static struct flash_platform_data versatile_flash_data = {
260 .map_name = "cfi_probe",
261 .width = 4,
262 .init = versatile_flash_init,
263 .exit = versatile_flash_exit,
264 .set_vpp = versatile_flash_set_vpp,
267 static struct resource versatile_flash_resource = {
268 .start = VERSATILE_FLASH_BASE,
269 .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
270 .flags = IORESOURCE_MEM,
273 static struct platform_device versatile_flash_device = {
274 .name = "armflash",
275 .id = 0,
276 .dev = {
277 .platform_data = &versatile_flash_data,
279 .num_resources = 1,
280 .resource = &versatile_flash_resource,
283 static struct resource smc91x_resources[] = {
284 [0] = {
285 .start = VERSATILE_ETH_BASE,
286 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
287 .flags = IORESOURCE_MEM,
289 [1] = {
290 .start = IRQ_ETH,
291 .end = IRQ_ETH,
292 .flags = IORESOURCE_IRQ,
296 static struct platform_device smc91x_device = {
297 .name = "smc91x",
298 .id = 0,
299 .num_resources = ARRAY_SIZE(smc91x_resources),
300 .resource = smc91x_resources,
303 #define VERSATILE_SYSMCI (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
305 #ifdef CONFIG_MMC
306 static unsigned int mmc_status(struct device *dev)
308 struct amba_device *adev = container_of(dev, struct amba_device, dev);
309 u32 mask;
311 if (adev->res.start == VERSATILE_MMCI0_BASE)
312 mask = 1;
313 else
314 mask = 2;
316 return readl(VERSATILE_SYSMCI) & mask;
319 static struct mmc_platform_data mmc0_plat_data = {
320 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
321 .status = mmc_status,
324 static struct mmc_platform_data mmc1_plat_data = {
325 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
326 .status = mmc_status,
328 #endif
331 * CLCD support.
333 #define SYS_CLCD_MODE_MASK (3 << 0)
334 #define SYS_CLCD_MODE_5551 (0 << 0)
335 #define SYS_CLCD_MODE_565 (1 << 0)
336 #define SYS_CLCD_MODE_888 (2 << 0)
337 #define SYS_CLCD_MODE_LT (3 << 0)
338 #define SYS_CLCD_NLCDIOON (1 << 2)
339 #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
340 #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
341 #define SYS_CLCD_ID_MASK (0x1f << 8)
342 #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
343 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
344 #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
345 #define SYS_CLCD_ID_VGA (0x1f << 8)
347 static struct clcd_panel vga = {
348 .mode = {
349 .name = "VGA",
350 .refresh = 60,
351 .xres = 640,
352 .yres = 480,
353 .pixclock = 39721,
354 .left_margin = 40,
355 .right_margin = 24,
356 .upper_margin = 32,
357 .lower_margin = 11,
358 .hsync_len = 96,
359 .vsync_len = 2,
360 .sync = 0,
361 .vmode = FB_VMODE_NONINTERLACED,
363 .width = -1,
364 .height = -1,
365 .tim2 = TIM2_BCD | TIM2_IPC,
366 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
367 .bpp = 16,
370 static struct clcd_panel sanyo_3_8_in = {
371 .mode = {
372 .name = "Sanyo QVGA",
373 .refresh = 116,
374 .xres = 320,
375 .yres = 240,
376 .pixclock = 100000,
377 .left_margin = 6,
378 .right_margin = 6,
379 .upper_margin = 5,
380 .lower_margin = 5,
381 .hsync_len = 6,
382 .vsync_len = 6,
383 .sync = 0,
384 .vmode = FB_VMODE_NONINTERLACED,
386 .width = -1,
387 .height = -1,
388 .tim2 = TIM2_BCD,
389 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
390 .bpp = 16,
393 static struct clcd_panel epson_2_2_in = {
394 .mode = {
395 .name = "Epson QCIF",
396 .refresh = 390,
397 .xres = 176,
398 .yres = 220,
399 .pixclock = 62500,
400 .left_margin = 3,
401 .right_margin = 2,
402 .upper_margin = 1,
403 .lower_margin = 0,
404 .hsync_len = 3,
405 .vsync_len = 2,
406 .sync = 0,
407 .vmode = FB_VMODE_NONINTERLACED,
409 .width = -1,
410 .height = -1,
411 .tim2 = TIM2_BCD | TIM2_IPC,
412 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
413 .bpp = 16,
417 * Detect which LCD panel is connected, and return the appropriate
418 * clcd_panel structure. Note: we do not have any information on
419 * the required timings for the 8.4in panel, so we presently assume
420 * VGA timings.
422 static struct clcd_panel *versatile_clcd_panel(void)
424 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
425 struct clcd_panel *panel = &vga;
426 u32 val;
428 val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
429 if (val == SYS_CLCD_ID_SANYO_3_8)
430 panel = &sanyo_3_8_in;
431 else if (val == SYS_CLCD_ID_EPSON_2_2)
432 panel = &epson_2_2_in;
433 else if (val == SYS_CLCD_ID_VGA)
434 panel = &vga;
435 else {
436 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
437 val);
440 return &vga;
444 * Disable all display connectors on the interface module.
446 static void versatile_clcd_disable(struct clcd_fb *fb)
448 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
449 u32 val;
451 val = readl(sys_clcd);
452 val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
453 writel(val, sys_clcd);
457 * Enable the relevant connector on the interface module.
459 static void versatile_clcd_enable(struct clcd_fb *fb)
461 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
462 u32 val;
464 val = readl(sys_clcd);
465 val &= ~SYS_CLCD_MODE_MASK;
467 switch (fb->fb.var.green.length) {
468 case 5:
469 #if 0
471 * For some undocumented reason, we need to select 565 mode
472 * even when using 555 with VGA. Maybe this is only true
473 * for the VGA output and needs to be done for LCD panels?
474 * I can't get an explaination from the people who should
475 * know.
477 val |= SYS_CLCD_MODE_5551;
478 break;
479 #endif
480 case 6:
481 val |= SYS_CLCD_MODE_565;
482 break;
483 case 8:
484 val |= SYS_CLCD_MODE_888;
485 break;
489 * Set the MUX
491 writel(val, sys_clcd);
494 * And now enable the PSUs
496 val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
497 writel(val, sys_clcd);
500 static unsigned long framesize = SZ_1M;
502 static int versatile_clcd_setup(struct clcd_fb *fb)
504 dma_addr_t dma;
506 fb->panel = versatile_clcd_panel();
508 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
509 &dma, GFP_KERNEL);
510 if (!fb->fb.screen_base) {
511 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
512 return -ENOMEM;
515 fb->fb.fix.smem_start = dma;
516 fb->fb.fix.smem_len = framesize;
518 return 0;
521 static void versatile_clcd_remove(struct clcd_fb *fb)
523 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
524 fb->fb.screen_base, fb->fb.fix.smem_start);
527 static struct clcd_board clcd_plat_data = {
528 .name = "Versatile PB",
529 .check = clcdfb_check,
530 .decode = clcdfb_decode,
531 .disable = versatile_clcd_disable,
532 .enable = versatile_clcd_enable,
533 .setup = versatile_clcd_setup,
534 .remove = versatile_clcd_remove,
537 #define AMBA_DEVICE(name,busid,base,plat) \
538 static struct amba_device name##_device = { \
539 .dev = { \
540 .coherent_dma_mask = ~0, \
541 .bus_id = busid, \
542 .platform_data = plat, \
543 }, \
544 .res = { \
545 .start = VERSATILE_##base##_BASE, \
546 .end = (VERSATILE_##base##_BASE) + SZ_4K - 1,\
547 .flags = IORESOURCE_MEM, \
548 }, \
549 .dma_mask = ~0, \
550 .irq = base##_IRQ, \
551 /* .dma = base##_DMA,*/ \
554 #define AACI_IRQ { IRQ_AACI, NO_IRQ }
555 #define AACI_DMA { 0x80, 0x81 }
556 #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
557 #define MMCI0_DMA { 0x84, 0 }
558 #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
559 #define KMI0_DMA { 0, 0 }
560 #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
561 #define KMI1_DMA { 0, 0 }
562 #define UART3_IRQ { IRQ_SIC_UART3, NO_IRQ }
563 #define UART3_DMA { 0x86, 0x87 }
564 #define SCI1_IRQ { IRQ_SIC_SCI3, NO_IRQ }
565 #define SCI1_DMA { 0x88, 0x89 }
566 #define MMCI1_IRQ { IRQ_MMCI1A, IRQ_SIC_MMCI1B }
567 #define MMCI1_DMA { 0x85, 0 }
570 * These devices are connected directly to the multi-layer AHB switch
572 #define SMC_IRQ { NO_IRQ, NO_IRQ }
573 #define SMC_DMA { 0, 0 }
574 #define MPMC_IRQ { NO_IRQ, NO_IRQ }
575 #define MPMC_DMA { 0, 0 }
576 #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
577 #define CLCD_DMA { 0, 0 }
578 #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
579 #define DMAC_DMA { 0, 0 }
582 * These devices are connected via the core APB bridge
584 #define SCTL_IRQ { NO_IRQ, NO_IRQ }
585 #define SCTL_DMA { 0, 0 }
586 #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
587 #define WATCHDOG_DMA { 0, 0 }
588 #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
589 #define GPIO0_DMA { 0, 0 }
590 #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
591 #define GPIO1_DMA { 0, 0 }
592 #define GPIO2_IRQ { IRQ_GPIOINT2, NO_IRQ }
593 #define GPIO2_DMA { 0, 0 }
594 #define GPIO3_IRQ { IRQ_GPIOINT3, NO_IRQ }
595 #define GPIO3_DMA { 0, 0 }
596 #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
597 #define RTC_DMA { 0, 0 }
600 * These devices are connected via the DMA APB bridge
602 #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
603 #define SCI_DMA { 7, 6 }
604 #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
605 #define UART0_DMA { 15, 14 }
606 #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
607 #define UART1_DMA { 13, 12 }
608 #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
609 #define UART2_DMA { 11, 10 }
610 #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
611 #define SSP_DMA { 9, 8 }
613 /* FPGA Primecells */
614 AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
615 #ifdef CONFIG_MMC
616 AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
617 #endif
618 AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
619 AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
620 AMBA_DEVICE(uart3, "fpga:09", UART3, NULL);
621 AMBA_DEVICE(sci1, "fpga:0a", SCI1, NULL);
622 #ifdef CONFIG_MMC
623 AMBA_DEVICE(mmc1, "fpga:0b", MMCI1, &mmc1_plat_data);
624 #endif
626 /* DevChip Primecells */
627 AMBA_DEVICE(smc, "dev:00", SMC, NULL);
628 AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
629 AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
630 AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
631 AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
632 AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
633 AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
634 AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
635 AMBA_DEVICE(gpio2, "dev:e6", GPIO2, NULL);
636 AMBA_DEVICE(gpio3, "dev:e7", GPIO3, NULL);
637 AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
638 AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
639 AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
640 AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
641 AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
642 AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
644 static struct amba_device *amba_devs[] __initdata = {
645 &dmac_device,
646 &uart0_device,
647 &uart1_device,
648 &uart2_device,
649 &uart3_device,
650 &smc_device,
651 &mpmc_device,
652 &clcd_device,
653 &sctl_device,
654 &wdog_device,
655 &gpio0_device,
656 &gpio1_device,
657 &gpio2_device,
658 &gpio3_device,
659 &rtc_device,
660 &sci0_device,
661 &ssp0_device,
662 &aaci_device,
663 #ifdef CONFIG_MMC
664 &mmc0_device,
665 #endif
666 &kmi0_device,
667 &kmi1_device,
668 &sci1_device,
669 #ifdef CONFIG_MMC
670 &mmc1_device,
671 #endif
674 #define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
676 static void versatile_leds_event(led_event_t ledevt)
678 unsigned long flags;
679 u32 val;
681 local_irq_save(flags);
682 val = readl(VA_LEDS_BASE);
684 switch (ledevt) {
685 case led_idle_start:
686 val = val & ~VERSATILE_SYS_LED0;
687 break;
689 case led_idle_end:
690 val = val | VERSATILE_SYS_LED0;
691 break;
693 case led_timer:
694 val = val ^ VERSATILE_SYS_LED1;
695 break;
697 case led_halted:
698 val = 0;
699 break;
701 default:
702 break;
705 writel(val, VA_LEDS_BASE);
706 local_irq_restore(flags);
709 static void __init versatile_init(void)
711 int i;
713 platform_device_register(&versatile_flash_device);
714 platform_device_register(&smc91x_device);
716 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
717 struct amba_device *d = amba_devs[i];
718 amba_device_register(d, &iomem_resource);
721 leds_event = versatile_leds_event;
725 * Where is the timer (VA)?
727 #define TIMER0_VA_BASE IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
728 #define TIMER1_VA_BASE (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
729 #define TIMER2_VA_BASE IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
730 #define TIMER3_VA_BASE (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
731 #define VA_IC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
734 * How long is the timer interval?
736 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
737 #if TIMER_INTERVAL >= 0x100000
738 #define TIMER_RELOAD (TIMER_INTERVAL >> 8) /* Divide by 256 */
739 #define TIMER_CTRL 0x88 /* Enable, Clock / 256 */
740 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
741 #elif TIMER_INTERVAL >= 0x10000
742 #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
743 #define TIMER_CTRL 0x84 /* Enable, Clock / 16 */
744 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
745 #else
746 #define TIMER_RELOAD (TIMER_INTERVAL)
747 #define TIMER_CTRL 0x80 /* Enable */
748 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
749 #endif
751 #define TIMER_CTRL_IE (1 << 5) /* Interrupt Enable */
754 * What does it look like?
756 typedef struct TimerStruct {
757 unsigned long TimerLoad;
758 unsigned long TimerValue;
759 unsigned long TimerControl;
760 unsigned long TimerClear;
761 } TimerStruct_t;
763 extern unsigned long (*gettimeoffset)(void);
766 * Returns number of ms since last clock interrupt. Note that interrupts
767 * will have been disabled by do_gettimeoffset()
769 static unsigned long versatile_gettimeoffset(void)
771 volatile TimerStruct_t *timer0 = (TimerStruct_t *)TIMER0_VA_BASE;
772 unsigned long ticks1, ticks2, status;
775 * Get the current number of ticks. Note that there is a race
776 * condition between us reading the timer and checking for
777 * an interrupt. We get around this by ensuring that the
778 * counter has not reloaded between our two reads.
780 ticks2 = timer0->TimerValue & 0xffff;
781 do {
782 ticks1 = ticks2;
783 status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
784 ticks2 = timer0->TimerValue & 0xffff;
785 } while (ticks2 > ticks1);
788 * Number of ticks since last interrupt.
790 ticks1 = TIMER_RELOAD - ticks2;
793 * Interrupt pending? If so, we've reloaded once already.
795 * FIXME: Need to check this is effectively timer 0 that expires
797 if (status & IRQMASK_TIMERINT0_1)
798 ticks1 += TIMER_RELOAD;
801 * Convert the ticks to usecs
803 return TICKS2USECS(ticks1);
807 * IRQ handler for the timer
809 static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
811 volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
813 // ...clear the interrupt
814 timer0->TimerClear = 1;
816 timer_tick(regs);
818 return IRQ_HANDLED;
821 static struct irqaction versatile_timer_irq = {
822 .name = "Versatile Timer Tick",
823 .flags = SA_INTERRUPT,
824 .handler = versatile_timer_interrupt
828 * Set up timer interrupt, and return the current time in seconds.
830 void __init versatile_init_time(void)
832 volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
833 volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
834 volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
835 volatile TimerStruct_t *timer3 = (volatile TimerStruct_t *)TIMER3_VA_BASE;
838 * set clock frequency:
839 * VERSATILE_REFCLK is 32KHz
840 * VERSATILE_TIMCLK is 1MHz
842 *(volatile unsigned int *)IO_ADDRESS(VERSATILE_SCTL_BASE) |=
843 ((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
844 (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel));
847 * Initialise to a known state (all timers off)
849 timer0->TimerControl = 0;
850 timer1->TimerControl = 0;
851 timer2->TimerControl = 0;
852 timer3->TimerControl = 0;
854 timer0->TimerLoad = TIMER_RELOAD;
855 timer0->TimerValue = TIMER_RELOAD;
856 timer0->TimerControl = TIMER_CTRL | 0x40 | TIMER_CTRL_IE; /* periodic + IE */
859 * Make irqs happen for the system timer
861 setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
862 gettimeoffset = versatile_gettimeoffset;
865 MACHINE_START(VERSATILE_PB, "ARM-Versatile PB")
866 MAINTAINER("ARM Ltd/Deep Blue Solutions Ltd")
867 BOOT_MEM(0x00000000, 0x101f1000, 0xf11f1000)
868 BOOT_PARAMS(0x00000100)
869 MAPIO(versatile_map_io)
870 INITIRQ(versatile_init_irq)
871 INITTIME(versatile_init_time)
872 INIT_MACHINE(versatile_init)
873 MACHINE_END