MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / scsi / aacraid / commsup.c
blobf53956f77f283e41d4adad182a5c681547fc4e4d
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * commsup.c
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * commuication.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <asm/semaphore.h>
43 #include "aacraid.h"
45 /**
46 * fib_map_alloc - allocate the fib objects
47 * @dev: Adapter to allocate for
49 * Allocate and map the shared PCI space for the FIB blocks used to
50 * talk to the Adaptec firmware.
53 static int fib_map_alloc(struct aac_dev *dev)
55 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, &dev->hw_fib_pa))==NULL)
56 return -ENOMEM;
57 return 0;
60 /**
61 * fib_map_free - free the fib objects
62 * @dev: Adapter to free
64 * Free the PCI mappings and the memory allocated for FIB blocks
65 * on this adapter.
68 void fib_map_free(struct aac_dev *dev)
70 pci_free_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, dev->hw_fib_va, dev->hw_fib_pa);
73 /**
74 * fib_setup - setup the fibs
75 * @dev: Adapter to set up
77 * Allocate the PCI space for the fibs, map it and then intialise the
78 * fib area, the unmapped fib data and also the free list
81 int fib_setup(struct aac_dev * dev)
83 struct fib *fibptr;
84 struct hw_fib *hw_fib_va;
85 dma_addr_t hw_fib_pa;
86 int i;
88 if(fib_map_alloc(dev)<0)
89 return -ENOMEM;
91 hw_fib_va = dev->hw_fib_va;
92 hw_fib_pa = dev->hw_fib_pa;
93 memset(hw_fib_va, 0, sizeof(struct hw_fib) * AAC_NUM_FIB);
95 * Initialise the fibs
97 for (i = 0, fibptr = &dev->fibs[i]; i < AAC_NUM_FIB; i++, fibptr++)
99 fibptr->dev = dev;
100 fibptr->hw_fib = hw_fib_va;
101 fibptr->data = (void *) fibptr->hw_fib->data;
102 fibptr->next = fibptr+1; /* Forward chain the fibs */
103 init_MUTEX_LOCKED(&fibptr->event_wait);
104 spin_lock_init(&fibptr->event_lock);
105 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
106 hw_fib_va->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib));
107 fibptr->hw_fib_pa = hw_fib_pa;
108 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + sizeof(struct hw_fib));
109 hw_fib_pa = hw_fib_pa + sizeof(struct hw_fib);
112 * Add the fib chain to the free list
114 dev->fibs[AAC_NUM_FIB-1].next = NULL;
116 * Enable this to debug out of queue space
118 dev->free_fib = &dev->fibs[0];
119 return 0;
123 * fib_alloc - allocate a fib
124 * @dev: Adapter to allocate the fib for
126 * Allocate a fib from the adapter fib pool. If the pool is empty we
127 * wait for fibs to become free.
130 struct fib * fib_alloc(struct aac_dev *dev)
132 struct fib * fibptr;
133 unsigned long flags;
134 spin_lock_irqsave(&dev->fib_lock, flags);
135 fibptr = dev->free_fib;
136 /* Cannot sleep here or you get hangs. Instead we did the
137 maths at compile time. */
138 if(!fibptr)
139 BUG();
140 dev->free_fib = fibptr->next;
141 spin_unlock_irqrestore(&dev->fib_lock, flags);
143 * Set the proper node type code and node byte size
145 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
146 fibptr->size = sizeof(struct fib);
148 * Null out fields that depend on being zero at the start of
149 * each I/O
151 fibptr->hw_fib->header.XferState = cpu_to_le32(0);
152 fibptr->callback = NULL;
153 fibptr->callback_data = NULL;
155 return fibptr;
159 * fib_free - free a fib
160 * @fibptr: fib to free up
162 * Frees up a fib and places it on the appropriate queue
163 * (either free or timed out)
166 void fib_free(struct fib * fibptr)
168 unsigned long flags;
170 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
171 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
172 aac_config.fib_timeouts++;
173 fibptr->next = fibptr->dev->timeout_fib;
174 fibptr->dev->timeout_fib = fibptr;
175 } else {
176 if (fibptr->hw_fib->header.XferState != 0) {
177 printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
178 (void*)fibptr, fibptr->hw_fib->header.XferState);
180 fibptr->next = fibptr->dev->free_fib;
181 fibptr->dev->free_fib = fibptr;
183 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
187 * fib_init - initialise a fib
188 * @fibptr: The fib to initialize
190 * Set up the generic fib fields ready for use
193 void fib_init(struct fib *fibptr)
195 struct hw_fib *hw_fib = fibptr->hw_fib;
197 hw_fib->header.StructType = FIB_MAGIC;
198 hw_fib->header.Size = cpu_to_le16(sizeof(struct hw_fib));
199 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
200 hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
201 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
202 hw_fib->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib));
206 * fib_deallocate - deallocate a fib
207 * @fibptr: fib to deallocate
209 * Will deallocate and return to the free pool the FIB pointed to by the
210 * caller.
213 void fib_dealloc(struct fib * fibptr)
215 struct hw_fib *hw_fib = fibptr->hw_fib;
216 if(hw_fib->header.StructType != FIB_MAGIC)
217 BUG();
218 hw_fib->header.XferState = cpu_to_le32(0);
222 * Commuication primitives define and support the queuing method we use to
223 * support host to adapter commuication. All queue accesses happen through
224 * these routines and are the only routines which have a knowledge of the
225 * how these queues are implemented.
229 * aac_get_entry - get a queue entry
230 * @dev: Adapter
231 * @qid: Queue Number
232 * @entry: Entry return
233 * @index: Index return
234 * @nonotify: notification control
236 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
237 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
238 * returned.
241 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
243 struct aac_queue * q;
246 * All of the queues wrap when they reach the end, so we check
247 * to see if they have reached the end and if they have we just
248 * set the index back to zero. This is a wrap. You could or off
249 * the high bits in all updates but this is a bit faster I think.
252 q = &dev->queues->queue[qid];
254 *index = le32_to_cpu(*(q->headers.producer));
255 if ((*index - 2) == le32_to_cpu(*(q->headers.consumer)))
256 *nonotify = 1;
258 if (qid == AdapHighCmdQueue) {
259 if (*index >= ADAP_HIGH_CMD_ENTRIES)
260 *index = 0;
261 } else if (qid == AdapNormCmdQueue) {
262 if (*index >= ADAP_NORM_CMD_ENTRIES)
263 *index = 0; /* Wrap to front of the Producer Queue. */
265 else if (qid == AdapHighRespQueue)
267 if (*index >= ADAP_HIGH_RESP_ENTRIES)
268 *index = 0;
270 else if (qid == AdapNormRespQueue)
272 if (*index >= ADAP_NORM_RESP_ENTRIES)
273 *index = 0; /* Wrap to front of the Producer Queue. */
275 else {
276 printk("aacraid: invalid qid\n");
277 BUG();
280 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
281 printk(KERN_WARNING "Queue %d full, %d outstanding.\n",
282 qid, q->numpending);
283 return 0;
284 } else {
285 *entry = q->base + *index;
286 return 1;
291 * aac_queue_get - get the next free QE
292 * @dev: Adapter
293 * @index: Returned index
294 * @priority: Priority of fib
295 * @fib: Fib to associate with the queue entry
296 * @wait: Wait if queue full
297 * @fibptr: Driver fib object to go with fib
298 * @nonotify: Don't notify the adapter
300 * Gets the next free QE off the requested priorty adapter command
301 * queue and associates the Fib with the QE. The QE represented by
302 * index is ready to insert on the queue when this routine returns
303 * success.
306 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
308 struct aac_entry * entry = NULL;
309 int map = 0;
310 struct aac_queue * q = &dev->queues->queue[qid];
312 spin_lock_irqsave(q->lock, q->SavedIrql);
314 if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue)
316 /* if no entries wait for some if caller wants to */
317 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
319 printk(KERN_ERR "GetEntries failed\n");
322 * Setup queue entry with a command, status and fib mapped
324 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
325 map = 1;
327 else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
329 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
331 /* if no entries wait for some if caller wants to */
334 * Setup queue entry with command, status and fib mapped
336 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
337 entry->addr = hw_fib->header.SenderFibAddress;
338 /* Restore adapters pointer to the FIB */
339 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
340 map = 0;
343 * If MapFib is true than we need to map the Fib and put pointers
344 * in the queue entry.
346 if (map)
347 entry->addr = fibptr->hw_fib_pa;
348 return 0;
353 * aac_insert_entry - insert a queue entry
354 * @dev: Adapter
355 * @index: Index of entry to insert
356 * @qid: Queue number
357 * @nonotify: Suppress adapter notification
359 * Gets the next free QE off the requested priorty adapter command
360 * queue and associates the Fib with the QE. The QE represented by
361 * index is ready to insert on the queue when this routine returns
362 * success.
365 static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify)
367 struct aac_queue * q = &dev->queues->queue[qid];
369 if(q == NULL)
370 BUG();
371 *(q->headers.producer) = cpu_to_le32(index + 1);
372 spin_unlock_irqrestore(q->lock, q->SavedIrql);
374 if (qid == AdapHighCmdQueue ||
375 qid == AdapNormCmdQueue ||
376 qid == AdapHighRespQueue ||
377 qid == AdapNormRespQueue)
379 if (!nonotify)
380 aac_adapter_notify(dev, qid);
382 else
383 printk("Suprise insert!\n");
384 return 0;
388 * Define the highest level of host to adapter communication routines.
389 * These routines will support host to adapter FS commuication. These
390 * routines have no knowledge of the commuication method used. This level
391 * sends and receives FIBs. This level has no knowledge of how these FIBs
392 * get passed back and forth.
396 * fib_send - send a fib to the adapter
397 * @command: Command to send
398 * @fibptr: The fib
399 * @size: Size of fib data area
400 * @priority: Priority of Fib
401 * @wait: Async/sync select
402 * @reply: True if a reply is wanted
403 * @callback: Called with reply
404 * @callback_data: Passed to callback
406 * Sends the requested FIB to the adapter and optionally will wait for a
407 * response FIB. If the caller does not wish to wait for a response than
408 * an event to wait on must be supplied. This event will be set when a
409 * response FIB is received from the adapter.
412 int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data)
414 u32 index;
415 u32 qid;
416 struct aac_dev * dev = fibptr->dev;
417 unsigned long nointr = 0;
418 struct hw_fib * hw_fib = fibptr->hw_fib;
419 struct aac_queue * q;
420 unsigned long flags = 0;
421 if (!(le32_to_cpu(hw_fib->header.XferState) & HostOwned))
422 return -EBUSY;
424 * There are 5 cases with the wait and reponse requested flags.
425 * The only invalid cases are if the caller requests to wait and
426 * does not request a response and if the caller does not want a
427 * response and the Fibis not allocated from pool. If a response
428 * is not requesed the Fib will just be deallocaed by the DPC
429 * routine when the response comes back from the adapter. No
430 * further processing will be done besides deleting the Fib. We
431 * will have a debug mode where the adapter can notify the host
432 * it had a problem and the host can log that fact.
434 if (wait && !reply) {
435 return -EINVAL;
436 } else if (!wait && reply) {
437 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
438 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
439 } else if (!wait && !reply) {
440 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
441 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
442 } else if (wait && reply) {
443 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
444 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
447 * Map the fib into 32bits by using the fib number
450 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
451 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
453 * Set FIB state to indicate where it came from and if we want a
454 * response from the adapter. Also load the command from the
455 * caller.
457 * Map the hw fib pointer as a 32bit value
459 hw_fib->header.Command = cpu_to_le16(command);
460 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
461 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
463 * Set the size of the Fib we want to send to the adapter
465 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
466 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
467 return -EMSGSIZE;
470 * Get a queue entry connect the FIB to it and send an notify
471 * the adapter a command is ready.
473 if (priority == FsaHigh) {
474 hw_fib->header.XferState |= cpu_to_le32(HighPriority);
475 qid = AdapHighCmdQueue;
476 } else {
477 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
478 qid = AdapNormCmdQueue;
480 q = &dev->queues->queue[qid];
482 if(wait)
483 spin_lock_irqsave(&fibptr->event_lock, flags);
484 if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
485 return -EWOULDBLOCK;
486 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
487 dprintk((KERN_DEBUG "Fib contents:.\n"));
488 dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
489 dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
490 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
491 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
492 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
494 * Fill in the Callback and CallbackContext if we are not
495 * going to wait.
497 if (!wait) {
498 fibptr->callback = callback;
499 fibptr->callback_data = callback_data;
501 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
502 list_add_tail(&fibptr->queue, &q->pendingq);
503 q->numpending++;
505 fibptr->done = 0;
506 fibptr->flags = 0;
508 if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0)
509 return -EWOULDBLOCK;
511 * If the caller wanted us to wait for response wait now.
514 if (wait) {
515 spin_unlock_irqrestore(&fibptr->event_lock, flags);
516 down(&fibptr->event_wait);
517 if(fibptr->done == 0)
518 BUG();
520 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
521 return -ETIMEDOUT;
522 } else {
523 return 0;
527 * If the user does not want a response than return success otherwise
528 * return pending
530 if (reply)
531 return -EINPROGRESS;
532 else
533 return 0;
536 /**
537 * aac_consumer_get - get the top of the queue
538 * @dev: Adapter
539 * @q: Queue
540 * @entry: Return entry
542 * Will return a pointer to the entry on the top of the queue requested that
543 * we are a consumer of, and return the address of the queue entry. It does
544 * not change the state of the queue.
547 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
549 u32 index;
550 int status;
551 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
552 status = 0;
553 } else {
555 * The consumer index must be wrapped if we have reached
556 * the end of the queue, else we just use the entry
557 * pointed to by the header index
559 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
560 index = 0;
561 else
562 index = le32_to_cpu(*q->headers.consumer);
563 *entry = q->base + index;
564 status = 1;
566 return(status);
569 int aac_consumer_avail(struct aac_dev *dev, struct aac_queue * q)
571 return (le32_to_cpu(*q->headers.producer) != le32_to_cpu(*q->headers.consumer));
576 * aac_consumer_free - free consumer entry
577 * @dev: Adapter
578 * @q: Queue
579 * @qid: Queue ident
581 * Frees up the current top of the queue we are a consumer of. If the
582 * queue was full notify the producer that the queue is no longer full.
585 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
587 int wasfull = 0;
588 u32 notify;
590 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
591 wasfull = 1;
593 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
594 *q->headers.consumer = cpu_to_le32(1);
595 else
596 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
598 if (wasfull) {
599 switch (qid) {
601 case HostNormCmdQueue:
602 notify = HostNormCmdNotFull;
603 break;
604 case HostHighCmdQueue:
605 notify = HostHighCmdNotFull;
606 break;
607 case HostNormRespQueue:
608 notify = HostNormRespNotFull;
609 break;
610 case HostHighRespQueue:
611 notify = HostHighRespNotFull;
612 break;
613 default:
614 BUG();
615 return;
617 aac_adapter_notify(dev, notify);
622 * fib_adapter_complete - complete adapter issued fib
623 * @fibptr: fib to complete
624 * @size: size of fib
626 * Will do all necessary work to complete a FIB that was sent from
627 * the adapter.
630 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
632 struct hw_fib * hw_fib = fibptr->hw_fib;
633 struct aac_dev * dev = fibptr->dev;
634 unsigned long nointr = 0;
635 if (le32_to_cpu(hw_fib->header.XferState) == 0)
636 return 0;
638 * If we plan to do anything check the structure type first.
640 if ( hw_fib->header.StructType != FIB_MAGIC ) {
641 return -EINVAL;
644 * This block handles the case where the adapter had sent us a
645 * command and we have finished processing the command. We
646 * call completeFib when we are done processing the command
647 * and want to send a response back to the adapter. This will
648 * send the completed cdb to the adapter.
650 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
651 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
652 if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) {
653 u32 index;
654 if (size)
656 size += sizeof(struct aac_fibhdr);
657 if (size > le16_to_cpu(hw_fib->header.SenderSize))
658 return -EMSGSIZE;
659 hw_fib->header.Size = cpu_to_le16(size);
661 if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
662 return -EWOULDBLOCK;
664 if (aac_insert_entry(dev, index, AdapHighRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) {
667 else if (hw_fib->header.XferState & NormalPriority)
669 u32 index;
671 if (size) {
672 size += sizeof(struct aac_fibhdr);
673 if (size > le16_to_cpu(hw_fib->header.SenderSize))
674 return -EMSGSIZE;
675 hw_fib->header.Size = cpu_to_le16(size);
677 if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0)
678 return -EWOULDBLOCK;
679 if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0)
684 else
686 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
687 BUG();
689 return 0;
693 * fib_complete - fib completion handler
694 * @fib: FIB to complete
696 * Will do all necessary work to complete a FIB.
699 int fib_complete(struct fib * fibptr)
701 struct hw_fib * hw_fib = fibptr->hw_fib;
704 * Check for a fib which has already been completed
707 if (hw_fib->header.XferState == cpu_to_le32(0))
708 return 0;
710 * If we plan to do anything check the structure type first.
713 if (hw_fib->header.StructType != FIB_MAGIC)
714 return -EINVAL;
716 * This block completes a cdb which orginated on the host and we
717 * just need to deallocate the cdb or reinit it. At this point the
718 * command is complete that we had sent to the adapter and this
719 * cdb could be reused.
721 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
722 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
724 fib_dealloc(fibptr);
726 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
729 * This handles the case when the host has aborted the I/O
730 * to the adapter because the adapter is not responding
732 fib_dealloc(fibptr);
733 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
734 fib_dealloc(fibptr);
735 } else {
736 BUG();
738 return 0;
742 * aac_printf - handle printf from firmware
743 * @dev: Adapter
744 * @val: Message info
746 * Print a message passed to us by the controller firmware on the
747 * Adaptec board
750 void aac_printf(struct aac_dev *dev, u32 val)
752 int length = val & 0xffff;
753 int level = (val >> 16) & 0xffff;
754 char *cp = dev->printfbuf;
757 * The size of the printfbuf is set in port.c
758 * There is no variable or define for it
760 if (length > 255)
761 length = 255;
762 if (cp[length] != 0)
763 cp[length] = 0;
764 if (level == LOG_AAC_HIGH_ERROR)
765 printk(KERN_WARNING "aacraid:%s", cp);
766 else
767 printk(KERN_INFO "aacraid:%s", cp);
768 memset(cp, 0, 256);
773 * aac_handle_aif - Handle a message from the firmware
774 * @dev: Which adapter this fib is from
775 * @fibptr: Pointer to fibptr from adapter
777 * This routine handles a driver notify fib from the adapter and
778 * dispatches it to the appropriate routine for handling.
781 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
783 struct hw_fib * hw_fib = fibptr->hw_fib;
785 * Set the status of this FIB to be Invalid parameter.
787 * *(u32 *)fib->data = ST_INVAL;
789 *(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
790 fib_adapter_complete(fibptr, sizeof(u32));
794 * aac_command_thread - command processing thread
795 * @dev: Adapter to monitor
797 * Waits on the commandready event in it's queue. When the event gets set
798 * it will pull FIBs off it's queue. It will continue to pull FIBs off
799 * until the queue is empty. When the queue is empty it will wait for
800 * more FIBs.
803 int aac_command_thread(struct aac_dev * dev)
805 struct hw_fib *hw_fib, *hw_newfib;
806 struct fib *fib, *newfib;
807 struct aac_queue_block *queues = dev->queues;
808 struct aac_fib_context *fibctx;
809 unsigned long flags;
810 DECLARE_WAITQUEUE(wait, current);
813 * We can only have one thread per adapter for AIF's.
815 if (dev->aif_thread)
816 return -EINVAL;
818 * Set up the name that will appear in 'ps'
819 * stored in task_struct.comm[16].
821 daemonize("aacraid");
822 allow_signal(SIGKILL);
824 * Let the DPC know it has a place to send the AIF's to.
826 dev->aif_thread = 1;
827 add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
828 set_current_state(TASK_INTERRUPTIBLE);
829 while(1)
831 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
832 while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) {
833 struct list_head *entry;
834 struct aac_aifcmd * aifcmd;
836 set_current_state(TASK_RUNNING);
838 entry = queues->queue[HostNormCmdQueue].cmdq.next;
839 list_del(entry);
841 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
842 fib = list_entry(entry, struct fib, fiblink);
844 * We will process the FIB here or pass it to a
845 * worker thread that is TBD. We Really can't
846 * do anything at this point since we don't have
847 * anything defined for this thread to do.
849 hw_fib = fib->hw_fib;
850 memset(fib, 0, sizeof(struct fib));
851 fib->type = FSAFS_NTC_FIB_CONTEXT;
852 fib->size = sizeof( struct fib );
853 fib->hw_fib = hw_fib;
854 fib->data = hw_fib->data;
855 fib->dev = dev;
857 * We only handle AifRequest fibs from the adapter.
859 aifcmd = (struct aac_aifcmd *) hw_fib->data;
860 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
861 /* Handle Driver Notify Events */
862 aac_handle_aif(dev, fib);
863 *(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
864 fib_adapter_complete(fib, sizeof(u32));
865 } else {
866 struct list_head *entry;
867 /* The u32 here is important and intended. We are using
868 32bit wrapping time to fit the adapter field */
870 u32 time_now, time_last;
871 unsigned long flagv;
873 /* Sniff events */
874 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify))
875 aac_handle_aif(dev, fib);
877 time_now = jiffies/HZ;
879 spin_lock_irqsave(&dev->fib_lock, flagv);
880 entry = dev->fib_list.next;
882 * For each Context that is on the
883 * fibctxList, make a copy of the
884 * fib, and then set the event to wake up the
885 * thread that is waiting for it.
887 while (entry != &dev->fib_list) {
889 * Extract the fibctx
891 fibctx = list_entry(entry, struct aac_fib_context, next);
893 * Check if the queue is getting
894 * backlogged
896 if (fibctx->count > 20)
899 * It's *not* jiffies folks,
900 * but jiffies / HZ so do not
901 * panic ...
903 time_last = fibctx->jiffies;
905 * Has it been > 2 minutes
906 * since the last read off
907 * the queue?
909 if ((time_now - time_last) > 120) {
910 entry = entry->next;
911 aac_close_fib_context(dev, fibctx);
912 continue;
916 * Warning: no sleep allowed while
917 * holding spinlock
919 hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
920 newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
921 if (newfib && hw_newfib) {
923 * Make the copy of the FIB
925 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
926 memcpy(newfib, fib, sizeof(struct fib));
927 newfib->hw_fib = hw_newfib;
929 * Put the FIB onto the
930 * fibctx's fibs
932 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
933 fibctx->count++;
935 * Set the event to wake up the
936 * thread that will waiting.
938 up(&fibctx->wait_sem);
939 } else {
940 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
941 if(newfib)
942 kfree(newfib);
943 if(hw_newfib)
944 kfree(hw_newfib);
946 entry = entry->next;
949 * Set the status of this FIB
951 *(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
952 fib_adapter_complete(fib, sizeof(u32));
953 spin_unlock_irqrestore(&dev->fib_lock, flagv);
955 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
956 kfree(fib);
959 * There are no more AIF's
961 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
962 schedule();
964 if(signal_pending(current))
965 break;
966 set_current_state(TASK_INTERRUPTIBLE);
968 remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
969 dev->aif_thread = 0;
970 complete_and_exit(&dev->aif_completion, 0);