4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
34 * We don't actually have pdflush, but this one is exported though /proc...
36 int nr_pdflush_threads
;
39 * Passed into wb_writeback(), essentially a subset of writeback_control
41 struct wb_writeback_args
{
43 struct super_block
*sb
;
44 enum writeback_sync_modes sync_mode
;
51 * Work items for the bdi_writeback threads
54 struct list_head list
; /* pending work list */
55 struct rcu_head rcu_head
; /* for RCU free/clear of work */
57 unsigned long seen
; /* threads that have seen this work */
58 atomic_t pending
; /* number of threads still to do work */
60 struct wb_writeback_args args
; /* writeback arguments */
62 unsigned long state
; /* flag bits, see WS_* */
70 #define WS_USED (1 << WS_USED_B)
71 #define WS_ONSTACK (1 << WS_ONSTACK_B)
73 static inline bool bdi_work_on_stack(struct bdi_work
*work
)
75 return test_bit(WS_ONSTACK_B
, &work
->state
);
78 static inline void bdi_work_init(struct bdi_work
*work
,
79 struct wb_writeback_args
*args
)
81 INIT_RCU_HEAD(&work
->rcu_head
);
83 work
->state
= WS_USED
;
87 * writeback_in_progress - determine whether there is writeback in progress
88 * @bdi: the device's backing_dev_info structure.
90 * Determine whether there is writeback waiting to be handled against a
93 int writeback_in_progress(struct backing_dev_info
*bdi
)
95 return !list_empty(&bdi
->work_list
);
98 static void bdi_work_clear(struct bdi_work
*work
)
100 clear_bit(WS_USED_B
, &work
->state
);
101 smp_mb__after_clear_bit();
103 * work can have disappeared at this point. bit waitq functions
104 * should be able to tolerate this, provided bdi_sched_wait does
105 * not dereference it's pointer argument.
107 wake_up_bit(&work
->state
, WS_USED_B
);
110 static void bdi_work_free(struct rcu_head
*head
)
112 struct bdi_work
*work
= container_of(head
, struct bdi_work
, rcu_head
);
114 if (!bdi_work_on_stack(work
))
117 bdi_work_clear(work
);
120 static void wb_work_complete(struct bdi_work
*work
)
122 const enum writeback_sync_modes sync_mode
= work
->args
.sync_mode
;
123 int onstack
= bdi_work_on_stack(work
);
126 * For allocated work, we can clear the done/seen bit right here.
127 * For on-stack work, we need to postpone both the clear and free
128 * to after the RCU grace period, since the stack could be invalidated
129 * as soon as bdi_work_clear() has done the wakeup.
132 bdi_work_clear(work
);
133 if (sync_mode
== WB_SYNC_NONE
|| onstack
)
134 call_rcu(&work
->rcu_head
, bdi_work_free
);
137 static void wb_clear_pending(struct bdi_writeback
*wb
, struct bdi_work
*work
)
140 * The caller has retrieved the work arguments from this work,
141 * drop our reference. If this is the last ref, delete and free it
143 if (atomic_dec_and_test(&work
->pending
)) {
144 struct backing_dev_info
*bdi
= wb
->bdi
;
146 spin_lock(&bdi
->wb_lock
);
147 list_del_rcu(&work
->list
);
148 spin_unlock(&bdi
->wb_lock
);
150 wb_work_complete(work
);
154 static void bdi_queue_work(struct backing_dev_info
*bdi
, struct bdi_work
*work
)
156 work
->seen
= bdi
->wb_mask
;
158 atomic_set(&work
->pending
, bdi
->wb_cnt
);
159 BUG_ON(!bdi
->wb_cnt
);
162 * list_add_tail_rcu() contains the necessary barriers to
163 * make sure the above stores are seen before the item is
164 * noticed on the list
166 spin_lock(&bdi
->wb_lock
);
167 list_add_tail_rcu(&work
->list
, &bdi
->work_list
);
168 spin_unlock(&bdi
->wb_lock
);
171 * If the default thread isn't there, make sure we add it. When
172 * it gets created and wakes up, we'll run this work.
174 if (unlikely(list_empty_careful(&bdi
->wb_list
)))
175 wake_up_process(default_backing_dev_info
.wb
.task
);
177 struct bdi_writeback
*wb
= &bdi
->wb
;
180 wake_up_process(wb
->task
);
185 * Used for on-stack allocated work items. The caller needs to wait until
186 * the wb threads have acked the work before it's safe to continue.
188 static void bdi_wait_on_work_clear(struct bdi_work
*work
)
190 wait_on_bit(&work
->state
, WS_USED_B
, bdi_sched_wait
,
191 TASK_UNINTERRUPTIBLE
);
194 static void bdi_alloc_queue_work(struct backing_dev_info
*bdi
,
195 struct wb_writeback_args
*args
)
197 struct bdi_work
*work
;
200 * This is WB_SYNC_NONE writeback, so if allocation fails just
201 * wakeup the thread for old dirty data writeback
203 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
205 bdi_work_init(work
, args
);
206 bdi_queue_work(bdi
, work
);
208 struct bdi_writeback
*wb
= &bdi
->wb
;
211 wake_up_process(wb
->task
);
216 * bdi_sync_writeback - start and wait for writeback
217 * @bdi: the backing device to write from
218 * @sb: write inodes from this super_block
221 * This does WB_SYNC_ALL data integrity writeback and waits for the
222 * IO to complete. Callers must hold the sb s_umount semaphore for
223 * reading, to avoid having the super disappear before we are done.
225 static void bdi_sync_writeback(struct backing_dev_info
*bdi
,
226 struct super_block
*sb
)
228 struct wb_writeback_args args
= {
230 .sync_mode
= WB_SYNC_ALL
,
231 .nr_pages
= LONG_MAX
,
234 struct bdi_work work
;
236 bdi_work_init(&work
, &args
);
237 work
.state
|= WS_ONSTACK
;
239 bdi_queue_work(bdi
, &work
);
240 bdi_wait_on_work_clear(&work
);
244 * bdi_start_writeback - start writeback
245 * @bdi: the backing device to write from
246 * @sb: write inodes from this super_block
247 * @nr_pages: the number of pages to write
250 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
251 * started when this function returns, we make no guarentees on
252 * completion. Caller need not hold sb s_umount semaphore.
255 void bdi_start_writeback(struct backing_dev_info
*bdi
, struct super_block
*sb
,
258 struct wb_writeback_args args
= {
260 .sync_mode
= WB_SYNC_NONE
,
261 .nr_pages
= nr_pages
,
266 * We treat @nr_pages=0 as the special case to do background writeback,
267 * ie. to sync pages until the background dirty threshold is reached.
270 args
.nr_pages
= LONG_MAX
;
271 args
.for_background
= 1;
274 bdi_alloc_queue_work(bdi
, &args
);
278 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
279 * furthest end of its superblock's dirty-inode list.
281 * Before stamping the inode's ->dirtied_when, we check to see whether it is
282 * already the most-recently-dirtied inode on the b_dirty list. If that is
283 * the case then the inode must have been redirtied while it was being written
284 * out and we don't reset its dirtied_when.
286 static void redirty_tail(struct inode
*inode
)
288 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
290 if (!list_empty(&wb
->b_dirty
)) {
293 tail
= list_entry(wb
->b_dirty
.next
, struct inode
, i_list
);
294 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
295 inode
->dirtied_when
= jiffies
;
297 list_move(&inode
->i_list
, &wb
->b_dirty
);
301 * requeue inode for re-scanning after bdi->b_io list is exhausted.
303 static void requeue_io(struct inode
*inode
)
305 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
307 list_move(&inode
->i_list
, &wb
->b_more_io
);
310 static void inode_sync_complete(struct inode
*inode
)
313 * Prevent speculative execution through spin_unlock(&inode_lock);
316 wake_up_bit(&inode
->i_state
, __I_SYNC
);
319 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
321 bool ret
= time_after(inode
->dirtied_when
, t
);
324 * For inodes being constantly redirtied, dirtied_when can get stuck.
325 * It _appears_ to be in the future, but is actually in distant past.
326 * This test is necessary to prevent such wrapped-around relative times
327 * from permanently stopping the whole bdi writeback.
329 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
335 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
337 static void move_expired_inodes(struct list_head
*delaying_queue
,
338 struct list_head
*dispatch_queue
,
339 unsigned long *older_than_this
)
342 struct list_head
*pos
, *node
;
343 struct super_block
*sb
= NULL
;
347 while (!list_empty(delaying_queue
)) {
348 inode
= list_entry(delaying_queue
->prev
, struct inode
, i_list
);
349 if (older_than_this
&&
350 inode_dirtied_after(inode
, *older_than_this
))
352 if (sb
&& sb
!= inode
->i_sb
)
355 list_move(&inode
->i_list
, &tmp
);
358 /* just one sb in list, splice to dispatch_queue and we're done */
360 list_splice(&tmp
, dispatch_queue
);
364 /* Move inodes from one superblock together */
365 while (!list_empty(&tmp
)) {
366 inode
= list_entry(tmp
.prev
, struct inode
, i_list
);
368 list_for_each_prev_safe(pos
, node
, &tmp
) {
369 inode
= list_entry(pos
, struct inode
, i_list
);
370 if (inode
->i_sb
== sb
)
371 list_move(&inode
->i_list
, dispatch_queue
);
377 * Queue all expired dirty inodes for io, eldest first.
379 static void queue_io(struct bdi_writeback
*wb
, unsigned long *older_than_this
)
381 list_splice_init(&wb
->b_more_io
, wb
->b_io
.prev
);
382 move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, older_than_this
);
385 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
387 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
388 return inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
393 * Wait for writeback on an inode to complete.
395 static void inode_wait_for_writeback(struct inode
*inode
)
397 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
398 wait_queue_head_t
*wqh
;
400 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
402 spin_unlock(&inode_lock
);
403 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
404 spin_lock(&inode_lock
);
405 } while (inode
->i_state
& I_SYNC
);
409 * Write out an inode's dirty pages. Called under inode_lock. Either the
410 * caller has ref on the inode (either via __iget or via syscall against an fd)
411 * or the inode has I_WILL_FREE set (via generic_forget_inode)
413 * If `wait' is set, wait on the writeout.
415 * The whole writeout design is quite complex and fragile. We want to avoid
416 * starvation of particular inodes when others are being redirtied, prevent
419 * Called under inode_lock.
422 writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
424 struct address_space
*mapping
= inode
->i_mapping
;
428 if (!atomic_read(&inode
->i_count
))
429 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
431 WARN_ON(inode
->i_state
& I_WILL_FREE
);
433 if (inode
->i_state
& I_SYNC
) {
435 * If this inode is locked for writeback and we are not doing
436 * writeback-for-data-integrity, move it to b_more_io so that
437 * writeback can proceed with the other inodes on s_io.
439 * We'll have another go at writing back this inode when we
440 * completed a full scan of b_io.
442 if (wbc
->sync_mode
!= WB_SYNC_ALL
) {
448 * It's a data-integrity sync. We must wait.
450 inode_wait_for_writeback(inode
);
453 BUG_ON(inode
->i_state
& I_SYNC
);
455 /* Set I_SYNC, reset I_DIRTY */
456 dirty
= inode
->i_state
& I_DIRTY
;
457 inode
->i_state
|= I_SYNC
;
458 inode
->i_state
&= ~I_DIRTY
;
460 spin_unlock(&inode_lock
);
462 ret
= do_writepages(mapping
, wbc
);
465 * Make sure to wait on the data before writing out the metadata.
466 * This is important for filesystems that modify metadata on data
469 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
470 int err
= filemap_fdatawait(mapping
);
475 /* Don't write the inode if only I_DIRTY_PAGES was set */
476 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
477 int err
= write_inode(inode
, wbc
);
482 spin_lock(&inode_lock
);
483 inode
->i_state
&= ~I_SYNC
;
484 if (!(inode
->i_state
& (I_FREEING
| I_CLEAR
))) {
485 if ((inode
->i_state
& I_DIRTY_PAGES
) && wbc
->for_kupdate
) {
487 * More pages get dirtied by a fast dirtier.
490 } else if (inode
->i_state
& I_DIRTY
) {
492 * At least XFS will redirty the inode during the
493 * writeback (delalloc) and on io completion (isize).
496 } else if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
498 * We didn't write back all the pages. nfs_writepages()
499 * sometimes bales out without doing anything. Redirty
500 * the inode; Move it from b_io onto b_more_io/b_dirty.
503 * akpm: if the caller was the kupdate function we put
504 * this inode at the head of b_dirty so it gets first
505 * consideration. Otherwise, move it to the tail, for
506 * the reasons described there. I'm not really sure
507 * how much sense this makes. Presumably I had a good
508 * reasons for doing it this way, and I'd rather not
509 * muck with it at present.
511 if (wbc
->for_kupdate
) {
513 * For the kupdate function we move the inode
514 * to b_more_io so it will get more writeout as
515 * soon as the queue becomes uncongested.
517 inode
->i_state
|= I_DIRTY_PAGES
;
519 if (wbc
->nr_to_write
<= 0) {
521 * slice used up: queue for next turn
526 * somehow blocked: retry later
532 * Otherwise fully redirty the inode so that
533 * other inodes on this superblock will get some
534 * writeout. Otherwise heavy writing to one
535 * file would indefinitely suspend writeout of
536 * all the other files.
538 inode
->i_state
|= I_DIRTY_PAGES
;
541 } else if (atomic_read(&inode
->i_count
)) {
543 * The inode is clean, inuse
545 list_move(&inode
->i_list
, &inode_in_use
);
548 * The inode is clean, unused
550 list_move(&inode
->i_list
, &inode_unused
);
553 inode_sync_complete(inode
);
557 static void unpin_sb_for_writeback(struct super_block
*sb
)
559 up_read(&sb
->s_umount
);
570 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
571 * before calling writeback. So make sure that we do pin it, so it doesn't
572 * go away while we are writing inodes from it.
574 static enum sb_pin_state
pin_sb_for_writeback(struct writeback_control
*wbc
,
575 struct super_block
*sb
)
578 * Caller must already hold the ref for this
580 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
581 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
582 return SB_NOT_PINNED
;
586 if (down_read_trylock(&sb
->s_umount
)) {
588 spin_unlock(&sb_lock
);
592 * umounted, drop rwsem again and fall through to failure
594 up_read(&sb
->s_umount
);
597 spin_unlock(&sb_lock
);
598 return SB_PIN_FAILED
;
602 * Write a portion of b_io inodes which belong to @sb.
603 * If @wbc->sb != NULL, then find and write all such
604 * inodes. Otherwise write only ones which go sequentially
606 * Return 1, if the caller writeback routine should be
607 * interrupted. Otherwise return 0.
609 static int writeback_sb_inodes(struct super_block
*sb
,
610 struct bdi_writeback
*wb
,
611 struct writeback_control
*wbc
)
613 while (!list_empty(&wb
->b_io
)) {
615 struct inode
*inode
= list_entry(wb
->b_io
.prev
,
616 struct inode
, i_list
);
617 if (wbc
->sb
&& sb
!= inode
->i_sb
) {
618 /* super block given and doesn't
619 match, skip this inode */
623 if (sb
!= inode
->i_sb
)
624 /* finish with this superblock */
626 if (inode
->i_state
& (I_NEW
| I_WILL_FREE
)) {
631 * Was this inode dirtied after sync_sb_inodes was called?
632 * This keeps sync from extra jobs and livelock.
634 if (inode_dirtied_after(inode
, wbc
->wb_start
))
637 BUG_ON(inode
->i_state
& (I_FREEING
| I_CLEAR
));
639 pages_skipped
= wbc
->pages_skipped
;
640 writeback_single_inode(inode
, wbc
);
641 if (wbc
->pages_skipped
!= pages_skipped
) {
643 * writeback is not making progress due to locked
644 * buffers. Skip this inode for now.
648 spin_unlock(&inode_lock
);
651 spin_lock(&inode_lock
);
652 if (wbc
->nr_to_write
<= 0) {
656 if (!list_empty(&wb
->b_more_io
))
663 static void writeback_inodes_wb(struct bdi_writeback
*wb
,
664 struct writeback_control
*wbc
)
668 wbc
->wb_start
= jiffies
; /* livelock avoidance */
669 spin_lock(&inode_lock
);
670 if (!wbc
->for_kupdate
|| list_empty(&wb
->b_io
))
671 queue_io(wb
, wbc
->older_than_this
);
673 while (!list_empty(&wb
->b_io
)) {
674 struct inode
*inode
= list_entry(wb
->b_io
.prev
,
675 struct inode
, i_list
);
676 struct super_block
*sb
= inode
->i_sb
;
677 enum sb_pin_state state
;
679 if (wbc
->sb
&& sb
!= wbc
->sb
) {
680 /* super block given and doesn't
681 match, skip this inode */
685 state
= pin_sb_for_writeback(wbc
, sb
);
687 if (state
== SB_PIN_FAILED
) {
691 ret
= writeback_sb_inodes(sb
, wb
, wbc
);
693 if (state
== SB_PINNED
)
694 unpin_sb_for_writeback(sb
);
698 spin_unlock(&inode_lock
);
699 /* Leave any unwritten inodes on b_io */
702 void writeback_inodes_wbc(struct writeback_control
*wbc
)
704 struct backing_dev_info
*bdi
= wbc
->bdi
;
706 writeback_inodes_wb(&bdi
->wb
, wbc
);
710 * The maximum number of pages to writeout in a single bdi flush/kupdate
711 * operation. We do this so we don't hold I_SYNC against an inode for
712 * enormous amounts of time, which would block a userspace task which has
713 * been forced to throttle against that inode. Also, the code reevaluates
714 * the dirty each time it has written this many pages.
716 #define MAX_WRITEBACK_PAGES 1024
718 static inline bool over_bground_thresh(void)
720 unsigned long background_thresh
, dirty_thresh
;
722 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
724 return (global_page_state(NR_FILE_DIRTY
) +
725 global_page_state(NR_UNSTABLE_NFS
) >= background_thresh
);
729 * Explicit flushing or periodic writeback of "old" data.
731 * Define "old": the first time one of an inode's pages is dirtied, we mark the
732 * dirtying-time in the inode's address_space. So this periodic writeback code
733 * just walks the superblock inode list, writing back any inodes which are
734 * older than a specific point in time.
736 * Try to run once per dirty_writeback_interval. But if a writeback event
737 * takes longer than a dirty_writeback_interval interval, then leave a
740 * older_than_this takes precedence over nr_to_write. So we'll only write back
741 * all dirty pages if they are all attached to "old" mappings.
743 static long wb_writeback(struct bdi_writeback
*wb
,
744 struct wb_writeback_args
*args
)
746 struct writeback_control wbc
= {
749 .sync_mode
= args
->sync_mode
,
750 .older_than_this
= NULL
,
751 .for_kupdate
= args
->for_kupdate
,
752 .for_background
= args
->for_background
,
753 .range_cyclic
= args
->range_cyclic
,
755 unsigned long oldest_jif
;
759 if (wbc
.for_kupdate
) {
760 wbc
.older_than_this
= &oldest_jif
;
761 oldest_jif
= jiffies
-
762 msecs_to_jiffies(dirty_expire_interval
* 10);
764 if (!wbc
.range_cyclic
) {
766 wbc
.range_end
= LLONG_MAX
;
771 * Stop writeback when nr_pages has been consumed
773 if (args
->nr_pages
<= 0)
777 * For background writeout, stop when we are below the
778 * background dirty threshold
780 if (args
->for_background
&& !over_bground_thresh())
784 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
785 wbc
.pages_skipped
= 0;
786 writeback_inodes_wb(wb
, &wbc
);
787 args
->nr_pages
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
788 wrote
+= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
791 * If we consumed everything, see if we have more
793 if (wbc
.nr_to_write
<= 0)
796 * Didn't write everything and we don't have more IO, bail
801 * Did we write something? Try for more
803 if (wbc
.nr_to_write
< MAX_WRITEBACK_PAGES
)
806 * Nothing written. Wait for some inode to
807 * become available for writeback. Otherwise
808 * we'll just busyloop.
810 spin_lock(&inode_lock
);
811 if (!list_empty(&wb
->b_more_io
)) {
812 inode
= list_entry(wb
->b_more_io
.prev
,
813 struct inode
, i_list
);
814 inode_wait_for_writeback(inode
);
816 spin_unlock(&inode_lock
);
823 * Return the next bdi_work struct that hasn't been processed by this
824 * wb thread yet. ->seen is initially set for each thread that exists
825 * for this device, when a thread first notices a piece of work it
826 * clears its bit. Depending on writeback type, the thread will notify
827 * completion on either receiving the work (WB_SYNC_NONE) or after
828 * it is done (WB_SYNC_ALL).
830 static struct bdi_work
*get_next_work_item(struct backing_dev_info
*bdi
,
831 struct bdi_writeback
*wb
)
833 struct bdi_work
*work
, *ret
= NULL
;
837 list_for_each_entry_rcu(work
, &bdi
->work_list
, list
) {
838 if (!test_bit(wb
->nr
, &work
->seen
))
840 clear_bit(wb
->nr
, &work
->seen
);
850 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
852 unsigned long expired
;
856 * When set to zero, disable periodic writeback
858 if (!dirty_writeback_interval
)
861 expired
= wb
->last_old_flush
+
862 msecs_to_jiffies(dirty_writeback_interval
* 10);
863 if (time_before(jiffies
, expired
))
866 wb
->last_old_flush
= jiffies
;
867 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
868 global_page_state(NR_UNSTABLE_NFS
) +
869 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
872 struct wb_writeback_args args
= {
873 .nr_pages
= nr_pages
,
874 .sync_mode
= WB_SYNC_NONE
,
879 return wb_writeback(wb
, &args
);
886 * Retrieve work items and do the writeback they describe
888 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
890 struct backing_dev_info
*bdi
= wb
->bdi
;
891 struct bdi_work
*work
;
894 while ((work
= get_next_work_item(bdi
, wb
)) != NULL
) {
895 struct wb_writeback_args args
= work
->args
;
898 * Override sync mode, in case we must wait for completion
901 work
->args
.sync_mode
= args
.sync_mode
= WB_SYNC_ALL
;
904 * If this isn't a data integrity operation, just notify
905 * that we have seen this work and we are now starting it.
907 if (args
.sync_mode
== WB_SYNC_NONE
)
908 wb_clear_pending(wb
, work
);
910 wrote
+= wb_writeback(wb
, &args
);
913 * This is a data integrity writeback, so only do the
914 * notification when we have completed the work.
916 if (args
.sync_mode
== WB_SYNC_ALL
)
917 wb_clear_pending(wb
, work
);
921 * Check for periodic writeback, kupdated() style
923 wrote
+= wb_check_old_data_flush(wb
);
929 * Handle writeback of dirty data for the device backed by this bdi. Also
930 * wakes up periodically and does kupdated style flushing.
932 int bdi_writeback_task(struct bdi_writeback
*wb
)
934 unsigned long last_active
= jiffies
;
935 unsigned long wait_jiffies
= -1UL;
938 while (!kthread_should_stop()) {
939 pages_written
= wb_do_writeback(wb
, 0);
942 last_active
= jiffies
;
943 else if (wait_jiffies
!= -1UL) {
944 unsigned long max_idle
;
947 * Longest period of inactivity that we tolerate. If we
948 * see dirty data again later, the task will get
949 * recreated automatically.
951 max_idle
= max(5UL * 60 * HZ
, wait_jiffies
);
952 if (time_after(jiffies
, max_idle
+ last_active
))
956 if (dirty_writeback_interval
) {
957 wait_jiffies
= msecs_to_jiffies(dirty_writeback_interval
* 10);
958 schedule_timeout_interruptible(wait_jiffies
);
969 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
970 * writeback, for integrity writeback see bdi_sync_writeback().
972 static void bdi_writeback_all(struct super_block
*sb
, long nr_pages
)
974 struct wb_writeback_args args
= {
976 .nr_pages
= nr_pages
,
977 .sync_mode
= WB_SYNC_NONE
,
979 struct backing_dev_info
*bdi
;
983 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
984 if (!bdi_has_dirty_io(bdi
))
987 bdi_alloc_queue_work(bdi
, &args
);
994 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
997 void wakeup_flusher_threads(long nr_pages
)
1000 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1001 global_page_state(NR_UNSTABLE_NFS
);
1002 bdi_writeback_all(NULL
, nr_pages
);
1005 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
1007 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
1008 struct dentry
*dentry
;
1009 const char *name
= "?";
1011 dentry
= d_find_alias(inode
);
1013 spin_lock(&dentry
->d_lock
);
1014 name
= (const char *) dentry
->d_name
.name
;
1017 "%s(%d): dirtied inode %lu (%s) on %s\n",
1018 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1019 name
, inode
->i_sb
->s_id
);
1021 spin_unlock(&dentry
->d_lock
);
1028 * __mark_inode_dirty - internal function
1029 * @inode: inode to mark
1030 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1031 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1032 * mark_inode_dirty_sync.
1034 * Put the inode on the super block's dirty list.
1036 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1037 * dirty list only if it is hashed or if it refers to a blockdev.
1038 * If it was not hashed, it will never be added to the dirty list
1039 * even if it is later hashed, as it will have been marked dirty already.
1041 * In short, make sure you hash any inodes _before_ you start marking
1044 * This function *must* be atomic for the I_DIRTY_PAGES case -
1045 * set_page_dirty() is called under spinlock in several places.
1047 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1048 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1049 * the kernel-internal blockdev inode represents the dirtying time of the
1050 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1051 * page->mapping->host, so the page-dirtying time is recorded in the internal
1054 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1056 struct super_block
*sb
= inode
->i_sb
;
1059 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1060 * dirty the inode itself
1062 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1063 if (sb
->s_op
->dirty_inode
)
1064 sb
->s_op
->dirty_inode(inode
);
1068 * make sure that changes are seen by all cpus before we test i_state
1073 /* avoid the locking if we can */
1074 if ((inode
->i_state
& flags
) == flags
)
1077 if (unlikely(block_dump
))
1078 block_dump___mark_inode_dirty(inode
);
1080 spin_lock(&inode_lock
);
1081 if ((inode
->i_state
& flags
) != flags
) {
1082 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1084 inode
->i_state
|= flags
;
1087 * If the inode is being synced, just update its dirty state.
1088 * The unlocker will place the inode on the appropriate
1089 * superblock list, based upon its state.
1091 if (inode
->i_state
& I_SYNC
)
1095 * Only add valid (hashed) inodes to the superblock's
1096 * dirty list. Add blockdev inodes as well.
1098 if (!S_ISBLK(inode
->i_mode
)) {
1099 if (hlist_unhashed(&inode
->i_hash
))
1102 if (inode
->i_state
& (I_FREEING
|I_CLEAR
))
1106 * If the inode was already on b_dirty/b_io/b_more_io, don't
1107 * reposition it (that would break b_dirty time-ordering).
1110 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1111 struct backing_dev_info
*bdi
= wb
->bdi
;
1113 if (bdi_cap_writeback_dirty(bdi
) &&
1114 !test_bit(BDI_registered
, &bdi
->state
)) {
1116 printk(KERN_ERR
"bdi-%s not registered\n",
1120 inode
->dirtied_when
= jiffies
;
1121 list_move(&inode
->i_list
, &wb
->b_dirty
);
1125 spin_unlock(&inode_lock
);
1127 EXPORT_SYMBOL(__mark_inode_dirty
);
1130 * Write out a superblock's list of dirty inodes. A wait will be performed
1131 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1133 * If older_than_this is non-NULL, then only write out inodes which
1134 * had their first dirtying at a time earlier than *older_than_this.
1136 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1137 * This function assumes that the blockdev superblock's inodes are backed by
1138 * a variety of queues, so all inodes are searched. For other superblocks,
1139 * assume that all inodes are backed by the same queue.
1141 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1142 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1143 * on the writer throttling path, and we get decent balancing between many
1144 * throttled threads: we don't want them all piling up on inode_sync_wait.
1146 static void wait_sb_inodes(struct super_block
*sb
)
1148 struct inode
*inode
, *old_inode
= NULL
;
1151 * We need to be protected against the filesystem going from
1152 * r/o to r/w or vice versa.
1154 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1156 spin_lock(&inode_lock
);
1159 * Data integrity sync. Must wait for all pages under writeback,
1160 * because there may have been pages dirtied before our sync
1161 * call, but which had writeout started before we write it out.
1162 * In which case, the inode may not be on the dirty list, but
1163 * we still have to wait for that writeout.
1165 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1166 struct address_space
*mapping
;
1168 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
|I_NEW
))
1170 mapping
= inode
->i_mapping
;
1171 if (mapping
->nrpages
== 0)
1174 spin_unlock(&inode_lock
);
1176 * We hold a reference to 'inode' so it couldn't have
1177 * been removed from s_inodes list while we dropped the
1178 * inode_lock. We cannot iput the inode now as we can
1179 * be holding the last reference and we cannot iput it
1180 * under inode_lock. So we keep the reference and iput
1186 filemap_fdatawait(mapping
);
1190 spin_lock(&inode_lock
);
1192 spin_unlock(&inode_lock
);
1197 * writeback_inodes_sb - writeback dirty inodes from given super_block
1198 * @sb: the superblock
1200 * Start writeback on some inodes on this super_block. No guarantees are made
1201 * on how many (if any) will be written, and this function does not wait
1202 * for IO completion of submitted IO. The number of pages submitted is
1205 void writeback_inodes_sb(struct super_block
*sb
)
1207 unsigned long nr_dirty
= global_page_state(NR_FILE_DIRTY
);
1208 unsigned long nr_unstable
= global_page_state(NR_UNSTABLE_NFS
);
1211 nr_to_write
= nr_dirty
+ nr_unstable
+
1212 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
1214 bdi_start_writeback(sb
->s_bdi
, sb
, nr_to_write
);
1216 EXPORT_SYMBOL(writeback_inodes_sb
);
1219 * writeback_inodes_sb_if_idle - start writeback if none underway
1220 * @sb: the superblock
1222 * Invoke writeback_inodes_sb if no writeback is currently underway.
1223 * Returns 1 if writeback was started, 0 if not.
1225 int writeback_inodes_sb_if_idle(struct super_block
*sb
)
1227 if (!writeback_in_progress(sb
->s_bdi
)) {
1228 writeback_inodes_sb(sb
);
1233 EXPORT_SYMBOL(writeback_inodes_sb_if_idle
);
1236 * sync_inodes_sb - sync sb inode pages
1237 * @sb: the superblock
1239 * This function writes and waits on any dirty inode belonging to this
1240 * super_block. The number of pages synced is returned.
1242 void sync_inodes_sb(struct super_block
*sb
)
1244 bdi_sync_writeback(sb
->s_bdi
, sb
);
1247 EXPORT_SYMBOL(sync_inodes_sb
);
1250 * write_inode_now - write an inode to disk
1251 * @inode: inode to write to disk
1252 * @sync: whether the write should be synchronous or not
1254 * This function commits an inode to disk immediately if it is dirty. This is
1255 * primarily needed by knfsd.
1257 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1259 int write_inode_now(struct inode
*inode
, int sync
)
1262 struct writeback_control wbc
= {
1263 .nr_to_write
= LONG_MAX
,
1264 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1266 .range_end
= LLONG_MAX
,
1269 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1270 wbc
.nr_to_write
= 0;
1273 spin_lock(&inode_lock
);
1274 ret
= writeback_single_inode(inode
, &wbc
);
1275 spin_unlock(&inode_lock
);
1277 inode_sync_wait(inode
);
1280 EXPORT_SYMBOL(write_inode_now
);
1283 * sync_inode - write an inode and its pages to disk.
1284 * @inode: the inode to sync
1285 * @wbc: controls the writeback mode
1287 * sync_inode() will write an inode and its pages to disk. It will also
1288 * correctly update the inode on its superblock's dirty inode lists and will
1289 * update inode->i_state.
1291 * The caller must have a ref on the inode.
1293 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1297 spin_lock(&inode_lock
);
1298 ret
= writeback_single_inode(inode
, wbc
);
1299 spin_unlock(&inode_lock
);
1302 EXPORT_SYMBOL(sync_inode
);