code style scripts/checkpatch.pl (linux-3.9-rc1) formatting
[linux-2.6.34.14-moxart.git] / fs / fs-writeback.c
blob760dc8d0b4ff0863326b5afcb0ba10dc19da13b9
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
34 * We don't actually have pdflush, but this one is exported though /proc...
36 int nr_pdflush_threads;
39 * Passed into wb_writeback(), essentially a subset of writeback_control
41 struct wb_writeback_args {
42 long nr_pages;
43 struct super_block *sb;
44 enum writeback_sync_modes sync_mode;
45 int for_kupdate:1;
46 int range_cyclic:1;
47 int for_background:1;
51 * Work items for the bdi_writeback threads
53 struct bdi_work {
54 struct list_head list; /* pending work list */
55 struct rcu_head rcu_head; /* for RCU free/clear of work */
57 unsigned long seen; /* threads that have seen this work */
58 atomic_t pending; /* number of threads still to do work */
60 struct wb_writeback_args args; /* writeback arguments */
62 unsigned long state; /* flag bits, see WS_* */
65 enum {
66 WS_USED_B = 0,
67 WS_ONSTACK_B,
70 #define WS_USED (1 << WS_USED_B)
71 #define WS_ONSTACK (1 << WS_ONSTACK_B)
73 static inline bool bdi_work_on_stack(struct bdi_work *work)
75 return test_bit(WS_ONSTACK_B, &work->state);
78 static inline void bdi_work_init(struct bdi_work *work,
79 struct wb_writeback_args *args)
81 INIT_RCU_HEAD(&work->rcu_head);
82 work->args = *args;
83 work->state = WS_USED;
86 /**
87 * writeback_in_progress - determine whether there is writeback in progress
88 * @bdi: the device's backing_dev_info structure.
90 * Determine whether there is writeback waiting to be handled against a
91 * backing device.
93 int writeback_in_progress(struct backing_dev_info *bdi)
95 return !list_empty(&bdi->work_list);
98 static void bdi_work_clear(struct bdi_work *work)
100 clear_bit(WS_USED_B, &work->state);
101 smp_mb__after_clear_bit();
103 * work can have disappeared at this point. bit waitq functions
104 * should be able to tolerate this, provided bdi_sched_wait does
105 * not dereference it's pointer argument.
107 wake_up_bit(&work->state, WS_USED_B);
110 static void bdi_work_free(struct rcu_head *head)
112 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
114 if (!bdi_work_on_stack(work))
115 kfree(work);
116 else
117 bdi_work_clear(work);
120 static void wb_work_complete(struct bdi_work *work)
122 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
123 int onstack = bdi_work_on_stack(work);
126 * For allocated work, we can clear the done/seen bit right here.
127 * For on-stack work, we need to postpone both the clear and free
128 * to after the RCU grace period, since the stack could be invalidated
129 * as soon as bdi_work_clear() has done the wakeup.
131 if (!onstack)
132 bdi_work_clear(work);
133 if (sync_mode == WB_SYNC_NONE || onstack)
134 call_rcu(&work->rcu_head, bdi_work_free);
137 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
140 * The caller has retrieved the work arguments from this work,
141 * drop our reference. If this is the last ref, delete and free it
143 if (atomic_dec_and_test(&work->pending)) {
144 struct backing_dev_info *bdi = wb->bdi;
146 spin_lock(&bdi->wb_lock);
147 list_del_rcu(&work->list);
148 spin_unlock(&bdi->wb_lock);
150 wb_work_complete(work);
154 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
156 work->seen = bdi->wb_mask;
157 BUG_ON(!work->seen);
158 atomic_set(&work->pending, bdi->wb_cnt);
159 BUG_ON(!bdi->wb_cnt);
162 * list_add_tail_rcu() contains the necessary barriers to
163 * make sure the above stores are seen before the item is
164 * noticed on the list
166 spin_lock(&bdi->wb_lock);
167 list_add_tail_rcu(&work->list, &bdi->work_list);
168 spin_unlock(&bdi->wb_lock);
171 * If the default thread isn't there, make sure we add it. When
172 * it gets created and wakes up, we'll run this work.
174 if (unlikely(list_empty_careful(&bdi->wb_list)))
175 wake_up_process(default_backing_dev_info.wb.task);
176 else {
177 struct bdi_writeback *wb = &bdi->wb;
179 if (wb->task)
180 wake_up_process(wb->task);
185 * Used for on-stack allocated work items. The caller needs to wait until
186 * the wb threads have acked the work before it's safe to continue.
188 static void bdi_wait_on_work_clear(struct bdi_work *work)
190 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
191 TASK_UNINTERRUPTIBLE);
194 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
195 struct wb_writeback_args *args)
197 struct bdi_work *work;
200 * This is WB_SYNC_NONE writeback, so if allocation fails just
201 * wakeup the thread for old dirty data writeback
203 work = kmalloc(sizeof(*work), GFP_ATOMIC);
204 if (work) {
205 bdi_work_init(work, args);
206 bdi_queue_work(bdi, work);
207 } else {
208 struct bdi_writeback *wb = &bdi->wb;
210 if (wb->task)
211 wake_up_process(wb->task);
216 * bdi_sync_writeback - start and wait for writeback
217 * @bdi: the backing device to write from
218 * @sb: write inodes from this super_block
220 * Description:
221 * This does WB_SYNC_ALL data integrity writeback and waits for the
222 * IO to complete. Callers must hold the sb s_umount semaphore for
223 * reading, to avoid having the super disappear before we are done.
225 static void bdi_sync_writeback(struct backing_dev_info *bdi,
226 struct super_block *sb)
228 struct wb_writeback_args args = {
229 .sb = sb,
230 .sync_mode = WB_SYNC_ALL,
231 .nr_pages = LONG_MAX,
232 .range_cyclic = 0,
234 struct bdi_work work;
236 bdi_work_init(&work, &args);
237 work.state |= WS_ONSTACK;
239 bdi_queue_work(bdi, &work);
240 bdi_wait_on_work_clear(&work);
244 * bdi_start_writeback - start writeback
245 * @bdi: the backing device to write from
246 * @sb: write inodes from this super_block
247 * @nr_pages: the number of pages to write
249 * Description:
250 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
251 * started when this function returns, we make no guarentees on
252 * completion. Caller need not hold sb s_umount semaphore.
255 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
256 long nr_pages)
258 struct wb_writeback_args args = {
259 .sb = sb,
260 .sync_mode = WB_SYNC_NONE,
261 .nr_pages = nr_pages,
262 .range_cyclic = 1,
266 * We treat @nr_pages=0 as the special case to do background writeback,
267 * ie. to sync pages until the background dirty threshold is reached.
269 if (!nr_pages) {
270 args.nr_pages = LONG_MAX;
271 args.for_background = 1;
274 bdi_alloc_queue_work(bdi, &args);
278 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
279 * furthest end of its superblock's dirty-inode list.
281 * Before stamping the inode's ->dirtied_when, we check to see whether it is
282 * already the most-recently-dirtied inode on the b_dirty list. If that is
283 * the case then the inode must have been redirtied while it was being written
284 * out and we don't reset its dirtied_when.
286 static void redirty_tail(struct inode *inode)
288 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
290 if (!list_empty(&wb->b_dirty)) {
291 struct inode *tail;
293 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
294 if (time_before(inode->dirtied_when, tail->dirtied_when))
295 inode->dirtied_when = jiffies;
297 list_move(&inode->i_list, &wb->b_dirty);
301 * requeue inode for re-scanning after bdi->b_io list is exhausted.
303 static void requeue_io(struct inode *inode)
305 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
307 list_move(&inode->i_list, &wb->b_more_io);
310 static void inode_sync_complete(struct inode *inode)
313 * Prevent speculative execution through spin_unlock(&inode_lock);
315 smp_mb();
316 wake_up_bit(&inode->i_state, __I_SYNC);
319 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
321 bool ret = time_after(inode->dirtied_when, t);
322 #ifndef CONFIG_64BIT
324 * For inodes being constantly redirtied, dirtied_when can get stuck.
325 * It _appears_ to be in the future, but is actually in distant past.
326 * This test is necessary to prevent such wrapped-around relative times
327 * from permanently stopping the whole bdi writeback.
329 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
330 #endif
331 return ret;
335 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
337 static void move_expired_inodes(struct list_head *delaying_queue,
338 struct list_head *dispatch_queue,
339 unsigned long *older_than_this)
341 LIST_HEAD(tmp);
342 struct list_head *pos, *node;
343 struct super_block *sb = NULL;
344 struct inode *inode;
345 int do_sb_sort = 0;
347 while (!list_empty(delaying_queue)) {
348 inode = list_entry(delaying_queue->prev, struct inode, i_list);
349 if (older_than_this &&
350 inode_dirtied_after(inode, *older_than_this))
351 break;
352 if (sb && sb != inode->i_sb)
353 do_sb_sort = 1;
354 sb = inode->i_sb;
355 list_move(&inode->i_list, &tmp);
358 /* just one sb in list, splice to dispatch_queue and we're done */
359 if (!do_sb_sort) {
360 list_splice(&tmp, dispatch_queue);
361 return;
364 /* Move inodes from one superblock together */
365 while (!list_empty(&tmp)) {
366 inode = list_entry(tmp.prev, struct inode, i_list);
367 sb = inode->i_sb;
368 list_for_each_prev_safe(pos, node, &tmp) {
369 inode = list_entry(pos, struct inode, i_list);
370 if (inode->i_sb == sb)
371 list_move(&inode->i_list, dispatch_queue);
377 * Queue all expired dirty inodes for io, eldest first.
379 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
381 list_splice_init(&wb->b_more_io, wb->b_io.prev);
382 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
385 static int write_inode(struct inode *inode, struct writeback_control *wbc)
387 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
388 return inode->i_sb->s_op->write_inode(inode, wbc);
389 return 0;
393 * Wait for writeback on an inode to complete.
395 static void inode_wait_for_writeback(struct inode *inode)
397 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
398 wait_queue_head_t *wqh;
400 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
401 do {
402 spin_unlock(&inode_lock);
403 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
404 spin_lock(&inode_lock);
405 } while (inode->i_state & I_SYNC);
409 * Write out an inode's dirty pages. Called under inode_lock. Either the
410 * caller has ref on the inode (either via __iget or via syscall against an fd)
411 * or the inode has I_WILL_FREE set (via generic_forget_inode)
413 * If `wait' is set, wait on the writeout.
415 * The whole writeout design is quite complex and fragile. We want to avoid
416 * starvation of particular inodes when others are being redirtied, prevent
417 * livelocks, etc.
419 * Called under inode_lock.
421 static int
422 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
424 struct address_space *mapping = inode->i_mapping;
425 unsigned dirty;
426 int ret;
428 if (!atomic_read(&inode->i_count))
429 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
430 else
431 WARN_ON(inode->i_state & I_WILL_FREE);
433 if (inode->i_state & I_SYNC) {
435 * If this inode is locked for writeback and we are not doing
436 * writeback-for-data-integrity, move it to b_more_io so that
437 * writeback can proceed with the other inodes on s_io.
439 * We'll have another go at writing back this inode when we
440 * completed a full scan of b_io.
442 if (wbc->sync_mode != WB_SYNC_ALL) {
443 requeue_io(inode);
444 return 0;
448 * It's a data-integrity sync. We must wait.
450 inode_wait_for_writeback(inode);
453 BUG_ON(inode->i_state & I_SYNC);
455 /* Set I_SYNC, reset I_DIRTY */
456 dirty = inode->i_state & I_DIRTY;
457 inode->i_state |= I_SYNC;
458 inode->i_state &= ~I_DIRTY;
460 spin_unlock(&inode_lock);
462 ret = do_writepages(mapping, wbc);
465 * Make sure to wait on the data before writing out the metadata.
466 * This is important for filesystems that modify metadata on data
467 * I/O completion.
469 if (wbc->sync_mode == WB_SYNC_ALL) {
470 int err = filemap_fdatawait(mapping);
471 if (ret == 0)
472 ret = err;
475 /* Don't write the inode if only I_DIRTY_PAGES was set */
476 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
477 int err = write_inode(inode, wbc);
478 if (ret == 0)
479 ret = err;
482 spin_lock(&inode_lock);
483 inode->i_state &= ~I_SYNC;
484 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
485 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
487 * More pages get dirtied by a fast dirtier.
489 goto select_queue;
490 } else if (inode->i_state & I_DIRTY) {
492 * At least XFS will redirty the inode during the
493 * writeback (delalloc) and on io completion (isize).
495 redirty_tail(inode);
496 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
498 * We didn't write back all the pages. nfs_writepages()
499 * sometimes bales out without doing anything. Redirty
500 * the inode; Move it from b_io onto b_more_io/b_dirty.
503 * akpm: if the caller was the kupdate function we put
504 * this inode at the head of b_dirty so it gets first
505 * consideration. Otherwise, move it to the tail, for
506 * the reasons described there. I'm not really sure
507 * how much sense this makes. Presumably I had a good
508 * reasons for doing it this way, and I'd rather not
509 * muck with it at present.
511 if (wbc->for_kupdate) {
513 * For the kupdate function we move the inode
514 * to b_more_io so it will get more writeout as
515 * soon as the queue becomes uncongested.
517 inode->i_state |= I_DIRTY_PAGES;
518 select_queue:
519 if (wbc->nr_to_write <= 0) {
521 * slice used up: queue for next turn
523 requeue_io(inode);
524 } else {
526 * somehow blocked: retry later
528 redirty_tail(inode);
530 } else {
532 * Otherwise fully redirty the inode so that
533 * other inodes on this superblock will get some
534 * writeout. Otherwise heavy writing to one
535 * file would indefinitely suspend writeout of
536 * all the other files.
538 inode->i_state |= I_DIRTY_PAGES;
539 redirty_tail(inode);
541 } else if (atomic_read(&inode->i_count)) {
543 * The inode is clean, inuse
545 list_move(&inode->i_list, &inode_in_use);
546 } else {
548 * The inode is clean, unused
550 list_move(&inode->i_list, &inode_unused);
553 inode_sync_complete(inode);
554 return ret;
557 static void unpin_sb_for_writeback(struct super_block *sb)
559 up_read(&sb->s_umount);
560 put_super(sb);
563 enum sb_pin_state {
564 SB_PINNED,
565 SB_NOT_PINNED,
566 SB_PIN_FAILED
570 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
571 * before calling writeback. So make sure that we do pin it, so it doesn't
572 * go away while we are writing inodes from it.
574 static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
575 struct super_block *sb)
578 * Caller must already hold the ref for this
580 if (wbc->sync_mode == WB_SYNC_ALL) {
581 WARN_ON(!rwsem_is_locked(&sb->s_umount));
582 return SB_NOT_PINNED;
584 spin_lock(&sb_lock);
585 sb->s_count++;
586 if (down_read_trylock(&sb->s_umount)) {
587 if (sb->s_root) {
588 spin_unlock(&sb_lock);
589 return SB_PINNED;
592 * umounted, drop rwsem again and fall through to failure
594 up_read(&sb->s_umount);
596 sb->s_count--;
597 spin_unlock(&sb_lock);
598 return SB_PIN_FAILED;
602 * Write a portion of b_io inodes which belong to @sb.
603 * If @wbc->sb != NULL, then find and write all such
604 * inodes. Otherwise write only ones which go sequentially
605 * in reverse order.
606 * Return 1, if the caller writeback routine should be
607 * interrupted. Otherwise return 0.
609 static int writeback_sb_inodes(struct super_block *sb,
610 struct bdi_writeback *wb,
611 struct writeback_control *wbc)
613 while (!list_empty(&wb->b_io)) {
614 long pages_skipped;
615 struct inode *inode = list_entry(wb->b_io.prev,
616 struct inode, i_list);
617 if (wbc->sb && sb != inode->i_sb) {
618 /* super block given and doesn't
619 match, skip this inode */
620 redirty_tail(inode);
621 continue;
623 if (sb != inode->i_sb)
624 /* finish with this superblock */
625 return 0;
626 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
627 requeue_io(inode);
628 continue;
631 * Was this inode dirtied after sync_sb_inodes was called?
632 * This keeps sync from extra jobs and livelock.
634 if (inode_dirtied_after(inode, wbc->wb_start))
635 return 1;
637 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
638 __iget(inode);
639 pages_skipped = wbc->pages_skipped;
640 writeback_single_inode(inode, wbc);
641 if (wbc->pages_skipped != pages_skipped) {
643 * writeback is not making progress due to locked
644 * buffers. Skip this inode for now.
646 redirty_tail(inode);
648 spin_unlock(&inode_lock);
649 iput(inode);
650 cond_resched();
651 spin_lock(&inode_lock);
652 if (wbc->nr_to_write <= 0) {
653 wbc->more_io = 1;
654 return 1;
656 if (!list_empty(&wb->b_more_io))
657 wbc->more_io = 1;
659 /* b_io is empty */
660 return 1;
663 static void writeback_inodes_wb(struct bdi_writeback *wb,
664 struct writeback_control *wbc)
666 int ret = 0;
668 wbc->wb_start = jiffies; /* livelock avoidance */
669 spin_lock(&inode_lock);
670 if (!wbc->for_kupdate || list_empty(&wb->b_io))
671 queue_io(wb, wbc->older_than_this);
673 while (!list_empty(&wb->b_io)) {
674 struct inode *inode = list_entry(wb->b_io.prev,
675 struct inode, i_list);
676 struct super_block *sb = inode->i_sb;
677 enum sb_pin_state state;
679 if (wbc->sb && sb != wbc->sb) {
680 /* super block given and doesn't
681 match, skip this inode */
682 redirty_tail(inode);
683 continue;
685 state = pin_sb_for_writeback(wbc, sb);
687 if (state == SB_PIN_FAILED) {
688 requeue_io(inode);
689 continue;
691 ret = writeback_sb_inodes(sb, wb, wbc);
693 if (state == SB_PINNED)
694 unpin_sb_for_writeback(sb);
695 if (ret)
696 break;
698 spin_unlock(&inode_lock);
699 /* Leave any unwritten inodes on b_io */
702 void writeback_inodes_wbc(struct writeback_control *wbc)
704 struct backing_dev_info *bdi = wbc->bdi;
706 writeback_inodes_wb(&bdi->wb, wbc);
710 * The maximum number of pages to writeout in a single bdi flush/kupdate
711 * operation. We do this so we don't hold I_SYNC against an inode for
712 * enormous amounts of time, which would block a userspace task which has
713 * been forced to throttle against that inode. Also, the code reevaluates
714 * the dirty each time it has written this many pages.
716 #define MAX_WRITEBACK_PAGES 1024
718 static inline bool over_bground_thresh(void)
720 unsigned long background_thresh, dirty_thresh;
722 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
724 return (global_page_state(NR_FILE_DIRTY) +
725 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
729 * Explicit flushing or periodic writeback of "old" data.
731 * Define "old": the first time one of an inode's pages is dirtied, we mark the
732 * dirtying-time in the inode's address_space. So this periodic writeback code
733 * just walks the superblock inode list, writing back any inodes which are
734 * older than a specific point in time.
736 * Try to run once per dirty_writeback_interval. But if a writeback event
737 * takes longer than a dirty_writeback_interval interval, then leave a
738 * one-second gap.
740 * older_than_this takes precedence over nr_to_write. So we'll only write back
741 * all dirty pages if they are all attached to "old" mappings.
743 static long wb_writeback(struct bdi_writeback *wb,
744 struct wb_writeback_args *args)
746 struct writeback_control wbc = {
747 .bdi = wb->bdi,
748 .sb = args->sb,
749 .sync_mode = args->sync_mode,
750 .older_than_this = NULL,
751 .for_kupdate = args->for_kupdate,
752 .for_background = args->for_background,
753 .range_cyclic = args->range_cyclic,
755 unsigned long oldest_jif;
756 long wrote = 0;
757 struct inode *inode;
759 if (wbc.for_kupdate) {
760 wbc.older_than_this = &oldest_jif;
761 oldest_jif = jiffies -
762 msecs_to_jiffies(dirty_expire_interval * 10);
764 if (!wbc.range_cyclic) {
765 wbc.range_start = 0;
766 wbc.range_end = LLONG_MAX;
769 for (;;) {
771 * Stop writeback when nr_pages has been consumed
773 if (args->nr_pages <= 0)
774 break;
777 * For background writeout, stop when we are below the
778 * background dirty threshold
780 if (args->for_background && !over_bground_thresh())
781 break;
783 wbc.more_io = 0;
784 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
785 wbc.pages_skipped = 0;
786 writeback_inodes_wb(wb, &wbc);
787 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
788 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
791 * If we consumed everything, see if we have more
793 if (wbc.nr_to_write <= 0)
794 continue;
796 * Didn't write everything and we don't have more IO, bail
798 if (!wbc.more_io)
799 break;
801 * Did we write something? Try for more
803 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
804 continue;
806 * Nothing written. Wait for some inode to
807 * become available for writeback. Otherwise
808 * we'll just busyloop.
810 spin_lock(&inode_lock);
811 if (!list_empty(&wb->b_more_io)) {
812 inode = list_entry(wb->b_more_io.prev,
813 struct inode, i_list);
814 inode_wait_for_writeback(inode);
816 spin_unlock(&inode_lock);
819 return wrote;
823 * Return the next bdi_work struct that hasn't been processed by this
824 * wb thread yet. ->seen is initially set for each thread that exists
825 * for this device, when a thread first notices a piece of work it
826 * clears its bit. Depending on writeback type, the thread will notify
827 * completion on either receiving the work (WB_SYNC_NONE) or after
828 * it is done (WB_SYNC_ALL).
830 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
831 struct bdi_writeback *wb)
833 struct bdi_work *work, *ret = NULL;
835 rcu_read_lock();
837 list_for_each_entry_rcu(work, &bdi->work_list, list) {
838 if (!test_bit(wb->nr, &work->seen))
839 continue;
840 clear_bit(wb->nr, &work->seen);
842 ret = work;
843 break;
846 rcu_read_unlock();
847 return ret;
850 static long wb_check_old_data_flush(struct bdi_writeback *wb)
852 unsigned long expired;
853 long nr_pages;
856 * When set to zero, disable periodic writeback
858 if (!dirty_writeback_interval)
859 return 0;
861 expired = wb->last_old_flush +
862 msecs_to_jiffies(dirty_writeback_interval * 10);
863 if (time_before(jiffies, expired))
864 return 0;
866 wb->last_old_flush = jiffies;
867 nr_pages = global_page_state(NR_FILE_DIRTY) +
868 global_page_state(NR_UNSTABLE_NFS) +
869 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
871 if (nr_pages) {
872 struct wb_writeback_args args = {
873 .nr_pages = nr_pages,
874 .sync_mode = WB_SYNC_NONE,
875 .for_kupdate = 1,
876 .range_cyclic = 1,
879 return wb_writeback(wb, &args);
882 return 0;
886 * Retrieve work items and do the writeback they describe
888 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
890 struct backing_dev_info *bdi = wb->bdi;
891 struct bdi_work *work;
892 long wrote = 0;
894 while ((work = get_next_work_item(bdi, wb)) != NULL) {
895 struct wb_writeback_args args = work->args;
898 * Override sync mode, in case we must wait for completion
900 if (force_wait)
901 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
904 * If this isn't a data integrity operation, just notify
905 * that we have seen this work and we are now starting it.
907 if (args.sync_mode == WB_SYNC_NONE)
908 wb_clear_pending(wb, work);
910 wrote += wb_writeback(wb, &args);
913 * This is a data integrity writeback, so only do the
914 * notification when we have completed the work.
916 if (args.sync_mode == WB_SYNC_ALL)
917 wb_clear_pending(wb, work);
921 * Check for periodic writeback, kupdated() style
923 wrote += wb_check_old_data_flush(wb);
925 return wrote;
929 * Handle writeback of dirty data for the device backed by this bdi. Also
930 * wakes up periodically and does kupdated style flushing.
932 int bdi_writeback_task(struct bdi_writeback *wb)
934 unsigned long last_active = jiffies;
935 unsigned long wait_jiffies = -1UL;
936 long pages_written;
938 while (!kthread_should_stop()) {
939 pages_written = wb_do_writeback(wb, 0);
941 if (pages_written)
942 last_active = jiffies;
943 else if (wait_jiffies != -1UL) {
944 unsigned long max_idle;
947 * Longest period of inactivity that we tolerate. If we
948 * see dirty data again later, the task will get
949 * recreated automatically.
951 max_idle = max(5UL * 60 * HZ, wait_jiffies);
952 if (time_after(jiffies, max_idle + last_active))
953 break;
956 if (dirty_writeback_interval) {
957 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
958 schedule_timeout_interruptible(wait_jiffies);
959 } else
960 schedule();
962 try_to_freeze();
965 return 0;
969 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
970 * writeback, for integrity writeback see bdi_sync_writeback().
972 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
974 struct wb_writeback_args args = {
975 .sb = sb,
976 .nr_pages = nr_pages,
977 .sync_mode = WB_SYNC_NONE,
979 struct backing_dev_info *bdi;
981 rcu_read_lock();
983 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
984 if (!bdi_has_dirty_io(bdi))
985 continue;
987 bdi_alloc_queue_work(bdi, &args);
990 rcu_read_unlock();
994 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
995 * the whole world.
997 void wakeup_flusher_threads(long nr_pages)
999 if (nr_pages == 0)
1000 nr_pages = global_page_state(NR_FILE_DIRTY) +
1001 global_page_state(NR_UNSTABLE_NFS);
1002 bdi_writeback_all(NULL, nr_pages);
1005 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1007 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1008 struct dentry *dentry;
1009 const char *name = "?";
1011 dentry = d_find_alias(inode);
1012 if (dentry) {
1013 spin_lock(&dentry->d_lock);
1014 name = (const char *) dentry->d_name.name;
1016 printk(KERN_DEBUG
1017 "%s(%d): dirtied inode %lu (%s) on %s\n",
1018 current->comm, task_pid_nr(current), inode->i_ino,
1019 name, inode->i_sb->s_id);
1020 if (dentry) {
1021 spin_unlock(&dentry->d_lock);
1022 dput(dentry);
1028 * __mark_inode_dirty - internal function
1029 * @inode: inode to mark
1030 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1031 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1032 * mark_inode_dirty_sync.
1034 * Put the inode on the super block's dirty list.
1036 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1037 * dirty list only if it is hashed or if it refers to a blockdev.
1038 * If it was not hashed, it will never be added to the dirty list
1039 * even if it is later hashed, as it will have been marked dirty already.
1041 * In short, make sure you hash any inodes _before_ you start marking
1042 * them dirty.
1044 * This function *must* be atomic for the I_DIRTY_PAGES case -
1045 * set_page_dirty() is called under spinlock in several places.
1047 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1048 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1049 * the kernel-internal blockdev inode represents the dirtying time of the
1050 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1051 * page->mapping->host, so the page-dirtying time is recorded in the internal
1052 * blockdev inode.
1054 void __mark_inode_dirty(struct inode *inode, int flags)
1056 struct super_block *sb = inode->i_sb;
1059 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1060 * dirty the inode itself
1062 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1063 if (sb->s_op->dirty_inode)
1064 sb->s_op->dirty_inode(inode);
1068 * make sure that changes are seen by all cpus before we test i_state
1069 * -- mikulas
1071 smp_mb();
1073 /* avoid the locking if we can */
1074 if ((inode->i_state & flags) == flags)
1075 return;
1077 if (unlikely(block_dump))
1078 block_dump___mark_inode_dirty(inode);
1080 spin_lock(&inode_lock);
1081 if ((inode->i_state & flags) != flags) {
1082 const int was_dirty = inode->i_state & I_DIRTY;
1084 inode->i_state |= flags;
1087 * If the inode is being synced, just update its dirty state.
1088 * The unlocker will place the inode on the appropriate
1089 * superblock list, based upon its state.
1091 if (inode->i_state & I_SYNC)
1092 goto out;
1095 * Only add valid (hashed) inodes to the superblock's
1096 * dirty list. Add blockdev inodes as well.
1098 if (!S_ISBLK(inode->i_mode)) {
1099 if (hlist_unhashed(&inode->i_hash))
1100 goto out;
1102 if (inode->i_state & (I_FREEING|I_CLEAR))
1103 goto out;
1106 * If the inode was already on b_dirty/b_io/b_more_io, don't
1107 * reposition it (that would break b_dirty time-ordering).
1109 if (!was_dirty) {
1110 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1111 struct backing_dev_info *bdi = wb->bdi;
1113 if (bdi_cap_writeback_dirty(bdi) &&
1114 !test_bit(BDI_registered, &bdi->state)) {
1115 WARN_ON(1);
1116 printk(KERN_ERR "bdi-%s not registered\n",
1117 bdi->name);
1120 inode->dirtied_when = jiffies;
1121 list_move(&inode->i_list, &wb->b_dirty);
1124 out:
1125 spin_unlock(&inode_lock);
1127 EXPORT_SYMBOL(__mark_inode_dirty);
1130 * Write out a superblock's list of dirty inodes. A wait will be performed
1131 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1133 * If older_than_this is non-NULL, then only write out inodes which
1134 * had their first dirtying at a time earlier than *older_than_this.
1136 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1137 * This function assumes that the blockdev superblock's inodes are backed by
1138 * a variety of queues, so all inodes are searched. For other superblocks,
1139 * assume that all inodes are backed by the same queue.
1141 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1142 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1143 * on the writer throttling path, and we get decent balancing between many
1144 * throttled threads: we don't want them all piling up on inode_sync_wait.
1146 static void wait_sb_inodes(struct super_block *sb)
1148 struct inode *inode, *old_inode = NULL;
1151 * We need to be protected against the filesystem going from
1152 * r/o to r/w or vice versa.
1154 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1156 spin_lock(&inode_lock);
1159 * Data integrity sync. Must wait for all pages under writeback,
1160 * because there may have been pages dirtied before our sync
1161 * call, but which had writeout started before we write it out.
1162 * In which case, the inode may not be on the dirty list, but
1163 * we still have to wait for that writeout.
1165 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1166 struct address_space *mapping;
1168 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1169 continue;
1170 mapping = inode->i_mapping;
1171 if (mapping->nrpages == 0)
1172 continue;
1173 __iget(inode);
1174 spin_unlock(&inode_lock);
1176 * We hold a reference to 'inode' so it couldn't have
1177 * been removed from s_inodes list while we dropped the
1178 * inode_lock. We cannot iput the inode now as we can
1179 * be holding the last reference and we cannot iput it
1180 * under inode_lock. So we keep the reference and iput
1181 * it later.
1183 iput(old_inode);
1184 old_inode = inode;
1186 filemap_fdatawait(mapping);
1188 cond_resched();
1190 spin_lock(&inode_lock);
1192 spin_unlock(&inode_lock);
1193 iput(old_inode);
1197 * writeback_inodes_sb - writeback dirty inodes from given super_block
1198 * @sb: the superblock
1200 * Start writeback on some inodes on this super_block. No guarantees are made
1201 * on how many (if any) will be written, and this function does not wait
1202 * for IO completion of submitted IO. The number of pages submitted is
1203 * returned.
1205 void writeback_inodes_sb(struct super_block *sb)
1207 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1208 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1209 long nr_to_write;
1211 nr_to_write = nr_dirty + nr_unstable +
1212 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1214 bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1216 EXPORT_SYMBOL(writeback_inodes_sb);
1219 * writeback_inodes_sb_if_idle - start writeback if none underway
1220 * @sb: the superblock
1222 * Invoke writeback_inodes_sb if no writeback is currently underway.
1223 * Returns 1 if writeback was started, 0 if not.
1225 int writeback_inodes_sb_if_idle(struct super_block *sb)
1227 if (!writeback_in_progress(sb->s_bdi)) {
1228 writeback_inodes_sb(sb);
1229 return 1;
1230 } else
1231 return 0;
1233 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1236 * sync_inodes_sb - sync sb inode pages
1237 * @sb: the superblock
1239 * This function writes and waits on any dirty inode belonging to this
1240 * super_block. The number of pages synced is returned.
1242 void sync_inodes_sb(struct super_block *sb)
1244 bdi_sync_writeback(sb->s_bdi, sb);
1245 wait_sb_inodes(sb);
1247 EXPORT_SYMBOL(sync_inodes_sb);
1250 * write_inode_now - write an inode to disk
1251 * @inode: inode to write to disk
1252 * @sync: whether the write should be synchronous or not
1254 * This function commits an inode to disk immediately if it is dirty. This is
1255 * primarily needed by knfsd.
1257 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1259 int write_inode_now(struct inode *inode, int sync)
1261 int ret;
1262 struct writeback_control wbc = {
1263 .nr_to_write = LONG_MAX,
1264 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1265 .range_start = 0,
1266 .range_end = LLONG_MAX,
1269 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1270 wbc.nr_to_write = 0;
1272 might_sleep();
1273 spin_lock(&inode_lock);
1274 ret = writeback_single_inode(inode, &wbc);
1275 spin_unlock(&inode_lock);
1276 if (sync)
1277 inode_sync_wait(inode);
1278 return ret;
1280 EXPORT_SYMBOL(write_inode_now);
1283 * sync_inode - write an inode and its pages to disk.
1284 * @inode: the inode to sync
1285 * @wbc: controls the writeback mode
1287 * sync_inode() will write an inode and its pages to disk. It will also
1288 * correctly update the inode on its superblock's dirty inode lists and will
1289 * update inode->i_state.
1291 * The caller must have a ref on the inode.
1293 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1295 int ret;
1297 spin_lock(&inode_lock);
1298 ret = writeback_single_inode(inode, wbc);
1299 spin_unlock(&inode_lock);
1300 return ret;
1302 EXPORT_SYMBOL(sync_inode);