2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
23 #include "transaction.h"
24 #include "print-tree.h"
27 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
28 *root
, struct btrfs_path
*path
, int level
);
29 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
30 *root
, struct btrfs_key
*ins_key
,
31 struct btrfs_path
*path
, int data_size
, int extend
);
32 static int push_node_left(struct btrfs_trans_handle
*trans
,
33 struct btrfs_root
*root
, struct extent_buffer
*dst
,
34 struct extent_buffer
*src
, int empty
);
35 static int balance_node_right(struct btrfs_trans_handle
*trans
,
36 struct btrfs_root
*root
,
37 struct extent_buffer
*dst_buf
,
38 struct extent_buffer
*src_buf
);
39 static int del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
40 struct btrfs_path
*path
, int level
, int slot
);
41 static int setup_items_for_insert(struct btrfs_trans_handle
*trans
,
42 struct btrfs_root
*root
, struct btrfs_path
*path
,
43 struct btrfs_key
*cpu_key
, u32
*data_size
,
44 u32 total_data
, u32 total_size
, int nr
);
47 struct btrfs_path
*btrfs_alloc_path(void)
49 struct btrfs_path
*path
;
50 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
57 * set all locked nodes in the path to blocking locks. This should
58 * be done before scheduling
60 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
63 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
64 if (p
->nodes
[i
] && p
->locks
[i
])
65 btrfs_set_lock_blocking(p
->nodes
[i
]);
70 * reset all the locked nodes in the patch to spinning locks.
72 * held is used to keep lockdep happy, when lockdep is enabled
73 * we set held to a blocking lock before we go around and
74 * retake all the spinlocks in the path. You can safely use NULL
77 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
78 struct extent_buffer
*held
)
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83 /* lockdep really cares that we take all of these spinlocks
84 * in the right order. If any of the locks in the path are not
85 * currently blocking, it is going to complain. So, make really
86 * really sure by forcing the path to blocking before we clear
90 btrfs_set_lock_blocking(held
);
91 btrfs_set_path_blocking(p
);
94 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
95 if (p
->nodes
[i
] && p
->locks
[i
])
96 btrfs_clear_lock_blocking(p
->nodes
[i
]);
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 btrfs_clear_lock_blocking(held
);
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path
*p
)
108 btrfs_release_path(NULL
, p
);
109 kmem_cache_free(btrfs_path_cachep
, p
);
113 * path release drops references on the extent buffers in the path
114 * and it drops any locks held by this path
116 * It is safe to call this on paths that no locks or extent buffers held.
118 noinline
void btrfs_release_path(struct btrfs_root
*root
, struct btrfs_path
*p
)
122 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
127 btrfs_tree_unlock(p
->nodes
[i
]);
130 free_extent_buffer(p
->nodes
[i
]);
136 * safely gets a reference on the root node of a tree. A lock
137 * is not taken, so a concurrent writer may put a different node
138 * at the root of the tree. See btrfs_lock_root_node for the
141 * The extent buffer returned by this has a reference taken, so
142 * it won't disappear. It may stop being the root of the tree
143 * at any time because there are no locks held.
145 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
147 struct extent_buffer
*eb
;
148 spin_lock(&root
->node_lock
);
150 extent_buffer_get(eb
);
151 spin_unlock(&root
->node_lock
);
155 /* loop around taking references on and locking the root node of the
156 * tree until you end up with a lock on the root. A locked buffer
157 * is returned, with a reference held.
159 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
161 struct extent_buffer
*eb
;
164 eb
= btrfs_root_node(root
);
167 spin_lock(&root
->node_lock
);
168 if (eb
== root
->node
) {
169 spin_unlock(&root
->node_lock
);
172 spin_unlock(&root
->node_lock
);
174 btrfs_tree_unlock(eb
);
175 free_extent_buffer(eb
);
180 /* cowonly root (everything not a reference counted cow subvolume), just get
181 * put onto a simple dirty list. transaction.c walks this to make sure they
182 * get properly updated on disk.
184 static void add_root_to_dirty_list(struct btrfs_root
*root
)
186 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
187 list_add(&root
->dirty_list
,
188 &root
->fs_info
->dirty_cowonly_roots
);
193 * used by snapshot creation to make a copy of a root for a tree with
194 * a given objectid. The buffer with the new root node is returned in
195 * cow_ret, and this func returns zero on success or a negative error code.
197 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
198 struct btrfs_root
*root
,
199 struct extent_buffer
*buf
,
200 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
202 struct extent_buffer
*cow
;
206 struct btrfs_disk_key disk_key
;
208 WARN_ON(root
->ref_cows
&& trans
->transid
!=
209 root
->fs_info
->running_transaction
->transid
);
210 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
212 level
= btrfs_header_level(buf
);
213 nritems
= btrfs_header_nritems(buf
);
215 btrfs_item_key(buf
, &disk_key
, 0);
217 btrfs_node_key(buf
, &disk_key
, 0);
219 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, 0,
220 new_root_objectid
, &disk_key
, level
,
225 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
226 btrfs_set_header_bytenr(cow
, cow
->start
);
227 btrfs_set_header_generation(cow
, trans
->transid
);
228 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
229 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
230 BTRFS_HEADER_FLAG_RELOC
);
231 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
232 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
234 btrfs_set_header_owner(cow
, new_root_objectid
);
236 write_extent_buffer(cow
, root
->fs_info
->fsid
,
237 (unsigned long)btrfs_header_fsid(cow
),
240 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
241 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
242 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
244 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
249 btrfs_mark_buffer_dirty(cow
);
255 * check if the tree block can be shared by multiple trees
257 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
258 struct extent_buffer
*buf
)
261 * Tree blocks not in refernece counted trees and tree roots
262 * are never shared. If a block was allocated after the last
263 * snapshot and the block was not allocated by tree relocation,
264 * we know the block is not shared.
266 if (root
->ref_cows
&&
267 buf
!= root
->node
&& buf
!= root
->commit_root
&&
268 (btrfs_header_generation(buf
) <=
269 btrfs_root_last_snapshot(&root
->root_item
) ||
270 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
273 if (root
->ref_cows
&&
274 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
280 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
281 struct btrfs_root
*root
,
282 struct extent_buffer
*buf
,
283 struct extent_buffer
*cow
)
292 * Backrefs update rules:
294 * Always use full backrefs for extent pointers in tree block
295 * allocated by tree relocation.
297 * If a shared tree block is no longer referenced by its owner
298 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
299 * use full backrefs for extent pointers in tree block.
301 * If a tree block is been relocating
302 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
303 * use full backrefs for extent pointers in tree block.
304 * The reason for this is some operations (such as drop tree)
305 * are only allowed for blocks use full backrefs.
308 if (btrfs_block_can_be_shared(root
, buf
)) {
309 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
310 buf
->len
, &refs
, &flags
);
315 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
316 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
317 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
322 owner
= btrfs_header_owner(buf
);
323 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
324 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
327 if ((owner
== root
->root_key
.objectid
||
328 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
329 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
330 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
333 if (root
->root_key
.objectid
==
334 BTRFS_TREE_RELOC_OBJECTID
) {
335 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
337 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
340 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
343 if (root
->root_key
.objectid
==
344 BTRFS_TREE_RELOC_OBJECTID
)
345 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
347 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
350 if (new_flags
!= 0) {
351 ret
= btrfs_set_disk_extent_flags(trans
, root
,
358 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
359 if (root
->root_key
.objectid
==
360 BTRFS_TREE_RELOC_OBJECTID
)
361 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
363 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
365 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
368 clean_tree_block(trans
, root
, buf
);
374 * does the dirty work in cow of a single block. The parent block (if
375 * supplied) is updated to point to the new cow copy. The new buffer is marked
376 * dirty and returned locked. If you modify the block it needs to be marked
379 * search_start -- an allocation hint for the new block
381 * empty_size -- a hint that you plan on doing more cow. This is the size in
382 * bytes the allocator should try to find free next to the block it returns.
383 * This is just a hint and may be ignored by the allocator.
385 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
386 struct btrfs_root
*root
,
387 struct extent_buffer
*buf
,
388 struct extent_buffer
*parent
, int parent_slot
,
389 struct extent_buffer
**cow_ret
,
390 u64 search_start
, u64 empty_size
)
392 struct btrfs_disk_key disk_key
;
393 struct extent_buffer
*cow
;
401 btrfs_assert_tree_locked(buf
);
403 WARN_ON(root
->ref_cows
&& trans
->transid
!=
404 root
->fs_info
->running_transaction
->transid
);
405 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
407 level
= btrfs_header_level(buf
);
410 btrfs_item_key(buf
, &disk_key
, 0);
412 btrfs_node_key(buf
, &disk_key
, 0);
414 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
416 parent_start
= parent
->start
;
422 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, parent_start
,
423 root
->root_key
.objectid
, &disk_key
,
424 level
, search_start
, empty_size
);
428 /* cow is set to blocking by btrfs_init_new_buffer */
430 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
431 btrfs_set_header_bytenr(cow
, cow
->start
);
432 btrfs_set_header_generation(cow
, trans
->transid
);
433 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
434 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
435 BTRFS_HEADER_FLAG_RELOC
);
436 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
437 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
439 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
441 write_extent_buffer(cow
, root
->fs_info
->fsid
,
442 (unsigned long)btrfs_header_fsid(cow
),
445 update_ref_for_cow(trans
, root
, buf
, cow
);
447 if (buf
== root
->node
) {
448 WARN_ON(parent
&& parent
!= buf
);
449 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
450 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
451 parent_start
= buf
->start
;
455 spin_lock(&root
->node_lock
);
457 extent_buffer_get(cow
);
458 spin_unlock(&root
->node_lock
);
460 btrfs_free_tree_block(trans
, root
, buf
->start
, buf
->len
,
461 parent_start
, root
->root_key
.objectid
, level
);
462 free_extent_buffer(buf
);
463 add_root_to_dirty_list(root
);
465 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
466 parent_start
= parent
->start
;
470 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
471 btrfs_set_node_blockptr(parent
, parent_slot
,
473 btrfs_set_node_ptr_generation(parent
, parent_slot
,
475 btrfs_mark_buffer_dirty(parent
);
476 btrfs_free_tree_block(trans
, root
, buf
->start
, buf
->len
,
477 parent_start
, root
->root_key
.objectid
, level
);
480 btrfs_tree_unlock(buf
);
481 free_extent_buffer(buf
);
482 btrfs_mark_buffer_dirty(cow
);
487 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
488 struct btrfs_root
*root
,
489 struct extent_buffer
*buf
)
491 if (btrfs_header_generation(buf
) == trans
->transid
&&
492 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
493 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
494 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
500 * cows a single block, see __btrfs_cow_block for the real work.
501 * This version of it has extra checks so that a block isn't cow'd more than
502 * once per transaction, as long as it hasn't been written yet
504 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
505 struct btrfs_root
*root
, struct extent_buffer
*buf
,
506 struct extent_buffer
*parent
, int parent_slot
,
507 struct extent_buffer
**cow_ret
)
512 if (trans
->transaction
!= root
->fs_info
->running_transaction
) {
513 printk(KERN_CRIT
"trans %llu running %llu\n",
514 (unsigned long long)trans
->transid
,
516 root
->fs_info
->running_transaction
->transid
);
519 if (trans
->transid
!= root
->fs_info
->generation
) {
520 printk(KERN_CRIT
"trans %llu running %llu\n",
521 (unsigned long long)trans
->transid
,
522 (unsigned long long)root
->fs_info
->generation
);
526 if (!should_cow_block(trans
, root
, buf
)) {
531 search_start
= buf
->start
& ~((u64
)(1024 * 1024 * 1024) - 1);
534 btrfs_set_lock_blocking(parent
);
535 btrfs_set_lock_blocking(buf
);
537 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
538 parent_slot
, cow_ret
, search_start
, 0);
543 * helper function for defrag to decide if two blocks pointed to by a
544 * node are actually close by
546 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
548 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
550 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
556 * compare two keys in a memcmp fashion
558 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
562 btrfs_disk_key_to_cpu(&k1
, disk
);
564 return btrfs_comp_cpu_keys(&k1
, k2
);
568 * same as comp_keys only with two btrfs_key's
570 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
572 if (k1
->objectid
> k2
->objectid
)
574 if (k1
->objectid
< k2
->objectid
)
576 if (k1
->type
> k2
->type
)
578 if (k1
->type
< k2
->type
)
580 if (k1
->offset
> k2
->offset
)
582 if (k1
->offset
< k2
->offset
)
588 * this is used by the defrag code to go through all the
589 * leaves pointed to by a node and reallocate them so that
590 * disk order is close to key order
592 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
593 struct btrfs_root
*root
, struct extent_buffer
*parent
,
594 int start_slot
, int cache_only
, u64
*last_ret
,
595 struct btrfs_key
*progress
)
597 struct extent_buffer
*cur
;
600 u64 search_start
= *last_ret
;
610 int progress_passed
= 0;
611 struct btrfs_disk_key disk_key
;
613 parent_level
= btrfs_header_level(parent
);
614 if (cache_only
&& parent_level
!= 1)
617 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
619 if (trans
->transid
!= root
->fs_info
->generation
)
622 parent_nritems
= btrfs_header_nritems(parent
);
623 blocksize
= btrfs_level_size(root
, parent_level
- 1);
624 end_slot
= parent_nritems
;
626 if (parent_nritems
== 1)
629 btrfs_set_lock_blocking(parent
);
631 for (i
= start_slot
; i
< end_slot
; i
++) {
634 if (!parent
->map_token
) {
635 map_extent_buffer(parent
,
636 btrfs_node_key_ptr_offset(i
),
637 sizeof(struct btrfs_key_ptr
),
638 &parent
->map_token
, &parent
->kaddr
,
639 &parent
->map_start
, &parent
->map_len
,
642 btrfs_node_key(parent
, &disk_key
, i
);
643 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
647 blocknr
= btrfs_node_blockptr(parent
, i
);
648 gen
= btrfs_node_ptr_generation(parent
, i
);
650 last_block
= blocknr
;
653 other
= btrfs_node_blockptr(parent
, i
- 1);
654 close
= close_blocks(blocknr
, other
, blocksize
);
656 if (!close
&& i
< end_slot
- 2) {
657 other
= btrfs_node_blockptr(parent
, i
+ 1);
658 close
= close_blocks(blocknr
, other
, blocksize
);
661 last_block
= blocknr
;
664 if (parent
->map_token
) {
665 unmap_extent_buffer(parent
, parent
->map_token
,
667 parent
->map_token
= NULL
;
670 cur
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
672 uptodate
= btrfs_buffer_uptodate(cur
, gen
);
675 if (!cur
|| !uptodate
) {
677 free_extent_buffer(cur
);
681 cur
= read_tree_block(root
, blocknr
,
683 } else if (!uptodate
) {
684 btrfs_read_buffer(cur
, gen
);
687 if (search_start
== 0)
688 search_start
= last_block
;
690 btrfs_tree_lock(cur
);
691 btrfs_set_lock_blocking(cur
);
692 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
695 (end_slot
- i
) * blocksize
));
697 btrfs_tree_unlock(cur
);
698 free_extent_buffer(cur
);
701 search_start
= cur
->start
;
702 last_block
= cur
->start
;
703 *last_ret
= search_start
;
704 btrfs_tree_unlock(cur
);
705 free_extent_buffer(cur
);
707 if (parent
->map_token
) {
708 unmap_extent_buffer(parent
, parent
->map_token
,
710 parent
->map_token
= NULL
;
716 * The leaf data grows from end-to-front in the node.
717 * this returns the address of the start of the last item,
718 * which is the stop of the leaf data stack
720 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
721 struct extent_buffer
*leaf
)
723 u32 nr
= btrfs_header_nritems(leaf
);
725 return BTRFS_LEAF_DATA_SIZE(root
);
726 return btrfs_item_offset_nr(leaf
, nr
- 1);
730 * extra debugging checks to make sure all the items in a key are
731 * well formed and in the proper order
733 static int check_node(struct btrfs_root
*root
, struct btrfs_path
*path
,
736 struct extent_buffer
*parent
= NULL
;
737 struct extent_buffer
*node
= path
->nodes
[level
];
738 struct btrfs_disk_key parent_key
;
739 struct btrfs_disk_key node_key
;
742 struct btrfs_key cpukey
;
743 u32 nritems
= btrfs_header_nritems(node
);
745 if (path
->nodes
[level
+ 1])
746 parent
= path
->nodes
[level
+ 1];
748 slot
= path
->slots
[level
];
749 BUG_ON(nritems
== 0);
751 parent_slot
= path
->slots
[level
+ 1];
752 btrfs_node_key(parent
, &parent_key
, parent_slot
);
753 btrfs_node_key(node
, &node_key
, 0);
754 BUG_ON(memcmp(&parent_key
, &node_key
,
755 sizeof(struct btrfs_disk_key
)));
756 BUG_ON(btrfs_node_blockptr(parent
, parent_slot
) !=
757 btrfs_header_bytenr(node
));
759 BUG_ON(nritems
> BTRFS_NODEPTRS_PER_BLOCK(root
));
761 btrfs_node_key_to_cpu(node
, &cpukey
, slot
- 1);
762 btrfs_node_key(node
, &node_key
, slot
);
763 BUG_ON(comp_keys(&node_key
, &cpukey
) <= 0);
765 if (slot
< nritems
- 1) {
766 btrfs_node_key_to_cpu(node
, &cpukey
, slot
+ 1);
767 btrfs_node_key(node
, &node_key
, slot
);
768 BUG_ON(comp_keys(&node_key
, &cpukey
) >= 0);
774 * extra checking to make sure all the items in a leaf are
775 * well formed and in the proper order
777 static int check_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
780 struct extent_buffer
*leaf
= path
->nodes
[level
];
781 struct extent_buffer
*parent
= NULL
;
783 struct btrfs_key cpukey
;
784 struct btrfs_disk_key parent_key
;
785 struct btrfs_disk_key leaf_key
;
786 int slot
= path
->slots
[0];
788 u32 nritems
= btrfs_header_nritems(leaf
);
790 if (path
->nodes
[level
+ 1])
791 parent
= path
->nodes
[level
+ 1];
797 parent_slot
= path
->slots
[level
+ 1];
798 btrfs_node_key(parent
, &parent_key
, parent_slot
);
799 btrfs_item_key(leaf
, &leaf_key
, 0);
801 BUG_ON(memcmp(&parent_key
, &leaf_key
,
802 sizeof(struct btrfs_disk_key
)));
803 BUG_ON(btrfs_node_blockptr(parent
, parent_slot
) !=
804 btrfs_header_bytenr(leaf
));
806 if (slot
!= 0 && slot
< nritems
- 1) {
807 btrfs_item_key(leaf
, &leaf_key
, slot
);
808 btrfs_item_key_to_cpu(leaf
, &cpukey
, slot
- 1);
809 if (comp_keys(&leaf_key
, &cpukey
) <= 0) {
810 btrfs_print_leaf(root
, leaf
);
811 printk(KERN_CRIT
"slot %d offset bad key\n", slot
);
814 if (btrfs_item_offset_nr(leaf
, slot
- 1) !=
815 btrfs_item_end_nr(leaf
, slot
)) {
816 btrfs_print_leaf(root
, leaf
);
817 printk(KERN_CRIT
"slot %d offset bad\n", slot
);
821 if (slot
< nritems
- 1) {
822 btrfs_item_key(leaf
, &leaf_key
, slot
);
823 btrfs_item_key_to_cpu(leaf
, &cpukey
, slot
+ 1);
824 BUG_ON(comp_keys(&leaf_key
, &cpukey
) >= 0);
825 if (btrfs_item_offset_nr(leaf
, slot
) !=
826 btrfs_item_end_nr(leaf
, slot
+ 1)) {
827 btrfs_print_leaf(root
, leaf
);
828 printk(KERN_CRIT
"slot %d offset bad\n", slot
);
832 BUG_ON(btrfs_item_offset_nr(leaf
, 0) +
833 btrfs_item_size_nr(leaf
, 0) != BTRFS_LEAF_DATA_SIZE(root
));
837 static noinline
int check_block(struct btrfs_root
*root
,
838 struct btrfs_path
*path
, int level
)
842 return check_leaf(root
, path
, level
);
843 return check_node(root
, path
, level
);
847 * search for key in the extent_buffer. The items start at offset p,
848 * and they are item_size apart. There are 'max' items in p.
850 * the slot in the array is returned via slot, and it points to
851 * the place where you would insert key if it is not found in
854 * slot may point to max if the key is bigger than all of the keys
856 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
858 int item_size
, struct btrfs_key
*key
,
865 struct btrfs_disk_key
*tmp
= NULL
;
866 struct btrfs_disk_key unaligned
;
867 unsigned long offset
;
868 char *map_token
= NULL
;
870 unsigned long map_start
= 0;
871 unsigned long map_len
= 0;
875 mid
= (low
+ high
) / 2;
876 offset
= p
+ mid
* item_size
;
878 if (!map_token
|| offset
< map_start
||
879 (offset
+ sizeof(struct btrfs_disk_key
)) >
880 map_start
+ map_len
) {
882 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
886 err
= map_private_extent_buffer(eb
, offset
,
887 sizeof(struct btrfs_disk_key
),
889 &map_start
, &map_len
, KM_USER0
);
892 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
895 read_extent_buffer(eb
, &unaligned
,
896 offset
, sizeof(unaligned
));
901 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
904 ret
= comp_keys(tmp
, key
);
913 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
919 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
924 * simple bin_search frontend that does the right thing for
927 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
928 int level
, int *slot
)
931 return generic_bin_search(eb
,
932 offsetof(struct btrfs_leaf
, items
),
933 sizeof(struct btrfs_item
),
934 key
, btrfs_header_nritems(eb
),
937 return generic_bin_search(eb
,
938 offsetof(struct btrfs_node
, ptrs
),
939 sizeof(struct btrfs_key_ptr
),
940 key
, btrfs_header_nritems(eb
),
946 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
947 int level
, int *slot
)
949 return bin_search(eb
, key
, level
, slot
);
952 /* given a node and slot number, this reads the blocks it points to. The
953 * extent buffer is returned with a reference taken (but unlocked).
954 * NULL is returned on error.
956 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
957 struct extent_buffer
*parent
, int slot
)
959 int level
= btrfs_header_level(parent
);
962 if (slot
>= btrfs_header_nritems(parent
))
967 return read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
968 btrfs_level_size(root
, level
- 1),
969 btrfs_node_ptr_generation(parent
, slot
));
973 * node level balancing, used to make sure nodes are in proper order for
974 * item deletion. We balance from the top down, so we have to make sure
975 * that a deletion won't leave an node completely empty later on.
977 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
978 struct btrfs_root
*root
,
979 struct btrfs_path
*path
, int level
)
981 struct extent_buffer
*right
= NULL
;
982 struct extent_buffer
*mid
;
983 struct extent_buffer
*left
= NULL
;
984 struct extent_buffer
*parent
= NULL
;
988 int orig_slot
= path
->slots
[level
];
989 int err_on_enospc
= 0;
995 mid
= path
->nodes
[level
];
997 WARN_ON(!path
->locks
[level
]);
998 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1000 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1002 if (level
< BTRFS_MAX_LEVEL
- 1)
1003 parent
= path
->nodes
[level
+ 1];
1004 pslot
= path
->slots
[level
+ 1];
1007 * deal with the case where there is only one pointer in the root
1008 * by promoting the node below to a root
1011 struct extent_buffer
*child
;
1013 if (btrfs_header_nritems(mid
) != 1)
1016 /* promote the child to a root */
1017 child
= read_node_slot(root
, mid
, 0);
1019 btrfs_tree_lock(child
);
1020 btrfs_set_lock_blocking(child
);
1021 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1024 spin_lock(&root
->node_lock
);
1026 spin_unlock(&root
->node_lock
);
1028 add_root_to_dirty_list(root
);
1029 btrfs_tree_unlock(child
);
1031 path
->locks
[level
] = 0;
1032 path
->nodes
[level
] = NULL
;
1033 clean_tree_block(trans
, root
, mid
);
1034 btrfs_tree_unlock(mid
);
1035 /* once for the path */
1036 free_extent_buffer(mid
);
1037 ret
= btrfs_free_tree_block(trans
, root
, mid
->start
, mid
->len
,
1038 0, root
->root_key
.objectid
, level
);
1039 /* once for the root ptr */
1040 free_extent_buffer(mid
);
1043 if (btrfs_header_nritems(mid
) >
1044 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1047 if (btrfs_header_nritems(mid
) < 2)
1050 left
= read_node_slot(root
, parent
, pslot
- 1);
1052 btrfs_tree_lock(left
);
1053 btrfs_set_lock_blocking(left
);
1054 wret
= btrfs_cow_block(trans
, root
, left
,
1055 parent
, pslot
- 1, &left
);
1061 right
= read_node_slot(root
, parent
, pslot
+ 1);
1063 btrfs_tree_lock(right
);
1064 btrfs_set_lock_blocking(right
);
1065 wret
= btrfs_cow_block(trans
, root
, right
,
1066 parent
, pslot
+ 1, &right
);
1073 /* first, try to make some room in the middle buffer */
1075 orig_slot
+= btrfs_header_nritems(left
);
1076 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1079 if (btrfs_header_nritems(mid
) < 2)
1084 * then try to empty the right most buffer into the middle
1087 wret
= push_node_left(trans
, root
, mid
, right
, 1);
1088 if (wret
< 0 && wret
!= -ENOSPC
)
1090 if (btrfs_header_nritems(right
) == 0) {
1091 u64 bytenr
= right
->start
;
1092 u32 blocksize
= right
->len
;
1094 clean_tree_block(trans
, root
, right
);
1095 btrfs_tree_unlock(right
);
1096 free_extent_buffer(right
);
1098 wret
= del_ptr(trans
, root
, path
, level
+ 1, pslot
+
1102 wret
= btrfs_free_tree_block(trans
, root
,
1103 bytenr
, blocksize
, 0,
1104 root
->root_key
.objectid
,
1109 struct btrfs_disk_key right_key
;
1110 btrfs_node_key(right
, &right_key
, 0);
1111 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1112 btrfs_mark_buffer_dirty(parent
);
1115 if (btrfs_header_nritems(mid
) == 1) {
1117 * we're not allowed to leave a node with one item in the
1118 * tree during a delete. A deletion from lower in the tree
1119 * could try to delete the only pointer in this node.
1120 * So, pull some keys from the left.
1121 * There has to be a left pointer at this point because
1122 * otherwise we would have pulled some pointers from the
1126 wret
= balance_node_right(trans
, root
, mid
, left
);
1132 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1138 if (btrfs_header_nritems(mid
) == 0) {
1139 /* we've managed to empty the middle node, drop it */
1140 u64 bytenr
= mid
->start
;
1141 u32 blocksize
= mid
->len
;
1143 clean_tree_block(trans
, root
, mid
);
1144 btrfs_tree_unlock(mid
);
1145 free_extent_buffer(mid
);
1147 wret
= del_ptr(trans
, root
, path
, level
+ 1, pslot
);
1150 wret
= btrfs_free_tree_block(trans
, root
, bytenr
, blocksize
,
1151 0, root
->root_key
.objectid
, level
);
1155 /* update the parent key to reflect our changes */
1156 struct btrfs_disk_key mid_key
;
1157 btrfs_node_key(mid
, &mid_key
, 0);
1158 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1159 btrfs_mark_buffer_dirty(parent
);
1162 /* update the path */
1164 if (btrfs_header_nritems(left
) > orig_slot
) {
1165 extent_buffer_get(left
);
1166 /* left was locked after cow */
1167 path
->nodes
[level
] = left
;
1168 path
->slots
[level
+ 1] -= 1;
1169 path
->slots
[level
] = orig_slot
;
1171 btrfs_tree_unlock(mid
);
1172 free_extent_buffer(mid
);
1175 orig_slot
-= btrfs_header_nritems(left
);
1176 path
->slots
[level
] = orig_slot
;
1179 /* double check we haven't messed things up */
1180 check_block(root
, path
, level
);
1182 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1186 btrfs_tree_unlock(right
);
1187 free_extent_buffer(right
);
1190 if (path
->nodes
[level
] != left
)
1191 btrfs_tree_unlock(left
);
1192 free_extent_buffer(left
);
1197 /* Node balancing for insertion. Here we only split or push nodes around
1198 * when they are completely full. This is also done top down, so we
1199 * have to be pessimistic.
1201 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
1202 struct btrfs_root
*root
,
1203 struct btrfs_path
*path
, int level
)
1205 struct extent_buffer
*right
= NULL
;
1206 struct extent_buffer
*mid
;
1207 struct extent_buffer
*left
= NULL
;
1208 struct extent_buffer
*parent
= NULL
;
1212 int orig_slot
= path
->slots
[level
];
1218 mid
= path
->nodes
[level
];
1219 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1220 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1222 if (level
< BTRFS_MAX_LEVEL
- 1)
1223 parent
= path
->nodes
[level
+ 1];
1224 pslot
= path
->slots
[level
+ 1];
1229 left
= read_node_slot(root
, parent
, pslot
- 1);
1231 /* first, try to make some room in the middle buffer */
1235 btrfs_tree_lock(left
);
1236 btrfs_set_lock_blocking(left
);
1238 left_nr
= btrfs_header_nritems(left
);
1239 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1242 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
1247 wret
= push_node_left(trans
, root
,
1254 struct btrfs_disk_key disk_key
;
1255 orig_slot
+= left_nr
;
1256 btrfs_node_key(mid
, &disk_key
, 0);
1257 btrfs_set_node_key(parent
, &disk_key
, pslot
);
1258 btrfs_mark_buffer_dirty(parent
);
1259 if (btrfs_header_nritems(left
) > orig_slot
) {
1260 path
->nodes
[level
] = left
;
1261 path
->slots
[level
+ 1] -= 1;
1262 path
->slots
[level
] = orig_slot
;
1263 btrfs_tree_unlock(mid
);
1264 free_extent_buffer(mid
);
1267 btrfs_header_nritems(left
);
1268 path
->slots
[level
] = orig_slot
;
1269 btrfs_tree_unlock(left
);
1270 free_extent_buffer(left
);
1274 btrfs_tree_unlock(left
);
1275 free_extent_buffer(left
);
1277 right
= read_node_slot(root
, parent
, pslot
+ 1);
1280 * then try to empty the right most buffer into the middle
1285 btrfs_tree_lock(right
);
1286 btrfs_set_lock_blocking(right
);
1288 right_nr
= btrfs_header_nritems(right
);
1289 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1292 ret
= btrfs_cow_block(trans
, root
, right
,
1298 wret
= balance_node_right(trans
, root
,
1305 struct btrfs_disk_key disk_key
;
1307 btrfs_node_key(right
, &disk_key
, 0);
1308 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
1309 btrfs_mark_buffer_dirty(parent
);
1311 if (btrfs_header_nritems(mid
) <= orig_slot
) {
1312 path
->nodes
[level
] = right
;
1313 path
->slots
[level
+ 1] += 1;
1314 path
->slots
[level
] = orig_slot
-
1315 btrfs_header_nritems(mid
);
1316 btrfs_tree_unlock(mid
);
1317 free_extent_buffer(mid
);
1319 btrfs_tree_unlock(right
);
1320 free_extent_buffer(right
);
1324 btrfs_tree_unlock(right
);
1325 free_extent_buffer(right
);
1331 * readahead one full node of leaves, finding things that are close
1332 * to the block in 'slot', and triggering ra on them.
1334 static void reada_for_search(struct btrfs_root
*root
,
1335 struct btrfs_path
*path
,
1336 int level
, int slot
, u64 objectid
)
1338 struct extent_buffer
*node
;
1339 struct btrfs_disk_key disk_key
;
1344 int direction
= path
->reada
;
1345 struct extent_buffer
*eb
;
1353 if (!path
->nodes
[level
])
1356 node
= path
->nodes
[level
];
1358 search
= btrfs_node_blockptr(node
, slot
);
1359 blocksize
= btrfs_level_size(root
, level
- 1);
1360 eb
= btrfs_find_tree_block(root
, search
, blocksize
);
1362 free_extent_buffer(eb
);
1368 nritems
= btrfs_header_nritems(node
);
1371 if (direction
< 0) {
1375 } else if (direction
> 0) {
1380 if (path
->reada
< 0 && objectid
) {
1381 btrfs_node_key(node
, &disk_key
, nr
);
1382 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
1385 search
= btrfs_node_blockptr(node
, nr
);
1386 if ((search
<= target
&& target
- search
<= 65536) ||
1387 (search
> target
&& search
- target
<= 65536)) {
1388 readahead_tree_block(root
, search
, blocksize
,
1389 btrfs_node_ptr_generation(node
, nr
));
1393 if ((nread
> 65536 || nscan
> 32))
1399 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1402 static noinline
int reada_for_balance(struct btrfs_root
*root
,
1403 struct btrfs_path
*path
, int level
)
1407 struct extent_buffer
*parent
;
1408 struct extent_buffer
*eb
;
1415 parent
= path
->nodes
[level
+ 1];
1419 nritems
= btrfs_header_nritems(parent
);
1420 slot
= path
->slots
[level
+ 1];
1421 blocksize
= btrfs_level_size(root
, level
);
1424 block1
= btrfs_node_blockptr(parent
, slot
- 1);
1425 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
1426 eb
= btrfs_find_tree_block(root
, block1
, blocksize
);
1427 if (eb
&& btrfs_buffer_uptodate(eb
, gen
))
1429 free_extent_buffer(eb
);
1431 if (slot
+ 1 < nritems
) {
1432 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
1433 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
1434 eb
= btrfs_find_tree_block(root
, block2
, blocksize
);
1435 if (eb
&& btrfs_buffer_uptodate(eb
, gen
))
1437 free_extent_buffer(eb
);
1439 if (block1
|| block2
) {
1442 /* release the whole path */
1443 btrfs_release_path(root
, path
);
1445 /* read the blocks */
1447 readahead_tree_block(root
, block1
, blocksize
, 0);
1449 readahead_tree_block(root
, block2
, blocksize
, 0);
1452 eb
= read_tree_block(root
, block1
, blocksize
, 0);
1453 free_extent_buffer(eb
);
1456 eb
= read_tree_block(root
, block2
, blocksize
, 0);
1457 free_extent_buffer(eb
);
1465 * when we walk down the tree, it is usually safe to unlock the higher layers
1466 * in the tree. The exceptions are when our path goes through slot 0, because
1467 * operations on the tree might require changing key pointers higher up in the
1470 * callers might also have set path->keep_locks, which tells this code to keep
1471 * the lock if the path points to the last slot in the block. This is part of
1472 * walking through the tree, and selecting the next slot in the higher block.
1474 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1475 * if lowest_unlock is 1, level 0 won't be unlocked
1477 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
1481 int skip_level
= level
;
1483 struct extent_buffer
*t
;
1485 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1486 if (!path
->nodes
[i
])
1488 if (!path
->locks
[i
])
1490 if (!no_skips
&& path
->slots
[i
] == 0) {
1494 if (!no_skips
&& path
->keep_locks
) {
1497 nritems
= btrfs_header_nritems(t
);
1498 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
1503 if (skip_level
< i
&& i
>= lowest_unlock
)
1507 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
1508 btrfs_tree_unlock(t
);
1515 * This releases any locks held in the path starting at level and
1516 * going all the way up to the root.
1518 * btrfs_search_slot will keep the lock held on higher nodes in a few
1519 * corner cases, such as COW of the block at slot zero in the node. This
1520 * ignores those rules, and it should only be called when there are no
1521 * more updates to be done higher up in the tree.
1523 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
1527 if (path
->keep_locks
)
1530 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1531 if (!path
->nodes
[i
])
1533 if (!path
->locks
[i
])
1535 btrfs_tree_unlock(path
->nodes
[i
]);
1541 * helper function for btrfs_search_slot. The goal is to find a block
1542 * in cache without setting the path to blocking. If we find the block
1543 * we return zero and the path is unchanged.
1545 * If we can't find the block, we set the path blocking and do some
1546 * reada. -EAGAIN is returned and the search must be repeated.
1549 read_block_for_search(struct btrfs_trans_handle
*trans
,
1550 struct btrfs_root
*root
, struct btrfs_path
*p
,
1551 struct extent_buffer
**eb_ret
, int level
, int slot
,
1552 struct btrfs_key
*key
)
1557 struct extent_buffer
*b
= *eb_ret
;
1558 struct extent_buffer
*tmp
;
1561 blocknr
= btrfs_node_blockptr(b
, slot
);
1562 gen
= btrfs_node_ptr_generation(b
, slot
);
1563 blocksize
= btrfs_level_size(root
, level
- 1);
1565 tmp
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
1566 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
)) {
1568 * we found an up to date block without sleeping, return
1576 * reduce lock contention at high levels
1577 * of the btree by dropping locks before
1578 * we read. Don't release the lock on the current
1579 * level because we need to walk this node to figure
1580 * out which blocks to read.
1582 btrfs_unlock_up_safe(p
, level
+ 1);
1583 btrfs_set_path_blocking(p
);
1586 free_extent_buffer(tmp
);
1588 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
1590 btrfs_release_path(NULL
, p
);
1593 tmp
= read_tree_block(root
, blocknr
, blocksize
, gen
);
1596 * If the read above didn't mark this buffer up to date,
1597 * it will never end up being up to date. Set ret to EIO now
1598 * and give up so that our caller doesn't loop forever
1601 if (!btrfs_buffer_uptodate(tmp
, 0))
1603 free_extent_buffer(tmp
);
1609 * helper function for btrfs_search_slot. This does all of the checks
1610 * for node-level blocks and does any balancing required based on
1613 * If no extra work was required, zero is returned. If we had to
1614 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1618 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
1619 struct btrfs_root
*root
, struct btrfs_path
*p
,
1620 struct extent_buffer
*b
, int level
, int ins_len
)
1623 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
1624 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
1627 sret
= reada_for_balance(root
, p
, level
);
1631 btrfs_set_path_blocking(p
);
1632 sret
= split_node(trans
, root
, p
, level
);
1633 btrfs_clear_path_blocking(p
, NULL
);
1640 b
= p
->nodes
[level
];
1641 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
1642 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
1645 sret
= reada_for_balance(root
, p
, level
);
1649 btrfs_set_path_blocking(p
);
1650 sret
= balance_level(trans
, root
, p
, level
);
1651 btrfs_clear_path_blocking(p
, NULL
);
1657 b
= p
->nodes
[level
];
1659 btrfs_release_path(NULL
, p
);
1662 BUG_ON(btrfs_header_nritems(b
) == 1);
1673 * look for key in the tree. path is filled in with nodes along the way
1674 * if key is found, we return zero and you can find the item in the leaf
1675 * level of the path (level 0)
1677 * If the key isn't found, the path points to the slot where it should
1678 * be inserted, and 1 is returned. If there are other errors during the
1679 * search a negative error number is returned.
1681 * if ins_len > 0, nodes and leaves will be split as we walk down the
1682 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1685 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
1686 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
1689 struct extent_buffer
*b
;
1694 int lowest_unlock
= 1;
1695 u8 lowest_level
= 0;
1697 lowest_level
= p
->lowest_level
;
1698 WARN_ON(lowest_level
&& ins_len
> 0);
1699 WARN_ON(p
->nodes
[0] != NULL
);
1705 if (p
->search_commit_root
) {
1706 b
= root
->commit_root
;
1707 extent_buffer_get(b
);
1708 if (!p
->skip_locking
)
1711 if (p
->skip_locking
)
1712 b
= btrfs_root_node(root
);
1714 b
= btrfs_lock_root_node(root
);
1718 level
= btrfs_header_level(b
);
1721 * setup the path here so we can release it under lock
1722 * contention with the cow code
1724 p
->nodes
[level
] = b
;
1725 if (!p
->skip_locking
)
1726 p
->locks
[level
] = 1;
1730 * if we don't really need to cow this block
1731 * then we don't want to set the path blocking,
1732 * so we test it here
1734 if (!should_cow_block(trans
, root
, b
))
1737 btrfs_set_path_blocking(p
);
1739 err
= btrfs_cow_block(trans
, root
, b
,
1740 p
->nodes
[level
+ 1],
1741 p
->slots
[level
+ 1], &b
);
1743 free_extent_buffer(b
);
1749 BUG_ON(!cow
&& ins_len
);
1750 if (level
!= btrfs_header_level(b
))
1752 level
= btrfs_header_level(b
);
1754 p
->nodes
[level
] = b
;
1755 if (!p
->skip_locking
)
1756 p
->locks
[level
] = 1;
1758 btrfs_clear_path_blocking(p
, NULL
);
1761 * we have a lock on b and as long as we aren't changing
1762 * the tree, there is no way to for the items in b to change.
1763 * It is safe to drop the lock on our parent before we
1764 * go through the expensive btree search on b.
1766 * If cow is true, then we might be changing slot zero,
1767 * which may require changing the parent. So, we can't
1768 * drop the lock until after we know which slot we're
1772 btrfs_unlock_up_safe(p
, level
+ 1);
1774 ret
= check_block(root
, p
, level
);
1780 ret
= bin_search(b
, key
, level
, &slot
);
1784 if (ret
&& slot
> 0) {
1788 p
->slots
[level
] = slot
;
1789 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
1797 b
= p
->nodes
[level
];
1798 slot
= p
->slots
[level
];
1800 unlock_up(p
, level
, lowest_unlock
);
1802 if (level
== lowest_level
) {
1808 err
= read_block_for_search(trans
, root
, p
,
1809 &b
, level
, slot
, key
);
1817 if (!p
->skip_locking
) {
1818 btrfs_clear_path_blocking(p
, NULL
);
1819 err
= btrfs_try_spin_lock(b
);
1822 btrfs_set_path_blocking(p
);
1824 btrfs_clear_path_blocking(p
, b
);
1828 p
->slots
[level
] = slot
;
1830 btrfs_leaf_free_space(root
, b
) < ins_len
) {
1831 btrfs_set_path_blocking(p
);
1832 err
= split_leaf(trans
, root
, key
,
1833 p
, ins_len
, ret
== 0);
1834 btrfs_clear_path_blocking(p
, NULL
);
1842 if (!p
->search_for_split
)
1843 unlock_up(p
, level
, lowest_unlock
);
1850 * we don't really know what they plan on doing with the path
1851 * from here on, so for now just mark it as blocking
1853 if (!p
->leave_spinning
)
1854 btrfs_set_path_blocking(p
);
1856 btrfs_release_path(root
, p
);
1861 * adjust the pointers going up the tree, starting at level
1862 * making sure the right key of each node is points to 'key'.
1863 * This is used after shifting pointers to the left, so it stops
1864 * fixing up pointers when a given leaf/node is not in slot 0 of the
1867 * If this fails to write a tree block, it returns -1, but continues
1868 * fixing up the blocks in ram so the tree is consistent.
1870 static int fixup_low_keys(struct btrfs_trans_handle
*trans
,
1871 struct btrfs_root
*root
, struct btrfs_path
*path
,
1872 struct btrfs_disk_key
*key
, int level
)
1876 struct extent_buffer
*t
;
1878 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1879 int tslot
= path
->slots
[i
];
1880 if (!path
->nodes
[i
])
1883 btrfs_set_node_key(t
, key
, tslot
);
1884 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
1894 * This function isn't completely safe. It's the caller's responsibility
1895 * that the new key won't break the order
1897 int btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
1898 struct btrfs_root
*root
, struct btrfs_path
*path
,
1899 struct btrfs_key
*new_key
)
1901 struct btrfs_disk_key disk_key
;
1902 struct extent_buffer
*eb
;
1905 eb
= path
->nodes
[0];
1906 slot
= path
->slots
[0];
1908 btrfs_item_key(eb
, &disk_key
, slot
- 1);
1909 if (comp_keys(&disk_key
, new_key
) >= 0)
1912 if (slot
< btrfs_header_nritems(eb
) - 1) {
1913 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
1914 if (comp_keys(&disk_key
, new_key
) <= 0)
1918 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
1919 btrfs_set_item_key(eb
, &disk_key
, slot
);
1920 btrfs_mark_buffer_dirty(eb
);
1922 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
1927 * try to push data from one node into the next node left in the
1930 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1931 * error, and > 0 if there was no room in the left hand block.
1933 static int push_node_left(struct btrfs_trans_handle
*trans
,
1934 struct btrfs_root
*root
, struct extent_buffer
*dst
,
1935 struct extent_buffer
*src
, int empty
)
1942 src_nritems
= btrfs_header_nritems(src
);
1943 dst_nritems
= btrfs_header_nritems(dst
);
1944 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
1945 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
1946 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
1948 if (!empty
&& src_nritems
<= 8)
1951 if (push_items
<= 0)
1955 push_items
= min(src_nritems
, push_items
);
1956 if (push_items
< src_nritems
) {
1957 /* leave at least 8 pointers in the node if
1958 * we aren't going to empty it
1960 if (src_nritems
- push_items
< 8) {
1961 if (push_items
<= 8)
1967 push_items
= min(src_nritems
- 8, push_items
);
1969 copy_extent_buffer(dst
, src
,
1970 btrfs_node_key_ptr_offset(dst_nritems
),
1971 btrfs_node_key_ptr_offset(0),
1972 push_items
* sizeof(struct btrfs_key_ptr
));
1974 if (push_items
< src_nritems
) {
1975 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
1976 btrfs_node_key_ptr_offset(push_items
),
1977 (src_nritems
- push_items
) *
1978 sizeof(struct btrfs_key_ptr
));
1980 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
1981 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
1982 btrfs_mark_buffer_dirty(src
);
1983 btrfs_mark_buffer_dirty(dst
);
1989 * try to push data from one node into the next node right in the
1992 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1993 * error, and > 0 if there was no room in the right hand block.
1995 * this will only push up to 1/2 the contents of the left node over
1997 static int balance_node_right(struct btrfs_trans_handle
*trans
,
1998 struct btrfs_root
*root
,
1999 struct extent_buffer
*dst
,
2000 struct extent_buffer
*src
)
2008 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2009 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2011 src_nritems
= btrfs_header_nritems(src
);
2012 dst_nritems
= btrfs_header_nritems(dst
);
2013 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
2014 if (push_items
<= 0)
2017 if (src_nritems
< 4)
2020 max_push
= src_nritems
/ 2 + 1;
2021 /* don't try to empty the node */
2022 if (max_push
>= src_nritems
)
2025 if (max_push
< push_items
)
2026 push_items
= max_push
;
2028 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
2029 btrfs_node_key_ptr_offset(0),
2031 sizeof(struct btrfs_key_ptr
));
2033 copy_extent_buffer(dst
, src
,
2034 btrfs_node_key_ptr_offset(0),
2035 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
2036 push_items
* sizeof(struct btrfs_key_ptr
));
2038 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
2039 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
2041 btrfs_mark_buffer_dirty(src
);
2042 btrfs_mark_buffer_dirty(dst
);
2048 * helper function to insert a new root level in the tree.
2049 * A new node is allocated, and a single item is inserted to
2050 * point to the existing root
2052 * returns zero on success or < 0 on failure.
2054 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
2055 struct btrfs_root
*root
,
2056 struct btrfs_path
*path
, int level
)
2059 struct extent_buffer
*lower
;
2060 struct extent_buffer
*c
;
2061 struct extent_buffer
*old
;
2062 struct btrfs_disk_key lower_key
;
2064 BUG_ON(path
->nodes
[level
]);
2065 BUG_ON(path
->nodes
[level
-1] != root
->node
);
2067 lower
= path
->nodes
[level
-1];
2069 btrfs_item_key(lower
, &lower_key
, 0);
2071 btrfs_node_key(lower
, &lower_key
, 0);
2073 c
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
2074 root
->root_key
.objectid
, &lower_key
,
2075 level
, root
->node
->start
, 0);
2079 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
2080 btrfs_set_header_nritems(c
, 1);
2081 btrfs_set_header_level(c
, level
);
2082 btrfs_set_header_bytenr(c
, c
->start
);
2083 btrfs_set_header_generation(c
, trans
->transid
);
2084 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
2085 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
2087 write_extent_buffer(c
, root
->fs_info
->fsid
,
2088 (unsigned long)btrfs_header_fsid(c
),
2091 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
2092 (unsigned long)btrfs_header_chunk_tree_uuid(c
),
2095 btrfs_set_node_key(c
, &lower_key
, 0);
2096 btrfs_set_node_blockptr(c
, 0, lower
->start
);
2097 lower_gen
= btrfs_header_generation(lower
);
2098 WARN_ON(lower_gen
!= trans
->transid
);
2100 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
2102 btrfs_mark_buffer_dirty(c
);
2104 spin_lock(&root
->node_lock
);
2107 spin_unlock(&root
->node_lock
);
2109 /* the super has an extra ref to root->node */
2110 free_extent_buffer(old
);
2112 add_root_to_dirty_list(root
);
2113 extent_buffer_get(c
);
2114 path
->nodes
[level
] = c
;
2115 path
->locks
[level
] = 1;
2116 path
->slots
[level
] = 0;
2121 * worker function to insert a single pointer in a node.
2122 * the node should have enough room for the pointer already
2124 * slot and level indicate where you want the key to go, and
2125 * blocknr is the block the key points to.
2127 * returns zero on success and < 0 on any error
2129 static int insert_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
2130 *root
, struct btrfs_path
*path
, struct btrfs_disk_key
2131 *key
, u64 bytenr
, int slot
, int level
)
2133 struct extent_buffer
*lower
;
2136 BUG_ON(!path
->nodes
[level
]);
2137 lower
= path
->nodes
[level
];
2138 nritems
= btrfs_header_nritems(lower
);
2139 BUG_ON(slot
> nritems
);
2140 if (nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
))
2142 if (slot
!= nritems
) {
2143 memmove_extent_buffer(lower
,
2144 btrfs_node_key_ptr_offset(slot
+ 1),
2145 btrfs_node_key_ptr_offset(slot
),
2146 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
2148 btrfs_set_node_key(lower
, key
, slot
);
2149 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
2150 WARN_ON(trans
->transid
== 0);
2151 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
2152 btrfs_set_header_nritems(lower
, nritems
+ 1);
2153 btrfs_mark_buffer_dirty(lower
);
2158 * split the node at the specified level in path in two.
2159 * The path is corrected to point to the appropriate node after the split
2161 * Before splitting this tries to make some room in the node by pushing
2162 * left and right, if either one works, it returns right away.
2164 * returns 0 on success and < 0 on failure
2166 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
2167 struct btrfs_root
*root
,
2168 struct btrfs_path
*path
, int level
)
2170 struct extent_buffer
*c
;
2171 struct extent_buffer
*split
;
2172 struct btrfs_disk_key disk_key
;
2178 c
= path
->nodes
[level
];
2179 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
2180 if (c
== root
->node
) {
2181 /* trying to split the root, lets make a new one */
2182 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
2186 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
2187 c
= path
->nodes
[level
];
2188 if (!ret
&& btrfs_header_nritems(c
) <
2189 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
2195 c_nritems
= btrfs_header_nritems(c
);
2196 mid
= (c_nritems
+ 1) / 2;
2197 btrfs_node_key(c
, &disk_key
, mid
);
2199 split
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
2200 root
->root_key
.objectid
,
2201 &disk_key
, level
, c
->start
, 0);
2203 return PTR_ERR(split
);
2205 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
2206 btrfs_set_header_level(split
, btrfs_header_level(c
));
2207 btrfs_set_header_bytenr(split
, split
->start
);
2208 btrfs_set_header_generation(split
, trans
->transid
);
2209 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
2210 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
2211 write_extent_buffer(split
, root
->fs_info
->fsid
,
2212 (unsigned long)btrfs_header_fsid(split
),
2214 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
2215 (unsigned long)btrfs_header_chunk_tree_uuid(split
),
2219 copy_extent_buffer(split
, c
,
2220 btrfs_node_key_ptr_offset(0),
2221 btrfs_node_key_ptr_offset(mid
),
2222 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
2223 btrfs_set_header_nritems(split
, c_nritems
- mid
);
2224 btrfs_set_header_nritems(c
, mid
);
2227 btrfs_mark_buffer_dirty(c
);
2228 btrfs_mark_buffer_dirty(split
);
2230 wret
= insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
2231 path
->slots
[level
+ 1] + 1,
2236 if (path
->slots
[level
] >= mid
) {
2237 path
->slots
[level
] -= mid
;
2238 btrfs_tree_unlock(c
);
2239 free_extent_buffer(c
);
2240 path
->nodes
[level
] = split
;
2241 path
->slots
[level
+ 1] += 1;
2243 btrfs_tree_unlock(split
);
2244 free_extent_buffer(split
);
2250 * how many bytes are required to store the items in a leaf. start
2251 * and nr indicate which items in the leaf to check. This totals up the
2252 * space used both by the item structs and the item data
2254 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
2257 int nritems
= btrfs_header_nritems(l
);
2258 int end
= min(nritems
, start
+ nr
) - 1;
2262 data_len
= btrfs_item_end_nr(l
, start
);
2263 data_len
= data_len
- btrfs_item_offset_nr(l
, end
);
2264 data_len
+= sizeof(struct btrfs_item
) * nr
;
2265 WARN_ON(data_len
< 0);
2270 * The space between the end of the leaf items and
2271 * the start of the leaf data. IOW, how much room
2272 * the leaf has left for both items and data
2274 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
2275 struct extent_buffer
*leaf
)
2277 int nritems
= btrfs_header_nritems(leaf
);
2279 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
2281 printk(KERN_CRIT
"leaf free space ret %d, leaf data size %lu, "
2282 "used %d nritems %d\n",
2283 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
2284 leaf_space_used(leaf
, 0, nritems
), nritems
);
2289 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
2290 struct btrfs_root
*root
,
2291 struct btrfs_path
*path
,
2292 int data_size
, int empty
,
2293 struct extent_buffer
*right
,
2294 int free_space
, u32 left_nritems
)
2296 struct extent_buffer
*left
= path
->nodes
[0];
2297 struct extent_buffer
*upper
= path
->nodes
[1];
2298 struct btrfs_disk_key disk_key
;
2303 struct btrfs_item
*item
;
2314 if (path
->slots
[0] >= left_nritems
)
2315 push_space
+= data_size
;
2317 slot
= path
->slots
[1];
2318 i
= left_nritems
- 1;
2320 item
= btrfs_item_nr(left
, i
);
2322 if (!empty
&& push_items
> 0) {
2323 if (path
->slots
[0] > i
)
2325 if (path
->slots
[0] == i
) {
2326 int space
= btrfs_leaf_free_space(root
, left
);
2327 if (space
+ push_space
* 2 > free_space
)
2332 if (path
->slots
[0] == i
)
2333 push_space
+= data_size
;
2335 if (!left
->map_token
) {
2336 map_extent_buffer(left
, (unsigned long)item
,
2337 sizeof(struct btrfs_item
),
2338 &left
->map_token
, &left
->kaddr
,
2339 &left
->map_start
, &left
->map_len
,
2343 this_item_size
= btrfs_item_size(left
, item
);
2344 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
2348 push_space
+= this_item_size
+ sizeof(*item
);
2353 if (left
->map_token
) {
2354 unmap_extent_buffer(left
, left
->map_token
, KM_USER1
);
2355 left
->map_token
= NULL
;
2358 if (push_items
== 0)
2361 if (!empty
&& push_items
== left_nritems
)
2364 /* push left to right */
2365 right_nritems
= btrfs_header_nritems(right
);
2367 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
2368 push_space
-= leaf_data_end(root
, left
);
2370 /* make room in the right data area */
2371 data_end
= leaf_data_end(root
, right
);
2372 memmove_extent_buffer(right
,
2373 btrfs_leaf_data(right
) + data_end
- push_space
,
2374 btrfs_leaf_data(right
) + data_end
,
2375 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
2377 /* copy from the left data area */
2378 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
2379 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
2380 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
2383 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
2384 btrfs_item_nr_offset(0),
2385 right_nritems
* sizeof(struct btrfs_item
));
2387 /* copy the items from left to right */
2388 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
2389 btrfs_item_nr_offset(left_nritems
- push_items
),
2390 push_items
* sizeof(struct btrfs_item
));
2392 /* update the item pointers */
2393 right_nritems
+= push_items
;
2394 btrfs_set_header_nritems(right
, right_nritems
);
2395 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
2396 for (i
= 0; i
< right_nritems
; i
++) {
2397 item
= btrfs_item_nr(right
, i
);
2398 if (!right
->map_token
) {
2399 map_extent_buffer(right
, (unsigned long)item
,
2400 sizeof(struct btrfs_item
),
2401 &right
->map_token
, &right
->kaddr
,
2402 &right
->map_start
, &right
->map_len
,
2405 push_space
-= btrfs_item_size(right
, item
);
2406 btrfs_set_item_offset(right
, item
, push_space
);
2409 if (right
->map_token
) {
2410 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2411 right
->map_token
= NULL
;
2413 left_nritems
-= push_items
;
2414 btrfs_set_header_nritems(left
, left_nritems
);
2417 btrfs_mark_buffer_dirty(left
);
2418 btrfs_mark_buffer_dirty(right
);
2420 btrfs_item_key(right
, &disk_key
, 0);
2421 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
2422 btrfs_mark_buffer_dirty(upper
);
2424 /* then fixup the leaf pointer in the path */
2425 if (path
->slots
[0] >= left_nritems
) {
2426 path
->slots
[0] -= left_nritems
;
2427 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
2428 clean_tree_block(trans
, root
, path
->nodes
[0]);
2429 btrfs_tree_unlock(path
->nodes
[0]);
2430 free_extent_buffer(path
->nodes
[0]);
2431 path
->nodes
[0] = right
;
2432 path
->slots
[1] += 1;
2434 btrfs_tree_unlock(right
);
2435 free_extent_buffer(right
);
2440 btrfs_tree_unlock(right
);
2441 free_extent_buffer(right
);
2446 * push some data in the path leaf to the right, trying to free up at
2447 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2449 * returns 1 if the push failed because the other node didn't have enough
2450 * room, 0 if everything worked out and < 0 if there were major errors.
2452 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
2453 *root
, struct btrfs_path
*path
, int data_size
,
2456 struct extent_buffer
*left
= path
->nodes
[0];
2457 struct extent_buffer
*right
;
2458 struct extent_buffer
*upper
;
2464 if (!path
->nodes
[1])
2467 slot
= path
->slots
[1];
2468 upper
= path
->nodes
[1];
2469 if (slot
>= btrfs_header_nritems(upper
) - 1)
2472 btrfs_assert_tree_locked(path
->nodes
[1]);
2474 right
= read_node_slot(root
, upper
, slot
+ 1);
2475 btrfs_tree_lock(right
);
2476 btrfs_set_lock_blocking(right
);
2478 free_space
= btrfs_leaf_free_space(root
, right
);
2479 if (free_space
< data_size
)
2482 /* cow and double check */
2483 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
2488 free_space
= btrfs_leaf_free_space(root
, right
);
2489 if (free_space
< data_size
)
2492 left_nritems
= btrfs_header_nritems(left
);
2493 if (left_nritems
== 0)
2496 return __push_leaf_right(trans
, root
, path
, data_size
, empty
,
2497 right
, free_space
, left_nritems
);
2499 btrfs_tree_unlock(right
);
2500 free_extent_buffer(right
);
2505 * push some data in the path leaf to the left, trying to free up at
2506 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2508 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
2509 struct btrfs_root
*root
,
2510 struct btrfs_path
*path
, int data_size
,
2511 int empty
, struct extent_buffer
*left
,
2512 int free_space
, int right_nritems
)
2514 struct btrfs_disk_key disk_key
;
2515 struct extent_buffer
*right
= path
->nodes
[0];
2520 struct btrfs_item
*item
;
2521 u32 old_left_nritems
;
2526 u32 old_left_item_size
;
2528 slot
= path
->slots
[1];
2533 nr
= right_nritems
- 1;
2535 for (i
= 0; i
< nr
; i
++) {
2536 item
= btrfs_item_nr(right
, i
);
2537 if (!right
->map_token
) {
2538 map_extent_buffer(right
, (unsigned long)item
,
2539 sizeof(struct btrfs_item
),
2540 &right
->map_token
, &right
->kaddr
,
2541 &right
->map_start
, &right
->map_len
,
2545 if (!empty
&& push_items
> 0) {
2546 if (path
->slots
[0] < i
)
2548 if (path
->slots
[0] == i
) {
2549 int space
= btrfs_leaf_free_space(root
, right
);
2550 if (space
+ push_space
* 2 > free_space
)
2555 if (path
->slots
[0] == i
)
2556 push_space
+= data_size
;
2558 this_item_size
= btrfs_item_size(right
, item
);
2559 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
2563 push_space
+= this_item_size
+ sizeof(*item
);
2566 if (right
->map_token
) {
2567 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2568 right
->map_token
= NULL
;
2571 if (push_items
== 0) {
2575 if (!empty
&& push_items
== btrfs_header_nritems(right
))
2578 /* push data from right to left */
2579 copy_extent_buffer(left
, right
,
2580 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
2581 btrfs_item_nr_offset(0),
2582 push_items
* sizeof(struct btrfs_item
));
2584 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
2585 btrfs_item_offset_nr(right
, push_items
- 1);
2587 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
2588 leaf_data_end(root
, left
) - push_space
,
2589 btrfs_leaf_data(right
) +
2590 btrfs_item_offset_nr(right
, push_items
- 1),
2592 old_left_nritems
= btrfs_header_nritems(left
);
2593 BUG_ON(old_left_nritems
<= 0);
2595 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
2596 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
2599 item
= btrfs_item_nr(left
, i
);
2600 if (!left
->map_token
) {
2601 map_extent_buffer(left
, (unsigned long)item
,
2602 sizeof(struct btrfs_item
),
2603 &left
->map_token
, &left
->kaddr
,
2604 &left
->map_start
, &left
->map_len
,
2608 ioff
= btrfs_item_offset(left
, item
);
2609 btrfs_set_item_offset(left
, item
,
2610 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
));
2612 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
2613 if (left
->map_token
) {
2614 unmap_extent_buffer(left
, left
->map_token
, KM_USER1
);
2615 left
->map_token
= NULL
;
2618 /* fixup right node */
2619 if (push_items
> right_nritems
) {
2620 printk(KERN_CRIT
"push items %d nr %u\n", push_items
,
2625 if (push_items
< right_nritems
) {
2626 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
2627 leaf_data_end(root
, right
);
2628 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
2629 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
2630 btrfs_leaf_data(right
) +
2631 leaf_data_end(root
, right
), push_space
);
2633 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
2634 btrfs_item_nr_offset(push_items
),
2635 (btrfs_header_nritems(right
) - push_items
) *
2636 sizeof(struct btrfs_item
));
2638 right_nritems
-= push_items
;
2639 btrfs_set_header_nritems(right
, right_nritems
);
2640 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
2641 for (i
= 0; i
< right_nritems
; i
++) {
2642 item
= btrfs_item_nr(right
, i
);
2644 if (!right
->map_token
) {
2645 map_extent_buffer(right
, (unsigned long)item
,
2646 sizeof(struct btrfs_item
),
2647 &right
->map_token
, &right
->kaddr
,
2648 &right
->map_start
, &right
->map_len
,
2652 push_space
= push_space
- btrfs_item_size(right
, item
);
2653 btrfs_set_item_offset(right
, item
, push_space
);
2655 if (right
->map_token
) {
2656 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2657 right
->map_token
= NULL
;
2660 btrfs_mark_buffer_dirty(left
);
2662 btrfs_mark_buffer_dirty(right
);
2664 btrfs_item_key(right
, &disk_key
, 0);
2665 wret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
2669 /* then fixup the leaf pointer in the path */
2670 if (path
->slots
[0] < push_items
) {
2671 path
->slots
[0] += old_left_nritems
;
2672 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
2673 clean_tree_block(trans
, root
, path
->nodes
[0]);
2674 btrfs_tree_unlock(path
->nodes
[0]);
2675 free_extent_buffer(path
->nodes
[0]);
2676 path
->nodes
[0] = left
;
2677 path
->slots
[1] -= 1;
2679 btrfs_tree_unlock(left
);
2680 free_extent_buffer(left
);
2681 path
->slots
[0] -= push_items
;
2683 BUG_ON(path
->slots
[0] < 0);
2686 btrfs_tree_unlock(left
);
2687 free_extent_buffer(left
);
2692 * push some data in the path leaf to the left, trying to free up at
2693 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2695 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
2696 *root
, struct btrfs_path
*path
, int data_size
,
2699 struct extent_buffer
*right
= path
->nodes
[0];
2700 struct extent_buffer
*left
;
2706 slot
= path
->slots
[1];
2709 if (!path
->nodes
[1])
2712 right_nritems
= btrfs_header_nritems(right
);
2713 if (right_nritems
== 0)
2716 btrfs_assert_tree_locked(path
->nodes
[1]);
2718 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
2719 btrfs_tree_lock(left
);
2720 btrfs_set_lock_blocking(left
);
2722 free_space
= btrfs_leaf_free_space(root
, left
);
2723 if (free_space
< data_size
) {
2728 /* cow and double check */
2729 ret
= btrfs_cow_block(trans
, root
, left
,
2730 path
->nodes
[1], slot
- 1, &left
);
2732 /* we hit -ENOSPC, but it isn't fatal here */
2737 free_space
= btrfs_leaf_free_space(root
, left
);
2738 if (free_space
< data_size
) {
2743 return __push_leaf_left(trans
, root
, path
, data_size
,
2744 empty
, left
, free_space
, right_nritems
);
2746 btrfs_tree_unlock(left
);
2747 free_extent_buffer(left
);
2752 * split the path's leaf in two, making sure there is at least data_size
2753 * available for the resulting leaf level of the path.
2755 * returns 0 if all went well and < 0 on failure.
2757 static noinline
int copy_for_split(struct btrfs_trans_handle
*trans
,
2758 struct btrfs_root
*root
,
2759 struct btrfs_path
*path
,
2760 struct extent_buffer
*l
,
2761 struct extent_buffer
*right
,
2762 int slot
, int mid
, int nritems
)
2769 struct btrfs_disk_key disk_key
;
2771 nritems
= nritems
- mid
;
2772 btrfs_set_header_nritems(right
, nritems
);
2773 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
2775 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
2776 btrfs_item_nr_offset(mid
),
2777 nritems
* sizeof(struct btrfs_item
));
2779 copy_extent_buffer(right
, l
,
2780 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
2781 data_copy_size
, btrfs_leaf_data(l
) +
2782 leaf_data_end(root
, l
), data_copy_size
);
2784 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
2785 btrfs_item_end_nr(l
, mid
);
2787 for (i
= 0; i
< nritems
; i
++) {
2788 struct btrfs_item
*item
= btrfs_item_nr(right
, i
);
2791 if (!right
->map_token
) {
2792 map_extent_buffer(right
, (unsigned long)item
,
2793 sizeof(struct btrfs_item
),
2794 &right
->map_token
, &right
->kaddr
,
2795 &right
->map_start
, &right
->map_len
,
2799 ioff
= btrfs_item_offset(right
, item
);
2800 btrfs_set_item_offset(right
, item
, ioff
+ rt_data_off
);
2803 if (right
->map_token
) {
2804 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2805 right
->map_token
= NULL
;
2808 btrfs_set_header_nritems(l
, mid
);
2810 btrfs_item_key(right
, &disk_key
, 0);
2811 wret
= insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
2812 path
->slots
[1] + 1, 1);
2816 btrfs_mark_buffer_dirty(right
);
2817 btrfs_mark_buffer_dirty(l
);
2818 BUG_ON(path
->slots
[0] != slot
);
2821 btrfs_tree_unlock(path
->nodes
[0]);
2822 free_extent_buffer(path
->nodes
[0]);
2823 path
->nodes
[0] = right
;
2824 path
->slots
[0] -= mid
;
2825 path
->slots
[1] += 1;
2827 btrfs_tree_unlock(right
);
2828 free_extent_buffer(right
);
2831 BUG_ON(path
->slots
[0] < 0);
2837 * split the path's leaf in two, making sure there is at least data_size
2838 * available for the resulting leaf level of the path.
2840 * returns 0 if all went well and < 0 on failure.
2842 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
2843 struct btrfs_root
*root
,
2844 struct btrfs_key
*ins_key
,
2845 struct btrfs_path
*path
, int data_size
,
2848 struct btrfs_disk_key disk_key
;
2849 struct extent_buffer
*l
;
2853 struct extent_buffer
*right
;
2857 int num_doubles
= 0;
2860 slot
= path
->slots
[0];
2861 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
2862 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
2865 /* first try to make some room by pushing left and right */
2866 if (data_size
&& ins_key
->type
!= BTRFS_DIR_ITEM_KEY
) {
2867 wret
= push_leaf_right(trans
, root
, path
, data_size
, 0);
2871 wret
= push_leaf_left(trans
, root
, path
, data_size
, 0);
2877 /* did the pushes work? */
2878 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
2882 if (!path
->nodes
[1]) {
2883 ret
= insert_new_root(trans
, root
, path
, 1);
2890 slot
= path
->slots
[0];
2891 nritems
= btrfs_header_nritems(l
);
2892 mid
= (nritems
+ 1) / 2;
2896 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
2897 BTRFS_LEAF_DATA_SIZE(root
)) {
2898 if (slot
>= nritems
) {
2902 if (mid
!= nritems
&&
2903 leaf_space_used(l
, mid
, nritems
- mid
) +
2904 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
2910 if (leaf_space_used(l
, 0, mid
) + data_size
>
2911 BTRFS_LEAF_DATA_SIZE(root
)) {
2912 if (!extend
&& data_size
&& slot
== 0) {
2914 } else if ((extend
|| !data_size
) && slot
== 0) {
2918 if (mid
!= nritems
&&
2919 leaf_space_used(l
, mid
, nritems
- mid
) +
2920 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
2928 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
2930 btrfs_item_key(l
, &disk_key
, mid
);
2932 right
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
2933 root
->root_key
.objectid
,
2934 &disk_key
, 0, l
->start
, 0);
2935 if (IS_ERR(right
)) {
2937 return PTR_ERR(right
);
2940 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
2941 btrfs_set_header_bytenr(right
, right
->start
);
2942 btrfs_set_header_generation(right
, trans
->transid
);
2943 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
2944 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
2945 btrfs_set_header_level(right
, 0);
2946 write_extent_buffer(right
, root
->fs_info
->fsid
,
2947 (unsigned long)btrfs_header_fsid(right
),
2950 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
2951 (unsigned long)btrfs_header_chunk_tree_uuid(right
),
2956 btrfs_set_header_nritems(right
, 0);
2957 wret
= insert_ptr(trans
, root
, path
,
2958 &disk_key
, right
->start
,
2959 path
->slots
[1] + 1, 1);
2963 btrfs_tree_unlock(path
->nodes
[0]);
2964 free_extent_buffer(path
->nodes
[0]);
2965 path
->nodes
[0] = right
;
2967 path
->slots
[1] += 1;
2969 btrfs_set_header_nritems(right
, 0);
2970 wret
= insert_ptr(trans
, root
, path
,
2976 btrfs_tree_unlock(path
->nodes
[0]);
2977 free_extent_buffer(path
->nodes
[0]);
2978 path
->nodes
[0] = right
;
2980 if (path
->slots
[1] == 0) {
2981 wret
= fixup_low_keys(trans
, root
,
2982 path
, &disk_key
, 1);
2987 btrfs_mark_buffer_dirty(right
);
2991 ret
= copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
2995 BUG_ON(num_doubles
!= 0);
3003 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
3004 struct btrfs_root
*root
,
3005 struct btrfs_path
*path
, int ins_len
)
3007 struct btrfs_key key
;
3008 struct extent_buffer
*leaf
;
3009 struct btrfs_file_extent_item
*fi
;
3014 leaf
= path
->nodes
[0];
3015 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3017 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
3018 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
3020 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
3023 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3024 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3025 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3026 struct btrfs_file_extent_item
);
3027 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
3029 btrfs_release_path(root
, path
);
3031 path
->keep_locks
= 1;
3032 path
->search_for_split
= 1;
3033 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
3034 path
->search_for_split
= 0;
3039 leaf
= path
->nodes
[0];
3040 /* if our item isn't there or got smaller, return now */
3041 if (ret
> 0 || item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
3044 /* the leaf has changed, it now has room. return now */
3045 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
3048 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3049 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3050 struct btrfs_file_extent_item
);
3051 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
3055 btrfs_set_path_blocking(path
);
3056 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
3059 path
->keep_locks
= 0;
3060 btrfs_unlock_up_safe(path
, 1);
3063 path
->keep_locks
= 0;
3067 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
3068 struct btrfs_root
*root
,
3069 struct btrfs_path
*path
,
3070 struct btrfs_key
*new_key
,
3071 unsigned long split_offset
)
3073 struct extent_buffer
*leaf
;
3074 struct btrfs_item
*item
;
3075 struct btrfs_item
*new_item
;
3081 struct btrfs_disk_key disk_key
;
3083 leaf
= path
->nodes
[0];
3084 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
3086 btrfs_set_path_blocking(path
);
3088 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
3089 orig_offset
= btrfs_item_offset(leaf
, item
);
3090 item_size
= btrfs_item_size(leaf
, item
);
3092 buf
= kmalloc(item_size
, GFP_NOFS
);
3096 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
3097 path
->slots
[0]), item_size
);
3099 slot
= path
->slots
[0] + 1;
3100 nritems
= btrfs_header_nritems(leaf
);
3101 if (slot
!= nritems
) {
3102 /* shift the items */
3103 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
3104 btrfs_item_nr_offset(slot
),
3105 (nritems
- slot
) * sizeof(struct btrfs_item
));
3108 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3109 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3111 new_item
= btrfs_item_nr(leaf
, slot
);
3113 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
3114 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
3116 btrfs_set_item_offset(leaf
, item
,
3117 orig_offset
+ item_size
- split_offset
);
3118 btrfs_set_item_size(leaf
, item
, split_offset
);
3120 btrfs_set_header_nritems(leaf
, nritems
+ 1);
3122 /* write the data for the start of the original item */
3123 write_extent_buffer(leaf
, buf
,
3124 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
3127 /* write the data for the new item */
3128 write_extent_buffer(leaf
, buf
+ split_offset
,
3129 btrfs_item_ptr_offset(leaf
, slot
),
3130 item_size
- split_offset
);
3131 btrfs_mark_buffer_dirty(leaf
);
3133 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
3139 * This function splits a single item into two items,
3140 * giving 'new_key' to the new item and splitting the
3141 * old one at split_offset (from the start of the item).
3143 * The path may be released by this operation. After
3144 * the split, the path is pointing to the old item. The
3145 * new item is going to be in the same node as the old one.
3147 * Note, the item being split must be smaller enough to live alone on
3148 * a tree block with room for one extra struct btrfs_item
3150 * This allows us to split the item in place, keeping a lock on the
3151 * leaf the entire time.
3153 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
3154 struct btrfs_root
*root
,
3155 struct btrfs_path
*path
,
3156 struct btrfs_key
*new_key
,
3157 unsigned long split_offset
)
3160 ret
= setup_leaf_for_split(trans
, root
, path
,
3161 sizeof(struct btrfs_item
));
3165 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
3170 * This function duplicate a item, giving 'new_key' to the new item.
3171 * It guarantees both items live in the same tree leaf and the new item
3172 * is contiguous with the original item.
3174 * This allows us to split file extent in place, keeping a lock on the
3175 * leaf the entire time.
3177 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
3178 struct btrfs_root
*root
,
3179 struct btrfs_path
*path
,
3180 struct btrfs_key
*new_key
)
3182 struct extent_buffer
*leaf
;
3186 leaf
= path
->nodes
[0];
3187 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3188 ret
= setup_leaf_for_split(trans
, root
, path
,
3189 item_size
+ sizeof(struct btrfs_item
));
3194 ret
= setup_items_for_insert(trans
, root
, path
, new_key
, &item_size
,
3195 item_size
, item_size
+
3196 sizeof(struct btrfs_item
), 1);
3199 leaf
= path
->nodes
[0];
3200 memcpy_extent_buffer(leaf
,
3201 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
3202 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
3208 * make the item pointed to by the path smaller. new_size indicates
3209 * how small to make it, and from_end tells us if we just chop bytes
3210 * off the end of the item or if we shift the item to chop bytes off
3213 int btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
3214 struct btrfs_root
*root
,
3215 struct btrfs_path
*path
,
3216 u32 new_size
, int from_end
)
3221 struct extent_buffer
*leaf
;
3222 struct btrfs_item
*item
;
3224 unsigned int data_end
;
3225 unsigned int old_data_start
;
3226 unsigned int old_size
;
3227 unsigned int size_diff
;
3230 slot_orig
= path
->slots
[0];
3231 leaf
= path
->nodes
[0];
3232 slot
= path
->slots
[0];
3234 old_size
= btrfs_item_size_nr(leaf
, slot
);
3235 if (old_size
== new_size
)
3238 nritems
= btrfs_header_nritems(leaf
);
3239 data_end
= leaf_data_end(root
, leaf
);
3241 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
3243 size_diff
= old_size
- new_size
;
3246 BUG_ON(slot
>= nritems
);
3249 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3251 /* first correct the data pointers */
3252 for (i
= slot
; i
< nritems
; i
++) {
3254 item
= btrfs_item_nr(leaf
, i
);
3256 if (!leaf
->map_token
) {
3257 map_extent_buffer(leaf
, (unsigned long)item
,
3258 sizeof(struct btrfs_item
),
3259 &leaf
->map_token
, &leaf
->kaddr
,
3260 &leaf
->map_start
, &leaf
->map_len
,
3264 ioff
= btrfs_item_offset(leaf
, item
);
3265 btrfs_set_item_offset(leaf
, item
, ioff
+ size_diff
);
3268 if (leaf
->map_token
) {
3269 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3270 leaf
->map_token
= NULL
;
3273 /* shift the data */
3275 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3276 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
3277 data_end
, old_data_start
+ new_size
- data_end
);
3279 struct btrfs_disk_key disk_key
;
3282 btrfs_item_key(leaf
, &disk_key
, slot
);
3284 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
3286 struct btrfs_file_extent_item
*fi
;
3288 fi
= btrfs_item_ptr(leaf
, slot
,
3289 struct btrfs_file_extent_item
);
3290 fi
= (struct btrfs_file_extent_item
*)(
3291 (unsigned long)fi
- size_diff
);
3293 if (btrfs_file_extent_type(leaf
, fi
) ==
3294 BTRFS_FILE_EXTENT_INLINE
) {
3295 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
3296 memmove_extent_buffer(leaf
, ptr
,
3298 offsetof(struct btrfs_file_extent_item
,
3303 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3304 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
3305 data_end
, old_data_start
- data_end
);
3307 offset
= btrfs_disk_key_offset(&disk_key
);
3308 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
3309 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3311 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3314 item
= btrfs_item_nr(leaf
, slot
);
3315 btrfs_set_item_size(leaf
, item
, new_size
);
3316 btrfs_mark_buffer_dirty(leaf
);
3319 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3320 btrfs_print_leaf(root
, leaf
);
3327 * make the item pointed to by the path bigger, data_size is the new size.
3329 int btrfs_extend_item(struct btrfs_trans_handle
*trans
,
3330 struct btrfs_root
*root
, struct btrfs_path
*path
,
3336 struct extent_buffer
*leaf
;
3337 struct btrfs_item
*item
;
3339 unsigned int data_end
;
3340 unsigned int old_data
;
3341 unsigned int old_size
;
3344 slot_orig
= path
->slots
[0];
3345 leaf
= path
->nodes
[0];
3347 nritems
= btrfs_header_nritems(leaf
);
3348 data_end
= leaf_data_end(root
, leaf
);
3350 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
3351 btrfs_print_leaf(root
, leaf
);
3354 slot
= path
->slots
[0];
3355 old_data
= btrfs_item_end_nr(leaf
, slot
);
3358 if (slot
>= nritems
) {
3359 btrfs_print_leaf(root
, leaf
);
3360 printk(KERN_CRIT
"slot %d too large, nritems %d\n",
3366 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3368 /* first correct the data pointers */
3369 for (i
= slot
; i
< nritems
; i
++) {
3371 item
= btrfs_item_nr(leaf
, i
);
3373 if (!leaf
->map_token
) {
3374 map_extent_buffer(leaf
, (unsigned long)item
,
3375 sizeof(struct btrfs_item
),
3376 &leaf
->map_token
, &leaf
->kaddr
,
3377 &leaf
->map_start
, &leaf
->map_len
,
3380 ioff
= btrfs_item_offset(leaf
, item
);
3381 btrfs_set_item_offset(leaf
, item
, ioff
- data_size
);
3384 if (leaf
->map_token
) {
3385 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3386 leaf
->map_token
= NULL
;
3389 /* shift the data */
3390 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3391 data_end
- data_size
, btrfs_leaf_data(leaf
) +
3392 data_end
, old_data
- data_end
);
3394 data_end
= old_data
;
3395 old_size
= btrfs_item_size_nr(leaf
, slot
);
3396 item
= btrfs_item_nr(leaf
, slot
);
3397 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
3398 btrfs_mark_buffer_dirty(leaf
);
3401 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3402 btrfs_print_leaf(root
, leaf
);
3409 * Given a key and some data, insert items into the tree.
3410 * This does all the path init required, making room in the tree if needed.
3411 * Returns the number of keys that were inserted.
3413 int btrfs_insert_some_items(struct btrfs_trans_handle
*trans
,
3414 struct btrfs_root
*root
,
3415 struct btrfs_path
*path
,
3416 struct btrfs_key
*cpu_key
, u32
*data_size
,
3419 struct extent_buffer
*leaf
;
3420 struct btrfs_item
*item
;
3427 unsigned int data_end
;
3428 struct btrfs_disk_key disk_key
;
3429 struct btrfs_key found_key
;
3431 for (i
= 0; i
< nr
; i
++) {
3432 if (total_size
+ data_size
[i
] + sizeof(struct btrfs_item
) >
3433 BTRFS_LEAF_DATA_SIZE(root
)) {
3437 total_data
+= data_size
[i
];
3438 total_size
+= data_size
[i
] + sizeof(struct btrfs_item
);
3442 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
3448 leaf
= path
->nodes
[0];
3450 nritems
= btrfs_header_nritems(leaf
);
3451 data_end
= leaf_data_end(root
, leaf
);
3453 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
3454 for (i
= nr
; i
>= 0; i
--) {
3455 total_data
-= data_size
[i
];
3456 total_size
-= data_size
[i
] + sizeof(struct btrfs_item
);
3457 if (total_size
< btrfs_leaf_free_space(root
, leaf
))
3463 slot
= path
->slots
[0];
3466 if (slot
!= nritems
) {
3467 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
3469 item
= btrfs_item_nr(leaf
, slot
);
3470 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3472 /* figure out how many keys we can insert in here */
3473 total_data
= data_size
[0];
3474 for (i
= 1; i
< nr
; i
++) {
3475 if (btrfs_comp_cpu_keys(&found_key
, cpu_key
+ i
) <= 0)
3477 total_data
+= data_size
[i
];
3481 if (old_data
< data_end
) {
3482 btrfs_print_leaf(root
, leaf
);
3483 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
3484 slot
, old_data
, data_end
);
3488 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3490 /* first correct the data pointers */
3491 WARN_ON(leaf
->map_token
);
3492 for (i
= slot
; i
< nritems
; i
++) {
3495 item
= btrfs_item_nr(leaf
, i
);
3496 if (!leaf
->map_token
) {
3497 map_extent_buffer(leaf
, (unsigned long)item
,
3498 sizeof(struct btrfs_item
),
3499 &leaf
->map_token
, &leaf
->kaddr
,
3500 &leaf
->map_start
, &leaf
->map_len
,
3504 ioff
= btrfs_item_offset(leaf
, item
);
3505 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
3507 if (leaf
->map_token
) {
3508 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3509 leaf
->map_token
= NULL
;
3512 /* shift the items */
3513 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
3514 btrfs_item_nr_offset(slot
),
3515 (nritems
- slot
) * sizeof(struct btrfs_item
));
3517 /* shift the data */
3518 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3519 data_end
- total_data
, btrfs_leaf_data(leaf
) +
3520 data_end
, old_data
- data_end
);
3521 data_end
= old_data
;
3524 * this sucks but it has to be done, if we are inserting at
3525 * the end of the leaf only insert 1 of the items, since we
3526 * have no way of knowing whats on the next leaf and we'd have
3527 * to drop our current locks to figure it out
3532 /* setup the item for the new data */
3533 for (i
= 0; i
< nr
; i
++) {
3534 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
3535 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
3536 item
= btrfs_item_nr(leaf
, slot
+ i
);
3537 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
3538 data_end
-= data_size
[i
];
3539 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
3541 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
3542 btrfs_mark_buffer_dirty(leaf
);
3546 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
3547 ret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3550 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3551 btrfs_print_leaf(root
, leaf
);
3561 * this is a helper for btrfs_insert_empty_items, the main goal here is
3562 * to save stack depth by doing the bulk of the work in a function
3563 * that doesn't call btrfs_search_slot
3565 static noinline_for_stack
int
3566 setup_items_for_insert(struct btrfs_trans_handle
*trans
,
3567 struct btrfs_root
*root
, struct btrfs_path
*path
,
3568 struct btrfs_key
*cpu_key
, u32
*data_size
,
3569 u32 total_data
, u32 total_size
, int nr
)
3571 struct btrfs_item
*item
;
3574 unsigned int data_end
;
3575 struct btrfs_disk_key disk_key
;
3577 struct extent_buffer
*leaf
;
3580 leaf
= path
->nodes
[0];
3581 slot
= path
->slots
[0];
3583 nritems
= btrfs_header_nritems(leaf
);
3584 data_end
= leaf_data_end(root
, leaf
);
3586 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
3587 btrfs_print_leaf(root
, leaf
);
3588 printk(KERN_CRIT
"not enough freespace need %u have %d\n",
3589 total_size
, btrfs_leaf_free_space(root
, leaf
));
3593 if (slot
!= nritems
) {
3594 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
3596 if (old_data
< data_end
) {
3597 btrfs_print_leaf(root
, leaf
);
3598 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
3599 slot
, old_data
, data_end
);
3603 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3605 /* first correct the data pointers */
3606 WARN_ON(leaf
->map_token
);
3607 for (i
= slot
; i
< nritems
; i
++) {
3610 item
= btrfs_item_nr(leaf
, i
);
3611 if (!leaf
->map_token
) {
3612 map_extent_buffer(leaf
, (unsigned long)item
,
3613 sizeof(struct btrfs_item
),
3614 &leaf
->map_token
, &leaf
->kaddr
,
3615 &leaf
->map_start
, &leaf
->map_len
,
3619 ioff
= btrfs_item_offset(leaf
, item
);
3620 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
3622 if (leaf
->map_token
) {
3623 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3624 leaf
->map_token
= NULL
;
3627 /* shift the items */
3628 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
3629 btrfs_item_nr_offset(slot
),
3630 (nritems
- slot
) * sizeof(struct btrfs_item
));
3632 /* shift the data */
3633 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3634 data_end
- total_data
, btrfs_leaf_data(leaf
) +
3635 data_end
, old_data
- data_end
);
3636 data_end
= old_data
;
3639 /* setup the item for the new data */
3640 for (i
= 0; i
< nr
; i
++) {
3641 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
3642 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
3643 item
= btrfs_item_nr(leaf
, slot
+ i
);
3644 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
3645 data_end
-= data_size
[i
];
3646 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
3649 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
3653 struct btrfs_disk_key disk_key
;
3654 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
3655 ret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3657 btrfs_unlock_up_safe(path
, 1);
3658 btrfs_mark_buffer_dirty(leaf
);
3660 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3661 btrfs_print_leaf(root
, leaf
);
3668 * Given a key and some data, insert items into the tree.
3669 * This does all the path init required, making room in the tree if needed.
3671 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
3672 struct btrfs_root
*root
,
3673 struct btrfs_path
*path
,
3674 struct btrfs_key
*cpu_key
, u32
*data_size
,
3677 struct extent_buffer
*leaf
;
3684 for (i
= 0; i
< nr
; i
++)
3685 total_data
+= data_size
[i
];
3687 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
3688 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
3694 leaf
= path
->nodes
[0];
3695 slot
= path
->slots
[0];
3698 ret
= setup_items_for_insert(trans
, root
, path
, cpu_key
, data_size
,
3699 total_data
, total_size
, nr
);
3706 * Given a key and some data, insert an item into the tree.
3707 * This does all the path init required, making room in the tree if needed.
3709 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
3710 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
3714 struct btrfs_path
*path
;
3715 struct extent_buffer
*leaf
;
3718 path
= btrfs_alloc_path();
3720 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
3722 leaf
= path
->nodes
[0];
3723 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3724 write_extent_buffer(leaf
, data
, ptr
, data_size
);
3725 btrfs_mark_buffer_dirty(leaf
);
3727 btrfs_free_path(path
);
3732 * delete the pointer from a given node.
3734 * the tree should have been previously balanced so the deletion does not
3737 static int del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3738 struct btrfs_path
*path
, int level
, int slot
)
3740 struct extent_buffer
*parent
= path
->nodes
[level
];
3745 nritems
= btrfs_header_nritems(parent
);
3746 if (slot
!= nritems
- 1) {
3747 memmove_extent_buffer(parent
,
3748 btrfs_node_key_ptr_offset(slot
),
3749 btrfs_node_key_ptr_offset(slot
+ 1),
3750 sizeof(struct btrfs_key_ptr
) *
3751 (nritems
- slot
- 1));
3754 btrfs_set_header_nritems(parent
, nritems
);
3755 if (nritems
== 0 && parent
== root
->node
) {
3756 BUG_ON(btrfs_header_level(root
->node
) != 1);
3757 /* just turn the root into a leaf and break */
3758 btrfs_set_header_level(root
->node
, 0);
3759 } else if (slot
== 0) {
3760 struct btrfs_disk_key disk_key
;
3762 btrfs_node_key(parent
, &disk_key
, 0);
3763 wret
= fixup_low_keys(trans
, root
, path
, &disk_key
, level
+ 1);
3767 btrfs_mark_buffer_dirty(parent
);
3772 * a helper function to delete the leaf pointed to by path->slots[1] and
3775 * This deletes the pointer in path->nodes[1] and frees the leaf
3776 * block extent. zero is returned if it all worked out, < 0 otherwise.
3778 * The path must have already been setup for deleting the leaf, including
3779 * all the proper balancing. path->nodes[1] must be locked.
3781 static noinline
int btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
3782 struct btrfs_root
*root
,
3783 struct btrfs_path
*path
,
3784 struct extent_buffer
*leaf
)
3788 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
3789 ret
= del_ptr(trans
, root
, path
, 1, path
->slots
[1]);
3794 * btrfs_free_extent is expensive, we want to make sure we
3795 * aren't holding any locks when we call it
3797 btrfs_unlock_up_safe(path
, 0);
3799 ret
= btrfs_free_tree_block(trans
, root
, leaf
->start
, leaf
->len
,
3800 0, root
->root_key
.objectid
, 0);
3804 * delete the item at the leaf level in path. If that empties
3805 * the leaf, remove it from the tree
3807 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3808 struct btrfs_path
*path
, int slot
, int nr
)
3810 struct extent_buffer
*leaf
;
3811 struct btrfs_item
*item
;
3819 leaf
= path
->nodes
[0];
3820 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
3822 for (i
= 0; i
< nr
; i
++)
3823 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
3825 nritems
= btrfs_header_nritems(leaf
);
3827 if (slot
+ nr
!= nritems
) {
3828 int data_end
= leaf_data_end(root
, leaf
);
3830 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3832 btrfs_leaf_data(leaf
) + data_end
,
3833 last_off
- data_end
);
3835 for (i
= slot
+ nr
; i
< nritems
; i
++) {
3838 item
= btrfs_item_nr(leaf
, i
);
3839 if (!leaf
->map_token
) {
3840 map_extent_buffer(leaf
, (unsigned long)item
,
3841 sizeof(struct btrfs_item
),
3842 &leaf
->map_token
, &leaf
->kaddr
,
3843 &leaf
->map_start
, &leaf
->map_len
,
3846 ioff
= btrfs_item_offset(leaf
, item
);
3847 btrfs_set_item_offset(leaf
, item
, ioff
+ dsize
);
3850 if (leaf
->map_token
) {
3851 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3852 leaf
->map_token
= NULL
;
3855 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
3856 btrfs_item_nr_offset(slot
+ nr
),
3857 sizeof(struct btrfs_item
) *
3858 (nritems
- slot
- nr
));
3860 btrfs_set_header_nritems(leaf
, nritems
- nr
);
3863 /* delete the leaf if we've emptied it */
3865 if (leaf
== root
->node
) {
3866 btrfs_set_header_level(leaf
, 0);
3868 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
3872 int used
= leaf_space_used(leaf
, 0, nritems
);
3874 struct btrfs_disk_key disk_key
;
3876 btrfs_item_key(leaf
, &disk_key
, 0);
3877 wret
= fixup_low_keys(trans
, root
, path
,
3883 /* delete the leaf if it is mostly empty */
3884 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
3885 /* push_leaf_left fixes the path.
3886 * make sure the path still points to our leaf
3887 * for possible call to del_ptr below
3889 slot
= path
->slots
[1];
3890 extent_buffer_get(leaf
);
3892 btrfs_set_path_blocking(path
);
3893 wret
= push_leaf_left(trans
, root
, path
, 1, 1);
3894 if (wret
< 0 && wret
!= -ENOSPC
)
3897 if (path
->nodes
[0] == leaf
&&
3898 btrfs_header_nritems(leaf
)) {
3899 wret
= push_leaf_right(trans
, root
, path
, 1, 1);
3900 if (wret
< 0 && wret
!= -ENOSPC
)
3904 if (btrfs_header_nritems(leaf
) == 0) {
3905 path
->slots
[1] = slot
;
3906 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
3908 free_extent_buffer(leaf
);
3910 /* if we're still in the path, make sure
3911 * we're dirty. Otherwise, one of the
3912 * push_leaf functions must have already
3913 * dirtied this buffer
3915 if (path
->nodes
[0] == leaf
)
3916 btrfs_mark_buffer_dirty(leaf
);
3917 free_extent_buffer(leaf
);
3920 btrfs_mark_buffer_dirty(leaf
);
3927 * search the tree again to find a leaf with lesser keys
3928 * returns 0 if it found something or 1 if there are no lesser leaves.
3929 * returns < 0 on io errors.
3931 * This may release the path, and so you may lose any locks held at the
3934 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
3936 struct btrfs_key key
;
3937 struct btrfs_disk_key found_key
;
3940 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
3944 else if (key
.type
> 0)
3946 else if (key
.objectid
> 0)
3951 btrfs_release_path(root
, path
);
3952 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3955 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
3956 ret
= comp_keys(&found_key
, &key
);
3963 * A helper function to walk down the tree starting at min_key, and looking
3964 * for nodes or leaves that are either in cache or have a minimum
3965 * transaction id. This is used by the btree defrag code, and tree logging
3967 * This does not cow, but it does stuff the starting key it finds back
3968 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3969 * key and get a writable path.
3971 * This does lock as it descends, and path->keep_locks should be set
3972 * to 1 by the caller.
3974 * This honors path->lowest_level to prevent descent past a given level
3977 * min_trans indicates the oldest transaction that you are interested
3978 * in walking through. Any nodes or leaves older than min_trans are
3979 * skipped over (without reading them).
3981 * returns zero if something useful was found, < 0 on error and 1 if there
3982 * was nothing in the tree that matched the search criteria.
3984 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
3985 struct btrfs_key
*max_key
,
3986 struct btrfs_path
*path
, int cache_only
,
3989 struct extent_buffer
*cur
;
3990 struct btrfs_key found_key
;
3997 WARN_ON(!path
->keep_locks
);
3999 cur
= btrfs_lock_root_node(root
);
4000 level
= btrfs_header_level(cur
);
4001 WARN_ON(path
->nodes
[level
]);
4002 path
->nodes
[level
] = cur
;
4003 path
->locks
[level
] = 1;
4005 if (btrfs_header_generation(cur
) < min_trans
) {
4010 nritems
= btrfs_header_nritems(cur
);
4011 level
= btrfs_header_level(cur
);
4012 sret
= bin_search(cur
, min_key
, level
, &slot
);
4014 /* at the lowest level, we're done, setup the path and exit */
4015 if (level
== path
->lowest_level
) {
4016 if (slot
>= nritems
)
4019 path
->slots
[level
] = slot
;
4020 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
4023 if (sret
&& slot
> 0)
4026 * check this node pointer against the cache_only and
4027 * min_trans parameters. If it isn't in cache or is too
4028 * old, skip to the next one.
4030 while (slot
< nritems
) {
4033 struct extent_buffer
*tmp
;
4034 struct btrfs_disk_key disk_key
;
4036 blockptr
= btrfs_node_blockptr(cur
, slot
);
4037 gen
= btrfs_node_ptr_generation(cur
, slot
);
4038 if (gen
< min_trans
) {
4046 btrfs_node_key(cur
, &disk_key
, slot
);
4047 if (comp_keys(&disk_key
, max_key
) >= 0) {
4053 tmp
= btrfs_find_tree_block(root
, blockptr
,
4054 btrfs_level_size(root
, level
- 1));
4056 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
)) {
4057 free_extent_buffer(tmp
);
4061 free_extent_buffer(tmp
);
4066 * we didn't find a candidate key in this node, walk forward
4067 * and find another one
4069 if (slot
>= nritems
) {
4070 path
->slots
[level
] = slot
;
4071 btrfs_set_path_blocking(path
);
4072 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
4073 cache_only
, min_trans
);
4075 btrfs_release_path(root
, path
);
4081 /* save our key for returning back */
4082 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
4083 path
->slots
[level
] = slot
;
4084 if (level
== path
->lowest_level
) {
4086 unlock_up(path
, level
, 1);
4089 btrfs_set_path_blocking(path
);
4090 cur
= read_node_slot(root
, cur
, slot
);
4092 btrfs_tree_lock(cur
);
4094 path
->locks
[level
- 1] = 1;
4095 path
->nodes
[level
- 1] = cur
;
4096 unlock_up(path
, level
, 1);
4097 btrfs_clear_path_blocking(path
, NULL
);
4101 memcpy(min_key
, &found_key
, sizeof(found_key
));
4102 btrfs_set_path_blocking(path
);
4107 * this is similar to btrfs_next_leaf, but does not try to preserve
4108 * and fixup the path. It looks for and returns the next key in the
4109 * tree based on the current path and the cache_only and min_trans
4112 * 0 is returned if another key is found, < 0 if there are any errors
4113 * and 1 is returned if there are no higher keys in the tree
4115 * path->keep_locks should be set to 1 on the search made before
4116 * calling this function.
4118 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
4119 struct btrfs_key
*key
, int level
,
4120 int cache_only
, u64 min_trans
)
4123 struct extent_buffer
*c
;
4125 WARN_ON(!path
->keep_locks
);
4126 while (level
< BTRFS_MAX_LEVEL
) {
4127 if (!path
->nodes
[level
])
4130 slot
= path
->slots
[level
] + 1;
4131 c
= path
->nodes
[level
];
4133 if (slot
>= btrfs_header_nritems(c
)) {
4136 struct btrfs_key cur_key
;
4137 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
4138 !path
->nodes
[level
+ 1])
4141 if (path
->locks
[level
+ 1]) {
4146 slot
= btrfs_header_nritems(c
) - 1;
4148 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
4150 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
4152 orig_lowest
= path
->lowest_level
;
4153 btrfs_release_path(root
, path
);
4154 path
->lowest_level
= level
;
4155 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
4157 path
->lowest_level
= orig_lowest
;
4161 c
= path
->nodes
[level
];
4162 slot
= path
->slots
[level
];
4169 btrfs_item_key_to_cpu(c
, key
, slot
);
4171 u64 blockptr
= btrfs_node_blockptr(c
, slot
);
4172 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
4175 struct extent_buffer
*cur
;
4176 cur
= btrfs_find_tree_block(root
, blockptr
,
4177 btrfs_level_size(root
, level
- 1));
4178 if (!cur
|| !btrfs_buffer_uptodate(cur
, gen
)) {
4181 free_extent_buffer(cur
);
4184 free_extent_buffer(cur
);
4186 if (gen
< min_trans
) {
4190 btrfs_node_key_to_cpu(c
, key
, slot
);
4198 * search the tree again to find a leaf with greater keys
4199 * returns 0 if it found something or 1 if there are no greater leaves.
4200 * returns < 0 on io errors.
4202 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4206 struct extent_buffer
*c
;
4207 struct extent_buffer
*next
;
4208 struct btrfs_key key
;
4211 int old_spinning
= path
->leave_spinning
;
4212 int force_blocking
= 0;
4214 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4219 * we take the blocks in an order that upsets lockdep. Using
4220 * blocking mode is the only way around it.
4222 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4226 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
4230 btrfs_release_path(root
, path
);
4232 path
->keep_locks
= 1;
4234 if (!force_blocking
)
4235 path
->leave_spinning
= 1;
4237 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4238 path
->keep_locks
= 0;
4243 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4245 * by releasing the path above we dropped all our locks. A balance
4246 * could have added more items next to the key that used to be
4247 * at the very end of the block. So, check again here and
4248 * advance the path if there are now more items available.
4250 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
4257 while (level
< BTRFS_MAX_LEVEL
) {
4258 if (!path
->nodes
[level
]) {
4263 slot
= path
->slots
[level
] + 1;
4264 c
= path
->nodes
[level
];
4265 if (slot
>= btrfs_header_nritems(c
)) {
4267 if (level
== BTRFS_MAX_LEVEL
) {
4275 btrfs_tree_unlock(next
);
4276 free_extent_buffer(next
);
4280 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
4286 btrfs_release_path(root
, path
);
4290 if (!path
->skip_locking
) {
4291 ret
= btrfs_try_spin_lock(next
);
4293 btrfs_set_path_blocking(path
);
4294 btrfs_tree_lock(next
);
4295 if (!force_blocking
)
4296 btrfs_clear_path_blocking(path
, next
);
4299 btrfs_set_lock_blocking(next
);
4303 path
->slots
[level
] = slot
;
4306 c
= path
->nodes
[level
];
4307 if (path
->locks
[level
])
4308 btrfs_tree_unlock(c
);
4310 free_extent_buffer(c
);
4311 path
->nodes
[level
] = next
;
4312 path
->slots
[level
] = 0;
4313 if (!path
->skip_locking
)
4314 path
->locks
[level
] = 1;
4319 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
4325 btrfs_release_path(root
, path
);
4329 if (!path
->skip_locking
) {
4330 btrfs_assert_tree_locked(path
->nodes
[level
]);
4331 ret
= btrfs_try_spin_lock(next
);
4333 btrfs_set_path_blocking(path
);
4334 btrfs_tree_lock(next
);
4335 if (!force_blocking
)
4336 btrfs_clear_path_blocking(path
, next
);
4339 btrfs_set_lock_blocking(next
);
4344 unlock_up(path
, 0, 1);
4345 path
->leave_spinning
= old_spinning
;
4347 btrfs_set_path_blocking(path
);
4353 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4354 * searching until it gets past min_objectid or finds an item of 'type'
4356 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4358 int btrfs_previous_item(struct btrfs_root
*root
,
4359 struct btrfs_path
*path
, u64 min_objectid
,
4362 struct btrfs_key found_key
;
4363 struct extent_buffer
*leaf
;
4368 if (path
->slots
[0] == 0) {
4369 btrfs_set_path_blocking(path
);
4370 ret
= btrfs_prev_leaf(root
, path
);
4376 leaf
= path
->nodes
[0];
4377 nritems
= btrfs_header_nritems(leaf
);
4380 if (path
->slots
[0] == nritems
)
4383 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4384 if (found_key
.objectid
< min_objectid
)
4386 if (found_key
.type
== type
)
4388 if (found_key
.objectid
== min_objectid
&&
4389 found_key
.type
< type
)