3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
7 * Filesystem Meta Information Block Cache (mbcache)
9 * The mbcache caches blocks of block devices that need to be located
10 * by their device/block number, as well as by other criteria (such
11 * as the block's contents).
13 * There can only be one cache entry in a cache per device and block number.
14 * Additional indexes need not be unique in this sense. The number of
15 * additional indexes (=other criteria) can be hardwired at compile time
16 * or specified at cache create time.
18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19 * in the cache. A valid entry is in the main hash tables of the cache,
20 * and may also be in the lru list. An invalid entry is not in any hashes
23 * A valid cache entry is only in the lru list if no handles refer to it.
24 * Invalid cache entries will be freed when the last handle to the cache
25 * entry is released. Entries that cannot be freed immediately are put
26 * back on the lru list.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
32 #include <linux/hash.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
42 # define mb_debug(f...) do { \
43 printk(KERN_DEBUG f); \
46 #define mb_assert(c) do { if (!(c)) \
47 printk(KERN_ERR "assertion " #c " failed\n"); \
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
53 #define mb_error(f...) do { \
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue
);
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
66 EXPORT_SYMBOL(mb_cache_create
);
67 EXPORT_SYMBOL(mb_cache_shrink
);
68 EXPORT_SYMBOL(mb_cache_destroy
);
69 EXPORT_SYMBOL(mb_cache_entry_alloc
);
70 EXPORT_SYMBOL(mb_cache_entry_insert
);
71 EXPORT_SYMBOL(mb_cache_entry_release
);
72 EXPORT_SYMBOL(mb_cache_entry_free
);
73 EXPORT_SYMBOL(mb_cache_entry_get
);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first
);
76 EXPORT_SYMBOL(mb_cache_entry_find_next
);
80 struct list_head c_cache_list
;
82 struct mb_cache_op c_op
;
83 atomic_t c_entry_count
;
85 #ifndef MB_CACHE_INDEXES_COUNT
88 kmem_cache_t
*c_entry_cache
;
89 struct list_head
*c_block_hash
;
90 struct list_head
*c_indexes_hash
[0];
95 * Global data: list of all mbcache's, lru list, and a spinlock for
96 * accessing cache data structures on SMP machines. The lru list is
97 * global across all mbcaches.
100 static LIST_HEAD(mb_cache_list
);
101 static LIST_HEAD(mb_cache_lru_list
);
102 static DEFINE_SPINLOCK(mb_cache_spinlock
);
103 static struct shrinker
*mb_shrinker
;
106 mb_cache_indexes(struct mb_cache
*cache
)
108 #ifdef MB_CACHE_INDEXES_COUNT
109 return MB_CACHE_INDEXES_COUNT
;
111 return cache
->c_indexes_count
;
116 * What the mbcache registers as to get shrunk dynamically.
119 static int mb_cache_shrink_fn(int nr_to_scan
, gfp_t gfp_mask
);
123 __mb_cache_entry_is_hashed(struct mb_cache_entry
*ce
)
125 return !list_empty(&ce
->e_block_list
);
130 __mb_cache_entry_unhash(struct mb_cache_entry
*ce
)
134 if (__mb_cache_entry_is_hashed(ce
)) {
135 list_del_init(&ce
->e_block_list
);
136 for (n
=0; n
<mb_cache_indexes(ce
->e_cache
); n
++)
137 list_del(&ce
->e_indexes
[n
].o_list
);
143 __mb_cache_entry_forget(struct mb_cache_entry
*ce
, gfp_t gfp_mask
)
145 struct mb_cache
*cache
= ce
->e_cache
;
147 mb_assert(!(ce
->e_used
|| ce
->e_queued
));
148 if (cache
->c_op
.free
&& cache
->c_op
.free(ce
, gfp_mask
)) {
149 /* free failed -- put back on the lru list
150 for freeing later. */
151 spin_lock(&mb_cache_spinlock
);
152 list_add(&ce
->e_lru_list
, &mb_cache_lru_list
);
153 spin_unlock(&mb_cache_spinlock
);
155 kmem_cache_free(cache
->c_entry_cache
, ce
);
156 atomic_dec(&cache
->c_entry_count
);
162 __mb_cache_entry_release_unlock(struct mb_cache_entry
*ce
)
164 /* Wake up all processes queuing for this cache entry. */
166 wake_up_all(&mb_cache_queue
);
167 if (ce
->e_used
>= MB_CACHE_WRITER
)
168 ce
->e_used
-= MB_CACHE_WRITER
;
170 if (!(ce
->e_used
|| ce
->e_queued
)) {
171 if (!__mb_cache_entry_is_hashed(ce
))
173 mb_assert(list_empty(&ce
->e_lru_list
));
174 list_add_tail(&ce
->e_lru_list
, &mb_cache_lru_list
);
176 spin_unlock(&mb_cache_spinlock
);
179 spin_unlock(&mb_cache_spinlock
);
180 __mb_cache_entry_forget(ce
, GFP_KERNEL
);
185 * mb_cache_shrink_fn() memory pressure callback
187 * This function is called by the kernel memory management when memory
190 * @nr_to_scan: Number of objects to scan
191 * @gfp_mask: (ignored)
193 * Returns the number of objects which are present in the cache.
196 mb_cache_shrink_fn(int nr_to_scan
, gfp_t gfp_mask
)
198 LIST_HEAD(free_list
);
199 struct list_head
*l
, *ltmp
;
202 spin_lock(&mb_cache_spinlock
);
203 list_for_each(l
, &mb_cache_list
) {
204 struct mb_cache
*cache
=
205 list_entry(l
, struct mb_cache
, c_cache_list
);
206 mb_debug("cache %s (%d)", cache
->c_name
,
207 atomic_read(&cache
->c_entry_count
));
208 count
+= atomic_read(&cache
->c_entry_count
);
210 mb_debug("trying to free %d entries", nr_to_scan
);
211 if (nr_to_scan
== 0) {
212 spin_unlock(&mb_cache_spinlock
);
215 while (nr_to_scan
-- && !list_empty(&mb_cache_lru_list
)) {
216 struct mb_cache_entry
*ce
=
217 list_entry(mb_cache_lru_list
.next
,
218 struct mb_cache_entry
, e_lru_list
);
219 list_move_tail(&ce
->e_lru_list
, &free_list
);
220 __mb_cache_entry_unhash(ce
);
222 spin_unlock(&mb_cache_spinlock
);
223 list_for_each_safe(l
, ltmp
, &free_list
) {
224 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
225 e_lru_list
), gfp_mask
);
228 return (count
/ 100) * sysctl_vfs_cache_pressure
;
233 * mb_cache_create() create a new cache
235 * All entries in one cache are equal size. Cache entries may be from
236 * multiple devices. If this is the first mbcache created, registers
237 * the cache with kernel memory management. Returns NULL if no more
238 * memory was available.
240 * @name: name of the cache (informal)
241 * @cache_op: contains the callback called when freeing a cache entry
242 * @entry_size: The size of a cache entry, including
243 * struct mb_cache_entry
244 * @indexes_count: number of additional indexes in the cache. Must equal
245 * MB_CACHE_INDEXES_COUNT if the number of indexes is
247 * @bucket_bits: log2(number of hash buckets)
250 mb_cache_create(const char *name
, struct mb_cache_op
*cache_op
,
251 size_t entry_size
, int indexes_count
, int bucket_bits
)
253 int m
=0, n
, bucket_count
= 1 << bucket_bits
;
254 struct mb_cache
*cache
= NULL
;
256 if(entry_size
< sizeof(struct mb_cache_entry
) +
257 indexes_count
* sizeof(((struct mb_cache_entry
*) 0)->e_indexes
[0]))
260 cache
= kmalloc(sizeof(struct mb_cache
) +
261 indexes_count
* sizeof(struct list_head
), GFP_KERNEL
);
264 cache
->c_name
= name
;
265 cache
->c_op
.free
= NULL
;
267 cache
->c_op
.free
= cache_op
->free
;
268 atomic_set(&cache
->c_entry_count
, 0);
269 cache
->c_bucket_bits
= bucket_bits
;
270 #ifdef MB_CACHE_INDEXES_COUNT
271 mb_assert(indexes_count
== MB_CACHE_INDEXES_COUNT
);
273 cache
->c_indexes_count
= indexes_count
;
275 cache
->c_block_hash
= kmalloc(bucket_count
* sizeof(struct list_head
),
277 if (!cache
->c_block_hash
)
279 for (n
=0; n
<bucket_count
; n
++)
280 INIT_LIST_HEAD(&cache
->c_block_hash
[n
]);
281 for (m
=0; m
<indexes_count
; m
++) {
282 cache
->c_indexes_hash
[m
] = kmalloc(bucket_count
*
283 sizeof(struct list_head
),
285 if (!cache
->c_indexes_hash
[m
])
287 for (n
=0; n
<bucket_count
; n
++)
288 INIT_LIST_HEAD(&cache
->c_indexes_hash
[m
][n
]);
290 cache
->c_entry_cache
= kmem_cache_create(name
, entry_size
, 0,
291 SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
, NULL
, NULL
);
292 if (!cache
->c_entry_cache
)
295 spin_lock(&mb_cache_spinlock
);
296 list_add(&cache
->c_cache_list
, &mb_cache_list
);
297 spin_unlock(&mb_cache_spinlock
);
303 kfree(cache
->c_indexes_hash
[m
]);
304 kfree(cache
->c_block_hash
);
314 * Removes all cache entires of a device from the cache. All cache entries
315 * currently in use cannot be freed, and thus remain in the cache. All others
318 * @bdev: which device's cache entries to shrink
321 mb_cache_shrink(struct block_device
*bdev
)
323 LIST_HEAD(free_list
);
324 struct list_head
*l
, *ltmp
;
326 spin_lock(&mb_cache_spinlock
);
327 list_for_each_safe(l
, ltmp
, &mb_cache_lru_list
) {
328 struct mb_cache_entry
*ce
=
329 list_entry(l
, struct mb_cache_entry
, e_lru_list
);
330 if (ce
->e_bdev
== bdev
) {
331 list_move_tail(&ce
->e_lru_list
, &free_list
);
332 __mb_cache_entry_unhash(ce
);
335 spin_unlock(&mb_cache_spinlock
);
336 list_for_each_safe(l
, ltmp
, &free_list
) {
337 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
338 e_lru_list
), GFP_KERNEL
);
346 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
347 * and then destroys it. If this was the last mbcache, un-registers the
348 * mbcache from kernel memory management.
351 mb_cache_destroy(struct mb_cache
*cache
)
353 LIST_HEAD(free_list
);
354 struct list_head
*l
, *ltmp
;
357 spin_lock(&mb_cache_spinlock
);
358 list_for_each_safe(l
, ltmp
, &mb_cache_lru_list
) {
359 struct mb_cache_entry
*ce
=
360 list_entry(l
, struct mb_cache_entry
, e_lru_list
);
361 if (ce
->e_cache
== cache
) {
362 list_move_tail(&ce
->e_lru_list
, &free_list
);
363 __mb_cache_entry_unhash(ce
);
366 list_del(&cache
->c_cache_list
);
367 spin_unlock(&mb_cache_spinlock
);
369 list_for_each_safe(l
, ltmp
, &free_list
) {
370 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
371 e_lru_list
), GFP_KERNEL
);
374 if (atomic_read(&cache
->c_entry_count
) > 0) {
375 mb_error("cache %s: %d orphaned entries",
377 atomic_read(&cache
->c_entry_count
));
380 kmem_cache_destroy(cache
->c_entry_cache
);
382 for (n
=0; n
< mb_cache_indexes(cache
); n
++)
383 kfree(cache
->c_indexes_hash
[n
]);
384 kfree(cache
->c_block_hash
);
390 * mb_cache_entry_alloc()
392 * Allocates a new cache entry. The new entry will not be valid initially,
393 * and thus cannot be looked up yet. It should be filled with data, and
394 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
395 * if no more memory was available.
397 struct mb_cache_entry
*
398 mb_cache_entry_alloc(struct mb_cache
*cache
)
400 struct mb_cache_entry
*ce
;
402 atomic_inc(&cache
->c_entry_count
);
403 ce
= kmem_cache_alloc(cache
->c_entry_cache
, GFP_KERNEL
);
405 INIT_LIST_HEAD(&ce
->e_lru_list
);
406 INIT_LIST_HEAD(&ce
->e_block_list
);
408 ce
->e_used
= 1 + MB_CACHE_WRITER
;
416 * mb_cache_entry_insert()
418 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
419 * the cache. After this, the cache entry can be looked up, but is not yet
420 * in the lru list as the caller still holds a handle to it. Returns 0 on
421 * success, or -EBUSY if a cache entry for that device + inode exists
422 * already (this may happen after a failed lookup, but when another process
423 * has inserted the same cache entry in the meantime).
425 * @bdev: device the cache entry belongs to
426 * @block: block number
427 * @keys: array of additional keys. There must be indexes_count entries
428 * in the array (as specified when creating the cache).
431 mb_cache_entry_insert(struct mb_cache_entry
*ce
, struct block_device
*bdev
,
432 sector_t block
, unsigned int keys
[])
434 struct mb_cache
*cache
= ce
->e_cache
;
437 int error
= -EBUSY
, n
;
439 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
440 cache
->c_bucket_bits
);
441 spin_lock(&mb_cache_spinlock
);
442 list_for_each_prev(l
, &cache
->c_block_hash
[bucket
]) {
443 struct mb_cache_entry
*ce
=
444 list_entry(l
, struct mb_cache_entry
, e_block_list
);
445 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
)
448 __mb_cache_entry_unhash(ce
);
451 list_add(&ce
->e_block_list
, &cache
->c_block_hash
[bucket
]);
452 for (n
=0; n
<mb_cache_indexes(cache
); n
++) {
453 ce
->e_indexes
[n
].o_key
= keys
[n
];
454 bucket
= hash_long(keys
[n
], cache
->c_bucket_bits
);
455 list_add(&ce
->e_indexes
[n
].o_list
,
456 &cache
->c_indexes_hash
[n
][bucket
]);
460 spin_unlock(&mb_cache_spinlock
);
466 * mb_cache_entry_release()
468 * Release a handle to a cache entry. When the last handle to a cache entry
469 * is released it is either freed (if it is invalid) or otherwise inserted
470 * in to the lru list.
473 mb_cache_entry_release(struct mb_cache_entry
*ce
)
475 spin_lock(&mb_cache_spinlock
);
476 __mb_cache_entry_release_unlock(ce
);
481 * mb_cache_entry_free()
483 * This is equivalent to the sequence mb_cache_entry_takeout() --
484 * mb_cache_entry_release().
487 mb_cache_entry_free(struct mb_cache_entry
*ce
)
489 spin_lock(&mb_cache_spinlock
);
490 mb_assert(list_empty(&ce
->e_lru_list
));
491 __mb_cache_entry_unhash(ce
);
492 __mb_cache_entry_release_unlock(ce
);
497 * mb_cache_entry_get()
499 * Get a cache entry by device / block number. (There can only be one entry
500 * in the cache per device and block.) Returns NULL if no such cache entry
501 * exists. The returned cache entry is locked for exclusive access ("single
504 struct mb_cache_entry
*
505 mb_cache_entry_get(struct mb_cache
*cache
, struct block_device
*bdev
,
510 struct mb_cache_entry
*ce
;
512 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
513 cache
->c_bucket_bits
);
514 spin_lock(&mb_cache_spinlock
);
515 list_for_each(l
, &cache
->c_block_hash
[bucket
]) {
516 ce
= list_entry(l
, struct mb_cache_entry
, e_block_list
);
517 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
) {
520 if (!list_empty(&ce
->e_lru_list
))
521 list_del_init(&ce
->e_lru_list
);
523 while (ce
->e_used
> 0) {
525 prepare_to_wait(&mb_cache_queue
, &wait
,
526 TASK_UNINTERRUPTIBLE
);
527 spin_unlock(&mb_cache_spinlock
);
529 spin_lock(&mb_cache_spinlock
);
532 finish_wait(&mb_cache_queue
, &wait
);
533 ce
->e_used
+= 1 + MB_CACHE_WRITER
;
535 if (!__mb_cache_entry_is_hashed(ce
)) {
536 __mb_cache_entry_release_unlock(ce
);
545 spin_unlock(&mb_cache_spinlock
);
549 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
551 static struct mb_cache_entry
*
552 __mb_cache_entry_find(struct list_head
*l
, struct list_head
*head
,
553 int index
, struct block_device
*bdev
, unsigned int key
)
556 struct mb_cache_entry
*ce
=
557 list_entry(l
, struct mb_cache_entry
,
558 e_indexes
[index
].o_list
);
559 if (ce
->e_bdev
== bdev
&& ce
->e_indexes
[index
].o_key
== key
) {
562 if (!list_empty(&ce
->e_lru_list
))
563 list_del_init(&ce
->e_lru_list
);
565 /* Incrementing before holding the lock gives readers
566 priority over writers. */
568 while (ce
->e_used
>= MB_CACHE_WRITER
) {
570 prepare_to_wait(&mb_cache_queue
, &wait
,
571 TASK_UNINTERRUPTIBLE
);
572 spin_unlock(&mb_cache_spinlock
);
574 spin_lock(&mb_cache_spinlock
);
577 finish_wait(&mb_cache_queue
, &wait
);
579 if (!__mb_cache_entry_is_hashed(ce
)) {
580 __mb_cache_entry_release_unlock(ce
);
581 spin_lock(&mb_cache_spinlock
);
582 return ERR_PTR(-EAGAIN
);
593 * mb_cache_entry_find_first()
595 * Find the first cache entry on a given device with a certain key in
596 * an additional index. Additonal matches can be found with
597 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
598 * returned cache entry is locked for shared access ("multiple readers").
600 * @cache: the cache to search
601 * @index: the number of the additonal index to search (0<=index<indexes_count)
602 * @bdev: the device the cache entry should belong to
603 * @key: the key in the index
605 struct mb_cache_entry
*
606 mb_cache_entry_find_first(struct mb_cache
*cache
, int index
,
607 struct block_device
*bdev
, unsigned int key
)
609 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
611 struct mb_cache_entry
*ce
;
613 mb_assert(index
< mb_cache_indexes(cache
));
614 spin_lock(&mb_cache_spinlock
);
615 l
= cache
->c_indexes_hash
[index
][bucket
].next
;
616 ce
= __mb_cache_entry_find(l
, &cache
->c_indexes_hash
[index
][bucket
],
618 spin_unlock(&mb_cache_spinlock
);
624 * mb_cache_entry_find_next()
626 * Find the next cache entry on a given device with a certain key in an
627 * additional index. Returns NULL if no match could be found. The previous
628 * entry is atomatically released, so that mb_cache_entry_find_next() can
629 * be called like this:
631 * entry = mb_cache_entry_find_first();
634 * entry = mb_cache_entry_find_next(entry, ...);
637 * @prev: The previous match
638 * @index: the number of the additonal index to search (0<=index<indexes_count)
639 * @bdev: the device the cache entry should belong to
640 * @key: the key in the index
642 struct mb_cache_entry
*
643 mb_cache_entry_find_next(struct mb_cache_entry
*prev
, int index
,
644 struct block_device
*bdev
, unsigned int key
)
646 struct mb_cache
*cache
= prev
->e_cache
;
647 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
649 struct mb_cache_entry
*ce
;
651 mb_assert(index
< mb_cache_indexes(cache
));
652 spin_lock(&mb_cache_spinlock
);
653 l
= prev
->e_indexes
[index
].o_list
.next
;
654 ce
= __mb_cache_entry_find(l
, &cache
->c_indexes_hash
[index
][bucket
],
656 __mb_cache_entry_release_unlock(prev
);
660 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
662 static int __init
init_mbcache(void)
664 mb_shrinker
= set_shrinker(DEFAULT_SEEKS
, mb_cache_shrink_fn
);
668 static void __exit
exit_mbcache(void)
670 remove_shrinker(mb_shrinker
);
673 module_init(init_mbcache
)
674 module_exit(exit_mbcache
)