[IPv4] diag: Use netlink_run_queue() to process the receive queue
[linux-2.6.22.y-op.git] / drivers / acpi / processor_idle.c
blobcdf78943af4db915f1a54da4285cbca2cc1c42ac
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
45 * Include the apic definitions for x86 to have the APIC timer related defines
46 * available also for UP (on SMP it gets magically included via linux/smp.h).
47 * asm/acpi.h is not an option, as it would require more include magic. Also
48 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
55 * Include the apic definitions for x86 to have the APIC timer related defines
56 * available also for UP (on SMP it gets magically included via linux/smp.h).
58 #ifdef CONFIG_X86
59 #include <asm/apic.h>
60 #endif
62 #include <asm/io.h>
63 #include <asm/uaccess.h>
65 #include <acpi/acpi_bus.h>
66 #include <acpi/processor.h>
68 #define ACPI_PROCESSOR_COMPONENT 0x01000000
69 #define ACPI_PROCESSOR_CLASS "processor"
70 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
71 ACPI_MODULE_NAME("processor_idle");
72 #define ACPI_PROCESSOR_FILE_POWER "power"
73 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
74 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
75 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
76 static void (*pm_idle_save) (void) __read_mostly;
77 module_param(max_cstate, uint, 0644);
79 static unsigned int nocst __read_mostly;
80 module_param(nocst, uint, 0000);
83 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
84 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
85 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
86 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
87 * reduce history for more aggressive entry into C3
89 static unsigned int bm_history __read_mostly =
90 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
91 module_param(bm_history, uint, 0644);
92 /* --------------------------------------------------------------------------
93 Power Management
94 -------------------------------------------------------------------------- */
97 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
98 * For now disable this. Probably a bug somewhere else.
100 * To skip this limit, boot/load with a large max_cstate limit.
102 static int set_max_cstate(struct dmi_system_id *id)
104 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
105 return 0;
107 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
108 " Override with \"processor.max_cstate=%d\"\n", id->ident,
109 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
111 max_cstate = (long)id->driver_data;
113 return 0;
116 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
117 callers to only run once -AK */
118 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
119 { set_max_cstate, "IBM ThinkPad R40e", {
120 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
121 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
122 { set_max_cstate, "IBM ThinkPad R40e", {
123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
125 { set_max_cstate, "IBM ThinkPad R40e", {
126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
128 { set_max_cstate, "IBM ThinkPad R40e", {
129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
149 { set_max_cstate, "IBM ThinkPad R40e", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
152 { set_max_cstate, "IBM ThinkPad R40e", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
155 { set_max_cstate, "IBM ThinkPad R40e", {
156 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
158 { set_max_cstate, "IBM ThinkPad R40e", {
159 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
161 { set_max_cstate, "IBM ThinkPad R40e", {
162 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
164 { set_max_cstate, "IBM ThinkPad R40e", {
165 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
167 { set_max_cstate, "Medion 41700", {
168 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
169 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
170 { set_max_cstate, "Clevo 5600D", {
171 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
172 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
173 (void *)2},
177 static inline u32 ticks_elapsed(u32 t1, u32 t2)
179 if (t2 >= t1)
180 return (t2 - t1);
181 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
182 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
183 else
184 return ((0xFFFFFFFF - t1) + t2);
187 static void
188 acpi_processor_power_activate(struct acpi_processor *pr,
189 struct acpi_processor_cx *new)
191 struct acpi_processor_cx *old;
193 if (!pr || !new)
194 return;
196 old = pr->power.state;
198 if (old)
199 old->promotion.count = 0;
200 new->demotion.count = 0;
202 /* Cleanup from old state. */
203 if (old) {
204 switch (old->type) {
205 case ACPI_STATE_C3:
206 /* Disable bus master reload */
207 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
208 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
209 break;
213 /* Prepare to use new state. */
214 switch (new->type) {
215 case ACPI_STATE_C3:
216 /* Enable bus master reload */
217 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
218 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
219 break;
222 pr->power.state = new;
224 return;
227 static void acpi_safe_halt(void)
229 current_thread_info()->status &= ~TS_POLLING;
231 * TS_POLLING-cleared state must be visible before we
232 * test NEED_RESCHED:
234 smp_mb();
235 if (!need_resched())
236 safe_halt();
237 current_thread_info()->status |= TS_POLLING;
240 static atomic_t c3_cpu_count;
242 /* Common C-state entry for C2, C3, .. */
243 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
245 if (cstate->space_id == ACPI_CSTATE_FFH) {
246 /* Call into architectural FFH based C-state */
247 acpi_processor_ffh_cstate_enter(cstate);
248 } else {
249 int unused;
250 /* IO port based C-state */
251 inb(cstate->address);
252 /* Dummy wait op - must do something useless after P_LVL2 read
253 because chipsets cannot guarantee that STPCLK# signal
254 gets asserted in time to freeze execution properly. */
255 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
259 #ifdef ARCH_APICTIMER_STOPS_ON_C3
262 * Some BIOS implementations switch to C3 in the published C2 state.
263 * This seems to be a common problem on AMD boxen, but other vendors
264 * are affected too. We pick the most conservative approach: we assume
265 * that the local APIC stops in both C2 and C3.
267 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
268 struct acpi_processor_cx *cx)
270 struct acpi_processor_power *pwr = &pr->power;
271 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
274 * Check, if one of the previous states already marked the lapic
275 * unstable
277 if (pwr->timer_broadcast_on_state < state)
278 return;
280 if (cx->type >= type)
281 pr->power.timer_broadcast_on_state = state;
284 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
286 #ifdef CONFIG_GENERIC_CLOCKEVENTS
287 unsigned long reason;
289 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
290 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
292 clockevents_notify(reason, &pr->id);
293 #else
294 cpumask_t mask = cpumask_of_cpu(pr->id);
296 if (pr->power.timer_broadcast_on_state < INT_MAX)
297 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
298 else
299 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
300 #endif
303 /* Power(C) State timer broadcast control */
304 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
305 struct acpi_processor_cx *cx,
306 int broadcast)
308 #ifdef CONFIG_GENERIC_CLOCKEVENTS
310 int state = cx - pr->power.states;
312 if (state >= pr->power.timer_broadcast_on_state) {
313 unsigned long reason;
315 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
316 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
317 clockevents_notify(reason, &pr->id);
319 #endif
322 #else
324 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
325 struct acpi_processor_cx *cstate) { }
326 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
327 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
328 struct acpi_processor_cx *cx,
329 int broadcast)
333 #endif
335 static void acpi_processor_idle(void)
337 struct acpi_processor *pr = NULL;
338 struct acpi_processor_cx *cx = NULL;
339 struct acpi_processor_cx *next_state = NULL;
340 int sleep_ticks = 0;
341 u32 t1, t2 = 0;
343 pr = processors[smp_processor_id()];
344 if (!pr)
345 return;
348 * Interrupts must be disabled during bus mastering calculations and
349 * for C2/C3 transitions.
351 local_irq_disable();
354 * Check whether we truly need to go idle, or should
355 * reschedule:
357 if (unlikely(need_resched())) {
358 local_irq_enable();
359 return;
362 cx = pr->power.state;
363 if (!cx) {
364 if (pm_idle_save)
365 pm_idle_save();
366 else
367 acpi_safe_halt();
368 return;
372 * Check BM Activity
373 * -----------------
374 * Check for bus mastering activity (if required), record, and check
375 * for demotion.
377 if (pr->flags.bm_check) {
378 u32 bm_status = 0;
379 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
381 if (diff > 31)
382 diff = 31;
384 pr->power.bm_activity <<= diff;
386 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
387 if (bm_status) {
388 pr->power.bm_activity |= 0x1;
389 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
392 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
393 * the true state of bus mastering activity; forcing us to
394 * manually check the BMIDEA bit of each IDE channel.
396 else if (errata.piix4.bmisx) {
397 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
398 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
399 pr->power.bm_activity |= 0x1;
402 pr->power.bm_check_timestamp = jiffies;
405 * If bus mastering is or was active this jiffy, demote
406 * to avoid a faulty transition. Note that the processor
407 * won't enter a low-power state during this call (to this
408 * function) but should upon the next.
410 * TBD: A better policy might be to fallback to the demotion
411 * state (use it for this quantum only) istead of
412 * demoting -- and rely on duration as our sole demotion
413 * qualification. This may, however, introduce DMA
414 * issues (e.g. floppy DMA transfer overrun/underrun).
416 if ((pr->power.bm_activity & 0x1) &&
417 cx->demotion.threshold.bm) {
418 local_irq_enable();
419 next_state = cx->demotion.state;
420 goto end;
424 #ifdef CONFIG_HOTPLUG_CPU
426 * Check for P_LVL2_UP flag before entering C2 and above on
427 * an SMP system. We do it here instead of doing it at _CST/P_LVL
428 * detection phase, to work cleanly with logical CPU hotplug.
430 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
431 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
432 cx = &pr->power.states[ACPI_STATE_C1];
433 #endif
436 * Sleep:
437 * ------
438 * Invoke the current Cx state to put the processor to sleep.
440 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
441 current_thread_info()->status &= ~TS_POLLING;
443 * TS_POLLING-cleared state must be visible before we
444 * test NEED_RESCHED:
446 smp_mb();
447 if (need_resched()) {
448 current_thread_info()->status |= TS_POLLING;
449 local_irq_enable();
450 return;
454 switch (cx->type) {
456 case ACPI_STATE_C1:
458 * Invoke C1.
459 * Use the appropriate idle routine, the one that would
460 * be used without acpi C-states.
462 if (pm_idle_save)
463 pm_idle_save();
464 else
465 acpi_safe_halt();
468 * TBD: Can't get time duration while in C1, as resumes
469 * go to an ISR rather than here. Need to instrument
470 * base interrupt handler.
472 sleep_ticks = 0xFFFFFFFF;
473 break;
475 case ACPI_STATE_C2:
476 /* Get start time (ticks) */
477 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
478 /* Invoke C2 */
479 acpi_state_timer_broadcast(pr, cx, 1);
480 acpi_cstate_enter(cx);
481 /* Get end time (ticks) */
482 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
484 #ifdef CONFIG_GENERIC_TIME
485 /* TSC halts in C2, so notify users */
486 mark_tsc_unstable();
487 #endif
488 /* Re-enable interrupts */
489 local_irq_enable();
490 current_thread_info()->status |= TS_POLLING;
491 /* Compute time (ticks) that we were actually asleep */
492 sleep_ticks =
493 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
494 acpi_state_timer_broadcast(pr, cx, 0);
495 break;
497 case ACPI_STATE_C3:
499 if (pr->flags.bm_check) {
500 if (atomic_inc_return(&c3_cpu_count) ==
501 num_online_cpus()) {
503 * All CPUs are trying to go to C3
504 * Disable bus master arbitration
506 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
508 } else {
509 /* SMP with no shared cache... Invalidate cache */
510 ACPI_FLUSH_CPU_CACHE();
513 /* Get start time (ticks) */
514 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
515 /* Invoke C3 */
516 acpi_state_timer_broadcast(pr, cx, 1);
517 acpi_cstate_enter(cx);
518 /* Get end time (ticks) */
519 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
520 if (pr->flags.bm_check) {
521 /* Enable bus master arbitration */
522 atomic_dec(&c3_cpu_count);
523 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
526 #ifdef CONFIG_GENERIC_TIME
527 /* TSC halts in C3, so notify users */
528 mark_tsc_unstable();
529 #endif
530 /* Re-enable interrupts */
531 local_irq_enable();
532 current_thread_info()->status |= TS_POLLING;
533 /* Compute time (ticks) that we were actually asleep */
534 sleep_ticks =
535 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
536 acpi_state_timer_broadcast(pr, cx, 0);
537 break;
539 default:
540 local_irq_enable();
541 return;
543 cx->usage++;
544 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
545 cx->time += sleep_ticks;
547 next_state = pr->power.state;
549 #ifdef CONFIG_HOTPLUG_CPU
550 /* Don't do promotion/demotion */
551 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
552 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
553 next_state = cx;
554 goto end;
556 #endif
559 * Promotion?
560 * ----------
561 * Track the number of longs (time asleep is greater than threshold)
562 * and promote when the count threshold is reached. Note that bus
563 * mastering activity may prevent promotions.
564 * Do not promote above max_cstate.
566 if (cx->promotion.state &&
567 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
568 if (sleep_ticks > cx->promotion.threshold.ticks &&
569 cx->promotion.state->latency <= system_latency_constraint()) {
570 cx->promotion.count++;
571 cx->demotion.count = 0;
572 if (cx->promotion.count >=
573 cx->promotion.threshold.count) {
574 if (pr->flags.bm_check) {
575 if (!
576 (pr->power.bm_activity & cx->
577 promotion.threshold.bm)) {
578 next_state =
579 cx->promotion.state;
580 goto end;
582 } else {
583 next_state = cx->promotion.state;
584 goto end;
591 * Demotion?
592 * ---------
593 * Track the number of shorts (time asleep is less than time threshold)
594 * and demote when the usage threshold is reached.
596 if (cx->demotion.state) {
597 if (sleep_ticks < cx->demotion.threshold.ticks) {
598 cx->demotion.count++;
599 cx->promotion.count = 0;
600 if (cx->demotion.count >= cx->demotion.threshold.count) {
601 next_state = cx->demotion.state;
602 goto end;
607 end:
609 * Demote if current state exceeds max_cstate
610 * or if the latency of the current state is unacceptable
612 if ((pr->power.state - pr->power.states) > max_cstate ||
613 pr->power.state->latency > system_latency_constraint()) {
614 if (cx->demotion.state)
615 next_state = cx->demotion.state;
619 * New Cx State?
620 * -------------
621 * If we're going to start using a new Cx state we must clean up
622 * from the previous and prepare to use the new.
624 if (next_state != pr->power.state)
625 acpi_processor_power_activate(pr, next_state);
628 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
630 unsigned int i;
631 unsigned int state_is_set = 0;
632 struct acpi_processor_cx *lower = NULL;
633 struct acpi_processor_cx *higher = NULL;
634 struct acpi_processor_cx *cx;
637 if (!pr)
638 return -EINVAL;
641 * This function sets the default Cx state policy (OS idle handler).
642 * Our scheme is to promote quickly to C2 but more conservatively
643 * to C3. We're favoring C2 for its characteristics of low latency
644 * (quick response), good power savings, and ability to allow bus
645 * mastering activity. Note that the Cx state policy is completely
646 * customizable and can be altered dynamically.
649 /* startup state */
650 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
651 cx = &pr->power.states[i];
652 if (!cx->valid)
653 continue;
655 if (!state_is_set)
656 pr->power.state = cx;
657 state_is_set++;
658 break;
661 if (!state_is_set)
662 return -ENODEV;
664 /* demotion */
665 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
666 cx = &pr->power.states[i];
667 if (!cx->valid)
668 continue;
670 if (lower) {
671 cx->demotion.state = lower;
672 cx->demotion.threshold.ticks = cx->latency_ticks;
673 cx->demotion.threshold.count = 1;
674 if (cx->type == ACPI_STATE_C3)
675 cx->demotion.threshold.bm = bm_history;
678 lower = cx;
681 /* promotion */
682 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
683 cx = &pr->power.states[i];
684 if (!cx->valid)
685 continue;
687 if (higher) {
688 cx->promotion.state = higher;
689 cx->promotion.threshold.ticks = cx->latency_ticks;
690 if (cx->type >= ACPI_STATE_C2)
691 cx->promotion.threshold.count = 4;
692 else
693 cx->promotion.threshold.count = 10;
694 if (higher->type == ACPI_STATE_C3)
695 cx->promotion.threshold.bm = bm_history;
698 higher = cx;
701 return 0;
704 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
707 if (!pr)
708 return -EINVAL;
710 if (!pr->pblk)
711 return -ENODEV;
713 /* if info is obtained from pblk/fadt, type equals state */
714 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
715 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
717 #ifndef CONFIG_HOTPLUG_CPU
719 * Check for P_LVL2_UP flag before entering C2 and above on
720 * an SMP system.
722 if ((num_online_cpus() > 1) &&
723 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
724 return -ENODEV;
725 #endif
727 /* determine C2 and C3 address from pblk */
728 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
729 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
731 /* determine latencies from FADT */
732 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
733 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
735 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
736 "lvl2[0x%08x] lvl3[0x%08x]\n",
737 pr->power.states[ACPI_STATE_C2].address,
738 pr->power.states[ACPI_STATE_C3].address));
740 return 0;
743 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
745 if (!pr->power.states[ACPI_STATE_C1].valid) {
746 /* set the first C-State to C1 */
747 /* all processors need to support C1 */
748 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
749 pr->power.states[ACPI_STATE_C1].valid = 1;
751 /* the C0 state only exists as a filler in our array */
752 pr->power.states[ACPI_STATE_C0].valid = 1;
753 return 0;
756 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
758 acpi_status status = 0;
759 acpi_integer count;
760 int current_count;
761 int i;
762 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
763 union acpi_object *cst;
766 if (nocst)
767 return -ENODEV;
769 current_count = 0;
771 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
772 if (ACPI_FAILURE(status)) {
773 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
774 return -ENODEV;
777 cst = buffer.pointer;
779 /* There must be at least 2 elements */
780 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
781 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
782 status = -EFAULT;
783 goto end;
786 count = cst->package.elements[0].integer.value;
788 /* Validate number of power states. */
789 if (count < 1 || count != cst->package.count - 1) {
790 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
791 status = -EFAULT;
792 goto end;
795 /* Tell driver that at least _CST is supported. */
796 pr->flags.has_cst = 1;
798 for (i = 1; i <= count; i++) {
799 union acpi_object *element;
800 union acpi_object *obj;
801 struct acpi_power_register *reg;
802 struct acpi_processor_cx cx;
804 memset(&cx, 0, sizeof(cx));
806 element = &(cst->package.elements[i]);
807 if (element->type != ACPI_TYPE_PACKAGE)
808 continue;
810 if (element->package.count != 4)
811 continue;
813 obj = &(element->package.elements[0]);
815 if (obj->type != ACPI_TYPE_BUFFER)
816 continue;
818 reg = (struct acpi_power_register *)obj->buffer.pointer;
820 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
821 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
822 continue;
824 /* There should be an easy way to extract an integer... */
825 obj = &(element->package.elements[1]);
826 if (obj->type != ACPI_TYPE_INTEGER)
827 continue;
829 cx.type = obj->integer.value;
831 * Some buggy BIOSes won't list C1 in _CST -
832 * Let acpi_processor_get_power_info_default() handle them later
834 if (i == 1 && cx.type != ACPI_STATE_C1)
835 current_count++;
837 cx.address = reg->address;
838 cx.index = current_count + 1;
840 cx.space_id = ACPI_CSTATE_SYSTEMIO;
841 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
842 if (acpi_processor_ffh_cstate_probe
843 (pr->id, &cx, reg) == 0) {
844 cx.space_id = ACPI_CSTATE_FFH;
845 } else if (cx.type != ACPI_STATE_C1) {
847 * C1 is a special case where FIXED_HARDWARE
848 * can be handled in non-MWAIT way as well.
849 * In that case, save this _CST entry info.
850 * That is, we retain space_id of SYSTEM_IO for
851 * halt based C1.
852 * Otherwise, ignore this info and continue.
854 continue;
858 obj = &(element->package.elements[2]);
859 if (obj->type != ACPI_TYPE_INTEGER)
860 continue;
862 cx.latency = obj->integer.value;
864 obj = &(element->package.elements[3]);
865 if (obj->type != ACPI_TYPE_INTEGER)
866 continue;
868 cx.power = obj->integer.value;
870 current_count++;
871 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
874 * We support total ACPI_PROCESSOR_MAX_POWER - 1
875 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
877 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
878 printk(KERN_WARNING
879 "Limiting number of power states to max (%d)\n",
880 ACPI_PROCESSOR_MAX_POWER);
881 printk(KERN_WARNING
882 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
883 break;
887 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
888 current_count));
890 /* Validate number of power states discovered */
891 if (current_count < 2)
892 status = -EFAULT;
894 end:
895 kfree(buffer.pointer);
897 return status;
900 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
903 if (!cx->address)
904 return;
907 * C2 latency must be less than or equal to 100
908 * microseconds.
910 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
911 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
912 "latency too large [%d]\n", cx->latency));
913 return;
917 * Otherwise we've met all of our C2 requirements.
918 * Normalize the C2 latency to expidite policy
920 cx->valid = 1;
921 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
923 return;
926 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
927 struct acpi_processor_cx *cx)
929 static int bm_check_flag;
932 if (!cx->address)
933 return;
936 * C3 latency must be less than or equal to 1000
937 * microseconds.
939 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
940 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
941 "latency too large [%d]\n", cx->latency));
942 return;
946 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
947 * DMA transfers are used by any ISA device to avoid livelock.
948 * Note that we could disable Type-F DMA (as recommended by
949 * the erratum), but this is known to disrupt certain ISA
950 * devices thus we take the conservative approach.
952 else if (errata.piix4.fdma) {
953 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
954 "C3 not supported on PIIX4 with Type-F DMA\n"));
955 return;
958 /* All the logic here assumes flags.bm_check is same across all CPUs */
959 if (!bm_check_flag) {
960 /* Determine whether bm_check is needed based on CPU */
961 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
962 bm_check_flag = pr->flags.bm_check;
963 } else {
964 pr->flags.bm_check = bm_check_flag;
967 if (pr->flags.bm_check) {
968 /* bus mastering control is necessary */
969 if (!pr->flags.bm_control) {
970 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
971 "C3 support requires bus mastering control\n"));
972 return;
974 } else {
976 * WBINVD should be set in fadt, for C3 state to be
977 * supported on when bm_check is not required.
979 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
980 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
981 "Cache invalidation should work properly"
982 " for C3 to be enabled on SMP systems\n"));
983 return;
985 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
989 * Otherwise we've met all of our C3 requirements.
990 * Normalize the C3 latency to expidite policy. Enable
991 * checking of bus mastering status (bm_check) so we can
992 * use this in our C3 policy
994 cx->valid = 1;
995 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
997 return;
1000 static int acpi_processor_power_verify(struct acpi_processor *pr)
1002 unsigned int i;
1003 unsigned int working = 0;
1005 pr->power.timer_broadcast_on_state = INT_MAX;
1007 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1008 struct acpi_processor_cx *cx = &pr->power.states[i];
1010 switch (cx->type) {
1011 case ACPI_STATE_C1:
1012 cx->valid = 1;
1013 break;
1015 case ACPI_STATE_C2:
1016 acpi_processor_power_verify_c2(cx);
1017 if (cx->valid)
1018 acpi_timer_check_state(i, pr, cx);
1019 break;
1021 case ACPI_STATE_C3:
1022 acpi_processor_power_verify_c3(pr, cx);
1023 if (cx->valid)
1024 acpi_timer_check_state(i, pr, cx);
1025 break;
1028 if (cx->valid)
1029 working++;
1032 acpi_propagate_timer_broadcast(pr);
1034 return (working);
1037 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1039 unsigned int i;
1040 int result;
1043 /* NOTE: the idle thread may not be running while calling
1044 * this function */
1046 /* Zero initialize all the C-states info. */
1047 memset(pr->power.states, 0, sizeof(pr->power.states));
1049 result = acpi_processor_get_power_info_cst(pr);
1050 if (result == -ENODEV)
1051 result = acpi_processor_get_power_info_fadt(pr);
1053 if (result)
1054 return result;
1056 acpi_processor_get_power_info_default(pr);
1058 pr->power.count = acpi_processor_power_verify(pr);
1061 * Set Default Policy
1062 * ------------------
1063 * Now that we know which states are supported, set the default
1064 * policy. Note that this policy can be changed dynamically
1065 * (e.g. encourage deeper sleeps to conserve battery life when
1066 * not on AC).
1068 result = acpi_processor_set_power_policy(pr);
1069 if (result)
1070 return result;
1073 * if one state of type C2 or C3 is available, mark this
1074 * CPU as being "idle manageable"
1076 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1077 if (pr->power.states[i].valid) {
1078 pr->power.count = i;
1079 if (pr->power.states[i].type >= ACPI_STATE_C2)
1080 pr->flags.power = 1;
1084 return 0;
1087 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1089 int result = 0;
1092 if (!pr)
1093 return -EINVAL;
1095 if (nocst) {
1096 return -ENODEV;
1099 if (!pr->flags.power_setup_done)
1100 return -ENODEV;
1102 /* Fall back to the default idle loop */
1103 pm_idle = pm_idle_save;
1104 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1106 pr->flags.power = 0;
1107 result = acpi_processor_get_power_info(pr);
1108 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1109 pm_idle = acpi_processor_idle;
1111 return result;
1114 /* proc interface */
1116 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1118 struct acpi_processor *pr = seq->private;
1119 unsigned int i;
1122 if (!pr)
1123 goto end;
1125 seq_printf(seq, "active state: C%zd\n"
1126 "max_cstate: C%d\n"
1127 "bus master activity: %08x\n"
1128 "maximum allowed latency: %d usec\n",
1129 pr->power.state ? pr->power.state - pr->power.states : 0,
1130 max_cstate, (unsigned)pr->power.bm_activity,
1131 system_latency_constraint());
1133 seq_puts(seq, "states:\n");
1135 for (i = 1; i <= pr->power.count; i++) {
1136 seq_printf(seq, " %cC%d: ",
1137 (&pr->power.states[i] ==
1138 pr->power.state ? '*' : ' '), i);
1140 if (!pr->power.states[i].valid) {
1141 seq_puts(seq, "<not supported>\n");
1142 continue;
1145 switch (pr->power.states[i].type) {
1146 case ACPI_STATE_C1:
1147 seq_printf(seq, "type[C1] ");
1148 break;
1149 case ACPI_STATE_C2:
1150 seq_printf(seq, "type[C2] ");
1151 break;
1152 case ACPI_STATE_C3:
1153 seq_printf(seq, "type[C3] ");
1154 break;
1155 default:
1156 seq_printf(seq, "type[--] ");
1157 break;
1160 if (pr->power.states[i].promotion.state)
1161 seq_printf(seq, "promotion[C%zd] ",
1162 (pr->power.states[i].promotion.state -
1163 pr->power.states));
1164 else
1165 seq_puts(seq, "promotion[--] ");
1167 if (pr->power.states[i].demotion.state)
1168 seq_printf(seq, "demotion[C%zd] ",
1169 (pr->power.states[i].demotion.state -
1170 pr->power.states));
1171 else
1172 seq_puts(seq, "demotion[--] ");
1174 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1175 pr->power.states[i].latency,
1176 pr->power.states[i].usage,
1177 (unsigned long long)pr->power.states[i].time);
1180 end:
1181 return 0;
1184 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1186 return single_open(file, acpi_processor_power_seq_show,
1187 PDE(inode)->data);
1190 static const struct file_operations acpi_processor_power_fops = {
1191 .open = acpi_processor_power_open_fs,
1192 .read = seq_read,
1193 .llseek = seq_lseek,
1194 .release = single_release,
1197 #ifdef CONFIG_SMP
1198 static void smp_callback(void *v)
1200 /* we already woke the CPU up, nothing more to do */
1204 * This function gets called when a part of the kernel has a new latency
1205 * requirement. This means we need to get all processors out of their C-state,
1206 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1207 * wakes them all right up.
1209 static int acpi_processor_latency_notify(struct notifier_block *b,
1210 unsigned long l, void *v)
1212 smp_call_function(smp_callback, NULL, 0, 1);
1213 return NOTIFY_OK;
1216 static struct notifier_block acpi_processor_latency_notifier = {
1217 .notifier_call = acpi_processor_latency_notify,
1219 #endif
1221 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1222 struct acpi_device *device)
1224 acpi_status status = 0;
1225 static int first_run;
1226 struct proc_dir_entry *entry = NULL;
1227 unsigned int i;
1230 if (!first_run) {
1231 dmi_check_system(processor_power_dmi_table);
1232 if (max_cstate < ACPI_C_STATES_MAX)
1233 printk(KERN_NOTICE
1234 "ACPI: processor limited to max C-state %d\n",
1235 max_cstate);
1236 first_run++;
1237 #ifdef CONFIG_SMP
1238 register_latency_notifier(&acpi_processor_latency_notifier);
1239 #endif
1242 if (!pr)
1243 return -EINVAL;
1245 if (acpi_gbl_FADT.cst_control && !nocst) {
1246 status =
1247 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1248 if (ACPI_FAILURE(status)) {
1249 ACPI_EXCEPTION((AE_INFO, status,
1250 "Notifying BIOS of _CST ability failed"));
1254 acpi_processor_get_power_info(pr);
1257 * Install the idle handler if processor power management is supported.
1258 * Note that we use previously set idle handler will be used on
1259 * platforms that only support C1.
1261 if ((pr->flags.power) && (!boot_option_idle_override)) {
1262 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1263 for (i = 1; i <= pr->power.count; i++)
1264 if (pr->power.states[i].valid)
1265 printk(" C%d[C%d]", i,
1266 pr->power.states[i].type);
1267 printk(")\n");
1269 if (pr->id == 0) {
1270 pm_idle_save = pm_idle;
1271 pm_idle = acpi_processor_idle;
1275 /* 'power' [R] */
1276 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1277 S_IRUGO, acpi_device_dir(device));
1278 if (!entry)
1279 return -EIO;
1280 else {
1281 entry->proc_fops = &acpi_processor_power_fops;
1282 entry->data = acpi_driver_data(device);
1283 entry->owner = THIS_MODULE;
1286 pr->flags.power_setup_done = 1;
1288 return 0;
1291 int acpi_processor_power_exit(struct acpi_processor *pr,
1292 struct acpi_device *device)
1295 pr->flags.power_setup_done = 0;
1297 if (acpi_device_dir(device))
1298 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1299 acpi_device_dir(device));
1301 /* Unregister the idle handler when processor #0 is removed. */
1302 if (pr->id == 0) {
1303 pm_idle = pm_idle_save;
1306 * We are about to unload the current idle thread pm callback
1307 * (pm_idle), Wait for all processors to update cached/local
1308 * copies of pm_idle before proceeding.
1310 cpu_idle_wait();
1311 #ifdef CONFIG_SMP
1312 unregister_latency_notifier(&acpi_processor_latency_notifier);
1313 #endif
1316 return 0;