[NETFILTER]: nf_nat: properly use RCU API for nf_nat_protos array
[linux-2.6.22.y-op.git] / mm / page_alloc.c
blobd461b23a27a1176decc9229edf45c8ae1c388472
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
62 static void __free_pages_ok(struct page *page, unsigned int order);
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
84 #endif
87 EXPORT_SYMBOL(totalram_pages);
89 static char * const zone_names[MAX_NR_ZONES] = {
90 #ifdef CONFIG_ZONE_DMA
91 "DMA",
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 "DMA32",
95 #endif
96 "Normal",
97 #ifdef CONFIG_HIGHMEM
98 "HighMem"
99 #endif
102 int min_free_kbytes = 1024;
104 unsigned long __meminitdata nr_kernel_pages;
105 unsigned long __meminitdata nr_all_pages;
106 static unsigned long __initdata dma_reserve;
108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119 #else
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123 #else
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
126 #endif
127 #endif
129 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
130 int __initdata nr_nodemap_entries;
131 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
135 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
136 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
139 #ifdef CONFIG_DEBUG_VM
140 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
142 int ret = 0;
143 unsigned seq;
144 unsigned long pfn = page_to_pfn(page);
146 do {
147 seq = zone_span_seqbegin(zone);
148 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
149 ret = 1;
150 else if (pfn < zone->zone_start_pfn)
151 ret = 1;
152 } while (zone_span_seqretry(zone, seq));
154 return ret;
157 static int page_is_consistent(struct zone *zone, struct page *page)
159 #ifdef CONFIG_HOLES_IN_ZONE
160 if (!pfn_valid(page_to_pfn(page)))
161 return 0;
162 #endif
163 if (zone != page_zone(page))
164 return 0;
166 return 1;
169 * Temporary debugging check for pages not lying within a given zone.
171 static int bad_range(struct zone *zone, struct page *page)
173 if (page_outside_zone_boundaries(zone, page))
174 return 1;
175 if (!page_is_consistent(zone, page))
176 return 1;
178 return 0;
180 #else
181 static inline int bad_range(struct zone *zone, struct page *page)
183 return 0;
185 #endif
187 static void bad_page(struct page *page)
189 printk(KERN_EMERG "Bad page state in process '%s'\n"
190 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
191 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
192 KERN_EMERG "Backtrace:\n",
193 current->comm, page, (int)(2*sizeof(unsigned long)),
194 (unsigned long)page->flags, page->mapping,
195 page_mapcount(page), page_count(page));
196 dump_stack();
197 page->flags &= ~(1 << PG_lru |
198 1 << PG_private |
199 1 << PG_locked |
200 1 << PG_active |
201 1 << PG_dirty |
202 1 << PG_reclaim |
203 1 << PG_slab |
204 1 << PG_swapcache |
205 1 << PG_writeback |
206 1 << PG_buddy );
207 set_page_count(page, 0);
208 reset_page_mapcount(page);
209 page->mapping = NULL;
210 add_taint(TAINT_BAD_PAGE);
214 * Higher-order pages are called "compound pages". They are structured thusly:
216 * The first PAGE_SIZE page is called the "head page".
218 * The remaining PAGE_SIZE pages are called "tail pages".
220 * All pages have PG_compound set. All pages have their ->private pointing at
221 * the head page (even the head page has this).
223 * The first tail page's ->lru.next holds the address of the compound page's
224 * put_page() function. Its ->lru.prev holds the order of allocation.
225 * This usage means that zero-order pages may not be compound.
228 static void free_compound_page(struct page *page)
230 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
233 static void prep_compound_page(struct page *page, unsigned long order)
235 int i;
236 int nr_pages = 1 << order;
238 set_compound_page_dtor(page, free_compound_page);
239 page[1].lru.prev = (void *)order;
240 for (i = 0; i < nr_pages; i++) {
241 struct page *p = page + i;
243 __SetPageCompound(p);
244 set_page_private(p, (unsigned long)page);
248 static void destroy_compound_page(struct page *page, unsigned long order)
250 int i;
251 int nr_pages = 1 << order;
253 if (unlikely((unsigned long)page[1].lru.prev != order))
254 bad_page(page);
256 for (i = 0; i < nr_pages; i++) {
257 struct page *p = page + i;
259 if (unlikely(!PageCompound(p) |
260 (page_private(p) != (unsigned long)page)))
261 bad_page(page);
262 __ClearPageCompound(p);
266 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
268 int i;
270 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
272 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
273 * and __GFP_HIGHMEM from hard or soft interrupt context.
275 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
276 for (i = 0; i < (1 << order); i++)
277 clear_highpage(page + i);
281 * function for dealing with page's order in buddy system.
282 * zone->lock is already acquired when we use these.
283 * So, we don't need atomic page->flags operations here.
285 static inline unsigned long page_order(struct page *page)
287 return page_private(page);
290 static inline void set_page_order(struct page *page, int order)
292 set_page_private(page, order);
293 __SetPageBuddy(page);
296 static inline void rmv_page_order(struct page *page)
298 __ClearPageBuddy(page);
299 set_page_private(page, 0);
303 * Locate the struct page for both the matching buddy in our
304 * pair (buddy1) and the combined O(n+1) page they form (page).
306 * 1) Any buddy B1 will have an order O twin B2 which satisfies
307 * the following equation:
308 * B2 = B1 ^ (1 << O)
309 * For example, if the starting buddy (buddy2) is #8 its order
310 * 1 buddy is #10:
311 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
313 * 2) Any buddy B will have an order O+1 parent P which
314 * satisfies the following equation:
315 * P = B & ~(1 << O)
317 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
319 static inline struct page *
320 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
322 unsigned long buddy_idx = page_idx ^ (1 << order);
324 return page + (buddy_idx - page_idx);
327 static inline unsigned long
328 __find_combined_index(unsigned long page_idx, unsigned int order)
330 return (page_idx & ~(1 << order));
334 * This function checks whether a page is free && is the buddy
335 * we can do coalesce a page and its buddy if
336 * (a) the buddy is not in a hole &&
337 * (b) the buddy is in the buddy system &&
338 * (c) a page and its buddy have the same order &&
339 * (d) a page and its buddy are in the same zone.
341 * For recording whether a page is in the buddy system, we use PG_buddy.
342 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
344 * For recording page's order, we use page_private(page).
346 static inline int page_is_buddy(struct page *page, struct page *buddy,
347 int order)
349 #ifdef CONFIG_HOLES_IN_ZONE
350 if (!pfn_valid(page_to_pfn(buddy)))
351 return 0;
352 #endif
354 if (page_zone_id(page) != page_zone_id(buddy))
355 return 0;
357 if (PageBuddy(buddy) && page_order(buddy) == order) {
358 BUG_ON(page_count(buddy) != 0);
359 return 1;
361 return 0;
365 * Freeing function for a buddy system allocator.
367 * The concept of a buddy system is to maintain direct-mapped table
368 * (containing bit values) for memory blocks of various "orders".
369 * The bottom level table contains the map for the smallest allocatable
370 * units of memory (here, pages), and each level above it describes
371 * pairs of units from the levels below, hence, "buddies".
372 * At a high level, all that happens here is marking the table entry
373 * at the bottom level available, and propagating the changes upward
374 * as necessary, plus some accounting needed to play nicely with other
375 * parts of the VM system.
376 * At each level, we keep a list of pages, which are heads of continuous
377 * free pages of length of (1 << order) and marked with PG_buddy. Page's
378 * order is recorded in page_private(page) field.
379 * So when we are allocating or freeing one, we can derive the state of the
380 * other. That is, if we allocate a small block, and both were
381 * free, the remainder of the region must be split into blocks.
382 * If a block is freed, and its buddy is also free, then this
383 * triggers coalescing into a block of larger size.
385 * -- wli
388 static inline void __free_one_page(struct page *page,
389 struct zone *zone, unsigned int order)
391 unsigned long page_idx;
392 int order_size = 1 << order;
394 if (unlikely(PageCompound(page)))
395 destroy_compound_page(page, order);
397 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
399 VM_BUG_ON(page_idx & (order_size - 1));
400 VM_BUG_ON(bad_range(zone, page));
402 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
403 while (order < MAX_ORDER-1) {
404 unsigned long combined_idx;
405 struct free_area *area;
406 struct page *buddy;
408 buddy = __page_find_buddy(page, page_idx, order);
409 if (!page_is_buddy(page, buddy, order))
410 break; /* Move the buddy up one level. */
412 list_del(&buddy->lru);
413 area = zone->free_area + order;
414 area->nr_free--;
415 rmv_page_order(buddy);
416 combined_idx = __find_combined_index(page_idx, order);
417 page = page + (combined_idx - page_idx);
418 page_idx = combined_idx;
419 order++;
421 set_page_order(page, order);
422 list_add(&page->lru, &zone->free_area[order].free_list);
423 zone->free_area[order].nr_free++;
426 static inline int free_pages_check(struct page *page)
428 if (unlikely(page_mapcount(page) |
429 (page->mapping != NULL) |
430 (page_count(page) != 0) |
431 (page->flags & (
432 1 << PG_lru |
433 1 << PG_private |
434 1 << PG_locked |
435 1 << PG_active |
436 1 << PG_reclaim |
437 1 << PG_slab |
438 1 << PG_swapcache |
439 1 << PG_writeback |
440 1 << PG_reserved |
441 1 << PG_buddy ))))
442 bad_page(page);
443 if (PageDirty(page))
444 __ClearPageDirty(page);
446 * For now, we report if PG_reserved was found set, but do not
447 * clear it, and do not free the page. But we shall soon need
448 * to do more, for when the ZERO_PAGE count wraps negative.
450 return PageReserved(page);
454 * Frees a list of pages.
455 * Assumes all pages on list are in same zone, and of same order.
456 * count is the number of pages to free.
458 * If the zone was previously in an "all pages pinned" state then look to
459 * see if this freeing clears that state.
461 * And clear the zone's pages_scanned counter, to hold off the "all pages are
462 * pinned" detection logic.
464 static void free_pages_bulk(struct zone *zone, int count,
465 struct list_head *list, int order)
467 spin_lock(&zone->lock);
468 zone->all_unreclaimable = 0;
469 zone->pages_scanned = 0;
470 while (count--) {
471 struct page *page;
473 VM_BUG_ON(list_empty(list));
474 page = list_entry(list->prev, struct page, lru);
475 /* have to delete it as __free_one_page list manipulates */
476 list_del(&page->lru);
477 __free_one_page(page, zone, order);
479 spin_unlock(&zone->lock);
482 static void free_one_page(struct zone *zone, struct page *page, int order)
484 spin_lock(&zone->lock);
485 zone->all_unreclaimable = 0;
486 zone->pages_scanned = 0;
487 __free_one_page(page, zone, order);
488 spin_unlock(&zone->lock);
491 static void __free_pages_ok(struct page *page, unsigned int order)
493 unsigned long flags;
494 int i;
495 int reserved = 0;
497 for (i = 0 ; i < (1 << order) ; ++i)
498 reserved += free_pages_check(page + i);
499 if (reserved)
500 return;
502 if (!PageHighMem(page))
503 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
504 arch_free_page(page, order);
505 kernel_map_pages(page, 1 << order, 0);
507 local_irq_save(flags);
508 __count_vm_events(PGFREE, 1 << order);
509 free_one_page(page_zone(page), page, order);
510 local_irq_restore(flags);
514 * permit the bootmem allocator to evade page validation on high-order frees
516 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
518 if (order == 0) {
519 __ClearPageReserved(page);
520 set_page_count(page, 0);
521 set_page_refcounted(page);
522 __free_page(page);
523 } else {
524 int loop;
526 prefetchw(page);
527 for (loop = 0; loop < BITS_PER_LONG; loop++) {
528 struct page *p = &page[loop];
530 if (loop + 1 < BITS_PER_LONG)
531 prefetchw(p + 1);
532 __ClearPageReserved(p);
533 set_page_count(p, 0);
536 set_page_refcounted(page);
537 __free_pages(page, order);
543 * The order of subdivision here is critical for the IO subsystem.
544 * Please do not alter this order without good reasons and regression
545 * testing. Specifically, as large blocks of memory are subdivided,
546 * the order in which smaller blocks are delivered depends on the order
547 * they're subdivided in this function. This is the primary factor
548 * influencing the order in which pages are delivered to the IO
549 * subsystem according to empirical testing, and this is also justified
550 * by considering the behavior of a buddy system containing a single
551 * large block of memory acted on by a series of small allocations.
552 * This behavior is a critical factor in sglist merging's success.
554 * -- wli
556 static inline void expand(struct zone *zone, struct page *page,
557 int low, int high, struct free_area *area)
559 unsigned long size = 1 << high;
561 while (high > low) {
562 area--;
563 high--;
564 size >>= 1;
565 VM_BUG_ON(bad_range(zone, &page[size]));
566 list_add(&page[size].lru, &area->free_list);
567 area->nr_free++;
568 set_page_order(&page[size], high);
573 * This page is about to be returned from the page allocator
575 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
577 if (unlikely(page_mapcount(page) |
578 (page->mapping != NULL) |
579 (page_count(page) != 0) |
580 (page->flags & (
581 1 << PG_lru |
582 1 << PG_private |
583 1 << PG_locked |
584 1 << PG_active |
585 1 << PG_dirty |
586 1 << PG_reclaim |
587 1 << PG_slab |
588 1 << PG_swapcache |
589 1 << PG_writeback |
590 1 << PG_reserved |
591 1 << PG_buddy ))))
592 bad_page(page);
595 * For now, we report if PG_reserved was found set, but do not
596 * clear it, and do not allocate the page: as a safety net.
598 if (PageReserved(page))
599 return 1;
601 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
602 1 << PG_referenced | 1 << PG_arch_1 |
603 1 << PG_checked | 1 << PG_mappedtodisk);
604 set_page_private(page, 0);
605 set_page_refcounted(page);
607 arch_alloc_page(page, order);
608 kernel_map_pages(page, 1 << order, 1);
610 if (gfp_flags & __GFP_ZERO)
611 prep_zero_page(page, order, gfp_flags);
613 if (order && (gfp_flags & __GFP_COMP))
614 prep_compound_page(page, order);
616 return 0;
620 * Do the hard work of removing an element from the buddy allocator.
621 * Call me with the zone->lock already held.
623 static struct page *__rmqueue(struct zone *zone, unsigned int order)
625 struct free_area * area;
626 unsigned int current_order;
627 struct page *page;
629 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
630 area = zone->free_area + current_order;
631 if (list_empty(&area->free_list))
632 continue;
634 page = list_entry(area->free_list.next, struct page, lru);
635 list_del(&page->lru);
636 rmv_page_order(page);
637 area->nr_free--;
638 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
639 expand(zone, page, order, current_order, area);
640 return page;
643 return NULL;
647 * Obtain a specified number of elements from the buddy allocator, all under
648 * a single hold of the lock, for efficiency. Add them to the supplied list.
649 * Returns the number of new pages which were placed at *list.
651 static int rmqueue_bulk(struct zone *zone, unsigned int order,
652 unsigned long count, struct list_head *list)
654 int i;
656 spin_lock(&zone->lock);
657 for (i = 0; i < count; ++i) {
658 struct page *page = __rmqueue(zone, order);
659 if (unlikely(page == NULL))
660 break;
661 list_add_tail(&page->lru, list);
663 spin_unlock(&zone->lock);
664 return i;
667 #ifdef CONFIG_NUMA
669 * Called from the slab reaper to drain pagesets on a particular node that
670 * belongs to the currently executing processor.
671 * Note that this function must be called with the thread pinned to
672 * a single processor.
674 void drain_node_pages(int nodeid)
676 int i;
677 enum zone_type z;
678 unsigned long flags;
680 for (z = 0; z < MAX_NR_ZONES; z++) {
681 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
682 struct per_cpu_pageset *pset;
684 if (!populated_zone(zone))
685 continue;
687 pset = zone_pcp(zone, smp_processor_id());
688 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
689 struct per_cpu_pages *pcp;
691 pcp = &pset->pcp[i];
692 if (pcp->count) {
693 int to_drain;
695 local_irq_save(flags);
696 if (pcp->count >= pcp->batch)
697 to_drain = pcp->batch;
698 else
699 to_drain = pcp->count;
700 free_pages_bulk(zone, to_drain, &pcp->list, 0);
701 pcp->count -= to_drain;
702 local_irq_restore(flags);
707 #endif
709 static void __drain_pages(unsigned int cpu)
711 unsigned long flags;
712 struct zone *zone;
713 int i;
715 for_each_zone(zone) {
716 struct per_cpu_pageset *pset;
718 if (!populated_zone(zone))
719 continue;
721 pset = zone_pcp(zone, cpu);
722 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
723 struct per_cpu_pages *pcp;
725 pcp = &pset->pcp[i];
726 local_irq_save(flags);
727 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
728 pcp->count = 0;
729 local_irq_restore(flags);
734 #ifdef CONFIG_PM
736 void mark_free_pages(struct zone *zone)
738 unsigned long pfn, max_zone_pfn;
739 unsigned long flags;
740 int order;
741 struct list_head *curr;
743 if (!zone->spanned_pages)
744 return;
746 spin_lock_irqsave(&zone->lock, flags);
748 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
749 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
750 if (pfn_valid(pfn)) {
751 struct page *page = pfn_to_page(pfn);
753 if (!PageNosave(page))
754 ClearPageNosaveFree(page);
757 for (order = MAX_ORDER - 1; order >= 0; --order)
758 list_for_each(curr, &zone->free_area[order].free_list) {
759 unsigned long i;
761 pfn = page_to_pfn(list_entry(curr, struct page, lru));
762 for (i = 0; i < (1UL << order); i++)
763 SetPageNosaveFree(pfn_to_page(pfn + i));
766 spin_unlock_irqrestore(&zone->lock, flags);
770 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
772 void drain_local_pages(void)
774 unsigned long flags;
776 local_irq_save(flags);
777 __drain_pages(smp_processor_id());
778 local_irq_restore(flags);
780 #endif /* CONFIG_PM */
783 * Free a 0-order page
785 static void fastcall free_hot_cold_page(struct page *page, int cold)
787 struct zone *zone = page_zone(page);
788 struct per_cpu_pages *pcp;
789 unsigned long flags;
791 if (PageAnon(page))
792 page->mapping = NULL;
793 if (free_pages_check(page))
794 return;
796 if (!PageHighMem(page))
797 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
798 arch_free_page(page, 0);
799 kernel_map_pages(page, 1, 0);
801 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
802 local_irq_save(flags);
803 __count_vm_event(PGFREE);
804 list_add(&page->lru, &pcp->list);
805 pcp->count++;
806 if (pcp->count >= pcp->high) {
807 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
808 pcp->count -= pcp->batch;
810 local_irq_restore(flags);
811 put_cpu();
814 void fastcall free_hot_page(struct page *page)
816 free_hot_cold_page(page, 0);
819 void fastcall free_cold_page(struct page *page)
821 free_hot_cold_page(page, 1);
825 * split_page takes a non-compound higher-order page, and splits it into
826 * n (1<<order) sub-pages: page[0..n]
827 * Each sub-page must be freed individually.
829 * Note: this is probably too low level an operation for use in drivers.
830 * Please consult with lkml before using this in your driver.
832 void split_page(struct page *page, unsigned int order)
834 int i;
836 VM_BUG_ON(PageCompound(page));
837 VM_BUG_ON(!page_count(page));
838 for (i = 1; i < (1 << order); i++)
839 set_page_refcounted(page + i);
843 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
844 * we cheat by calling it from here, in the order > 0 path. Saves a branch
845 * or two.
847 static struct page *buffered_rmqueue(struct zonelist *zonelist,
848 struct zone *zone, int order, gfp_t gfp_flags)
850 unsigned long flags;
851 struct page *page;
852 int cold = !!(gfp_flags & __GFP_COLD);
853 int cpu;
855 again:
856 cpu = get_cpu();
857 if (likely(order == 0)) {
858 struct per_cpu_pages *pcp;
860 pcp = &zone_pcp(zone, cpu)->pcp[cold];
861 local_irq_save(flags);
862 if (!pcp->count) {
863 pcp->count = rmqueue_bulk(zone, 0,
864 pcp->batch, &pcp->list);
865 if (unlikely(!pcp->count))
866 goto failed;
868 page = list_entry(pcp->list.next, struct page, lru);
869 list_del(&page->lru);
870 pcp->count--;
871 } else {
872 spin_lock_irqsave(&zone->lock, flags);
873 page = __rmqueue(zone, order);
874 spin_unlock(&zone->lock);
875 if (!page)
876 goto failed;
879 __count_zone_vm_events(PGALLOC, zone, 1 << order);
880 zone_statistics(zonelist, zone);
881 local_irq_restore(flags);
882 put_cpu();
884 VM_BUG_ON(bad_range(zone, page));
885 if (prep_new_page(page, order, gfp_flags))
886 goto again;
887 return page;
889 failed:
890 local_irq_restore(flags);
891 put_cpu();
892 return NULL;
895 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
896 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
897 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
898 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
899 #define ALLOC_HARDER 0x10 /* try to alloc harder */
900 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
901 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
903 #ifdef CONFIG_FAIL_PAGE_ALLOC
905 static struct fail_page_alloc_attr {
906 struct fault_attr attr;
908 u32 ignore_gfp_highmem;
909 u32 ignore_gfp_wait;
911 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
913 struct dentry *ignore_gfp_highmem_file;
914 struct dentry *ignore_gfp_wait_file;
916 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
918 } fail_page_alloc = {
919 .attr = FAULT_ATTR_INITIALIZER,
920 .ignore_gfp_wait = 1,
921 .ignore_gfp_highmem = 1,
924 static int __init setup_fail_page_alloc(char *str)
926 return setup_fault_attr(&fail_page_alloc.attr, str);
928 __setup("fail_page_alloc=", setup_fail_page_alloc);
930 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
932 if (gfp_mask & __GFP_NOFAIL)
933 return 0;
934 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
935 return 0;
936 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
937 return 0;
939 return should_fail(&fail_page_alloc.attr, 1 << order);
942 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
944 static int __init fail_page_alloc_debugfs(void)
946 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
947 struct dentry *dir;
948 int err;
950 err = init_fault_attr_dentries(&fail_page_alloc.attr,
951 "fail_page_alloc");
952 if (err)
953 return err;
954 dir = fail_page_alloc.attr.dentries.dir;
956 fail_page_alloc.ignore_gfp_wait_file =
957 debugfs_create_bool("ignore-gfp-wait", mode, dir,
958 &fail_page_alloc.ignore_gfp_wait);
960 fail_page_alloc.ignore_gfp_highmem_file =
961 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
962 &fail_page_alloc.ignore_gfp_highmem);
964 if (!fail_page_alloc.ignore_gfp_wait_file ||
965 !fail_page_alloc.ignore_gfp_highmem_file) {
966 err = -ENOMEM;
967 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
968 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
969 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
972 return err;
975 late_initcall(fail_page_alloc_debugfs);
977 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
979 #else /* CONFIG_FAIL_PAGE_ALLOC */
981 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
983 return 0;
986 #endif /* CONFIG_FAIL_PAGE_ALLOC */
989 * Return 1 if free pages are above 'mark'. This takes into account the order
990 * of the allocation.
992 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
993 int classzone_idx, int alloc_flags)
995 /* free_pages my go negative - that's OK */
996 long min = mark;
997 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
998 int o;
1000 if (alloc_flags & ALLOC_HIGH)
1001 min -= min / 2;
1002 if (alloc_flags & ALLOC_HARDER)
1003 min -= min / 4;
1005 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1006 return 0;
1007 for (o = 0; o < order; o++) {
1008 /* At the next order, this order's pages become unavailable */
1009 free_pages -= z->free_area[o].nr_free << o;
1011 /* Require fewer higher order pages to be free */
1012 min >>= 1;
1014 if (free_pages <= min)
1015 return 0;
1017 return 1;
1020 #ifdef CONFIG_NUMA
1022 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1023 * skip over zones that are not allowed by the cpuset, or that have
1024 * been recently (in last second) found to be nearly full. See further
1025 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1026 * that have to skip over alot of full or unallowed zones.
1028 * If the zonelist cache is present in the passed in zonelist, then
1029 * returns a pointer to the allowed node mask (either the current
1030 * tasks mems_allowed, or node_online_map.)
1032 * If the zonelist cache is not available for this zonelist, does
1033 * nothing and returns NULL.
1035 * If the fullzones BITMAP in the zonelist cache is stale (more than
1036 * a second since last zap'd) then we zap it out (clear its bits.)
1038 * We hold off even calling zlc_setup, until after we've checked the
1039 * first zone in the zonelist, on the theory that most allocations will
1040 * be satisfied from that first zone, so best to examine that zone as
1041 * quickly as we can.
1043 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1045 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1046 nodemask_t *allowednodes; /* zonelist_cache approximation */
1048 zlc = zonelist->zlcache_ptr;
1049 if (!zlc)
1050 return NULL;
1052 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1053 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1054 zlc->last_full_zap = jiffies;
1057 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1058 &cpuset_current_mems_allowed :
1059 &node_online_map;
1060 return allowednodes;
1064 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1065 * if it is worth looking at further for free memory:
1066 * 1) Check that the zone isn't thought to be full (doesn't have its
1067 * bit set in the zonelist_cache fullzones BITMAP).
1068 * 2) Check that the zones node (obtained from the zonelist_cache
1069 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1070 * Return true (non-zero) if zone is worth looking at further, or
1071 * else return false (zero) if it is not.
1073 * This check -ignores- the distinction between various watermarks,
1074 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1075 * found to be full for any variation of these watermarks, it will
1076 * be considered full for up to one second by all requests, unless
1077 * we are so low on memory on all allowed nodes that we are forced
1078 * into the second scan of the zonelist.
1080 * In the second scan we ignore this zonelist cache and exactly
1081 * apply the watermarks to all zones, even it is slower to do so.
1082 * We are low on memory in the second scan, and should leave no stone
1083 * unturned looking for a free page.
1085 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1086 nodemask_t *allowednodes)
1088 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1089 int i; /* index of *z in zonelist zones */
1090 int n; /* node that zone *z is on */
1092 zlc = zonelist->zlcache_ptr;
1093 if (!zlc)
1094 return 1;
1096 i = z - zonelist->zones;
1097 n = zlc->z_to_n[i];
1099 /* This zone is worth trying if it is allowed but not full */
1100 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1104 * Given 'z' scanning a zonelist, set the corresponding bit in
1105 * zlc->fullzones, so that subsequent attempts to allocate a page
1106 * from that zone don't waste time re-examining it.
1108 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1110 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1111 int i; /* index of *z in zonelist zones */
1113 zlc = zonelist->zlcache_ptr;
1114 if (!zlc)
1115 return;
1117 i = z - zonelist->zones;
1119 set_bit(i, zlc->fullzones);
1122 #else /* CONFIG_NUMA */
1124 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1126 return NULL;
1129 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1130 nodemask_t *allowednodes)
1132 return 1;
1135 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1138 #endif /* CONFIG_NUMA */
1141 * get_page_from_freelist goes through the zonelist trying to allocate
1142 * a page.
1144 static struct page *
1145 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1146 struct zonelist *zonelist, int alloc_flags)
1148 struct zone **z;
1149 struct page *page = NULL;
1150 int classzone_idx = zone_idx(zonelist->zones[0]);
1151 struct zone *zone;
1152 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1153 int zlc_active = 0; /* set if using zonelist_cache */
1154 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1156 zonelist_scan:
1158 * Scan zonelist, looking for a zone with enough free.
1159 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1161 z = zonelist->zones;
1163 do {
1164 if (NUMA_BUILD && zlc_active &&
1165 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1166 continue;
1167 zone = *z;
1168 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1169 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1170 break;
1171 if ((alloc_flags & ALLOC_CPUSET) &&
1172 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1173 goto try_next_zone;
1175 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1176 unsigned long mark;
1177 if (alloc_flags & ALLOC_WMARK_MIN)
1178 mark = zone->pages_min;
1179 else if (alloc_flags & ALLOC_WMARK_LOW)
1180 mark = zone->pages_low;
1181 else
1182 mark = zone->pages_high;
1183 if (!zone_watermark_ok(zone, order, mark,
1184 classzone_idx, alloc_flags)) {
1185 if (!zone_reclaim_mode ||
1186 !zone_reclaim(zone, gfp_mask, order))
1187 goto this_zone_full;
1191 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1192 if (page)
1193 break;
1194 this_zone_full:
1195 if (NUMA_BUILD)
1196 zlc_mark_zone_full(zonelist, z);
1197 try_next_zone:
1198 if (NUMA_BUILD && !did_zlc_setup) {
1199 /* we do zlc_setup after the first zone is tried */
1200 allowednodes = zlc_setup(zonelist, alloc_flags);
1201 zlc_active = 1;
1202 did_zlc_setup = 1;
1204 } while (*(++z) != NULL);
1206 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1207 /* Disable zlc cache for second zonelist scan */
1208 zlc_active = 0;
1209 goto zonelist_scan;
1211 return page;
1215 * This is the 'heart' of the zoned buddy allocator.
1217 struct page * fastcall
1218 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1219 struct zonelist *zonelist)
1221 const gfp_t wait = gfp_mask & __GFP_WAIT;
1222 struct zone **z;
1223 struct page *page;
1224 struct reclaim_state reclaim_state;
1225 struct task_struct *p = current;
1226 int do_retry;
1227 int alloc_flags;
1228 int did_some_progress;
1230 might_sleep_if(wait);
1232 if (should_fail_alloc_page(gfp_mask, order))
1233 return NULL;
1235 restart:
1236 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1238 if (unlikely(*z == NULL)) {
1239 /* Should this ever happen?? */
1240 return NULL;
1243 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1244 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1245 if (page)
1246 goto got_pg;
1249 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1250 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1251 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1252 * using a larger set of nodes after it has established that the
1253 * allowed per node queues are empty and that nodes are
1254 * over allocated.
1256 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1257 goto nopage;
1259 for (z = zonelist->zones; *z; z++)
1260 wakeup_kswapd(*z, order);
1263 * OK, we're below the kswapd watermark and have kicked background
1264 * reclaim. Now things get more complex, so set up alloc_flags according
1265 * to how we want to proceed.
1267 * The caller may dip into page reserves a bit more if the caller
1268 * cannot run direct reclaim, or if the caller has realtime scheduling
1269 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1270 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1272 alloc_flags = ALLOC_WMARK_MIN;
1273 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1274 alloc_flags |= ALLOC_HARDER;
1275 if (gfp_mask & __GFP_HIGH)
1276 alloc_flags |= ALLOC_HIGH;
1277 if (wait)
1278 alloc_flags |= ALLOC_CPUSET;
1281 * Go through the zonelist again. Let __GFP_HIGH and allocations
1282 * coming from realtime tasks go deeper into reserves.
1284 * This is the last chance, in general, before the goto nopage.
1285 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1286 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1288 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1289 if (page)
1290 goto got_pg;
1292 /* This allocation should allow future memory freeing. */
1294 rebalance:
1295 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1296 && !in_interrupt()) {
1297 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1298 nofail_alloc:
1299 /* go through the zonelist yet again, ignoring mins */
1300 page = get_page_from_freelist(gfp_mask, order,
1301 zonelist, ALLOC_NO_WATERMARKS);
1302 if (page)
1303 goto got_pg;
1304 if (gfp_mask & __GFP_NOFAIL) {
1305 congestion_wait(WRITE, HZ/50);
1306 goto nofail_alloc;
1309 goto nopage;
1312 /* Atomic allocations - we can't balance anything */
1313 if (!wait)
1314 goto nopage;
1316 cond_resched();
1318 /* We now go into synchronous reclaim */
1319 cpuset_memory_pressure_bump();
1320 p->flags |= PF_MEMALLOC;
1321 reclaim_state.reclaimed_slab = 0;
1322 p->reclaim_state = &reclaim_state;
1324 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1326 p->reclaim_state = NULL;
1327 p->flags &= ~PF_MEMALLOC;
1329 cond_resched();
1331 if (likely(did_some_progress)) {
1332 page = get_page_from_freelist(gfp_mask, order,
1333 zonelist, alloc_flags);
1334 if (page)
1335 goto got_pg;
1336 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1338 * Go through the zonelist yet one more time, keep
1339 * very high watermark here, this is only to catch
1340 * a parallel oom killing, we must fail if we're still
1341 * under heavy pressure.
1343 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1344 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1345 if (page)
1346 goto got_pg;
1348 out_of_memory(zonelist, gfp_mask, order);
1349 goto restart;
1353 * Don't let big-order allocations loop unless the caller explicitly
1354 * requests that. Wait for some write requests to complete then retry.
1356 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1357 * <= 3, but that may not be true in other implementations.
1359 do_retry = 0;
1360 if (!(gfp_mask & __GFP_NORETRY)) {
1361 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1362 do_retry = 1;
1363 if (gfp_mask & __GFP_NOFAIL)
1364 do_retry = 1;
1366 if (do_retry) {
1367 congestion_wait(WRITE, HZ/50);
1368 goto rebalance;
1371 nopage:
1372 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1373 printk(KERN_WARNING "%s: page allocation failure."
1374 " order:%d, mode:0x%x\n",
1375 p->comm, order, gfp_mask);
1376 dump_stack();
1377 show_mem();
1379 got_pg:
1380 return page;
1383 EXPORT_SYMBOL(__alloc_pages);
1386 * Common helper functions.
1388 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1390 struct page * page;
1391 page = alloc_pages(gfp_mask, order);
1392 if (!page)
1393 return 0;
1394 return (unsigned long) page_address(page);
1397 EXPORT_SYMBOL(__get_free_pages);
1399 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1401 struct page * page;
1404 * get_zeroed_page() returns a 32-bit address, which cannot represent
1405 * a highmem page
1407 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1409 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1410 if (page)
1411 return (unsigned long) page_address(page);
1412 return 0;
1415 EXPORT_SYMBOL(get_zeroed_page);
1417 void __pagevec_free(struct pagevec *pvec)
1419 int i = pagevec_count(pvec);
1421 while (--i >= 0)
1422 free_hot_cold_page(pvec->pages[i], pvec->cold);
1425 fastcall void __free_pages(struct page *page, unsigned int order)
1427 if (put_page_testzero(page)) {
1428 if (order == 0)
1429 free_hot_page(page);
1430 else
1431 __free_pages_ok(page, order);
1435 EXPORT_SYMBOL(__free_pages);
1437 fastcall void free_pages(unsigned long addr, unsigned int order)
1439 if (addr != 0) {
1440 VM_BUG_ON(!virt_addr_valid((void *)addr));
1441 __free_pages(virt_to_page((void *)addr), order);
1445 EXPORT_SYMBOL(free_pages);
1447 static unsigned int nr_free_zone_pages(int offset)
1449 /* Just pick one node, since fallback list is circular */
1450 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1451 unsigned int sum = 0;
1453 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1454 struct zone **zonep = zonelist->zones;
1455 struct zone *zone;
1457 for (zone = *zonep++; zone; zone = *zonep++) {
1458 unsigned long size = zone->present_pages;
1459 unsigned long high = zone->pages_high;
1460 if (size > high)
1461 sum += size - high;
1464 return sum;
1468 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1470 unsigned int nr_free_buffer_pages(void)
1472 return nr_free_zone_pages(gfp_zone(GFP_USER));
1476 * Amount of free RAM allocatable within all zones
1478 unsigned int nr_free_pagecache_pages(void)
1480 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1483 static inline void show_node(struct zone *zone)
1485 if (NUMA_BUILD)
1486 printk("Node %d ", zone_to_nid(zone));
1489 void si_meminfo(struct sysinfo *val)
1491 val->totalram = totalram_pages;
1492 val->sharedram = 0;
1493 val->freeram = global_page_state(NR_FREE_PAGES);
1494 val->bufferram = nr_blockdev_pages();
1495 val->totalhigh = totalhigh_pages;
1496 val->freehigh = nr_free_highpages();
1497 val->mem_unit = PAGE_SIZE;
1500 EXPORT_SYMBOL(si_meminfo);
1502 #ifdef CONFIG_NUMA
1503 void si_meminfo_node(struct sysinfo *val, int nid)
1505 pg_data_t *pgdat = NODE_DATA(nid);
1507 val->totalram = pgdat->node_present_pages;
1508 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1509 #ifdef CONFIG_HIGHMEM
1510 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1511 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1512 NR_FREE_PAGES);
1513 #else
1514 val->totalhigh = 0;
1515 val->freehigh = 0;
1516 #endif
1517 val->mem_unit = PAGE_SIZE;
1519 #endif
1521 #define K(x) ((x) << (PAGE_SHIFT-10))
1524 * Show free area list (used inside shift_scroll-lock stuff)
1525 * We also calculate the percentage fragmentation. We do this by counting the
1526 * memory on each free list with the exception of the first item on the list.
1528 void show_free_areas(void)
1530 int cpu;
1531 struct zone *zone;
1533 for_each_zone(zone) {
1534 if (!populated_zone(zone))
1535 continue;
1537 show_node(zone);
1538 printk("%s per-cpu:\n", zone->name);
1540 for_each_online_cpu(cpu) {
1541 struct per_cpu_pageset *pageset;
1543 pageset = zone_pcp(zone, cpu);
1545 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1546 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1547 cpu, pageset->pcp[0].high,
1548 pageset->pcp[0].batch, pageset->pcp[0].count,
1549 pageset->pcp[1].high, pageset->pcp[1].batch,
1550 pageset->pcp[1].count);
1554 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1555 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1556 global_page_state(NR_ACTIVE),
1557 global_page_state(NR_INACTIVE),
1558 global_page_state(NR_FILE_DIRTY),
1559 global_page_state(NR_WRITEBACK),
1560 global_page_state(NR_UNSTABLE_NFS),
1561 global_page_state(NR_FREE_PAGES),
1562 global_page_state(NR_SLAB_RECLAIMABLE) +
1563 global_page_state(NR_SLAB_UNRECLAIMABLE),
1564 global_page_state(NR_FILE_MAPPED),
1565 global_page_state(NR_PAGETABLE),
1566 global_page_state(NR_BOUNCE));
1568 for_each_zone(zone) {
1569 int i;
1571 if (!populated_zone(zone))
1572 continue;
1574 show_node(zone);
1575 printk("%s"
1576 " free:%lukB"
1577 " min:%lukB"
1578 " low:%lukB"
1579 " high:%lukB"
1580 " active:%lukB"
1581 " inactive:%lukB"
1582 " present:%lukB"
1583 " pages_scanned:%lu"
1584 " all_unreclaimable? %s"
1585 "\n",
1586 zone->name,
1587 K(zone_page_state(zone, NR_FREE_PAGES)),
1588 K(zone->pages_min),
1589 K(zone->pages_low),
1590 K(zone->pages_high),
1591 K(zone_page_state(zone, NR_ACTIVE)),
1592 K(zone_page_state(zone, NR_INACTIVE)),
1593 K(zone->present_pages),
1594 zone->pages_scanned,
1595 (zone->all_unreclaimable ? "yes" : "no")
1597 printk("lowmem_reserve[]:");
1598 for (i = 0; i < MAX_NR_ZONES; i++)
1599 printk(" %lu", zone->lowmem_reserve[i]);
1600 printk("\n");
1603 for_each_zone(zone) {
1604 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1606 if (!populated_zone(zone))
1607 continue;
1609 show_node(zone);
1610 printk("%s: ", zone->name);
1612 spin_lock_irqsave(&zone->lock, flags);
1613 for (order = 0; order < MAX_ORDER; order++) {
1614 nr[order] = zone->free_area[order].nr_free;
1615 total += nr[order] << order;
1617 spin_unlock_irqrestore(&zone->lock, flags);
1618 for (order = 0; order < MAX_ORDER; order++)
1619 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1620 printk("= %lukB\n", K(total));
1623 show_swap_cache_info();
1627 * Builds allocation fallback zone lists.
1629 * Add all populated zones of a node to the zonelist.
1631 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1632 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1634 struct zone *zone;
1636 BUG_ON(zone_type >= MAX_NR_ZONES);
1637 zone_type++;
1639 do {
1640 zone_type--;
1641 zone = pgdat->node_zones + zone_type;
1642 if (populated_zone(zone)) {
1643 zonelist->zones[nr_zones++] = zone;
1644 check_highest_zone(zone_type);
1647 } while (zone_type);
1648 return nr_zones;
1651 #ifdef CONFIG_NUMA
1652 #define MAX_NODE_LOAD (num_online_nodes())
1653 static int __meminitdata node_load[MAX_NUMNODES];
1655 * find_next_best_node - find the next node that should appear in a given node's fallback list
1656 * @node: node whose fallback list we're appending
1657 * @used_node_mask: nodemask_t of already used nodes
1659 * We use a number of factors to determine which is the next node that should
1660 * appear on a given node's fallback list. The node should not have appeared
1661 * already in @node's fallback list, and it should be the next closest node
1662 * according to the distance array (which contains arbitrary distance values
1663 * from each node to each node in the system), and should also prefer nodes
1664 * with no CPUs, since presumably they'll have very little allocation pressure
1665 * on them otherwise.
1666 * It returns -1 if no node is found.
1668 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1670 int n, val;
1671 int min_val = INT_MAX;
1672 int best_node = -1;
1674 /* Use the local node if we haven't already */
1675 if (!node_isset(node, *used_node_mask)) {
1676 node_set(node, *used_node_mask);
1677 return node;
1680 for_each_online_node(n) {
1681 cpumask_t tmp;
1683 /* Don't want a node to appear more than once */
1684 if (node_isset(n, *used_node_mask))
1685 continue;
1687 /* Use the distance array to find the distance */
1688 val = node_distance(node, n);
1690 /* Penalize nodes under us ("prefer the next node") */
1691 val += (n < node);
1693 /* Give preference to headless and unused nodes */
1694 tmp = node_to_cpumask(n);
1695 if (!cpus_empty(tmp))
1696 val += PENALTY_FOR_NODE_WITH_CPUS;
1698 /* Slight preference for less loaded node */
1699 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1700 val += node_load[n];
1702 if (val < min_val) {
1703 min_val = val;
1704 best_node = n;
1708 if (best_node >= 0)
1709 node_set(best_node, *used_node_mask);
1711 return best_node;
1714 static void __meminit build_zonelists(pg_data_t *pgdat)
1716 int j, node, local_node;
1717 enum zone_type i;
1718 int prev_node, load;
1719 struct zonelist *zonelist;
1720 nodemask_t used_mask;
1722 /* initialize zonelists */
1723 for (i = 0; i < MAX_NR_ZONES; i++) {
1724 zonelist = pgdat->node_zonelists + i;
1725 zonelist->zones[0] = NULL;
1728 /* NUMA-aware ordering of nodes */
1729 local_node = pgdat->node_id;
1730 load = num_online_nodes();
1731 prev_node = local_node;
1732 nodes_clear(used_mask);
1733 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1734 int distance = node_distance(local_node, node);
1737 * If another node is sufficiently far away then it is better
1738 * to reclaim pages in a zone before going off node.
1740 if (distance > RECLAIM_DISTANCE)
1741 zone_reclaim_mode = 1;
1744 * We don't want to pressure a particular node.
1745 * So adding penalty to the first node in same
1746 * distance group to make it round-robin.
1749 if (distance != node_distance(local_node, prev_node))
1750 node_load[node] += load;
1751 prev_node = node;
1752 load--;
1753 for (i = 0; i < MAX_NR_ZONES; i++) {
1754 zonelist = pgdat->node_zonelists + i;
1755 for (j = 0; zonelist->zones[j] != NULL; j++);
1757 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1758 zonelist->zones[j] = NULL;
1763 /* Construct the zonelist performance cache - see further mmzone.h */
1764 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1766 int i;
1768 for (i = 0; i < MAX_NR_ZONES; i++) {
1769 struct zonelist *zonelist;
1770 struct zonelist_cache *zlc;
1771 struct zone **z;
1773 zonelist = pgdat->node_zonelists + i;
1774 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1775 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1776 for (z = zonelist->zones; *z; z++)
1777 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1781 #else /* CONFIG_NUMA */
1783 static void __meminit build_zonelists(pg_data_t *pgdat)
1785 int node, local_node;
1786 enum zone_type i,j;
1788 local_node = pgdat->node_id;
1789 for (i = 0; i < MAX_NR_ZONES; i++) {
1790 struct zonelist *zonelist;
1792 zonelist = pgdat->node_zonelists + i;
1794 j = build_zonelists_node(pgdat, zonelist, 0, i);
1796 * Now we build the zonelist so that it contains the zones
1797 * of all the other nodes.
1798 * We don't want to pressure a particular node, so when
1799 * building the zones for node N, we make sure that the
1800 * zones coming right after the local ones are those from
1801 * node N+1 (modulo N)
1803 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1804 if (!node_online(node))
1805 continue;
1806 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1808 for (node = 0; node < local_node; node++) {
1809 if (!node_online(node))
1810 continue;
1811 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1814 zonelist->zones[j] = NULL;
1818 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1819 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1821 int i;
1823 for (i = 0; i < MAX_NR_ZONES; i++)
1824 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1827 #endif /* CONFIG_NUMA */
1829 /* return values int ....just for stop_machine_run() */
1830 static int __meminit __build_all_zonelists(void *dummy)
1832 int nid;
1834 for_each_online_node(nid) {
1835 build_zonelists(NODE_DATA(nid));
1836 build_zonelist_cache(NODE_DATA(nid));
1838 return 0;
1841 void __meminit build_all_zonelists(void)
1843 if (system_state == SYSTEM_BOOTING) {
1844 __build_all_zonelists(NULL);
1845 cpuset_init_current_mems_allowed();
1846 } else {
1847 /* we have to stop all cpus to guaranntee there is no user
1848 of zonelist */
1849 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1850 /* cpuset refresh routine should be here */
1852 vm_total_pages = nr_free_pagecache_pages();
1853 printk("Built %i zonelists. Total pages: %ld\n",
1854 num_online_nodes(), vm_total_pages);
1858 * Helper functions to size the waitqueue hash table.
1859 * Essentially these want to choose hash table sizes sufficiently
1860 * large so that collisions trying to wait on pages are rare.
1861 * But in fact, the number of active page waitqueues on typical
1862 * systems is ridiculously low, less than 200. So this is even
1863 * conservative, even though it seems large.
1865 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1866 * waitqueues, i.e. the size of the waitq table given the number of pages.
1868 #define PAGES_PER_WAITQUEUE 256
1870 #ifndef CONFIG_MEMORY_HOTPLUG
1871 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1873 unsigned long size = 1;
1875 pages /= PAGES_PER_WAITQUEUE;
1877 while (size < pages)
1878 size <<= 1;
1881 * Once we have dozens or even hundreds of threads sleeping
1882 * on IO we've got bigger problems than wait queue collision.
1883 * Limit the size of the wait table to a reasonable size.
1885 size = min(size, 4096UL);
1887 return max(size, 4UL);
1889 #else
1891 * A zone's size might be changed by hot-add, so it is not possible to determine
1892 * a suitable size for its wait_table. So we use the maximum size now.
1894 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1896 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1897 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1898 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1900 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1901 * or more by the traditional way. (See above). It equals:
1903 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1904 * ia64(16K page size) : = ( 8G + 4M)byte.
1905 * powerpc (64K page size) : = (32G +16M)byte.
1907 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1909 return 4096UL;
1911 #endif
1914 * This is an integer logarithm so that shifts can be used later
1915 * to extract the more random high bits from the multiplicative
1916 * hash function before the remainder is taken.
1918 static inline unsigned long wait_table_bits(unsigned long size)
1920 return ffz(~size);
1923 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1926 * Initially all pages are reserved - free ones are freed
1927 * up by free_all_bootmem() once the early boot process is
1928 * done. Non-atomic initialization, single-pass.
1930 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1931 unsigned long start_pfn, enum memmap_context context)
1933 struct page *page;
1934 unsigned long end_pfn = start_pfn + size;
1935 unsigned long pfn;
1937 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1939 * There can be holes in boot-time mem_map[]s
1940 * handed to this function. They do not
1941 * exist on hotplugged memory.
1943 if (context == MEMMAP_EARLY) {
1944 if (!early_pfn_valid(pfn))
1945 continue;
1946 if (!early_pfn_in_nid(pfn, nid))
1947 continue;
1949 page = pfn_to_page(pfn);
1950 set_page_links(page, zone, nid, pfn);
1951 init_page_count(page);
1952 reset_page_mapcount(page);
1953 SetPageReserved(page);
1954 INIT_LIST_HEAD(&page->lru);
1955 #ifdef WANT_PAGE_VIRTUAL
1956 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1957 if (!is_highmem_idx(zone))
1958 set_page_address(page, __va(pfn << PAGE_SHIFT));
1959 #endif
1963 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1964 unsigned long size)
1966 int order;
1967 for (order = 0; order < MAX_ORDER ; order++) {
1968 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1969 zone->free_area[order].nr_free = 0;
1973 #ifndef __HAVE_ARCH_MEMMAP_INIT
1974 #define memmap_init(size, nid, zone, start_pfn) \
1975 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1976 #endif
1978 static int __cpuinit zone_batchsize(struct zone *zone)
1980 int batch;
1983 * The per-cpu-pages pools are set to around 1000th of the
1984 * size of the zone. But no more than 1/2 of a meg.
1986 * OK, so we don't know how big the cache is. So guess.
1988 batch = zone->present_pages / 1024;
1989 if (batch * PAGE_SIZE > 512 * 1024)
1990 batch = (512 * 1024) / PAGE_SIZE;
1991 batch /= 4; /* We effectively *= 4 below */
1992 if (batch < 1)
1993 batch = 1;
1996 * Clamp the batch to a 2^n - 1 value. Having a power
1997 * of 2 value was found to be more likely to have
1998 * suboptimal cache aliasing properties in some cases.
2000 * For example if 2 tasks are alternately allocating
2001 * batches of pages, one task can end up with a lot
2002 * of pages of one half of the possible page colors
2003 * and the other with pages of the other colors.
2005 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2007 return batch;
2010 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2012 struct per_cpu_pages *pcp;
2014 memset(p, 0, sizeof(*p));
2016 pcp = &p->pcp[0]; /* hot */
2017 pcp->count = 0;
2018 pcp->high = 6 * batch;
2019 pcp->batch = max(1UL, 1 * batch);
2020 INIT_LIST_HEAD(&pcp->list);
2022 pcp = &p->pcp[1]; /* cold*/
2023 pcp->count = 0;
2024 pcp->high = 2 * batch;
2025 pcp->batch = max(1UL, batch/2);
2026 INIT_LIST_HEAD(&pcp->list);
2030 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2031 * to the value high for the pageset p.
2034 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2035 unsigned long high)
2037 struct per_cpu_pages *pcp;
2039 pcp = &p->pcp[0]; /* hot list */
2040 pcp->high = high;
2041 pcp->batch = max(1UL, high/4);
2042 if ((high/4) > (PAGE_SHIFT * 8))
2043 pcp->batch = PAGE_SHIFT * 8;
2047 #ifdef CONFIG_NUMA
2049 * Boot pageset table. One per cpu which is going to be used for all
2050 * zones and all nodes. The parameters will be set in such a way
2051 * that an item put on a list will immediately be handed over to
2052 * the buddy list. This is safe since pageset manipulation is done
2053 * with interrupts disabled.
2055 * Some NUMA counter updates may also be caught by the boot pagesets.
2057 * The boot_pagesets must be kept even after bootup is complete for
2058 * unused processors and/or zones. They do play a role for bootstrapping
2059 * hotplugged processors.
2061 * zoneinfo_show() and maybe other functions do
2062 * not check if the processor is online before following the pageset pointer.
2063 * Other parts of the kernel may not check if the zone is available.
2065 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2068 * Dynamically allocate memory for the
2069 * per cpu pageset array in struct zone.
2071 static int __cpuinit process_zones(int cpu)
2073 struct zone *zone, *dzone;
2075 for_each_zone(zone) {
2077 if (!populated_zone(zone))
2078 continue;
2080 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2081 GFP_KERNEL, cpu_to_node(cpu));
2082 if (!zone_pcp(zone, cpu))
2083 goto bad;
2085 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2087 if (percpu_pagelist_fraction)
2088 setup_pagelist_highmark(zone_pcp(zone, cpu),
2089 (zone->present_pages / percpu_pagelist_fraction));
2092 return 0;
2093 bad:
2094 for_each_zone(dzone) {
2095 if (dzone == zone)
2096 break;
2097 kfree(zone_pcp(dzone, cpu));
2098 zone_pcp(dzone, cpu) = NULL;
2100 return -ENOMEM;
2103 static inline void free_zone_pagesets(int cpu)
2105 struct zone *zone;
2107 for_each_zone(zone) {
2108 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2110 /* Free per_cpu_pageset if it is slab allocated */
2111 if (pset != &boot_pageset[cpu])
2112 kfree(pset);
2113 zone_pcp(zone, cpu) = NULL;
2117 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2118 unsigned long action,
2119 void *hcpu)
2121 int cpu = (long)hcpu;
2122 int ret = NOTIFY_OK;
2124 switch (action) {
2125 case CPU_UP_PREPARE:
2126 if (process_zones(cpu))
2127 ret = NOTIFY_BAD;
2128 break;
2129 case CPU_UP_CANCELED:
2130 case CPU_DEAD:
2131 free_zone_pagesets(cpu);
2132 break;
2133 default:
2134 break;
2136 return ret;
2139 static struct notifier_block __cpuinitdata pageset_notifier =
2140 { &pageset_cpuup_callback, NULL, 0 };
2142 void __init setup_per_cpu_pageset(void)
2144 int err;
2146 /* Initialize per_cpu_pageset for cpu 0.
2147 * A cpuup callback will do this for every cpu
2148 * as it comes online
2150 err = process_zones(smp_processor_id());
2151 BUG_ON(err);
2152 register_cpu_notifier(&pageset_notifier);
2155 #endif
2157 static __meminit
2158 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2160 int i;
2161 struct pglist_data *pgdat = zone->zone_pgdat;
2162 size_t alloc_size;
2165 * The per-page waitqueue mechanism uses hashed waitqueues
2166 * per zone.
2168 zone->wait_table_hash_nr_entries =
2169 wait_table_hash_nr_entries(zone_size_pages);
2170 zone->wait_table_bits =
2171 wait_table_bits(zone->wait_table_hash_nr_entries);
2172 alloc_size = zone->wait_table_hash_nr_entries
2173 * sizeof(wait_queue_head_t);
2175 if (system_state == SYSTEM_BOOTING) {
2176 zone->wait_table = (wait_queue_head_t *)
2177 alloc_bootmem_node(pgdat, alloc_size);
2178 } else {
2180 * This case means that a zone whose size was 0 gets new memory
2181 * via memory hot-add.
2182 * But it may be the case that a new node was hot-added. In
2183 * this case vmalloc() will not be able to use this new node's
2184 * memory - this wait_table must be initialized to use this new
2185 * node itself as well.
2186 * To use this new node's memory, further consideration will be
2187 * necessary.
2189 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2191 if (!zone->wait_table)
2192 return -ENOMEM;
2194 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2195 init_waitqueue_head(zone->wait_table + i);
2197 return 0;
2200 static __meminit void zone_pcp_init(struct zone *zone)
2202 int cpu;
2203 unsigned long batch = zone_batchsize(zone);
2205 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2206 #ifdef CONFIG_NUMA
2207 /* Early boot. Slab allocator not functional yet */
2208 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2209 setup_pageset(&boot_pageset[cpu],0);
2210 #else
2211 setup_pageset(zone_pcp(zone,cpu), batch);
2212 #endif
2214 if (zone->present_pages)
2215 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2216 zone->name, zone->present_pages, batch);
2219 __meminit int init_currently_empty_zone(struct zone *zone,
2220 unsigned long zone_start_pfn,
2221 unsigned long size,
2222 enum memmap_context context)
2224 struct pglist_data *pgdat = zone->zone_pgdat;
2225 int ret;
2226 ret = zone_wait_table_init(zone, size);
2227 if (ret)
2228 return ret;
2229 pgdat->nr_zones = zone_idx(zone) + 1;
2231 zone->zone_start_pfn = zone_start_pfn;
2233 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2235 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2237 return 0;
2240 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2242 * Basic iterator support. Return the first range of PFNs for a node
2243 * Note: nid == MAX_NUMNODES returns first region regardless of node
2245 static int __init first_active_region_index_in_nid(int nid)
2247 int i;
2249 for (i = 0; i < nr_nodemap_entries; i++)
2250 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2251 return i;
2253 return -1;
2257 * Basic iterator support. Return the next active range of PFNs for a node
2258 * Note: nid == MAX_NUMNODES returns next region regardles of node
2260 static int __init next_active_region_index_in_nid(int index, int nid)
2262 for (index = index + 1; index < nr_nodemap_entries; index++)
2263 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2264 return index;
2266 return -1;
2269 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2271 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2272 * Architectures may implement their own version but if add_active_range()
2273 * was used and there are no special requirements, this is a convenient
2274 * alternative
2276 int __init early_pfn_to_nid(unsigned long pfn)
2278 int i;
2280 for (i = 0; i < nr_nodemap_entries; i++) {
2281 unsigned long start_pfn = early_node_map[i].start_pfn;
2282 unsigned long end_pfn = early_node_map[i].end_pfn;
2284 if (start_pfn <= pfn && pfn < end_pfn)
2285 return early_node_map[i].nid;
2288 return 0;
2290 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2292 /* Basic iterator support to walk early_node_map[] */
2293 #define for_each_active_range_index_in_nid(i, nid) \
2294 for (i = first_active_region_index_in_nid(nid); i != -1; \
2295 i = next_active_region_index_in_nid(i, nid))
2298 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2299 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2300 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2302 * If an architecture guarantees that all ranges registered with
2303 * add_active_ranges() contain no holes and may be freed, this
2304 * this function may be used instead of calling free_bootmem() manually.
2306 void __init free_bootmem_with_active_regions(int nid,
2307 unsigned long max_low_pfn)
2309 int i;
2311 for_each_active_range_index_in_nid(i, nid) {
2312 unsigned long size_pages = 0;
2313 unsigned long end_pfn = early_node_map[i].end_pfn;
2315 if (early_node_map[i].start_pfn >= max_low_pfn)
2316 continue;
2318 if (end_pfn > max_low_pfn)
2319 end_pfn = max_low_pfn;
2321 size_pages = end_pfn - early_node_map[i].start_pfn;
2322 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2323 PFN_PHYS(early_node_map[i].start_pfn),
2324 size_pages << PAGE_SHIFT);
2329 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2330 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2332 * If an architecture guarantees that all ranges registered with
2333 * add_active_ranges() contain no holes and may be freed, this
2334 * function may be used instead of calling memory_present() manually.
2336 void __init sparse_memory_present_with_active_regions(int nid)
2338 int i;
2340 for_each_active_range_index_in_nid(i, nid)
2341 memory_present(early_node_map[i].nid,
2342 early_node_map[i].start_pfn,
2343 early_node_map[i].end_pfn);
2347 * push_node_boundaries - Push node boundaries to at least the requested boundary
2348 * @nid: The nid of the node to push the boundary for
2349 * @start_pfn: The start pfn of the node
2350 * @end_pfn: The end pfn of the node
2352 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2353 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2354 * be hotplugged even though no physical memory exists. This function allows
2355 * an arch to push out the node boundaries so mem_map is allocated that can
2356 * be used later.
2358 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2359 void __init push_node_boundaries(unsigned int nid,
2360 unsigned long start_pfn, unsigned long end_pfn)
2362 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2363 nid, start_pfn, end_pfn);
2365 /* Initialise the boundary for this node if necessary */
2366 if (node_boundary_end_pfn[nid] == 0)
2367 node_boundary_start_pfn[nid] = -1UL;
2369 /* Update the boundaries */
2370 if (node_boundary_start_pfn[nid] > start_pfn)
2371 node_boundary_start_pfn[nid] = start_pfn;
2372 if (node_boundary_end_pfn[nid] < end_pfn)
2373 node_boundary_end_pfn[nid] = end_pfn;
2376 /* If necessary, push the node boundary out for reserve hotadd */
2377 static void __init account_node_boundary(unsigned int nid,
2378 unsigned long *start_pfn, unsigned long *end_pfn)
2380 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2381 nid, *start_pfn, *end_pfn);
2383 /* Return if boundary information has not been provided */
2384 if (node_boundary_end_pfn[nid] == 0)
2385 return;
2387 /* Check the boundaries and update if necessary */
2388 if (node_boundary_start_pfn[nid] < *start_pfn)
2389 *start_pfn = node_boundary_start_pfn[nid];
2390 if (node_boundary_end_pfn[nid] > *end_pfn)
2391 *end_pfn = node_boundary_end_pfn[nid];
2393 #else
2394 void __init push_node_boundaries(unsigned int nid,
2395 unsigned long start_pfn, unsigned long end_pfn) {}
2397 static void __init account_node_boundary(unsigned int nid,
2398 unsigned long *start_pfn, unsigned long *end_pfn) {}
2399 #endif
2403 * get_pfn_range_for_nid - Return the start and end page frames for a node
2404 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2405 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2406 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2408 * It returns the start and end page frame of a node based on information
2409 * provided by an arch calling add_active_range(). If called for a node
2410 * with no available memory, a warning is printed and the start and end
2411 * PFNs will be 0.
2413 void __init get_pfn_range_for_nid(unsigned int nid,
2414 unsigned long *start_pfn, unsigned long *end_pfn)
2416 int i;
2417 *start_pfn = -1UL;
2418 *end_pfn = 0;
2420 for_each_active_range_index_in_nid(i, nid) {
2421 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2422 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2425 if (*start_pfn == -1UL) {
2426 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2427 *start_pfn = 0;
2430 /* Push the node boundaries out if requested */
2431 account_node_boundary(nid, start_pfn, end_pfn);
2435 * Return the number of pages a zone spans in a node, including holes
2436 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2438 unsigned long __init zone_spanned_pages_in_node(int nid,
2439 unsigned long zone_type,
2440 unsigned long *ignored)
2442 unsigned long node_start_pfn, node_end_pfn;
2443 unsigned long zone_start_pfn, zone_end_pfn;
2445 /* Get the start and end of the node and zone */
2446 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2447 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2448 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2450 /* Check that this node has pages within the zone's required range */
2451 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2452 return 0;
2454 /* Move the zone boundaries inside the node if necessary */
2455 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2456 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2458 /* Return the spanned pages */
2459 return zone_end_pfn - zone_start_pfn;
2463 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2464 * then all holes in the requested range will be accounted for.
2466 unsigned long __init __absent_pages_in_range(int nid,
2467 unsigned long range_start_pfn,
2468 unsigned long range_end_pfn)
2470 int i = 0;
2471 unsigned long prev_end_pfn = 0, hole_pages = 0;
2472 unsigned long start_pfn;
2474 /* Find the end_pfn of the first active range of pfns in the node */
2475 i = first_active_region_index_in_nid(nid);
2476 if (i == -1)
2477 return 0;
2479 /* Account for ranges before physical memory on this node */
2480 if (early_node_map[i].start_pfn > range_start_pfn)
2481 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2483 prev_end_pfn = early_node_map[i].start_pfn;
2485 /* Find all holes for the zone within the node */
2486 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2488 /* No need to continue if prev_end_pfn is outside the zone */
2489 if (prev_end_pfn >= range_end_pfn)
2490 break;
2492 /* Make sure the end of the zone is not within the hole */
2493 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2494 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2496 /* Update the hole size cound and move on */
2497 if (start_pfn > range_start_pfn) {
2498 BUG_ON(prev_end_pfn > start_pfn);
2499 hole_pages += start_pfn - prev_end_pfn;
2501 prev_end_pfn = early_node_map[i].end_pfn;
2504 /* Account for ranges past physical memory on this node */
2505 if (range_end_pfn > prev_end_pfn)
2506 hole_pages += range_end_pfn -
2507 max(range_start_pfn, prev_end_pfn);
2509 return hole_pages;
2513 * absent_pages_in_range - Return number of page frames in holes within a range
2514 * @start_pfn: The start PFN to start searching for holes
2515 * @end_pfn: The end PFN to stop searching for holes
2517 * It returns the number of pages frames in memory holes within a range.
2519 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2520 unsigned long end_pfn)
2522 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2525 /* Return the number of page frames in holes in a zone on a node */
2526 unsigned long __init zone_absent_pages_in_node(int nid,
2527 unsigned long zone_type,
2528 unsigned long *ignored)
2530 unsigned long node_start_pfn, node_end_pfn;
2531 unsigned long zone_start_pfn, zone_end_pfn;
2533 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2534 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2535 node_start_pfn);
2536 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2537 node_end_pfn);
2539 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2542 #else
2543 static inline unsigned long zone_spanned_pages_in_node(int nid,
2544 unsigned long zone_type,
2545 unsigned long *zones_size)
2547 return zones_size[zone_type];
2550 static inline unsigned long zone_absent_pages_in_node(int nid,
2551 unsigned long zone_type,
2552 unsigned long *zholes_size)
2554 if (!zholes_size)
2555 return 0;
2557 return zholes_size[zone_type];
2560 #endif
2562 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2563 unsigned long *zones_size, unsigned long *zholes_size)
2565 unsigned long realtotalpages, totalpages = 0;
2566 enum zone_type i;
2568 for (i = 0; i < MAX_NR_ZONES; i++)
2569 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2570 zones_size);
2571 pgdat->node_spanned_pages = totalpages;
2573 realtotalpages = totalpages;
2574 for (i = 0; i < MAX_NR_ZONES; i++)
2575 realtotalpages -=
2576 zone_absent_pages_in_node(pgdat->node_id, i,
2577 zholes_size);
2578 pgdat->node_present_pages = realtotalpages;
2579 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2580 realtotalpages);
2584 * Set up the zone data structures:
2585 * - mark all pages reserved
2586 * - mark all memory queues empty
2587 * - clear the memory bitmaps
2589 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2590 unsigned long *zones_size, unsigned long *zholes_size)
2592 enum zone_type j;
2593 int nid = pgdat->node_id;
2594 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2595 int ret;
2597 pgdat_resize_init(pgdat);
2598 pgdat->nr_zones = 0;
2599 init_waitqueue_head(&pgdat->kswapd_wait);
2600 pgdat->kswapd_max_order = 0;
2602 for (j = 0; j < MAX_NR_ZONES; j++) {
2603 struct zone *zone = pgdat->node_zones + j;
2604 unsigned long size, realsize, memmap_pages;
2606 size = zone_spanned_pages_in_node(nid, j, zones_size);
2607 realsize = size - zone_absent_pages_in_node(nid, j,
2608 zholes_size);
2611 * Adjust realsize so that it accounts for how much memory
2612 * is used by this zone for memmap. This affects the watermark
2613 * and per-cpu initialisations
2615 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2616 if (realsize >= memmap_pages) {
2617 realsize -= memmap_pages;
2618 printk(KERN_DEBUG
2619 " %s zone: %lu pages used for memmap\n",
2620 zone_names[j], memmap_pages);
2621 } else
2622 printk(KERN_WARNING
2623 " %s zone: %lu pages exceeds realsize %lu\n",
2624 zone_names[j], memmap_pages, realsize);
2626 /* Account for reserved pages */
2627 if (j == 0 && realsize > dma_reserve) {
2628 realsize -= dma_reserve;
2629 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2630 zone_names[0], dma_reserve);
2633 if (!is_highmem_idx(j))
2634 nr_kernel_pages += realsize;
2635 nr_all_pages += realsize;
2637 zone->spanned_pages = size;
2638 zone->present_pages = realsize;
2639 #ifdef CONFIG_NUMA
2640 zone->node = nid;
2641 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2642 / 100;
2643 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2644 #endif
2645 zone->name = zone_names[j];
2646 spin_lock_init(&zone->lock);
2647 spin_lock_init(&zone->lru_lock);
2648 zone_seqlock_init(zone);
2649 zone->zone_pgdat = pgdat;
2651 zone->prev_priority = DEF_PRIORITY;
2653 zone_pcp_init(zone);
2654 INIT_LIST_HEAD(&zone->active_list);
2655 INIT_LIST_HEAD(&zone->inactive_list);
2656 zone->nr_scan_active = 0;
2657 zone->nr_scan_inactive = 0;
2658 zap_zone_vm_stats(zone);
2659 atomic_set(&zone->reclaim_in_progress, 0);
2660 if (!size)
2661 continue;
2663 ret = init_currently_empty_zone(zone, zone_start_pfn,
2664 size, MEMMAP_EARLY);
2665 BUG_ON(ret);
2666 zone_start_pfn += size;
2670 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2672 /* Skip empty nodes */
2673 if (!pgdat->node_spanned_pages)
2674 return;
2676 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2677 /* ia64 gets its own node_mem_map, before this, without bootmem */
2678 if (!pgdat->node_mem_map) {
2679 unsigned long size, start, end;
2680 struct page *map;
2683 * The zone's endpoints aren't required to be MAX_ORDER
2684 * aligned but the node_mem_map endpoints must be in order
2685 * for the buddy allocator to function correctly.
2687 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2688 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2689 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2690 size = (end - start) * sizeof(struct page);
2691 map = alloc_remap(pgdat->node_id, size);
2692 if (!map)
2693 map = alloc_bootmem_node(pgdat, size);
2694 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2696 #ifdef CONFIG_FLATMEM
2698 * With no DISCONTIG, the global mem_map is just set as node 0's
2700 if (pgdat == NODE_DATA(0)) {
2701 mem_map = NODE_DATA(0)->node_mem_map;
2702 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2703 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2704 mem_map -= pgdat->node_start_pfn;
2705 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2707 #endif
2708 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2711 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2712 unsigned long *zones_size, unsigned long node_start_pfn,
2713 unsigned long *zholes_size)
2715 pgdat->node_id = nid;
2716 pgdat->node_start_pfn = node_start_pfn;
2717 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2719 alloc_node_mem_map(pgdat);
2721 free_area_init_core(pgdat, zones_size, zholes_size);
2724 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2726 * add_active_range - Register a range of PFNs backed by physical memory
2727 * @nid: The node ID the range resides on
2728 * @start_pfn: The start PFN of the available physical memory
2729 * @end_pfn: The end PFN of the available physical memory
2731 * These ranges are stored in an early_node_map[] and later used by
2732 * free_area_init_nodes() to calculate zone sizes and holes. If the
2733 * range spans a memory hole, it is up to the architecture to ensure
2734 * the memory is not freed by the bootmem allocator. If possible
2735 * the range being registered will be merged with existing ranges.
2737 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2738 unsigned long end_pfn)
2740 int i;
2742 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2743 "%d entries of %d used\n",
2744 nid, start_pfn, end_pfn,
2745 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2747 /* Merge with existing active regions if possible */
2748 for (i = 0; i < nr_nodemap_entries; i++) {
2749 if (early_node_map[i].nid != nid)
2750 continue;
2752 /* Skip if an existing region covers this new one */
2753 if (start_pfn >= early_node_map[i].start_pfn &&
2754 end_pfn <= early_node_map[i].end_pfn)
2755 return;
2757 /* Merge forward if suitable */
2758 if (start_pfn <= early_node_map[i].end_pfn &&
2759 end_pfn > early_node_map[i].end_pfn) {
2760 early_node_map[i].end_pfn = end_pfn;
2761 return;
2764 /* Merge backward if suitable */
2765 if (start_pfn < early_node_map[i].end_pfn &&
2766 end_pfn >= early_node_map[i].start_pfn) {
2767 early_node_map[i].start_pfn = start_pfn;
2768 return;
2772 /* Check that early_node_map is large enough */
2773 if (i >= MAX_ACTIVE_REGIONS) {
2774 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2775 MAX_ACTIVE_REGIONS);
2776 return;
2779 early_node_map[i].nid = nid;
2780 early_node_map[i].start_pfn = start_pfn;
2781 early_node_map[i].end_pfn = end_pfn;
2782 nr_nodemap_entries = i + 1;
2786 * shrink_active_range - Shrink an existing registered range of PFNs
2787 * @nid: The node id the range is on that should be shrunk
2788 * @old_end_pfn: The old end PFN of the range
2789 * @new_end_pfn: The new PFN of the range
2791 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2792 * The map is kept at the end physical page range that has already been
2793 * registered with add_active_range(). This function allows an arch to shrink
2794 * an existing registered range.
2796 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2797 unsigned long new_end_pfn)
2799 int i;
2801 /* Find the old active region end and shrink */
2802 for_each_active_range_index_in_nid(i, nid)
2803 if (early_node_map[i].end_pfn == old_end_pfn) {
2804 early_node_map[i].end_pfn = new_end_pfn;
2805 break;
2810 * remove_all_active_ranges - Remove all currently registered regions
2812 * During discovery, it may be found that a table like SRAT is invalid
2813 * and an alternative discovery method must be used. This function removes
2814 * all currently registered regions.
2816 void __init remove_all_active_ranges(void)
2818 memset(early_node_map, 0, sizeof(early_node_map));
2819 nr_nodemap_entries = 0;
2820 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2821 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2822 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2823 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2826 /* Compare two active node_active_regions */
2827 static int __init cmp_node_active_region(const void *a, const void *b)
2829 struct node_active_region *arange = (struct node_active_region *)a;
2830 struct node_active_region *brange = (struct node_active_region *)b;
2832 /* Done this way to avoid overflows */
2833 if (arange->start_pfn > brange->start_pfn)
2834 return 1;
2835 if (arange->start_pfn < brange->start_pfn)
2836 return -1;
2838 return 0;
2841 /* sort the node_map by start_pfn */
2842 static void __init sort_node_map(void)
2844 sort(early_node_map, (size_t)nr_nodemap_entries,
2845 sizeof(struct node_active_region),
2846 cmp_node_active_region, NULL);
2849 /* Find the lowest pfn for a node */
2850 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2852 int i;
2853 unsigned long min_pfn = ULONG_MAX;
2855 /* Assuming a sorted map, the first range found has the starting pfn */
2856 for_each_active_range_index_in_nid(i, nid)
2857 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2859 if (min_pfn == ULONG_MAX) {
2860 printk(KERN_WARNING
2861 "Could not find start_pfn for node %lu\n", nid);
2862 return 0;
2865 return min_pfn;
2869 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2871 * It returns the minimum PFN based on information provided via
2872 * add_active_range().
2874 unsigned long __init find_min_pfn_with_active_regions(void)
2876 return find_min_pfn_for_node(MAX_NUMNODES);
2880 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2882 * It returns the maximum PFN based on information provided via
2883 * add_active_range().
2885 unsigned long __init find_max_pfn_with_active_regions(void)
2887 int i;
2888 unsigned long max_pfn = 0;
2890 for (i = 0; i < nr_nodemap_entries; i++)
2891 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2893 return max_pfn;
2897 * free_area_init_nodes - Initialise all pg_data_t and zone data
2898 * @max_zone_pfn: an array of max PFNs for each zone
2900 * This will call free_area_init_node() for each active node in the system.
2901 * Using the page ranges provided by add_active_range(), the size of each
2902 * zone in each node and their holes is calculated. If the maximum PFN
2903 * between two adjacent zones match, it is assumed that the zone is empty.
2904 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2905 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2906 * starts where the previous one ended. For example, ZONE_DMA32 starts
2907 * at arch_max_dma_pfn.
2909 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2911 unsigned long nid;
2912 enum zone_type i;
2914 /* Sort early_node_map as initialisation assumes it is sorted */
2915 sort_node_map();
2917 /* Record where the zone boundaries are */
2918 memset(arch_zone_lowest_possible_pfn, 0,
2919 sizeof(arch_zone_lowest_possible_pfn));
2920 memset(arch_zone_highest_possible_pfn, 0,
2921 sizeof(arch_zone_highest_possible_pfn));
2922 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2923 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2924 for (i = 1; i < MAX_NR_ZONES; i++) {
2925 arch_zone_lowest_possible_pfn[i] =
2926 arch_zone_highest_possible_pfn[i-1];
2927 arch_zone_highest_possible_pfn[i] =
2928 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2931 /* Print out the zone ranges */
2932 printk("Zone PFN ranges:\n");
2933 for (i = 0; i < MAX_NR_ZONES; i++)
2934 printk(" %-8s %8lu -> %8lu\n",
2935 zone_names[i],
2936 arch_zone_lowest_possible_pfn[i],
2937 arch_zone_highest_possible_pfn[i]);
2939 /* Print out the early_node_map[] */
2940 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2941 for (i = 0; i < nr_nodemap_entries; i++)
2942 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2943 early_node_map[i].start_pfn,
2944 early_node_map[i].end_pfn);
2946 /* Initialise every node */
2947 for_each_online_node(nid) {
2948 pg_data_t *pgdat = NODE_DATA(nid);
2949 free_area_init_node(nid, pgdat, NULL,
2950 find_min_pfn_for_node(nid), NULL);
2953 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2956 * set_dma_reserve - set the specified number of pages reserved in the first zone
2957 * @new_dma_reserve: The number of pages to mark reserved
2959 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2960 * In the DMA zone, a significant percentage may be consumed by kernel image
2961 * and other unfreeable allocations which can skew the watermarks badly. This
2962 * function may optionally be used to account for unfreeable pages in the
2963 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2964 * smaller per-cpu batchsize.
2966 void __init set_dma_reserve(unsigned long new_dma_reserve)
2968 dma_reserve = new_dma_reserve;
2971 #ifndef CONFIG_NEED_MULTIPLE_NODES
2972 static bootmem_data_t contig_bootmem_data;
2973 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2975 EXPORT_SYMBOL(contig_page_data);
2976 #endif
2978 void __init free_area_init(unsigned long *zones_size)
2980 free_area_init_node(0, NODE_DATA(0), zones_size,
2981 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2984 static int page_alloc_cpu_notify(struct notifier_block *self,
2985 unsigned long action, void *hcpu)
2987 int cpu = (unsigned long)hcpu;
2989 if (action == CPU_DEAD) {
2990 local_irq_disable();
2991 __drain_pages(cpu);
2992 vm_events_fold_cpu(cpu);
2993 local_irq_enable();
2994 refresh_cpu_vm_stats(cpu);
2996 return NOTIFY_OK;
2999 void __init page_alloc_init(void)
3001 hotcpu_notifier(page_alloc_cpu_notify, 0);
3005 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3006 * or min_free_kbytes changes.
3008 static void calculate_totalreserve_pages(void)
3010 struct pglist_data *pgdat;
3011 unsigned long reserve_pages = 0;
3012 enum zone_type i, j;
3014 for_each_online_pgdat(pgdat) {
3015 for (i = 0; i < MAX_NR_ZONES; i++) {
3016 struct zone *zone = pgdat->node_zones + i;
3017 unsigned long max = 0;
3019 /* Find valid and maximum lowmem_reserve in the zone */
3020 for (j = i; j < MAX_NR_ZONES; j++) {
3021 if (zone->lowmem_reserve[j] > max)
3022 max = zone->lowmem_reserve[j];
3025 /* we treat pages_high as reserved pages. */
3026 max += zone->pages_high;
3028 if (max > zone->present_pages)
3029 max = zone->present_pages;
3030 reserve_pages += max;
3033 totalreserve_pages = reserve_pages;
3037 * setup_per_zone_lowmem_reserve - called whenever
3038 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3039 * has a correct pages reserved value, so an adequate number of
3040 * pages are left in the zone after a successful __alloc_pages().
3042 static void setup_per_zone_lowmem_reserve(void)
3044 struct pglist_data *pgdat;
3045 enum zone_type j, idx;
3047 for_each_online_pgdat(pgdat) {
3048 for (j = 0; j < MAX_NR_ZONES; j++) {
3049 struct zone *zone = pgdat->node_zones + j;
3050 unsigned long present_pages = zone->present_pages;
3052 zone->lowmem_reserve[j] = 0;
3054 idx = j;
3055 while (idx) {
3056 struct zone *lower_zone;
3058 idx--;
3060 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3061 sysctl_lowmem_reserve_ratio[idx] = 1;
3063 lower_zone = pgdat->node_zones + idx;
3064 lower_zone->lowmem_reserve[j] = present_pages /
3065 sysctl_lowmem_reserve_ratio[idx];
3066 present_pages += lower_zone->present_pages;
3071 /* update totalreserve_pages */
3072 calculate_totalreserve_pages();
3076 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3078 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3079 * with respect to min_free_kbytes.
3081 void setup_per_zone_pages_min(void)
3083 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3084 unsigned long lowmem_pages = 0;
3085 struct zone *zone;
3086 unsigned long flags;
3088 /* Calculate total number of !ZONE_HIGHMEM pages */
3089 for_each_zone(zone) {
3090 if (!is_highmem(zone))
3091 lowmem_pages += zone->present_pages;
3094 for_each_zone(zone) {
3095 u64 tmp;
3097 spin_lock_irqsave(&zone->lru_lock, flags);
3098 tmp = (u64)pages_min * zone->present_pages;
3099 do_div(tmp, lowmem_pages);
3100 if (is_highmem(zone)) {
3102 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3103 * need highmem pages, so cap pages_min to a small
3104 * value here.
3106 * The (pages_high-pages_low) and (pages_low-pages_min)
3107 * deltas controls asynch page reclaim, and so should
3108 * not be capped for highmem.
3110 int min_pages;
3112 min_pages = zone->present_pages / 1024;
3113 if (min_pages < SWAP_CLUSTER_MAX)
3114 min_pages = SWAP_CLUSTER_MAX;
3115 if (min_pages > 128)
3116 min_pages = 128;
3117 zone->pages_min = min_pages;
3118 } else {
3120 * If it's a lowmem zone, reserve a number of pages
3121 * proportionate to the zone's size.
3123 zone->pages_min = tmp;
3126 zone->pages_low = zone->pages_min + (tmp >> 2);
3127 zone->pages_high = zone->pages_min + (tmp >> 1);
3128 spin_unlock_irqrestore(&zone->lru_lock, flags);
3131 /* update totalreserve_pages */
3132 calculate_totalreserve_pages();
3136 * Initialise min_free_kbytes.
3138 * For small machines we want it small (128k min). For large machines
3139 * we want it large (64MB max). But it is not linear, because network
3140 * bandwidth does not increase linearly with machine size. We use
3142 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3143 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3145 * which yields
3147 * 16MB: 512k
3148 * 32MB: 724k
3149 * 64MB: 1024k
3150 * 128MB: 1448k
3151 * 256MB: 2048k
3152 * 512MB: 2896k
3153 * 1024MB: 4096k
3154 * 2048MB: 5792k
3155 * 4096MB: 8192k
3156 * 8192MB: 11584k
3157 * 16384MB: 16384k
3159 static int __init init_per_zone_pages_min(void)
3161 unsigned long lowmem_kbytes;
3163 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3165 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3166 if (min_free_kbytes < 128)
3167 min_free_kbytes = 128;
3168 if (min_free_kbytes > 65536)
3169 min_free_kbytes = 65536;
3170 setup_per_zone_pages_min();
3171 setup_per_zone_lowmem_reserve();
3172 return 0;
3174 module_init(init_per_zone_pages_min)
3177 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3178 * that we can call two helper functions whenever min_free_kbytes
3179 * changes.
3181 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3182 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3184 proc_dointvec(table, write, file, buffer, length, ppos);
3185 setup_per_zone_pages_min();
3186 return 0;
3189 #ifdef CONFIG_NUMA
3190 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3191 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3193 struct zone *zone;
3194 int rc;
3196 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3197 if (rc)
3198 return rc;
3200 for_each_zone(zone)
3201 zone->min_unmapped_pages = (zone->present_pages *
3202 sysctl_min_unmapped_ratio) / 100;
3203 return 0;
3206 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3207 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3209 struct zone *zone;
3210 int rc;
3212 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3213 if (rc)
3214 return rc;
3216 for_each_zone(zone)
3217 zone->min_slab_pages = (zone->present_pages *
3218 sysctl_min_slab_ratio) / 100;
3219 return 0;
3221 #endif
3224 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3225 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3226 * whenever sysctl_lowmem_reserve_ratio changes.
3228 * The reserve ratio obviously has absolutely no relation with the
3229 * pages_min watermarks. The lowmem reserve ratio can only make sense
3230 * if in function of the boot time zone sizes.
3232 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3233 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3235 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3236 setup_per_zone_lowmem_reserve();
3237 return 0;
3241 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3242 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3243 * can have before it gets flushed back to buddy allocator.
3246 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3247 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3249 struct zone *zone;
3250 unsigned int cpu;
3251 int ret;
3253 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3254 if (!write || (ret == -EINVAL))
3255 return ret;
3256 for_each_zone(zone) {
3257 for_each_online_cpu(cpu) {
3258 unsigned long high;
3259 high = zone->present_pages / percpu_pagelist_fraction;
3260 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3263 return 0;
3266 int hashdist = HASHDIST_DEFAULT;
3268 #ifdef CONFIG_NUMA
3269 static int __init set_hashdist(char *str)
3271 if (!str)
3272 return 0;
3273 hashdist = simple_strtoul(str, &str, 0);
3274 return 1;
3276 __setup("hashdist=", set_hashdist);
3277 #endif
3280 * allocate a large system hash table from bootmem
3281 * - it is assumed that the hash table must contain an exact power-of-2
3282 * quantity of entries
3283 * - limit is the number of hash buckets, not the total allocation size
3285 void *__init alloc_large_system_hash(const char *tablename,
3286 unsigned long bucketsize,
3287 unsigned long numentries,
3288 int scale,
3289 int flags,
3290 unsigned int *_hash_shift,
3291 unsigned int *_hash_mask,
3292 unsigned long limit)
3294 unsigned long long max = limit;
3295 unsigned long log2qty, size;
3296 void *table = NULL;
3298 /* allow the kernel cmdline to have a say */
3299 if (!numentries) {
3300 /* round applicable memory size up to nearest megabyte */
3301 numentries = nr_kernel_pages;
3302 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3303 numentries >>= 20 - PAGE_SHIFT;
3304 numentries <<= 20 - PAGE_SHIFT;
3306 /* limit to 1 bucket per 2^scale bytes of low memory */
3307 if (scale > PAGE_SHIFT)
3308 numentries >>= (scale - PAGE_SHIFT);
3309 else
3310 numentries <<= (PAGE_SHIFT - scale);
3312 /* Make sure we've got at least a 0-order allocation.. */
3313 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3314 numentries = PAGE_SIZE / bucketsize;
3316 numentries = roundup_pow_of_two(numentries);
3318 /* limit allocation size to 1/16 total memory by default */
3319 if (max == 0) {
3320 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3321 do_div(max, bucketsize);
3324 if (numentries > max)
3325 numentries = max;
3327 log2qty = ilog2(numentries);
3329 do {
3330 size = bucketsize << log2qty;
3331 if (flags & HASH_EARLY)
3332 table = alloc_bootmem(size);
3333 else if (hashdist)
3334 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3335 else {
3336 unsigned long order;
3337 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3339 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3341 } while (!table && size > PAGE_SIZE && --log2qty);
3343 if (!table)
3344 panic("Failed to allocate %s hash table\n", tablename);
3346 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3347 tablename,
3348 (1U << log2qty),
3349 ilog2(size) - PAGE_SHIFT,
3350 size);
3352 if (_hash_shift)
3353 *_hash_shift = log2qty;
3354 if (_hash_mask)
3355 *_hash_mask = (1 << log2qty) - 1;
3357 return table;
3360 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3361 struct page *pfn_to_page(unsigned long pfn)
3363 return __pfn_to_page(pfn);
3365 unsigned long page_to_pfn(struct page *page)
3367 return __page_to_pfn(page);
3369 EXPORT_SYMBOL(pfn_to_page);
3370 EXPORT_SYMBOL(page_to_pfn);
3371 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3373 #if MAX_NUMNODES > 1
3375 * Find the highest possible node id.
3377 int highest_possible_node_id(void)
3379 unsigned int node;
3380 unsigned int highest = 0;
3382 for_each_node_mask(node, node_possible_map)
3383 highest = node;
3384 return highest;
3386 EXPORT_SYMBOL(highest_possible_node_id);
3387 #endif