4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/smp_lock.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
38 int sysctl_vfs_cache_pressure __read_mostly
= 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
42 static __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
44 EXPORT_SYMBOL(dcache_lock
);
46 static struct kmem_cache
*dentry_cache __read_mostly
;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly
;
62 static unsigned int d_hash_shift __read_mostly
;
63 static struct hlist_head
*dentry_hashtable __read_mostly
;
64 static LIST_HEAD(dentry_unused
);
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat
= {
71 static void __d_free(struct dentry
*dentry
)
73 if (dname_external(dentry
))
74 kfree(dentry
->d_name
.name
);
75 kmem_cache_free(dentry_cache
, dentry
);
78 static void d_callback(struct rcu_head
*head
)
80 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
88 static void d_free(struct dentry
*dentry
)
90 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
91 dentry
->d_op
->d_release(dentry
);
92 /* if dentry was never inserted into hash, immediate free is OK */
93 if (dentry
->d_hash
.pprev
== NULL
)
96 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
100 * Release the dentry's inode, using the filesystem
101 * d_iput() operation if defined.
102 * Called with dcache_lock and per dentry lock held, drops both.
104 static void dentry_iput(struct dentry
* dentry
)
106 struct inode
*inode
= dentry
->d_inode
;
108 dentry
->d_inode
= NULL
;
109 list_del_init(&dentry
->d_alias
);
110 spin_unlock(&dentry
->d_lock
);
111 spin_unlock(&dcache_lock
);
113 fsnotify_inoderemove(inode
);
114 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
115 dentry
->d_op
->d_iput(dentry
, inode
);
119 spin_unlock(&dentry
->d_lock
);
120 spin_unlock(&dcache_lock
);
127 * This is complicated by the fact that we do not want to put
128 * dentries that are no longer on any hash chain on the unused
129 * list: we'd much rather just get rid of them immediately.
131 * However, that implies that we have to traverse the dentry
132 * tree upwards to the parents which might _also_ now be
133 * scheduled for deletion (it may have been only waiting for
134 * its last child to go away).
136 * This tail recursion is done by hand as we don't want to depend
137 * on the compiler to always get this right (gcc generally doesn't).
138 * Real recursion would eat up our stack space.
142 * dput - release a dentry
143 * @dentry: dentry to release
145 * Release a dentry. This will drop the usage count and if appropriate
146 * call the dentry unlink method as well as removing it from the queues and
147 * releasing its resources. If the parent dentries were scheduled for release
148 * they too may now get deleted.
150 * no dcache lock, please.
153 void dput(struct dentry
*dentry
)
159 if (atomic_read(&dentry
->d_count
) == 1)
161 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
164 spin_lock(&dentry
->d_lock
);
165 if (atomic_read(&dentry
->d_count
)) {
166 spin_unlock(&dentry
->d_lock
);
167 spin_unlock(&dcache_lock
);
172 * AV: ->d_delete() is _NOT_ allowed to block now.
174 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
175 if (dentry
->d_op
->d_delete(dentry
))
178 /* Unreachable? Get rid of it */
179 if (d_unhashed(dentry
))
181 if (list_empty(&dentry
->d_lru
)) {
182 dentry
->d_flags
|= DCACHE_REFERENCED
;
183 list_add(&dentry
->d_lru
, &dentry_unused
);
184 dentry_stat
.nr_unused
++;
186 spin_unlock(&dentry
->d_lock
);
187 spin_unlock(&dcache_lock
);
194 struct dentry
*parent
;
196 /* If dentry was on d_lru list
197 * delete it from there
199 if (!list_empty(&dentry
->d_lru
)) {
200 list_del(&dentry
->d_lru
);
201 dentry_stat
.nr_unused
--;
203 list_del(&dentry
->d_u
.d_child
);
204 dentry_stat
.nr_dentry
--; /* For d_free, below */
205 /*drops the locks, at that point nobody can reach this dentry */
207 parent
= dentry
->d_parent
;
209 if (dentry
== parent
)
217 * d_invalidate - invalidate a dentry
218 * @dentry: dentry to invalidate
220 * Try to invalidate the dentry if it turns out to be
221 * possible. If there are other dentries that can be
222 * reached through this one we can't delete it and we
223 * return -EBUSY. On success we return 0.
228 int d_invalidate(struct dentry
* dentry
)
231 * If it's already been dropped, return OK.
233 spin_lock(&dcache_lock
);
234 if (d_unhashed(dentry
)) {
235 spin_unlock(&dcache_lock
);
239 * Check whether to do a partial shrink_dcache
240 * to get rid of unused child entries.
242 if (!list_empty(&dentry
->d_subdirs
)) {
243 spin_unlock(&dcache_lock
);
244 shrink_dcache_parent(dentry
);
245 spin_lock(&dcache_lock
);
249 * Somebody else still using it?
251 * If it's a directory, we can't drop it
252 * for fear of somebody re-populating it
253 * with children (even though dropping it
254 * would make it unreachable from the root,
255 * we might still populate it if it was a
256 * working directory or similar).
258 spin_lock(&dentry
->d_lock
);
259 if (atomic_read(&dentry
->d_count
) > 1) {
260 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
261 spin_unlock(&dentry
->d_lock
);
262 spin_unlock(&dcache_lock
);
268 spin_unlock(&dentry
->d_lock
);
269 spin_unlock(&dcache_lock
);
273 /* This should be called _only_ with dcache_lock held */
275 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
277 atomic_inc(&dentry
->d_count
);
278 if (!list_empty(&dentry
->d_lru
)) {
279 dentry_stat
.nr_unused
--;
280 list_del_init(&dentry
->d_lru
);
285 struct dentry
* dget_locked(struct dentry
*dentry
)
287 return __dget_locked(dentry
);
291 * d_find_alias - grab a hashed alias of inode
292 * @inode: inode in question
293 * @want_discon: flag, used by d_splice_alias, to request
294 * that only a DISCONNECTED alias be returned.
296 * If inode has a hashed alias, or is a directory and has any alias,
297 * acquire the reference to alias and return it. Otherwise return NULL.
298 * Notice that if inode is a directory there can be only one alias and
299 * it can be unhashed only if it has no children, or if it is the root
302 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
303 * any other hashed alias over that one unless @want_discon is set,
304 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
307 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
309 struct list_head
*head
, *next
, *tmp
;
310 struct dentry
*alias
, *discon_alias
=NULL
;
312 head
= &inode
->i_dentry
;
313 next
= inode
->i_dentry
.next
;
314 while (next
!= head
) {
318 alias
= list_entry(tmp
, struct dentry
, d_alias
);
319 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
320 if (IS_ROOT(alias
) &&
321 (alias
->d_flags
& DCACHE_DISCONNECTED
))
322 discon_alias
= alias
;
323 else if (!want_discon
) {
324 __dget_locked(alias
);
330 __dget_locked(discon_alias
);
334 struct dentry
* d_find_alias(struct inode
*inode
)
336 struct dentry
*de
= NULL
;
338 if (!list_empty(&inode
->i_dentry
)) {
339 spin_lock(&dcache_lock
);
340 de
= __d_find_alias(inode
, 0);
341 spin_unlock(&dcache_lock
);
347 * Try to kill dentries associated with this inode.
348 * WARNING: you must own a reference to inode.
350 void d_prune_aliases(struct inode
*inode
)
352 struct dentry
*dentry
;
354 spin_lock(&dcache_lock
);
355 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
356 spin_lock(&dentry
->d_lock
);
357 if (!atomic_read(&dentry
->d_count
)) {
358 __dget_locked(dentry
);
360 spin_unlock(&dentry
->d_lock
);
361 spin_unlock(&dcache_lock
);
365 spin_unlock(&dentry
->d_lock
);
367 spin_unlock(&dcache_lock
);
371 * Throw away a dentry - free the inode, dput the parent. This requires that
372 * the LRU list has already been removed.
374 * Called with dcache_lock, drops it and then regains.
375 * Called with dentry->d_lock held, drops it.
377 static void prune_one_dentry(struct dentry
* dentry
)
379 struct dentry
* parent
;
382 list_del(&dentry
->d_u
.d_child
);
383 dentry_stat
.nr_dentry
--; /* For d_free, below */
385 parent
= dentry
->d_parent
;
387 if (parent
!= dentry
)
389 spin_lock(&dcache_lock
);
393 * prune_dcache - shrink the dcache
394 * @count: number of entries to try and free
395 * @sb: if given, ignore dentries for other superblocks
396 * which are being unmounted.
398 * Shrink the dcache. This is done when we need
399 * more memory, or simply when we need to unmount
400 * something (at which point we need to unuse
403 * This function may fail to free any resources if
404 * all the dentries are in use.
407 static void prune_dcache(int count
, struct super_block
*sb
)
409 spin_lock(&dcache_lock
);
410 for (; count
; count
--) {
411 struct dentry
*dentry
;
412 struct list_head
*tmp
;
413 struct rw_semaphore
*s_umount
;
415 cond_resched_lock(&dcache_lock
);
417 tmp
= dentry_unused
.prev
;
419 /* Try to find a dentry for this sb, but don't try
420 * too hard, if they aren't near the tail they will
421 * be moved down again soon
424 while (skip
&& tmp
!= &dentry_unused
&&
425 list_entry(tmp
, struct dentry
, d_lru
)->d_sb
!= sb
) {
430 if (tmp
== &dentry_unused
)
433 prefetch(dentry_unused
.prev
);
434 dentry_stat
.nr_unused
--;
435 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
437 spin_lock(&dentry
->d_lock
);
439 * We found an inuse dentry which was not removed from
440 * dentry_unused because of laziness during lookup. Do not free
441 * it - just keep it off the dentry_unused list.
443 if (atomic_read(&dentry
->d_count
)) {
444 spin_unlock(&dentry
->d_lock
);
447 /* If the dentry was recently referenced, don't free it. */
448 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
449 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
450 list_add(&dentry
->d_lru
, &dentry_unused
);
451 dentry_stat
.nr_unused
++;
452 spin_unlock(&dentry
->d_lock
);
456 * If the dentry is not DCACHED_REFERENCED, it is time
457 * to remove it from the dcache, provided the super block is
458 * NULL (which means we are trying to reclaim memory)
459 * or this dentry belongs to the same super block that
463 * If this dentry is for "my" filesystem, then I can prune it
464 * without taking the s_umount lock (I already hold it).
466 if (sb
&& dentry
->d_sb
== sb
) {
467 prune_one_dentry(dentry
);
471 * ...otherwise we need to be sure this filesystem isn't being
472 * unmounted, otherwise we could race with
473 * generic_shutdown_super(), and end up holding a reference to
474 * an inode while the filesystem is unmounted.
475 * So we try to get s_umount, and make sure s_root isn't NULL.
476 * (Take a local copy of s_umount to avoid a use-after-free of
479 s_umount
= &dentry
->d_sb
->s_umount
;
480 if (down_read_trylock(s_umount
)) {
481 if (dentry
->d_sb
->s_root
!= NULL
) {
482 prune_one_dentry(dentry
);
488 spin_unlock(&dentry
->d_lock
);
490 * Insert dentry at the head of the list as inserting at the
491 * tail leads to a cycle.
493 list_add(&dentry
->d_lru
, &dentry_unused
);
494 dentry_stat
.nr_unused
++;
496 spin_unlock(&dcache_lock
);
500 * Shrink the dcache for the specified super block.
501 * This allows us to unmount a device without disturbing
502 * the dcache for the other devices.
504 * This implementation makes just two traversals of the
505 * unused list. On the first pass we move the selected
506 * dentries to the most recent end, and on the second
507 * pass we free them. The second pass must restart after
508 * each dput(), but since the target dentries are all at
509 * the end, it's really just a single traversal.
513 * shrink_dcache_sb - shrink dcache for a superblock
516 * Shrink the dcache for the specified super block. This
517 * is used to free the dcache before unmounting a file
521 void shrink_dcache_sb(struct super_block
* sb
)
523 struct list_head
*tmp
, *next
;
524 struct dentry
*dentry
;
527 * Pass one ... move the dentries for the specified
528 * superblock to the most recent end of the unused list.
530 spin_lock(&dcache_lock
);
531 list_for_each_safe(tmp
, next
, &dentry_unused
) {
532 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
533 if (dentry
->d_sb
!= sb
)
535 list_move(tmp
, &dentry_unused
);
539 * Pass two ... free the dentries for this superblock.
542 list_for_each_safe(tmp
, next
, &dentry_unused
) {
543 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
544 if (dentry
->d_sb
!= sb
)
546 dentry_stat
.nr_unused
--;
548 spin_lock(&dentry
->d_lock
);
549 if (atomic_read(&dentry
->d_count
)) {
550 spin_unlock(&dentry
->d_lock
);
553 prune_one_dentry(dentry
);
554 cond_resched_lock(&dcache_lock
);
557 spin_unlock(&dcache_lock
);
561 * destroy a single subtree of dentries for unmount
562 * - see the comments on shrink_dcache_for_umount() for a description of the
565 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
567 struct dentry
*parent
;
568 unsigned detached
= 0;
570 BUG_ON(!IS_ROOT(dentry
));
572 /* detach this root from the system */
573 spin_lock(&dcache_lock
);
574 if (!list_empty(&dentry
->d_lru
)) {
575 dentry_stat
.nr_unused
--;
576 list_del_init(&dentry
->d_lru
);
579 spin_unlock(&dcache_lock
);
582 /* descend to the first leaf in the current subtree */
583 while (!list_empty(&dentry
->d_subdirs
)) {
586 /* this is a branch with children - detach all of them
587 * from the system in one go */
588 spin_lock(&dcache_lock
);
589 list_for_each_entry(loop
, &dentry
->d_subdirs
,
591 if (!list_empty(&loop
->d_lru
)) {
592 dentry_stat
.nr_unused
--;
593 list_del_init(&loop
->d_lru
);
597 cond_resched_lock(&dcache_lock
);
599 spin_unlock(&dcache_lock
);
601 /* move to the first child */
602 dentry
= list_entry(dentry
->d_subdirs
.next
,
603 struct dentry
, d_u
.d_child
);
606 /* consume the dentries from this leaf up through its parents
607 * until we find one with children or run out altogether */
611 if (atomic_read(&dentry
->d_count
) != 0) {
613 "BUG: Dentry %p{i=%lx,n=%s}"
615 " [unmount of %s %s]\n",
618 dentry
->d_inode
->i_ino
: 0UL,
620 atomic_read(&dentry
->d_count
),
621 dentry
->d_sb
->s_type
->name
,
626 parent
= dentry
->d_parent
;
627 if (parent
== dentry
)
630 atomic_dec(&parent
->d_count
);
632 list_del(&dentry
->d_u
.d_child
);
635 inode
= dentry
->d_inode
;
637 dentry
->d_inode
= NULL
;
638 list_del_init(&dentry
->d_alias
);
639 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
640 dentry
->d_op
->d_iput(dentry
, inode
);
647 /* finished when we fall off the top of the tree,
648 * otherwise we ascend to the parent and move to the
649 * next sibling if there is one */
655 } while (list_empty(&dentry
->d_subdirs
));
657 dentry
= list_entry(dentry
->d_subdirs
.next
,
658 struct dentry
, d_u
.d_child
);
661 /* several dentries were freed, need to correct nr_dentry */
662 spin_lock(&dcache_lock
);
663 dentry_stat
.nr_dentry
-= detached
;
664 spin_unlock(&dcache_lock
);
668 * destroy the dentries attached to a superblock on unmounting
669 * - we don't need to use dentry->d_lock, and only need dcache_lock when
670 * removing the dentry from the system lists and hashes because:
671 * - the superblock is detached from all mountings and open files, so the
672 * dentry trees will not be rearranged by the VFS
673 * - s_umount is write-locked, so the memory pressure shrinker will ignore
674 * any dentries belonging to this superblock that it comes across
675 * - the filesystem itself is no longer permitted to rearrange the dentries
678 void shrink_dcache_for_umount(struct super_block
*sb
)
680 struct dentry
*dentry
;
682 if (down_read_trylock(&sb
->s_umount
))
687 atomic_dec(&dentry
->d_count
);
688 shrink_dcache_for_umount_subtree(dentry
);
690 while (!hlist_empty(&sb
->s_anon
)) {
691 dentry
= hlist_entry(sb
->s_anon
.first
, struct dentry
, d_hash
);
692 shrink_dcache_for_umount_subtree(dentry
);
697 * Search for at least 1 mount point in the dentry's subdirs.
698 * We descend to the next level whenever the d_subdirs
699 * list is non-empty and continue searching.
703 * have_submounts - check for mounts over a dentry
704 * @parent: dentry to check.
706 * Return true if the parent or its subdirectories contain
710 int have_submounts(struct dentry
*parent
)
712 struct dentry
*this_parent
= parent
;
713 struct list_head
*next
;
715 spin_lock(&dcache_lock
);
716 if (d_mountpoint(parent
))
719 next
= this_parent
->d_subdirs
.next
;
721 while (next
!= &this_parent
->d_subdirs
) {
722 struct list_head
*tmp
= next
;
723 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
725 /* Have we found a mount point ? */
726 if (d_mountpoint(dentry
))
728 if (!list_empty(&dentry
->d_subdirs
)) {
729 this_parent
= dentry
;
734 * All done at this level ... ascend and resume the search.
736 if (this_parent
!= parent
) {
737 next
= this_parent
->d_u
.d_child
.next
;
738 this_parent
= this_parent
->d_parent
;
741 spin_unlock(&dcache_lock
);
742 return 0; /* No mount points found in tree */
744 spin_unlock(&dcache_lock
);
749 * Search the dentry child list for the specified parent,
750 * and move any unused dentries to the end of the unused
751 * list for prune_dcache(). We descend to the next level
752 * whenever the d_subdirs list is non-empty and continue
755 * It returns zero iff there are no unused children,
756 * otherwise it returns the number of children moved to
757 * the end of the unused list. This may not be the total
758 * number of unused children, because select_parent can
759 * drop the lock and return early due to latency
762 static int select_parent(struct dentry
* parent
)
764 struct dentry
*this_parent
= parent
;
765 struct list_head
*next
;
768 spin_lock(&dcache_lock
);
770 next
= this_parent
->d_subdirs
.next
;
772 while (next
!= &this_parent
->d_subdirs
) {
773 struct list_head
*tmp
= next
;
774 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
777 if (!list_empty(&dentry
->d_lru
)) {
778 dentry_stat
.nr_unused
--;
779 list_del_init(&dentry
->d_lru
);
782 * move only zero ref count dentries to the end
783 * of the unused list for prune_dcache
785 if (!atomic_read(&dentry
->d_count
)) {
786 list_add_tail(&dentry
->d_lru
, &dentry_unused
);
787 dentry_stat
.nr_unused
++;
792 * We can return to the caller if we have found some (this
793 * ensures forward progress). We'll be coming back to find
796 if (found
&& need_resched())
800 * Descend a level if the d_subdirs list is non-empty.
802 if (!list_empty(&dentry
->d_subdirs
)) {
803 this_parent
= dentry
;
808 * All done at this level ... ascend and resume the search.
810 if (this_parent
!= parent
) {
811 next
= this_parent
->d_u
.d_child
.next
;
812 this_parent
= this_parent
->d_parent
;
816 spin_unlock(&dcache_lock
);
821 * shrink_dcache_parent - prune dcache
822 * @parent: parent of entries to prune
824 * Prune the dcache to remove unused children of the parent dentry.
827 void shrink_dcache_parent(struct dentry
* parent
)
831 while ((found
= select_parent(parent
)) != 0)
832 prune_dcache(found
, parent
->d_sb
);
836 * Scan `nr' dentries and return the number which remain.
838 * We need to avoid reentering the filesystem if the caller is performing a
839 * GFP_NOFS allocation attempt. One example deadlock is:
841 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
842 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
843 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
845 * In this case we return -1 to tell the caller that we baled.
847 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
850 if (!(gfp_mask
& __GFP_FS
))
852 prune_dcache(nr
, NULL
);
854 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
858 * d_alloc - allocate a dcache entry
859 * @parent: parent of entry to allocate
860 * @name: qstr of the name
862 * Allocates a dentry. It returns %NULL if there is insufficient memory
863 * available. On a success the dentry is returned. The name passed in is
864 * copied and the copy passed in may be reused after this call.
867 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
869 struct dentry
*dentry
;
872 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
876 if (name
->len
> DNAME_INLINE_LEN
-1) {
877 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
879 kmem_cache_free(dentry_cache
, dentry
);
883 dname
= dentry
->d_iname
;
885 dentry
->d_name
.name
= dname
;
887 dentry
->d_name
.len
= name
->len
;
888 dentry
->d_name
.hash
= name
->hash
;
889 memcpy(dname
, name
->name
, name
->len
);
890 dname
[name
->len
] = 0;
892 atomic_set(&dentry
->d_count
, 1);
893 dentry
->d_flags
= DCACHE_UNHASHED
;
894 spin_lock_init(&dentry
->d_lock
);
895 dentry
->d_inode
= NULL
;
896 dentry
->d_parent
= NULL
;
899 dentry
->d_fsdata
= NULL
;
900 dentry
->d_mounted
= 0;
901 #ifdef CONFIG_PROFILING
902 dentry
->d_cookie
= NULL
;
904 INIT_HLIST_NODE(&dentry
->d_hash
);
905 INIT_LIST_HEAD(&dentry
->d_lru
);
906 INIT_LIST_HEAD(&dentry
->d_subdirs
);
907 INIT_LIST_HEAD(&dentry
->d_alias
);
910 dentry
->d_parent
= dget(parent
);
911 dentry
->d_sb
= parent
->d_sb
;
913 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
916 spin_lock(&dcache_lock
);
918 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
919 dentry_stat
.nr_dentry
++;
920 spin_unlock(&dcache_lock
);
925 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
930 q
.len
= strlen(name
);
931 q
.hash
= full_name_hash(q
.name
, q
.len
);
932 return d_alloc(parent
, &q
);
936 * d_instantiate - fill in inode information for a dentry
937 * @entry: dentry to complete
938 * @inode: inode to attach to this dentry
940 * Fill in inode information in the entry.
942 * This turns negative dentries into productive full members
945 * NOTE! This assumes that the inode count has been incremented
946 * (or otherwise set) by the caller to indicate that it is now
947 * in use by the dcache.
950 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
952 BUG_ON(!list_empty(&entry
->d_alias
));
953 spin_lock(&dcache_lock
);
955 list_add(&entry
->d_alias
, &inode
->i_dentry
);
956 entry
->d_inode
= inode
;
957 fsnotify_d_instantiate(entry
, inode
);
958 spin_unlock(&dcache_lock
);
959 security_d_instantiate(entry
, inode
);
963 * d_instantiate_unique - instantiate a non-aliased dentry
964 * @entry: dentry to instantiate
965 * @inode: inode to attach to this dentry
967 * Fill in inode information in the entry. On success, it returns NULL.
968 * If an unhashed alias of "entry" already exists, then we return the
969 * aliased dentry instead and drop one reference to inode.
971 * Note that in order to avoid conflicts with rename() etc, the caller
972 * had better be holding the parent directory semaphore.
974 * This also assumes that the inode count has been incremented
975 * (or otherwise set) by the caller to indicate that it is now
976 * in use by the dcache.
978 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
981 struct dentry
*alias
;
982 int len
= entry
->d_name
.len
;
983 const char *name
= entry
->d_name
.name
;
984 unsigned int hash
= entry
->d_name
.hash
;
987 entry
->d_inode
= NULL
;
991 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
992 struct qstr
*qstr
= &alias
->d_name
;
994 if (qstr
->hash
!= hash
)
996 if (alias
->d_parent
!= entry
->d_parent
)
998 if (qstr
->len
!= len
)
1000 if (memcmp(qstr
->name
, name
, len
))
1006 list_add(&entry
->d_alias
, &inode
->i_dentry
);
1007 entry
->d_inode
= inode
;
1008 fsnotify_d_instantiate(entry
, inode
);
1012 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1014 struct dentry
*result
;
1016 BUG_ON(!list_empty(&entry
->d_alias
));
1018 spin_lock(&dcache_lock
);
1019 result
= __d_instantiate_unique(entry
, inode
);
1020 spin_unlock(&dcache_lock
);
1023 security_d_instantiate(entry
, inode
);
1027 BUG_ON(!d_unhashed(result
));
1032 EXPORT_SYMBOL(d_instantiate_unique
);
1035 * d_alloc_root - allocate root dentry
1036 * @root_inode: inode to allocate the root for
1038 * Allocate a root ("/") dentry for the inode given. The inode is
1039 * instantiated and returned. %NULL is returned if there is insufficient
1040 * memory or the inode passed is %NULL.
1043 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1045 struct dentry
*res
= NULL
;
1048 static const struct qstr name
= { .name
= "/", .len
= 1 };
1050 res
= d_alloc(NULL
, &name
);
1052 res
->d_sb
= root_inode
->i_sb
;
1053 res
->d_parent
= res
;
1054 d_instantiate(res
, root_inode
);
1060 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
1063 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
1064 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
1065 return dentry_hashtable
+ (hash
& D_HASHMASK
);
1069 * d_alloc_anon - allocate an anonymous dentry
1070 * @inode: inode to allocate the dentry for
1072 * This is similar to d_alloc_root. It is used by filesystems when
1073 * creating a dentry for a given inode, often in the process of
1074 * mapping a filehandle to a dentry. The returned dentry may be
1075 * anonymous, or may have a full name (if the inode was already
1076 * in the cache). The file system may need to make further
1077 * efforts to connect this dentry into the dcache properly.
1079 * When called on a directory inode, we must ensure that
1080 * the inode only ever has one dentry. If a dentry is
1081 * found, that is returned instead of allocating a new one.
1083 * On successful return, the reference to the inode has been transferred
1084 * to the dentry. If %NULL is returned (indicating kmalloc failure),
1085 * the reference on the inode has not been released.
1088 struct dentry
* d_alloc_anon(struct inode
*inode
)
1090 static const struct qstr anonstring
= { .name
= "" };
1094 if ((res
= d_find_alias(inode
))) {
1099 tmp
= d_alloc(NULL
, &anonstring
);
1103 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1105 spin_lock(&dcache_lock
);
1106 res
= __d_find_alias(inode
, 0);
1108 /* attach a disconnected dentry */
1111 spin_lock(&res
->d_lock
);
1112 res
->d_sb
= inode
->i_sb
;
1113 res
->d_parent
= res
;
1114 res
->d_inode
= inode
;
1115 res
->d_flags
|= DCACHE_DISCONNECTED
;
1116 res
->d_flags
&= ~DCACHE_UNHASHED
;
1117 list_add(&res
->d_alias
, &inode
->i_dentry
);
1118 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
1119 spin_unlock(&res
->d_lock
);
1121 inode
= NULL
; /* don't drop reference */
1123 spin_unlock(&dcache_lock
);
1134 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1135 * @inode: the inode which may have a disconnected dentry
1136 * @dentry: a negative dentry which we want to point to the inode.
1138 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1139 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1140 * and return it, else simply d_add the inode to the dentry and return NULL.
1142 * This is needed in the lookup routine of any filesystem that is exportable
1143 * (via knfsd) so that we can build dcache paths to directories effectively.
1145 * If a dentry was found and moved, then it is returned. Otherwise NULL
1146 * is returned. This matches the expected return value of ->lookup.
1149 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1151 struct dentry
*new = NULL
;
1153 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1154 spin_lock(&dcache_lock
);
1155 new = __d_find_alias(inode
, 1);
1157 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1158 fsnotify_d_instantiate(new, inode
);
1159 spin_unlock(&dcache_lock
);
1160 security_d_instantiate(new, inode
);
1162 d_move(new, dentry
);
1165 /* d_instantiate takes dcache_lock, so we do it by hand */
1166 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1167 dentry
->d_inode
= inode
;
1168 fsnotify_d_instantiate(dentry
, inode
);
1169 spin_unlock(&dcache_lock
);
1170 security_d_instantiate(dentry
, inode
);
1174 d_add(dentry
, inode
);
1180 * d_lookup - search for a dentry
1181 * @parent: parent dentry
1182 * @name: qstr of name we wish to find
1184 * Searches the children of the parent dentry for the name in question. If
1185 * the dentry is found its reference count is incremented and the dentry
1186 * is returned. The caller must use d_put to free the entry when it has
1187 * finished using it. %NULL is returned on failure.
1189 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1190 * Memory barriers are used while updating and doing lockless traversal.
1191 * To avoid races with d_move while rename is happening, d_lock is used.
1193 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1194 * and name pointer in one structure pointed by d_qstr.
1196 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1197 * lookup is going on.
1199 * dentry_unused list is not updated even if lookup finds the required dentry
1200 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1201 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1204 * d_lookup() is protected against the concurrent renames in some unrelated
1205 * directory using the seqlockt_t rename_lock.
1208 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1210 struct dentry
* dentry
= NULL
;
1214 seq
= read_seqbegin(&rename_lock
);
1215 dentry
= __d_lookup(parent
, name
);
1218 } while (read_seqretry(&rename_lock
, seq
));
1222 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1224 unsigned int len
= name
->len
;
1225 unsigned int hash
= name
->hash
;
1226 const unsigned char *str
= name
->name
;
1227 struct hlist_head
*head
= d_hash(parent
,hash
);
1228 struct dentry
*found
= NULL
;
1229 struct hlist_node
*node
;
1230 struct dentry
*dentry
;
1234 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1237 if (dentry
->d_name
.hash
!= hash
)
1239 if (dentry
->d_parent
!= parent
)
1242 spin_lock(&dentry
->d_lock
);
1245 * Recheck the dentry after taking the lock - d_move may have
1246 * changed things. Don't bother checking the hash because we're
1247 * about to compare the whole name anyway.
1249 if (dentry
->d_parent
!= parent
)
1253 * It is safe to compare names since d_move() cannot
1254 * change the qstr (protected by d_lock).
1256 qstr
= &dentry
->d_name
;
1257 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1258 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1261 if (qstr
->len
!= len
)
1263 if (memcmp(qstr
->name
, str
, len
))
1267 if (!d_unhashed(dentry
)) {
1268 atomic_inc(&dentry
->d_count
);
1271 spin_unlock(&dentry
->d_lock
);
1274 spin_unlock(&dentry
->d_lock
);
1282 * d_hash_and_lookup - hash the qstr then search for a dentry
1283 * @dir: Directory to search in
1284 * @name: qstr of name we wish to find
1286 * On hash failure or on lookup failure NULL is returned.
1288 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1290 struct dentry
*dentry
= NULL
;
1293 * Check for a fs-specific hash function. Note that we must
1294 * calculate the standard hash first, as the d_op->d_hash()
1295 * routine may choose to leave the hash value unchanged.
1297 name
->hash
= full_name_hash(name
->name
, name
->len
);
1298 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1299 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1302 dentry
= d_lookup(dir
, name
);
1308 * d_validate - verify dentry provided from insecure source
1309 * @dentry: The dentry alleged to be valid child of @dparent
1310 * @dparent: The parent dentry (known to be valid)
1311 * @hash: Hash of the dentry
1312 * @len: Length of the name
1314 * An insecure source has sent us a dentry, here we verify it and dget() it.
1315 * This is used by ncpfs in its readdir implementation.
1316 * Zero is returned in the dentry is invalid.
1319 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1321 struct hlist_head
*base
;
1322 struct hlist_node
*lhp
;
1324 /* Check whether the ptr might be valid at all.. */
1325 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1328 if (dentry
->d_parent
!= dparent
)
1331 spin_lock(&dcache_lock
);
1332 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1333 hlist_for_each(lhp
,base
) {
1334 /* hlist_for_each_entry_rcu() not required for d_hash list
1335 * as it is parsed under dcache_lock
1337 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1338 __dget_locked(dentry
);
1339 spin_unlock(&dcache_lock
);
1343 spin_unlock(&dcache_lock
);
1349 * When a file is deleted, we have two options:
1350 * - turn this dentry into a negative dentry
1351 * - unhash this dentry and free it.
1353 * Usually, we want to just turn this into
1354 * a negative dentry, but if anybody else is
1355 * currently using the dentry or the inode
1356 * we can't do that and we fall back on removing
1357 * it from the hash queues and waiting for
1358 * it to be deleted later when it has no users
1362 * d_delete - delete a dentry
1363 * @dentry: The dentry to delete
1365 * Turn the dentry into a negative dentry if possible, otherwise
1366 * remove it from the hash queues so it can be deleted later
1369 void d_delete(struct dentry
* dentry
)
1373 * Are we the only user?
1375 spin_lock(&dcache_lock
);
1376 spin_lock(&dentry
->d_lock
);
1377 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1378 if (atomic_read(&dentry
->d_count
) == 1) {
1379 dentry_iput(dentry
);
1380 fsnotify_nameremove(dentry
, isdir
);
1382 /* remove this and other inotify debug checks after 2.6.18 */
1383 dentry
->d_flags
&= ~DCACHE_INOTIFY_PARENT_WATCHED
;
1387 if (!d_unhashed(dentry
))
1390 spin_unlock(&dentry
->d_lock
);
1391 spin_unlock(&dcache_lock
);
1393 fsnotify_nameremove(dentry
, isdir
);
1396 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1399 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1400 hlist_add_head_rcu(&entry
->d_hash
, list
);
1403 static void _d_rehash(struct dentry
* entry
)
1405 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
1409 * d_rehash - add an entry back to the hash
1410 * @entry: dentry to add to the hash
1412 * Adds a dentry to the hash according to its name.
1415 void d_rehash(struct dentry
* entry
)
1417 spin_lock(&dcache_lock
);
1418 spin_lock(&entry
->d_lock
);
1420 spin_unlock(&entry
->d_lock
);
1421 spin_unlock(&dcache_lock
);
1424 #define do_switch(x,y) do { \
1425 __typeof__ (x) __tmp = x; \
1426 x = y; y = __tmp; } while (0)
1429 * When switching names, the actual string doesn't strictly have to
1430 * be preserved in the target - because we're dropping the target
1431 * anyway. As such, we can just do a simple memcpy() to copy over
1432 * the new name before we switch.
1434 * Note that we have to be a lot more careful about getting the hash
1435 * switched - we have to switch the hash value properly even if it
1436 * then no longer matches the actual (corrupted) string of the target.
1437 * The hash value has to match the hash queue that the dentry is on..
1439 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1441 if (dname_external(target
)) {
1442 if (dname_external(dentry
)) {
1444 * Both external: swap the pointers
1446 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1449 * dentry:internal, target:external. Steal target's
1450 * storage and make target internal.
1452 dentry
->d_name
.name
= target
->d_name
.name
;
1453 target
->d_name
.name
= target
->d_iname
;
1456 if (dname_external(dentry
)) {
1458 * dentry:external, target:internal. Give dentry's
1459 * storage to target and make dentry internal
1461 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1462 target
->d_name
.len
+ 1);
1463 target
->d_name
.name
= dentry
->d_name
.name
;
1464 dentry
->d_name
.name
= dentry
->d_iname
;
1467 * Both are internal. Just copy target to dentry
1469 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1470 target
->d_name
.len
+ 1);
1476 * We cannibalize "target" when moving dentry on top of it,
1477 * because it's going to be thrown away anyway. We could be more
1478 * polite about it, though.
1480 * This forceful removal will result in ugly /proc output if
1481 * somebody holds a file open that got deleted due to a rename.
1482 * We could be nicer about the deleted file, and let it show
1483 * up under the name it got deleted rather than the name that
1488 * d_move_locked - move a dentry
1489 * @dentry: entry to move
1490 * @target: new dentry
1492 * Update the dcache to reflect the move of a file name. Negative
1493 * dcache entries should not be moved in this way.
1495 static void d_move_locked(struct dentry
* dentry
, struct dentry
* target
)
1497 struct hlist_head
*list
;
1499 if (!dentry
->d_inode
)
1500 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1502 write_seqlock(&rename_lock
);
1504 * XXXX: do we really need to take target->d_lock?
1506 if (target
< dentry
) {
1507 spin_lock(&target
->d_lock
);
1508 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1510 spin_lock(&dentry
->d_lock
);
1511 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1514 /* Move the dentry to the target hash queue, if on different bucket */
1515 if (dentry
->d_flags
& DCACHE_UNHASHED
)
1516 goto already_unhashed
;
1518 hlist_del_rcu(&dentry
->d_hash
);
1521 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1522 __d_rehash(dentry
, list
);
1524 /* Unhash the target: dput() will then get rid of it */
1527 list_del(&dentry
->d_u
.d_child
);
1528 list_del(&target
->d_u
.d_child
);
1530 /* Switch the names.. */
1531 switch_names(dentry
, target
);
1532 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1533 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1535 /* ... and switch the parents */
1536 if (IS_ROOT(dentry
)) {
1537 dentry
->d_parent
= target
->d_parent
;
1538 target
->d_parent
= target
;
1539 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1541 do_switch(dentry
->d_parent
, target
->d_parent
);
1543 /* And add them back to the (new) parent lists */
1544 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1547 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1548 spin_unlock(&target
->d_lock
);
1549 fsnotify_d_move(dentry
);
1550 spin_unlock(&dentry
->d_lock
);
1551 write_sequnlock(&rename_lock
);
1555 * d_move - move a dentry
1556 * @dentry: entry to move
1557 * @target: new dentry
1559 * Update the dcache to reflect the move of a file name. Negative
1560 * dcache entries should not be moved in this way.
1563 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1565 spin_lock(&dcache_lock
);
1566 d_move_locked(dentry
, target
);
1567 spin_unlock(&dcache_lock
);
1571 * Helper that returns 1 if p1 is a parent of p2, else 0
1573 static int d_isparent(struct dentry
*p1
, struct dentry
*p2
)
1577 for (p
= p2
; p
->d_parent
!= p
; p
= p
->d_parent
) {
1578 if (p
->d_parent
== p1
)
1585 * This helper attempts to cope with remotely renamed directories
1587 * It assumes that the caller is already holding
1588 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1590 * Note: If ever the locking in lock_rename() changes, then please
1591 * remember to update this too...
1593 * On return, dcache_lock will have been unlocked.
1595 static struct dentry
*__d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
1597 struct mutex
*m1
= NULL
, *m2
= NULL
;
1600 /* If alias and dentry share a parent, then no extra locks required */
1601 if (alias
->d_parent
== dentry
->d_parent
)
1604 /* Check for loops */
1605 ret
= ERR_PTR(-ELOOP
);
1606 if (d_isparent(alias
, dentry
))
1609 /* See lock_rename() */
1610 ret
= ERR_PTR(-EBUSY
);
1611 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
1613 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
1614 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
1616 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
1618 d_move_locked(alias
, dentry
);
1621 spin_unlock(&dcache_lock
);
1630 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1631 * named dentry in place of the dentry to be replaced.
1633 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
1635 struct dentry
*dparent
, *aparent
;
1637 switch_names(dentry
, anon
);
1638 do_switch(dentry
->d_name
.len
, anon
->d_name
.len
);
1639 do_switch(dentry
->d_name
.hash
, anon
->d_name
.hash
);
1641 dparent
= dentry
->d_parent
;
1642 aparent
= anon
->d_parent
;
1644 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
1645 list_del(&dentry
->d_u
.d_child
);
1646 if (!IS_ROOT(dentry
))
1647 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1649 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1651 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
1652 list_del(&anon
->d_u
.d_child
);
1654 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
1656 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
1658 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
1662 * d_materialise_unique - introduce an inode into the tree
1663 * @dentry: candidate dentry
1664 * @inode: inode to bind to the dentry, to which aliases may be attached
1666 * Introduces an dentry into the tree, substituting an extant disconnected
1667 * root directory alias in its place if there is one
1669 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
1671 struct dentry
*actual
;
1673 BUG_ON(!d_unhashed(dentry
));
1675 spin_lock(&dcache_lock
);
1679 dentry
->d_inode
= NULL
;
1683 if (S_ISDIR(inode
->i_mode
)) {
1684 struct dentry
*alias
;
1686 /* Does an aliased dentry already exist? */
1687 alias
= __d_find_alias(inode
, 0);
1690 /* Is this an anonymous mountpoint that we could splice
1692 if (IS_ROOT(alias
)) {
1693 spin_lock(&alias
->d_lock
);
1694 __d_materialise_dentry(dentry
, alias
);
1698 /* Nope, but we must(!) avoid directory aliasing */
1699 actual
= __d_unalias(dentry
, alias
);
1706 /* Add a unique reference */
1707 actual
= __d_instantiate_unique(dentry
, inode
);
1710 else if (unlikely(!d_unhashed(actual
)))
1711 goto shouldnt_be_hashed
;
1714 spin_lock(&actual
->d_lock
);
1717 spin_unlock(&actual
->d_lock
);
1718 spin_unlock(&dcache_lock
);
1720 if (actual
== dentry
) {
1721 security_d_instantiate(dentry
, inode
);
1729 spin_unlock(&dcache_lock
);
1731 goto shouldnt_be_hashed
;
1735 * d_path - return the path of a dentry
1736 * @dentry: dentry to report
1737 * @vfsmnt: vfsmnt to which the dentry belongs
1738 * @root: root dentry
1739 * @rootmnt: vfsmnt to which the root dentry belongs
1740 * @buffer: buffer to return value in
1741 * @buflen: buffer length
1742 * @fail_deleted: what to return for deleted files
1744 * Convert a dentry into an ASCII path name. If the entry has been deleted,
1745 * then if @fail_deleted is true, ERR_PTR(-ENOENT) is returned. Otherwise,
1746 * the the string " (deleted)" is appended. Note that this is ambiguous.
1748 * Returns the buffer or an error code.
1750 static char *__d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1751 struct dentry
*root
, struct vfsmount
*rootmnt
,
1752 char *buffer
, int buflen
, int fail_deleted
)
1754 int namelen
, is_slash
;
1757 return ERR_PTR(-ENAMETOOLONG
);
1761 spin_lock(&dcache_lock
);
1762 if (!IS_ROOT(dentry
) && d_unhashed(dentry
)) {
1764 buffer
= ERR_PTR(-ENOENT
);
1771 memcpy(buffer
, " (deleted)", 10);
1773 while (dentry
!= root
|| vfsmnt
!= rootmnt
) {
1774 struct dentry
* parent
;
1776 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1777 spin_lock(&vfsmount_lock
);
1778 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1779 spin_unlock(&vfsmount_lock
);
1782 dentry
= vfsmnt
->mnt_mountpoint
;
1783 vfsmnt
= vfsmnt
->mnt_parent
;
1784 spin_unlock(&vfsmount_lock
);
1787 parent
= dentry
->d_parent
;
1789 namelen
= dentry
->d_name
.len
;
1790 if (buflen
<= namelen
)
1792 buflen
-= namelen
+ 1;
1794 memcpy(buffer
, dentry
->d_name
.name
, namelen
);
1803 spin_unlock(&dcache_lock
);
1808 * We went past the (vfsmount, dentry) we were looking for and have
1809 * either hit a root dentry, a lazily unmounted dentry, an
1810 * unconnected dentry, or the file is on a pseudo filesystem.
1812 namelen
= dentry
->d_name
.len
;
1813 is_slash
= (namelen
== 1 && *dentry
->d_name
.name
== '/');
1814 if (is_slash
|| (dentry
->d_sb
->s_flags
& MS_NOUSER
)) {
1816 * Make sure we won't return a pathname starting with '/'.
1818 * Historically, we also glue together the root dentry and
1819 * remaining name for pseudo filesystems like pipefs, which
1820 * have the MS_NOUSER flag set. This results in pathnames
1821 * like "pipe:[439336]".
1823 if (*buffer
== '/') {
1830 if (buflen
< namelen
)
1833 memcpy(buffer
, dentry
->d_name
.name
, namelen
);
1837 buffer
= ERR_PTR(-ENAMETOOLONG
);
1841 /* write full pathname into buffer and return start of pathname */
1842 char *d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
, char *buf
,
1846 struct vfsmount
*rootmnt
;
1847 struct dentry
*root
;
1849 read_lock(¤t
->fs
->lock
);
1850 rootmnt
= mntget(current
->fs
->rootmnt
);
1851 root
= dget(current
->fs
->root
);
1852 read_unlock(¤t
->fs
->lock
);
1853 res
= __d_path(dentry
, vfsmnt
, root
, rootmnt
, buf
, buflen
, 0);
1860 * NOTE! The user-level library version returns a
1861 * character pointer. The kernel system call just
1862 * returns the length of the buffer filled (which
1863 * includes the ending '\0' character), or a negative
1864 * error value. So libc would do something like
1866 * char *getcwd(char * buf, size_t size)
1870 * retval = sys_getcwd(buf, size);
1877 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1880 struct vfsmount
*pwdmnt
, *rootmnt
;
1881 struct dentry
*pwd
, *root
;
1882 char *page
= (char *) __get_free_page(GFP_USER
), *cwd
;
1887 read_lock(¤t
->fs
->lock
);
1888 pwdmnt
= mntget(current
->fs
->pwdmnt
);
1889 pwd
= dget(current
->fs
->pwd
);
1890 rootmnt
= mntget(current
->fs
->rootmnt
);
1891 root
= dget(current
->fs
->root
);
1892 read_unlock(¤t
->fs
->lock
);
1894 cwd
= __d_path(pwd
, pwdmnt
, root
, rootmnt
, page
, PAGE_SIZE
, 1);
1895 error
= PTR_ERR(cwd
);
1900 len
= PAGE_SIZE
+ page
- cwd
;
1903 if (copy_to_user(buf
, cwd
, len
))
1912 free_page((unsigned long) page
);
1917 * Test whether new_dentry is a subdirectory of old_dentry.
1919 * Trivially implemented using the dcache structure
1923 * is_subdir - is new dentry a subdirectory of old_dentry
1924 * @new_dentry: new dentry
1925 * @old_dentry: old dentry
1927 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1928 * Returns 0 otherwise.
1929 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1932 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
1935 struct dentry
* saved
= new_dentry
;
1938 /* need rcu_readlock to protect against the d_parent trashing due to
1943 /* for restarting inner loop in case of seq retry */
1946 seq
= read_seqbegin(&rename_lock
);
1948 if (new_dentry
!= old_dentry
) {
1949 struct dentry
* parent
= new_dentry
->d_parent
;
1950 if (parent
== new_dentry
)
1952 new_dentry
= parent
;
1958 } while (read_seqretry(&rename_lock
, seq
));
1964 void d_genocide(struct dentry
*root
)
1966 struct dentry
*this_parent
= root
;
1967 struct list_head
*next
;
1969 spin_lock(&dcache_lock
);
1971 next
= this_parent
->d_subdirs
.next
;
1973 while (next
!= &this_parent
->d_subdirs
) {
1974 struct list_head
*tmp
= next
;
1975 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1977 if (d_unhashed(dentry
)||!dentry
->d_inode
)
1979 if (!list_empty(&dentry
->d_subdirs
)) {
1980 this_parent
= dentry
;
1983 atomic_dec(&dentry
->d_count
);
1985 if (this_parent
!= root
) {
1986 next
= this_parent
->d_u
.d_child
.next
;
1987 atomic_dec(&this_parent
->d_count
);
1988 this_parent
= this_parent
->d_parent
;
1991 spin_unlock(&dcache_lock
);
1995 * find_inode_number - check for dentry with name
1996 * @dir: directory to check
1997 * @name: Name to find.
1999 * Check whether a dentry already exists for the given name,
2000 * and return the inode number if it has an inode. Otherwise
2003 * This routine is used to post-process directory listings for
2004 * filesystems using synthetic inode numbers, and is necessary
2005 * to keep getcwd() working.
2008 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2010 struct dentry
* dentry
;
2013 dentry
= d_hash_and_lookup(dir
, name
);
2015 if (dentry
->d_inode
)
2016 ino
= dentry
->d_inode
->i_ino
;
2022 static __initdata
unsigned long dhash_entries
;
2023 static int __init
set_dhash_entries(char *str
)
2027 dhash_entries
= simple_strtoul(str
, &str
, 0);
2030 __setup("dhash_entries=", set_dhash_entries
);
2032 static void __init
dcache_init_early(void)
2036 /* If hashes are distributed across NUMA nodes, defer
2037 * hash allocation until vmalloc space is available.
2043 alloc_large_system_hash("Dentry cache",
2044 sizeof(struct hlist_head
),
2052 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2053 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2056 static void __init
dcache_init(unsigned long mempages
)
2061 * A constructor could be added for stable state like the lists,
2062 * but it is probably not worth it because of the cache nature
2065 dentry_cache
= kmem_cache_create("dentry_cache",
2066 sizeof(struct dentry
),
2068 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
2072 set_shrinker(DEFAULT_SEEKS
, shrink_dcache_memory
);
2074 /* Hash may have been set up in dcache_init_early */
2079 alloc_large_system_hash("Dentry cache",
2080 sizeof(struct hlist_head
),
2088 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2089 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2092 /* SLAB cache for __getname() consumers */
2093 struct kmem_cache
*names_cachep __read_mostly
;
2095 /* SLAB cache for file structures */
2096 struct kmem_cache
*filp_cachep __read_mostly
;
2098 EXPORT_SYMBOL(d_genocide
);
2100 void __init
vfs_caches_init_early(void)
2102 dcache_init_early();
2106 void __init
vfs_caches_init(unsigned long mempages
)
2108 unsigned long reserve
;
2110 /* Base hash sizes on available memory, with a reserve equal to
2111 150% of current kernel size */
2113 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
2114 mempages
-= reserve
;
2116 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
2117 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
2119 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
2120 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
2122 dcache_init(mempages
);
2123 inode_init(mempages
);
2124 files_init(mempages
);
2130 EXPORT_SYMBOL(d_alloc
);
2131 EXPORT_SYMBOL(d_alloc_anon
);
2132 EXPORT_SYMBOL(d_alloc_root
);
2133 EXPORT_SYMBOL(d_delete
);
2134 EXPORT_SYMBOL(d_find_alias
);
2135 EXPORT_SYMBOL(d_instantiate
);
2136 EXPORT_SYMBOL(d_invalidate
);
2137 EXPORT_SYMBOL(d_lookup
);
2138 EXPORT_SYMBOL(d_move
);
2139 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2140 EXPORT_SYMBOL(d_path
);
2141 EXPORT_SYMBOL(d_prune_aliases
);
2142 EXPORT_SYMBOL(d_rehash
);
2143 EXPORT_SYMBOL(d_splice_alias
);
2144 EXPORT_SYMBOL(d_validate
);
2145 EXPORT_SYMBOL(dget_locked
);
2146 EXPORT_SYMBOL(dput
);
2147 EXPORT_SYMBOL(find_inode_number
);
2148 EXPORT_SYMBOL(have_submounts
);
2149 EXPORT_SYMBOL(names_cachep
);
2150 EXPORT_SYMBOL(shrink_dcache_parent
);
2151 EXPORT_SYMBOL(shrink_dcache_sb
);