[PATCH] solaris emulation: incorrect tty locking
[linux-2.6.22.y-op.git] / drivers / i2c / busses / i2c-au1550.c
blobd7e7c359fc364831a9ad1a0bed6001f2e88d9b41
1 /*
2 * i2c-au1550.c: SMBus (i2c) adapter for Alchemy PSC interface
3 * Copyright (C) 2004 Embedded Edge, LLC <dan@embeddededge.com>
5 * 2.6 port by Matt Porter <mporter@kernel.crashing.org>
7 * The documentation describes this as an SMBus controller, but it doesn't
8 * understand any of the SMBus protocol in hardware. It's really an I2C
9 * controller that could emulate most of the SMBus in software.
11 * This is just a skeleton adapter to use with the Au1550 PSC
12 * algorithm. It was developed for the Pb1550, but will work with
13 * any Au1550 board that has a similar PSC configuration.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 #include <linux/delay.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/errno.h>
35 #include <linux/i2c.h>
37 #include <asm/mach-au1x00/au1xxx.h>
38 #include <asm/mach-au1x00/au1xxx_psc.h>
40 #include "i2c-au1550.h"
42 static int
43 wait_xfer_done(struct i2c_au1550_data *adap)
45 u32 stat;
46 int i;
47 volatile psc_smb_t *sp;
49 sp = (volatile psc_smb_t *)(adap->psc_base);
51 /* Wait for Tx FIFO Underflow.
53 for (i = 0; i < adap->xfer_timeout; i++) {
54 stat = sp->psc_smbevnt;
55 au_sync();
56 if ((stat & PSC_SMBEVNT_TU) != 0) {
57 /* Clear it. */
58 sp->psc_smbevnt = PSC_SMBEVNT_TU;
59 au_sync();
60 return 0;
62 udelay(1);
65 return -ETIMEDOUT;
68 static int
69 wait_ack(struct i2c_au1550_data *adap)
71 u32 stat;
72 volatile psc_smb_t *sp;
74 if (wait_xfer_done(adap))
75 return -ETIMEDOUT;
77 sp = (volatile psc_smb_t *)(adap->psc_base);
79 stat = sp->psc_smbevnt;
80 au_sync();
82 if ((stat & (PSC_SMBEVNT_DN | PSC_SMBEVNT_AN | PSC_SMBEVNT_AL)) != 0)
83 return -ETIMEDOUT;
85 return 0;
88 static int
89 wait_master_done(struct i2c_au1550_data *adap)
91 u32 stat;
92 int i;
93 volatile psc_smb_t *sp;
95 sp = (volatile psc_smb_t *)(adap->psc_base);
97 /* Wait for Master Done.
99 for (i = 0; i < adap->xfer_timeout; i++) {
100 stat = sp->psc_smbevnt;
101 au_sync();
102 if ((stat & PSC_SMBEVNT_MD) != 0)
103 return 0;
104 udelay(1);
107 return -ETIMEDOUT;
110 static int
111 do_address(struct i2c_au1550_data *adap, unsigned int addr, int rd)
113 volatile psc_smb_t *sp;
114 u32 stat;
116 sp = (volatile psc_smb_t *)(adap->psc_base);
118 /* Reset the FIFOs, clear events.
120 stat = sp->psc_smbstat;
121 sp->psc_smbevnt = PSC_SMBEVNT_ALLCLR;
122 au_sync();
124 if (!(stat & PSC_SMBSTAT_TE) || !(stat & PSC_SMBSTAT_RE)) {
125 sp->psc_smbpcr = PSC_SMBPCR_DC;
126 au_sync();
127 do {
128 stat = sp->psc_smbpcr;
129 au_sync();
130 } while ((stat & PSC_SMBPCR_DC) != 0);
131 udelay(50);
134 /* Write out the i2c chip address and specify operation
136 addr <<= 1;
137 if (rd)
138 addr |= 1;
140 /* Put byte into fifo, start up master.
142 sp->psc_smbtxrx = addr;
143 au_sync();
144 sp->psc_smbpcr = PSC_SMBPCR_MS;
145 au_sync();
146 if (wait_ack(adap))
147 return -EIO;
148 return 0;
151 static u32
152 wait_for_rx_byte(struct i2c_au1550_data *adap, u32 *ret_data)
154 int j;
155 u32 data, stat;
156 volatile psc_smb_t *sp;
158 if (wait_xfer_done(adap))
159 return -EIO;
161 sp = (volatile psc_smb_t *)(adap->psc_base);
163 j = adap->xfer_timeout * 100;
164 do {
165 j--;
166 if (j <= 0)
167 return -EIO;
169 stat = sp->psc_smbstat;
170 au_sync();
171 if ((stat & PSC_SMBSTAT_RE) == 0)
172 j = 0;
173 else
174 udelay(1);
175 } while (j > 0);
176 data = sp->psc_smbtxrx;
177 au_sync();
178 *ret_data = data;
180 return 0;
183 static int
184 i2c_read(struct i2c_au1550_data *adap, unsigned char *buf,
185 unsigned int len)
187 int i;
188 u32 data;
189 volatile psc_smb_t *sp;
191 if (len == 0)
192 return 0;
194 /* A read is performed by stuffing the transmit fifo with
195 * zero bytes for timing, waiting for bytes to appear in the
196 * receive fifo, then reading the bytes.
199 sp = (volatile psc_smb_t *)(adap->psc_base);
201 i = 0;
202 while (i < (len-1)) {
203 sp->psc_smbtxrx = 0;
204 au_sync();
205 if (wait_for_rx_byte(adap, &data))
206 return -EIO;
208 buf[i] = data;
209 i++;
212 /* The last byte has to indicate transfer done.
214 sp->psc_smbtxrx = PSC_SMBTXRX_STP;
215 au_sync();
216 if (wait_master_done(adap))
217 return -EIO;
219 data = sp->psc_smbtxrx;
220 au_sync();
221 buf[i] = data;
222 return 0;
225 static int
226 i2c_write(struct i2c_au1550_data *adap, unsigned char *buf,
227 unsigned int len)
229 int i;
230 u32 data;
231 volatile psc_smb_t *sp;
233 if (len == 0)
234 return 0;
236 sp = (volatile psc_smb_t *)(adap->psc_base);
238 i = 0;
239 while (i < (len-1)) {
240 data = buf[i];
241 sp->psc_smbtxrx = data;
242 au_sync();
243 if (wait_ack(adap))
244 return -EIO;
245 i++;
248 /* The last byte has to indicate transfer done.
250 data = buf[i];
251 data |= PSC_SMBTXRX_STP;
252 sp->psc_smbtxrx = data;
253 au_sync();
254 if (wait_master_done(adap))
255 return -EIO;
256 return 0;
259 static int
260 au1550_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
262 struct i2c_au1550_data *adap = i2c_adap->algo_data;
263 struct i2c_msg *p;
264 int i, err = 0;
266 for (i = 0; !err && i < num; i++) {
267 p = &msgs[i];
268 err = do_address(adap, p->addr, p->flags & I2C_M_RD);
269 if (err || !p->len)
270 continue;
271 if (p->flags & I2C_M_RD)
272 err = i2c_read(adap, p->buf, p->len);
273 else
274 err = i2c_write(adap, p->buf, p->len);
277 /* Return the number of messages processed, or the error code.
279 if (err == 0)
280 err = num;
281 return err;
284 static u32
285 au1550_func(struct i2c_adapter *adap)
287 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
290 static const struct i2c_algorithm au1550_algo = {
291 .master_xfer = au1550_xfer,
292 .functionality = au1550_func,
296 * registering functions to load algorithms at runtime
297 * Prior to calling us, the 50MHz clock frequency and routing
298 * must have been set up for the PSC indicated by the adapter.
301 i2c_au1550_add_bus(struct i2c_adapter *i2c_adap)
303 struct i2c_au1550_data *adap = i2c_adap->algo_data;
304 volatile psc_smb_t *sp;
305 u32 stat;
307 i2c_adap->algo = &au1550_algo;
309 /* Now, set up the PSC for SMBus PIO mode.
311 sp = (volatile psc_smb_t *)(adap->psc_base);
312 sp->psc_ctrl = PSC_CTRL_DISABLE;
313 au_sync();
314 sp->psc_sel = PSC_SEL_PS_SMBUSMODE;
315 sp->psc_smbcfg = 0;
316 au_sync();
317 sp->psc_ctrl = PSC_CTRL_ENABLE;
318 au_sync();
319 do {
320 stat = sp->psc_smbstat;
321 au_sync();
322 } while ((stat & PSC_SMBSTAT_SR) == 0);
324 sp->psc_smbcfg = (PSC_SMBCFG_RT_FIFO8 | PSC_SMBCFG_TT_FIFO8 |
325 PSC_SMBCFG_DD_DISABLE);
327 /* Divide by 8 to get a 6.25 MHz clock. The later protocol
328 * timings are based on this clock.
330 sp->psc_smbcfg |= PSC_SMBCFG_SET_DIV(PSC_SMBCFG_DIV8);
331 sp->psc_smbmsk = PSC_SMBMSK_ALLMASK;
332 au_sync();
334 /* Set the protocol timer values. See Table 71 in the
335 * Au1550 Data Book for standard timing values.
337 sp->psc_smbtmr = PSC_SMBTMR_SET_TH(0) | PSC_SMBTMR_SET_PS(15) | \
338 PSC_SMBTMR_SET_PU(15) | PSC_SMBTMR_SET_SH(15) | \
339 PSC_SMBTMR_SET_SU(15) | PSC_SMBTMR_SET_CL(15) | \
340 PSC_SMBTMR_SET_CH(15);
341 au_sync();
343 sp->psc_smbcfg |= PSC_SMBCFG_DE_ENABLE;
344 do {
345 stat = sp->psc_smbstat;
346 au_sync();
347 } while ((stat & PSC_SMBSTAT_DR) == 0);
349 return i2c_add_adapter(i2c_adap);
354 i2c_au1550_del_bus(struct i2c_adapter *adap)
356 return i2c_del_adapter(adap);
359 static int
360 pb1550_reg(struct i2c_client *client)
362 return 0;
365 static int
366 pb1550_unreg(struct i2c_client *client)
368 return 0;
371 static struct i2c_au1550_data pb1550_i2c_info = {
372 SMBUS_PSC_BASE, 200, 200
375 static struct i2c_adapter pb1550_board_adapter = {
376 name: "pb1550 adapter",
377 id: I2C_HW_AU1550_PSC,
378 algo: NULL,
379 algo_data: &pb1550_i2c_info,
380 client_register: pb1550_reg,
381 client_unregister: pb1550_unreg,
384 /* BIG hack to support the control interface on the Wolfson WM8731
385 * audio codec on the Pb1550 board. We get an address and two data
386 * bytes to write, create an i2c message, and send it across the
387 * i2c transfer function. We do this here because we have access to
388 * the i2c adapter structure.
390 static struct i2c_msg wm_i2c_msg; /* We don't want this stuff on the stack */
391 static u8 i2cbuf[2];
394 pb1550_wm_codec_write(u8 addr, u8 reg, u8 val)
396 wm_i2c_msg.addr = addr;
397 wm_i2c_msg.flags = 0;
398 wm_i2c_msg.buf = i2cbuf;
399 wm_i2c_msg.len = 2;
400 i2cbuf[0] = reg;
401 i2cbuf[1] = val;
403 return pb1550_board_adapter.algo->master_xfer(&pb1550_board_adapter, &wm_i2c_msg, 1);
406 static int __init
407 i2c_au1550_init(void)
409 printk(KERN_INFO "Au1550 I2C: ");
411 /* This is where we would set up a 50MHz clock source
412 * and routing. On the Pb1550, the SMBus is PSC2, which
413 * uses a shared clock with USB. This has been already
414 * configured by Yamon as a 48MHz clock, close enough
415 * for our work.
417 if (i2c_au1550_add_bus(&pb1550_board_adapter) < 0) {
418 printk("failed to initialize.\n");
419 return -ENODEV;
422 printk("initialized.\n");
423 return 0;
426 static void __exit
427 i2c_au1550_exit(void)
429 i2c_au1550_del_bus(&pb1550_board_adapter);
432 MODULE_AUTHOR("Dan Malek, Embedded Edge, LLC.");
433 MODULE_DESCRIPTION("SMBus adapter Alchemy pb1550");
434 MODULE_LICENSE("GPL");
436 module_init (i2c_au1550_init);
437 module_exit (i2c_au1550_exit);