[PATCH] rbtree: support functions used by the io schedulers
[linux-2.6.22.y-op.git] / block / cfq-iosched.c
blobe25223e147a2a5e336a1a430dde49b3e43f00283
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
18 * tunables
20 static const int cfq_quantum = 4; /* max queue in one round of service */
21 static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
31 #define CFQ_IDLE_GRACE (HZ / 10)
32 #define CFQ_SLICE_SCALE (5)
34 #define CFQ_KEY_ASYNC (0)
36 static DEFINE_SPINLOCK(cfq_exit_lock);
39 * for the hash of cfqq inside the cfqd
41 #define CFQ_QHASH_SHIFT 6
42 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
46 * for the hash of crq inside the cfqq
48 #define CFQ_MHASH_SHIFT 6
49 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
55 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
58 #define RQ_DATA(rq) (rq)->elevator_private
61 * rb-tree defines
63 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
64 #define rq_rb_key(rq) (rq)->sector
66 static kmem_cache_t *crq_pool;
67 static kmem_cache_t *cfq_pool;
68 static kmem_cache_t *cfq_ioc_pool;
70 static atomic_t ioc_count = ATOMIC_INIT(0);
71 static struct completion *ioc_gone;
73 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
74 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
75 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
76 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
78 #define ASYNC (0)
79 #define SYNC (1)
81 #define cfq_cfqq_dispatched(cfqq) \
82 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
84 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
86 #define cfq_cfqq_sync(cfqq) \
87 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
89 #define sample_valid(samples) ((samples) > 80)
92 * Per block device queue structure
94 struct cfq_data {
95 request_queue_t *queue;
98 * rr list of queues with requests and the count of them
100 struct list_head rr_list[CFQ_PRIO_LISTS];
101 struct list_head busy_rr;
102 struct list_head cur_rr;
103 struct list_head idle_rr;
104 unsigned int busy_queues;
107 * non-ordered list of empty cfqq's
109 struct list_head empty_list;
112 * cfqq lookup hash
114 struct hlist_head *cfq_hash;
117 * global crq hash for all queues
119 struct hlist_head *crq_hash;
121 mempool_t *crq_pool;
123 int rq_in_driver;
124 int hw_tag;
127 * schedule slice state info
130 * idle window management
132 struct timer_list idle_slice_timer;
133 struct work_struct unplug_work;
135 struct cfq_queue *active_queue;
136 struct cfq_io_context *active_cic;
137 int cur_prio, cur_end_prio;
138 unsigned int dispatch_slice;
140 struct timer_list idle_class_timer;
142 sector_t last_sector;
143 unsigned long last_end_request;
145 unsigned int rq_starved;
148 * tunables, see top of file
150 unsigned int cfq_quantum;
151 unsigned int cfq_queued;
152 unsigned int cfq_fifo_expire[2];
153 unsigned int cfq_back_penalty;
154 unsigned int cfq_back_max;
155 unsigned int cfq_slice[2];
156 unsigned int cfq_slice_async_rq;
157 unsigned int cfq_slice_idle;
159 struct list_head cic_list;
163 * Per process-grouping structure
165 struct cfq_queue {
166 /* reference count */
167 atomic_t ref;
168 /* parent cfq_data */
169 struct cfq_data *cfqd;
170 /* cfqq lookup hash */
171 struct hlist_node cfq_hash;
172 /* hash key */
173 unsigned int key;
174 /* on either rr or empty list of cfqd */
175 struct list_head cfq_list;
176 /* sorted list of pending requests */
177 struct rb_root sort_list;
178 /* if fifo isn't expired, next request to serve */
179 struct cfq_rq *next_crq;
180 /* requests queued in sort_list */
181 int queued[2];
182 /* currently allocated requests */
183 int allocated[2];
184 /* fifo list of requests in sort_list */
185 struct list_head fifo;
187 unsigned long slice_start;
188 unsigned long slice_end;
189 unsigned long slice_left;
190 unsigned long service_last;
192 /* number of requests that are on the dispatch list */
193 int on_dispatch[2];
195 /* io prio of this group */
196 unsigned short ioprio, org_ioprio;
197 unsigned short ioprio_class, org_ioprio_class;
199 /* various state flags, see below */
200 unsigned int flags;
203 struct cfq_rq {
204 struct rb_node rb_node;
205 sector_t rb_key;
206 struct request *request;
207 struct hlist_node hash;
209 struct cfq_queue *cfq_queue;
210 struct cfq_io_context *io_context;
212 unsigned int crq_flags;
215 enum cfqq_state_flags {
216 CFQ_CFQQ_FLAG_on_rr = 0,
217 CFQ_CFQQ_FLAG_wait_request,
218 CFQ_CFQQ_FLAG_must_alloc,
219 CFQ_CFQQ_FLAG_must_alloc_slice,
220 CFQ_CFQQ_FLAG_must_dispatch,
221 CFQ_CFQQ_FLAG_fifo_expire,
222 CFQ_CFQQ_FLAG_idle_window,
223 CFQ_CFQQ_FLAG_prio_changed,
226 #define CFQ_CFQQ_FNS(name) \
227 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
229 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
231 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
233 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
235 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
237 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
240 CFQ_CFQQ_FNS(on_rr);
241 CFQ_CFQQ_FNS(wait_request);
242 CFQ_CFQQ_FNS(must_alloc);
243 CFQ_CFQQ_FNS(must_alloc_slice);
244 CFQ_CFQQ_FNS(must_dispatch);
245 CFQ_CFQQ_FNS(fifo_expire);
246 CFQ_CFQQ_FNS(idle_window);
247 CFQ_CFQQ_FNS(prio_changed);
248 #undef CFQ_CFQQ_FNS
250 enum cfq_rq_state_flags {
251 CFQ_CRQ_FLAG_is_sync = 0,
254 #define CFQ_CRQ_FNS(name) \
255 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
257 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
259 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
261 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
263 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
265 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
268 CFQ_CRQ_FNS(is_sync);
269 #undef CFQ_CRQ_FNS
271 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
272 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
273 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
276 * lots of deadline iosched dupes, can be abstracted later...
278 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
280 hlist_del_init(&crq->hash);
283 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
285 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
287 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
290 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
292 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
293 struct hlist_node *entry, *next;
295 hlist_for_each_safe(entry, next, hash_list) {
296 struct cfq_rq *crq = list_entry_hash(entry);
297 struct request *__rq = crq->request;
299 if (!rq_mergeable(__rq)) {
300 cfq_del_crq_hash(crq);
301 continue;
304 if (rq_hash_key(__rq) == offset)
305 return __rq;
308 return NULL;
312 * scheduler run of queue, if there are requests pending and no one in the
313 * driver that will restart queueing
315 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
317 if (cfqd->busy_queues)
318 kblockd_schedule_work(&cfqd->unplug_work);
321 static int cfq_queue_empty(request_queue_t *q)
323 struct cfq_data *cfqd = q->elevator->elevator_data;
325 return !cfqd->busy_queues;
328 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
330 if (rw == READ || rw == WRITE_SYNC)
331 return task->pid;
333 return CFQ_KEY_ASYNC;
337 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
338 * We choose the request that is closest to the head right now. Distance
339 * behind the head is penalized and only allowed to a certain extent.
341 static struct cfq_rq *
342 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
344 sector_t last, s1, s2, d1 = 0, d2 = 0;
345 unsigned long back_max;
346 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
347 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
348 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
350 if (crq1 == NULL || crq1 == crq2)
351 return crq2;
352 if (crq2 == NULL)
353 return crq1;
355 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
356 return crq1;
357 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
358 return crq2;
360 s1 = crq1->request->sector;
361 s2 = crq2->request->sector;
363 last = cfqd->last_sector;
366 * by definition, 1KiB is 2 sectors
368 back_max = cfqd->cfq_back_max * 2;
371 * Strict one way elevator _except_ in the case where we allow
372 * short backward seeks which are biased as twice the cost of a
373 * similar forward seek.
375 if (s1 >= last)
376 d1 = s1 - last;
377 else if (s1 + back_max >= last)
378 d1 = (last - s1) * cfqd->cfq_back_penalty;
379 else
380 wrap |= CFQ_RQ1_WRAP;
382 if (s2 >= last)
383 d2 = s2 - last;
384 else if (s2 + back_max >= last)
385 d2 = (last - s2) * cfqd->cfq_back_penalty;
386 else
387 wrap |= CFQ_RQ2_WRAP;
389 /* Found required data */
392 * By doing switch() on the bit mask "wrap" we avoid having to
393 * check two variables for all permutations: --> faster!
395 switch (wrap) {
396 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
397 if (d1 < d2)
398 return crq1;
399 else if (d2 < d1)
400 return crq2;
401 else {
402 if (s1 >= s2)
403 return crq1;
404 else
405 return crq2;
408 case CFQ_RQ2_WRAP:
409 return crq1;
410 case CFQ_RQ1_WRAP:
411 return crq2;
412 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
413 default:
415 * Since both rqs are wrapped,
416 * start with the one that's further behind head
417 * (--> only *one* back seek required),
418 * since back seek takes more time than forward.
420 if (s1 <= s2)
421 return crq1;
422 else
423 return crq2;
428 * would be nice to take fifo expire time into account as well
430 static struct cfq_rq *
431 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
432 struct cfq_rq *last)
434 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
435 struct rb_node *rbnext, *rbprev;
437 if (!(rbnext = rb_next(&last->rb_node))) {
438 rbnext = rb_first(&cfqq->sort_list);
439 if (rbnext == &last->rb_node)
440 rbnext = NULL;
443 rbprev = rb_prev(&last->rb_node);
445 if (rbprev)
446 crq_prev = rb_entry_crq(rbprev);
447 if (rbnext)
448 crq_next = rb_entry_crq(rbnext);
450 return cfq_choose_req(cfqd, crq_next, crq_prev);
453 static void cfq_update_next_crq(struct cfq_rq *crq)
455 struct cfq_queue *cfqq = crq->cfq_queue;
457 if (cfqq->next_crq == crq)
458 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
461 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
463 struct cfq_data *cfqd = cfqq->cfqd;
464 struct list_head *list, *entry;
466 BUG_ON(!cfq_cfqq_on_rr(cfqq));
468 list_del(&cfqq->cfq_list);
470 if (cfq_class_rt(cfqq))
471 list = &cfqd->cur_rr;
472 else if (cfq_class_idle(cfqq))
473 list = &cfqd->idle_rr;
474 else {
476 * if cfqq has requests in flight, don't allow it to be
477 * found in cfq_set_active_queue before it has finished them.
478 * this is done to increase fairness between a process that
479 * has lots of io pending vs one that only generates one
480 * sporadically or synchronously
482 if (cfq_cfqq_dispatched(cfqq))
483 list = &cfqd->busy_rr;
484 else
485 list = &cfqd->rr_list[cfqq->ioprio];
489 * if queue was preempted, just add to front to be fair. busy_rr
490 * isn't sorted, but insert at the back for fairness.
492 if (preempted || list == &cfqd->busy_rr) {
493 if (preempted)
494 list = list->prev;
496 list_add_tail(&cfqq->cfq_list, list);
497 return;
501 * sort by when queue was last serviced
503 entry = list;
504 while ((entry = entry->prev) != list) {
505 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
507 if (!__cfqq->service_last)
508 break;
509 if (time_before(__cfqq->service_last, cfqq->service_last))
510 break;
513 list_add(&cfqq->cfq_list, entry);
517 * add to busy list of queues for service, trying to be fair in ordering
518 * the pending list according to last request service
520 static inline void
521 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
523 BUG_ON(cfq_cfqq_on_rr(cfqq));
524 cfq_mark_cfqq_on_rr(cfqq);
525 cfqd->busy_queues++;
527 cfq_resort_rr_list(cfqq, 0);
530 static inline void
531 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
533 BUG_ON(!cfq_cfqq_on_rr(cfqq));
534 cfq_clear_cfqq_on_rr(cfqq);
535 list_move(&cfqq->cfq_list, &cfqd->empty_list);
537 BUG_ON(!cfqd->busy_queues);
538 cfqd->busy_queues--;
542 * rb tree support functions
544 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
546 struct cfq_queue *cfqq = crq->cfq_queue;
547 struct cfq_data *cfqd = cfqq->cfqd;
548 const int sync = cfq_crq_is_sync(crq);
550 BUG_ON(!cfqq->queued[sync]);
551 cfqq->queued[sync]--;
553 cfq_update_next_crq(crq);
555 rb_erase(&crq->rb_node, &cfqq->sort_list);
557 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
558 cfq_del_cfqq_rr(cfqd, cfqq);
561 static struct cfq_rq *
562 __cfq_add_crq_rb(struct cfq_rq *crq)
564 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
565 struct rb_node *parent = NULL;
566 struct cfq_rq *__crq;
568 while (*p) {
569 parent = *p;
570 __crq = rb_entry_crq(parent);
572 if (crq->rb_key < __crq->rb_key)
573 p = &(*p)->rb_left;
574 else if (crq->rb_key > __crq->rb_key)
575 p = &(*p)->rb_right;
576 else
577 return __crq;
580 rb_link_node(&crq->rb_node, parent, p);
581 return NULL;
584 static void cfq_add_crq_rb(struct cfq_rq *crq)
586 struct cfq_queue *cfqq = crq->cfq_queue;
587 struct cfq_data *cfqd = cfqq->cfqd;
588 struct request *rq = crq->request;
589 struct cfq_rq *__alias;
591 crq->rb_key = rq_rb_key(rq);
592 cfqq->queued[cfq_crq_is_sync(crq)]++;
595 * looks a little odd, but the first insert might return an alias.
596 * if that happens, put the alias on the dispatch list
598 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
599 cfq_dispatch_insert(cfqd->queue, __alias);
601 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
603 if (!cfq_cfqq_on_rr(cfqq))
604 cfq_add_cfqq_rr(cfqd, cfqq);
607 * check if this request is a better next-serve candidate
609 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
612 static inline void
613 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
615 rb_erase(&crq->rb_node, &cfqq->sort_list);
616 cfqq->queued[cfq_crq_is_sync(crq)]--;
618 cfq_add_crq_rb(crq);
621 static struct request *
622 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
624 struct task_struct *tsk = current;
625 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
626 struct cfq_queue *cfqq;
627 struct rb_node *n;
628 sector_t sector;
630 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
631 if (!cfqq)
632 goto out;
634 sector = bio->bi_sector + bio_sectors(bio);
635 n = cfqq->sort_list.rb_node;
636 while (n) {
637 struct cfq_rq *crq = rb_entry_crq(n);
639 if (sector < crq->rb_key)
640 n = n->rb_left;
641 else if (sector > crq->rb_key)
642 n = n->rb_right;
643 else
644 return crq->request;
647 out:
648 return NULL;
651 static void cfq_activate_request(request_queue_t *q, struct request *rq)
653 struct cfq_data *cfqd = q->elevator->elevator_data;
655 cfqd->rq_in_driver++;
658 * If the depth is larger 1, it really could be queueing. But lets
659 * make the mark a little higher - idling could still be good for
660 * low queueing, and a low queueing number could also just indicate
661 * a SCSI mid layer like behaviour where limit+1 is often seen.
663 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
664 cfqd->hw_tag = 1;
667 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
669 struct cfq_data *cfqd = q->elevator->elevator_data;
671 WARN_ON(!cfqd->rq_in_driver);
672 cfqd->rq_in_driver--;
675 static void cfq_remove_request(struct request *rq)
677 struct cfq_rq *crq = RQ_DATA(rq);
679 list_del_init(&rq->queuelist);
680 cfq_del_crq_rb(crq);
681 cfq_del_crq_hash(crq);
684 static int
685 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
687 struct cfq_data *cfqd = q->elevator->elevator_data;
688 struct request *__rq;
689 int ret;
691 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
692 if (__rq && elv_rq_merge_ok(__rq, bio)) {
693 ret = ELEVATOR_BACK_MERGE;
694 goto out;
697 __rq = cfq_find_rq_fmerge(cfqd, bio);
698 if (__rq && elv_rq_merge_ok(__rq, bio)) {
699 ret = ELEVATOR_FRONT_MERGE;
700 goto out;
703 return ELEVATOR_NO_MERGE;
704 out:
705 *req = __rq;
706 return ret;
709 static void cfq_merged_request(request_queue_t *q, struct request *req)
711 struct cfq_data *cfqd = q->elevator->elevator_data;
712 struct cfq_rq *crq = RQ_DATA(req);
714 cfq_del_crq_hash(crq);
715 cfq_add_crq_hash(cfqd, crq);
717 if (rq_rb_key(req) != crq->rb_key) {
718 struct cfq_queue *cfqq = crq->cfq_queue;
720 cfq_update_next_crq(crq);
721 cfq_reposition_crq_rb(cfqq, crq);
725 static void
726 cfq_merged_requests(request_queue_t *q, struct request *rq,
727 struct request *next)
729 cfq_merged_request(q, rq);
732 * reposition in fifo if next is older than rq
734 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
735 time_before(next->start_time, rq->start_time))
736 list_move(&rq->queuelist, &next->queuelist);
738 cfq_remove_request(next);
741 static inline void
742 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
744 if (cfqq) {
746 * stop potential idle class queues waiting service
748 del_timer(&cfqd->idle_class_timer);
750 cfqq->slice_start = jiffies;
751 cfqq->slice_end = 0;
752 cfqq->slice_left = 0;
753 cfq_clear_cfqq_must_alloc_slice(cfqq);
754 cfq_clear_cfqq_fifo_expire(cfqq);
757 cfqd->active_queue = cfqq;
761 * current cfqq expired its slice (or was too idle), select new one
763 static void
764 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
765 int preempted)
767 unsigned long now = jiffies;
769 if (cfq_cfqq_wait_request(cfqq))
770 del_timer(&cfqd->idle_slice_timer);
772 if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
773 cfqq->service_last = now;
774 cfq_schedule_dispatch(cfqd);
777 cfq_clear_cfqq_must_dispatch(cfqq);
778 cfq_clear_cfqq_wait_request(cfqq);
781 * store what was left of this slice, if the queue idled out
782 * or was preempted
784 if (time_after(cfqq->slice_end, now))
785 cfqq->slice_left = cfqq->slice_end - now;
786 else
787 cfqq->slice_left = 0;
789 if (cfq_cfqq_on_rr(cfqq))
790 cfq_resort_rr_list(cfqq, preempted);
792 if (cfqq == cfqd->active_queue)
793 cfqd->active_queue = NULL;
795 if (cfqd->active_cic) {
796 put_io_context(cfqd->active_cic->ioc);
797 cfqd->active_cic = NULL;
800 cfqd->dispatch_slice = 0;
803 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
805 struct cfq_queue *cfqq = cfqd->active_queue;
807 if (cfqq)
808 __cfq_slice_expired(cfqd, cfqq, preempted);
813 * 0,1
814 * 0,1,2
815 * 0,1,2,3
816 * 0,1,2,3,4
817 * 0,1,2,3,4,5
818 * 0,1,2,3,4,5,6
819 * 0,1,2,3,4,5,6,7
821 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
823 int prio, wrap;
825 prio = -1;
826 wrap = 0;
827 do {
828 int p;
830 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
831 if (!list_empty(&cfqd->rr_list[p])) {
832 prio = p;
833 break;
837 if (prio != -1)
838 break;
839 cfqd->cur_prio = 0;
840 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
841 cfqd->cur_end_prio = 0;
842 if (wrap)
843 break;
844 wrap = 1;
846 } while (1);
848 if (unlikely(prio == -1))
849 return -1;
851 BUG_ON(prio >= CFQ_PRIO_LISTS);
853 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
855 cfqd->cur_prio = prio + 1;
856 if (cfqd->cur_prio > cfqd->cur_end_prio) {
857 cfqd->cur_end_prio = cfqd->cur_prio;
858 cfqd->cur_prio = 0;
860 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
861 cfqd->cur_prio = 0;
862 cfqd->cur_end_prio = 0;
865 return prio;
868 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
870 struct cfq_queue *cfqq = NULL;
873 * if current list is non-empty, grab first entry. if it is empty,
874 * get next prio level and grab first entry then if any are spliced
876 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
877 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
880 * If no new queues are available, check if the busy list has some
881 * before falling back to idle io.
883 if (!cfqq && !list_empty(&cfqd->busy_rr))
884 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
887 * if we have idle queues and no rt or be queues had pending
888 * requests, either allow immediate service if the grace period
889 * has passed or arm the idle grace timer
891 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
892 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
894 if (time_after_eq(jiffies, end))
895 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
896 else
897 mod_timer(&cfqd->idle_class_timer, end);
900 __cfq_set_active_queue(cfqd, cfqq);
901 return cfqq;
904 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
906 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
909 struct cfq_io_context *cic;
910 unsigned long sl;
912 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
913 WARN_ON(cfqq != cfqd->active_queue);
916 * idle is disabled, either manually or by past process history
918 if (!cfqd->cfq_slice_idle)
919 return 0;
920 if (!cfq_cfqq_idle_window(cfqq))
921 return 0;
923 * task has exited, don't wait
925 cic = cfqd->active_cic;
926 if (!cic || !cic->ioc->task)
927 return 0;
929 cfq_mark_cfqq_must_dispatch(cfqq);
930 cfq_mark_cfqq_wait_request(cfqq);
932 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
935 * we don't want to idle for seeks, but we do want to allow
936 * fair distribution of slice time for a process doing back-to-back
937 * seeks. so allow a little bit of time for him to submit a new rq
939 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
940 sl = 2;
942 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
943 return 1;
946 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
948 struct cfq_data *cfqd = q->elevator->elevator_data;
949 struct cfq_queue *cfqq = crq->cfq_queue;
950 struct request *rq;
952 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
953 cfq_remove_request(crq->request);
954 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
955 elv_dispatch_sort(q, crq->request);
957 rq = list_entry(q->queue_head.prev, struct request, queuelist);
958 cfqd->last_sector = rq->sector + rq->nr_sectors;
962 * return expired entry, or NULL to just start from scratch in rbtree
964 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
966 struct cfq_data *cfqd = cfqq->cfqd;
967 struct request *rq;
968 struct cfq_rq *crq;
970 if (cfq_cfqq_fifo_expire(cfqq))
971 return NULL;
973 if (!list_empty(&cfqq->fifo)) {
974 int fifo = cfq_cfqq_class_sync(cfqq);
976 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
977 rq = crq->request;
978 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
979 cfq_mark_cfqq_fifo_expire(cfqq);
980 return crq;
984 return NULL;
988 * Scale schedule slice based on io priority. Use the sync time slice only
989 * if a queue is marked sync and has sync io queued. A sync queue with async
990 * io only, should not get full sync slice length.
992 static inline int
993 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
995 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
997 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
999 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
1002 static inline void
1003 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1005 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1008 static inline int
1009 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1011 const int base_rq = cfqd->cfq_slice_async_rq;
1013 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1015 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1019 * get next queue for service
1021 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1023 unsigned long now = jiffies;
1024 struct cfq_queue *cfqq;
1026 cfqq = cfqd->active_queue;
1027 if (!cfqq)
1028 goto new_queue;
1031 * slice has expired
1033 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1034 goto expire;
1037 * if queue has requests, dispatch one. if not, check if
1038 * enough slice is left to wait for one
1040 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1041 goto keep_queue;
1042 else if (cfq_cfqq_dispatched(cfqq)) {
1043 cfqq = NULL;
1044 goto keep_queue;
1045 } else if (cfq_cfqq_class_sync(cfqq)) {
1046 if (cfq_arm_slice_timer(cfqd, cfqq))
1047 return NULL;
1050 expire:
1051 cfq_slice_expired(cfqd, 0);
1052 new_queue:
1053 cfqq = cfq_set_active_queue(cfqd);
1054 keep_queue:
1055 return cfqq;
1058 static int
1059 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1060 int max_dispatch)
1062 int dispatched = 0;
1064 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1066 do {
1067 struct cfq_rq *crq;
1070 * follow expired path, else get first next available
1072 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1073 crq = cfqq->next_crq;
1076 * finally, insert request into driver dispatch list
1078 cfq_dispatch_insert(cfqd->queue, crq);
1080 cfqd->dispatch_slice++;
1081 dispatched++;
1083 if (!cfqd->active_cic) {
1084 atomic_inc(&crq->io_context->ioc->refcount);
1085 cfqd->active_cic = crq->io_context;
1088 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1089 break;
1091 } while (dispatched < max_dispatch);
1094 * if slice end isn't set yet, set it.
1096 if (!cfqq->slice_end)
1097 cfq_set_prio_slice(cfqd, cfqq);
1100 * expire an async queue immediately if it has used up its slice. idle
1101 * queue always expire after 1 dispatch round.
1103 if ((!cfq_cfqq_sync(cfqq) &&
1104 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1105 cfq_class_idle(cfqq) ||
1106 !cfq_cfqq_idle_window(cfqq))
1107 cfq_slice_expired(cfqd, 0);
1109 return dispatched;
1112 static int
1113 cfq_forced_dispatch_cfqqs(struct list_head *list)
1115 struct cfq_queue *cfqq, *next;
1116 struct cfq_rq *crq;
1117 int dispatched;
1119 dispatched = 0;
1120 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1121 while ((crq = cfqq->next_crq)) {
1122 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1123 dispatched++;
1125 BUG_ON(!list_empty(&cfqq->fifo));
1128 return dispatched;
1131 static int
1132 cfq_forced_dispatch(struct cfq_data *cfqd)
1134 int i, dispatched = 0;
1136 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1137 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1139 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1140 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1141 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1143 cfq_slice_expired(cfqd, 0);
1145 BUG_ON(cfqd->busy_queues);
1147 return dispatched;
1150 static int
1151 cfq_dispatch_requests(request_queue_t *q, int force)
1153 struct cfq_data *cfqd = q->elevator->elevator_data;
1154 struct cfq_queue *cfqq, *prev_cfqq;
1155 int dispatched;
1157 if (!cfqd->busy_queues)
1158 return 0;
1160 if (unlikely(force))
1161 return cfq_forced_dispatch(cfqd);
1163 dispatched = 0;
1164 prev_cfqq = NULL;
1165 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1166 int max_dispatch;
1169 * Don't repeat dispatch from the previous queue.
1171 if (prev_cfqq == cfqq)
1172 break;
1174 cfq_clear_cfqq_must_dispatch(cfqq);
1175 cfq_clear_cfqq_wait_request(cfqq);
1176 del_timer(&cfqd->idle_slice_timer);
1178 max_dispatch = cfqd->cfq_quantum;
1179 if (cfq_class_idle(cfqq))
1180 max_dispatch = 1;
1182 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1185 * If the dispatch cfqq has idling enabled and is still
1186 * the active queue, break out.
1188 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1189 break;
1191 prev_cfqq = cfqq;
1194 return dispatched;
1198 * task holds one reference to the queue, dropped when task exits. each crq
1199 * in-flight on this queue also holds a reference, dropped when crq is freed.
1201 * queue lock must be held here.
1203 static void cfq_put_queue(struct cfq_queue *cfqq)
1205 struct cfq_data *cfqd = cfqq->cfqd;
1207 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1209 if (!atomic_dec_and_test(&cfqq->ref))
1210 return;
1212 BUG_ON(rb_first(&cfqq->sort_list));
1213 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1214 BUG_ON(cfq_cfqq_on_rr(cfqq));
1216 if (unlikely(cfqd->active_queue == cfqq))
1217 __cfq_slice_expired(cfqd, cfqq, 0);
1220 * it's on the empty list and still hashed
1222 list_del(&cfqq->cfq_list);
1223 hlist_del(&cfqq->cfq_hash);
1224 kmem_cache_free(cfq_pool, cfqq);
1227 static inline struct cfq_queue *
1228 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1229 const int hashval)
1231 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1232 struct hlist_node *entry;
1233 struct cfq_queue *__cfqq;
1235 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1236 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1238 if (__cfqq->key == key && (__p == prio || !prio))
1239 return __cfqq;
1242 return NULL;
1245 static struct cfq_queue *
1246 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1248 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1251 static void cfq_free_io_context(struct io_context *ioc)
1253 struct cfq_io_context *__cic;
1254 struct rb_node *n;
1255 int freed = 0;
1257 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1258 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1259 rb_erase(&__cic->rb_node, &ioc->cic_root);
1260 kmem_cache_free(cfq_ioc_pool, __cic);
1261 freed++;
1264 if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1265 complete(ioc_gone);
1268 static void cfq_trim(struct io_context *ioc)
1270 ioc->set_ioprio = NULL;
1271 cfq_free_io_context(ioc);
1275 * Called with interrupts disabled
1277 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1279 struct cfq_data *cfqd = cic->key;
1280 request_queue_t *q;
1282 if (!cfqd)
1283 return;
1285 q = cfqd->queue;
1287 WARN_ON(!irqs_disabled());
1289 spin_lock(q->queue_lock);
1291 if (cic->cfqq[ASYNC]) {
1292 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1293 __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1294 cfq_put_queue(cic->cfqq[ASYNC]);
1295 cic->cfqq[ASYNC] = NULL;
1298 if (cic->cfqq[SYNC]) {
1299 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1300 __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1301 cfq_put_queue(cic->cfqq[SYNC]);
1302 cic->cfqq[SYNC] = NULL;
1305 cic->key = NULL;
1306 list_del_init(&cic->queue_list);
1307 spin_unlock(q->queue_lock);
1310 static void cfq_exit_io_context(struct io_context *ioc)
1312 struct cfq_io_context *__cic;
1313 unsigned long flags;
1314 struct rb_node *n;
1317 * put the reference this task is holding to the various queues
1319 spin_lock_irqsave(&cfq_exit_lock, flags);
1321 n = rb_first(&ioc->cic_root);
1322 while (n != NULL) {
1323 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1325 cfq_exit_single_io_context(__cic);
1326 n = rb_next(n);
1329 spin_unlock_irqrestore(&cfq_exit_lock, flags);
1332 static struct cfq_io_context *
1333 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1335 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1337 if (cic) {
1338 memset(cic, 0, sizeof(*cic));
1339 cic->last_end_request = jiffies;
1340 INIT_LIST_HEAD(&cic->queue_list);
1341 cic->dtor = cfq_free_io_context;
1342 cic->exit = cfq_exit_io_context;
1343 atomic_inc(&ioc_count);
1346 return cic;
1349 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1351 struct task_struct *tsk = current;
1352 int ioprio_class;
1354 if (!cfq_cfqq_prio_changed(cfqq))
1355 return;
1357 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1358 switch (ioprio_class) {
1359 default:
1360 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1361 case IOPRIO_CLASS_NONE:
1363 * no prio set, place us in the middle of the BE classes
1365 cfqq->ioprio = task_nice_ioprio(tsk);
1366 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1367 break;
1368 case IOPRIO_CLASS_RT:
1369 cfqq->ioprio = task_ioprio(tsk);
1370 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1371 break;
1372 case IOPRIO_CLASS_BE:
1373 cfqq->ioprio = task_ioprio(tsk);
1374 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1375 break;
1376 case IOPRIO_CLASS_IDLE:
1377 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1378 cfqq->ioprio = 7;
1379 cfq_clear_cfqq_idle_window(cfqq);
1380 break;
1384 * keep track of original prio settings in case we have to temporarily
1385 * elevate the priority of this queue
1387 cfqq->org_ioprio = cfqq->ioprio;
1388 cfqq->org_ioprio_class = cfqq->ioprio_class;
1390 if (cfq_cfqq_on_rr(cfqq))
1391 cfq_resort_rr_list(cfqq, 0);
1393 cfq_clear_cfqq_prio_changed(cfqq);
1396 static inline void changed_ioprio(struct cfq_io_context *cic)
1398 struct cfq_data *cfqd = cic->key;
1399 struct cfq_queue *cfqq;
1401 if (unlikely(!cfqd))
1402 return;
1404 spin_lock(cfqd->queue->queue_lock);
1406 cfqq = cic->cfqq[ASYNC];
1407 if (cfqq) {
1408 struct cfq_queue *new_cfqq;
1409 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1410 GFP_ATOMIC);
1411 if (new_cfqq) {
1412 cic->cfqq[ASYNC] = new_cfqq;
1413 cfq_put_queue(cfqq);
1417 cfqq = cic->cfqq[SYNC];
1418 if (cfqq)
1419 cfq_mark_cfqq_prio_changed(cfqq);
1421 spin_unlock(cfqd->queue->queue_lock);
1425 * callback from sys_ioprio_set, irqs are disabled
1427 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1429 struct cfq_io_context *cic;
1430 struct rb_node *n;
1432 spin_lock(&cfq_exit_lock);
1434 n = rb_first(&ioc->cic_root);
1435 while (n != NULL) {
1436 cic = rb_entry(n, struct cfq_io_context, rb_node);
1438 changed_ioprio(cic);
1439 n = rb_next(n);
1442 spin_unlock(&cfq_exit_lock);
1444 return 0;
1447 static struct cfq_queue *
1448 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1449 gfp_t gfp_mask)
1451 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1452 struct cfq_queue *cfqq, *new_cfqq = NULL;
1453 unsigned short ioprio;
1455 retry:
1456 ioprio = tsk->ioprio;
1457 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1459 if (!cfqq) {
1460 if (new_cfqq) {
1461 cfqq = new_cfqq;
1462 new_cfqq = NULL;
1463 } else if (gfp_mask & __GFP_WAIT) {
1464 spin_unlock_irq(cfqd->queue->queue_lock);
1465 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1466 spin_lock_irq(cfqd->queue->queue_lock);
1467 goto retry;
1468 } else {
1469 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1470 if (!cfqq)
1471 goto out;
1474 memset(cfqq, 0, sizeof(*cfqq));
1476 INIT_HLIST_NODE(&cfqq->cfq_hash);
1477 INIT_LIST_HEAD(&cfqq->cfq_list);
1478 INIT_LIST_HEAD(&cfqq->fifo);
1480 cfqq->key = key;
1481 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1482 atomic_set(&cfqq->ref, 0);
1483 cfqq->cfqd = cfqd;
1484 cfqq->service_last = 0;
1486 * set ->slice_left to allow preemption for a new process
1488 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1489 cfq_mark_cfqq_idle_window(cfqq);
1490 cfq_mark_cfqq_prio_changed(cfqq);
1491 cfq_init_prio_data(cfqq);
1494 if (new_cfqq)
1495 kmem_cache_free(cfq_pool, new_cfqq);
1497 atomic_inc(&cfqq->ref);
1498 out:
1499 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1500 return cfqq;
1503 static void
1504 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1506 spin_lock(&cfq_exit_lock);
1507 rb_erase(&cic->rb_node, &ioc->cic_root);
1508 list_del_init(&cic->queue_list);
1509 spin_unlock(&cfq_exit_lock);
1510 kmem_cache_free(cfq_ioc_pool, cic);
1511 atomic_dec(&ioc_count);
1514 static struct cfq_io_context *
1515 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1517 struct rb_node *n;
1518 struct cfq_io_context *cic;
1519 void *k, *key = cfqd;
1521 restart:
1522 n = ioc->cic_root.rb_node;
1523 while (n) {
1524 cic = rb_entry(n, struct cfq_io_context, rb_node);
1525 /* ->key must be copied to avoid race with cfq_exit_queue() */
1526 k = cic->key;
1527 if (unlikely(!k)) {
1528 cfq_drop_dead_cic(ioc, cic);
1529 goto restart;
1532 if (key < k)
1533 n = n->rb_left;
1534 else if (key > k)
1535 n = n->rb_right;
1536 else
1537 return cic;
1540 return NULL;
1543 static inline void
1544 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1545 struct cfq_io_context *cic)
1547 struct rb_node **p;
1548 struct rb_node *parent;
1549 struct cfq_io_context *__cic;
1550 void *k;
1552 cic->ioc = ioc;
1553 cic->key = cfqd;
1555 ioc->set_ioprio = cfq_ioc_set_ioprio;
1556 restart:
1557 parent = NULL;
1558 p = &ioc->cic_root.rb_node;
1559 while (*p) {
1560 parent = *p;
1561 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1562 /* ->key must be copied to avoid race with cfq_exit_queue() */
1563 k = __cic->key;
1564 if (unlikely(!k)) {
1565 cfq_drop_dead_cic(ioc, cic);
1566 goto restart;
1569 if (cic->key < k)
1570 p = &(*p)->rb_left;
1571 else if (cic->key > k)
1572 p = &(*p)->rb_right;
1573 else
1574 BUG();
1577 spin_lock(&cfq_exit_lock);
1578 rb_link_node(&cic->rb_node, parent, p);
1579 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1580 list_add(&cic->queue_list, &cfqd->cic_list);
1581 spin_unlock(&cfq_exit_lock);
1585 * Setup general io context and cfq io context. There can be several cfq
1586 * io contexts per general io context, if this process is doing io to more
1587 * than one device managed by cfq.
1589 static struct cfq_io_context *
1590 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1592 struct io_context *ioc = NULL;
1593 struct cfq_io_context *cic;
1595 might_sleep_if(gfp_mask & __GFP_WAIT);
1597 ioc = get_io_context(gfp_mask);
1598 if (!ioc)
1599 return NULL;
1601 cic = cfq_cic_rb_lookup(cfqd, ioc);
1602 if (cic)
1603 goto out;
1605 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1606 if (cic == NULL)
1607 goto err;
1609 cfq_cic_link(cfqd, ioc, cic);
1610 out:
1611 return cic;
1612 err:
1613 put_io_context(ioc);
1614 return NULL;
1617 static void
1618 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1620 unsigned long elapsed, ttime;
1623 * if this context already has stuff queued, thinktime is from
1624 * last queue not last end
1626 #if 0
1627 if (time_after(cic->last_end_request, cic->last_queue))
1628 elapsed = jiffies - cic->last_end_request;
1629 else
1630 elapsed = jiffies - cic->last_queue;
1631 #else
1632 elapsed = jiffies - cic->last_end_request;
1633 #endif
1635 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1637 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1638 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1639 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1642 static void
1643 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1644 struct cfq_rq *crq)
1646 sector_t sdist;
1647 u64 total;
1649 if (cic->last_request_pos < crq->request->sector)
1650 sdist = crq->request->sector - cic->last_request_pos;
1651 else
1652 sdist = cic->last_request_pos - crq->request->sector;
1655 * Don't allow the seek distance to get too large from the
1656 * odd fragment, pagein, etc
1658 if (cic->seek_samples <= 60) /* second&third seek */
1659 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1660 else
1661 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1663 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1664 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1665 total = cic->seek_total + (cic->seek_samples/2);
1666 do_div(total, cic->seek_samples);
1667 cic->seek_mean = (sector_t)total;
1671 * Disable idle window if the process thinks too long or seeks so much that
1672 * it doesn't matter
1674 static void
1675 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1676 struct cfq_io_context *cic)
1678 int enable_idle = cfq_cfqq_idle_window(cfqq);
1680 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1681 (cfqd->hw_tag && CIC_SEEKY(cic)))
1682 enable_idle = 0;
1683 else if (sample_valid(cic->ttime_samples)) {
1684 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1685 enable_idle = 0;
1686 else
1687 enable_idle = 1;
1690 if (enable_idle)
1691 cfq_mark_cfqq_idle_window(cfqq);
1692 else
1693 cfq_clear_cfqq_idle_window(cfqq);
1698 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1699 * no or if we aren't sure, a 1 will cause a preempt.
1701 static int
1702 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1703 struct cfq_rq *crq)
1705 struct cfq_queue *cfqq = cfqd->active_queue;
1707 if (cfq_class_idle(new_cfqq))
1708 return 0;
1710 if (!cfqq)
1711 return 0;
1713 if (cfq_class_idle(cfqq))
1714 return 1;
1715 if (!cfq_cfqq_wait_request(new_cfqq))
1716 return 0;
1718 * if it doesn't have slice left, forget it
1720 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1721 return 0;
1722 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1723 return 1;
1725 return 0;
1729 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1730 * let it have half of its nominal slice.
1732 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1734 struct cfq_queue *__cfqq, *next;
1736 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1737 cfq_resort_rr_list(__cfqq, 1);
1739 if (!cfqq->slice_left)
1740 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1742 cfqq->slice_end = cfqq->slice_left + jiffies;
1743 cfq_slice_expired(cfqd, 1);
1744 __cfq_set_active_queue(cfqd, cfqq);
1748 * should really be a ll_rw_blk.c helper
1750 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1752 request_queue_t *q = cfqd->queue;
1754 if (!blk_queue_plugged(q))
1755 q->request_fn(q);
1756 else
1757 __generic_unplug_device(q);
1761 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1762 * something we should do about it
1764 static void
1765 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1766 struct cfq_rq *crq)
1768 struct cfq_io_context *cic = crq->io_context;
1771 * we never wait for an async request and we don't allow preemption
1772 * of an async request. so just return early
1774 if (!cfq_crq_is_sync(crq)) {
1776 * sync process issued an async request, if it's waiting
1777 * then expire it and kick rq handling.
1779 if (cic == cfqd->active_cic &&
1780 del_timer(&cfqd->idle_slice_timer)) {
1781 cfq_slice_expired(cfqd, 0);
1782 cfq_start_queueing(cfqd, cfqq);
1784 return;
1787 cfq_update_io_thinktime(cfqd, cic);
1788 cfq_update_io_seektime(cfqd, cic, crq);
1789 cfq_update_idle_window(cfqd, cfqq, cic);
1791 cic->last_queue = jiffies;
1792 cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1794 if (cfqq == cfqd->active_queue) {
1796 * if we are waiting for a request for this queue, let it rip
1797 * immediately and flag that we must not expire this queue
1798 * just now
1800 if (cfq_cfqq_wait_request(cfqq)) {
1801 cfq_mark_cfqq_must_dispatch(cfqq);
1802 del_timer(&cfqd->idle_slice_timer);
1803 cfq_start_queueing(cfqd, cfqq);
1805 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1807 * not the active queue - expire current slice if it is
1808 * idle and has expired it's mean thinktime or this new queue
1809 * has some old slice time left and is of higher priority
1811 cfq_preempt_queue(cfqd, cfqq);
1812 cfq_mark_cfqq_must_dispatch(cfqq);
1813 cfq_start_queueing(cfqd, cfqq);
1817 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1819 struct cfq_data *cfqd = q->elevator->elevator_data;
1820 struct cfq_rq *crq = RQ_DATA(rq);
1821 struct cfq_queue *cfqq = crq->cfq_queue;
1823 cfq_init_prio_data(cfqq);
1825 cfq_add_crq_rb(crq);
1827 list_add_tail(&rq->queuelist, &cfqq->fifo);
1829 if (rq_mergeable(rq))
1830 cfq_add_crq_hash(cfqd, crq);
1832 cfq_crq_enqueued(cfqd, cfqq, crq);
1835 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1837 struct cfq_rq *crq = RQ_DATA(rq);
1838 struct cfq_queue *cfqq = crq->cfq_queue;
1839 struct cfq_data *cfqd = cfqq->cfqd;
1840 const int sync = cfq_crq_is_sync(crq);
1841 unsigned long now;
1843 now = jiffies;
1845 WARN_ON(!cfqd->rq_in_driver);
1846 WARN_ON(!cfqq->on_dispatch[sync]);
1847 cfqd->rq_in_driver--;
1848 cfqq->on_dispatch[sync]--;
1850 if (!cfq_class_idle(cfqq))
1851 cfqd->last_end_request = now;
1853 if (!cfq_cfqq_dispatched(cfqq)) {
1854 if (cfq_cfqq_on_rr(cfqq)) {
1855 cfqq->service_last = now;
1856 cfq_resort_rr_list(cfqq, 0);
1860 if (sync)
1861 crq->io_context->last_end_request = now;
1864 * If this is the active queue, check if it needs to be expired,
1865 * or if we want to idle in case it has no pending requests.
1867 if (cfqd->active_queue == cfqq) {
1868 if (time_after(now, cfqq->slice_end))
1869 cfq_slice_expired(cfqd, 0);
1870 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1871 if (!cfq_arm_slice_timer(cfqd, cfqq))
1872 cfq_schedule_dispatch(cfqd);
1877 static struct request *
1878 cfq_former_request(request_queue_t *q, struct request *rq)
1880 struct cfq_rq *crq = RQ_DATA(rq);
1881 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1883 if (rbprev)
1884 return rb_entry_crq(rbprev)->request;
1886 return NULL;
1889 static struct request *
1890 cfq_latter_request(request_queue_t *q, struct request *rq)
1892 struct cfq_rq *crq = RQ_DATA(rq);
1893 struct rb_node *rbnext = rb_next(&crq->rb_node);
1895 if (rbnext)
1896 return rb_entry_crq(rbnext)->request;
1898 return NULL;
1902 * we temporarily boost lower priority queues if they are holding fs exclusive
1903 * resources. they are boosted to normal prio (CLASS_BE/4)
1905 static void cfq_prio_boost(struct cfq_queue *cfqq)
1907 const int ioprio_class = cfqq->ioprio_class;
1908 const int ioprio = cfqq->ioprio;
1910 if (has_fs_excl()) {
1912 * boost idle prio on transactions that would lock out other
1913 * users of the filesystem
1915 if (cfq_class_idle(cfqq))
1916 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1917 if (cfqq->ioprio > IOPRIO_NORM)
1918 cfqq->ioprio = IOPRIO_NORM;
1919 } else {
1921 * check if we need to unboost the queue
1923 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1924 cfqq->ioprio_class = cfqq->org_ioprio_class;
1925 if (cfqq->ioprio != cfqq->org_ioprio)
1926 cfqq->ioprio = cfqq->org_ioprio;
1930 * refile between round-robin lists if we moved the priority class
1932 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1933 cfq_cfqq_on_rr(cfqq))
1934 cfq_resort_rr_list(cfqq, 0);
1937 static inline int
1938 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1939 struct task_struct *task, int rw)
1941 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1942 !cfq_cfqq_must_alloc_slice(cfqq)) {
1943 cfq_mark_cfqq_must_alloc_slice(cfqq);
1944 return ELV_MQUEUE_MUST;
1947 return ELV_MQUEUE_MAY;
1950 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1952 struct cfq_data *cfqd = q->elevator->elevator_data;
1953 struct task_struct *tsk = current;
1954 struct cfq_queue *cfqq;
1957 * don't force setup of a queue from here, as a call to may_queue
1958 * does not necessarily imply that a request actually will be queued.
1959 * so just lookup a possibly existing queue, or return 'may queue'
1960 * if that fails
1962 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1963 if (cfqq) {
1964 cfq_init_prio_data(cfqq);
1965 cfq_prio_boost(cfqq);
1967 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1970 return ELV_MQUEUE_MAY;
1973 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1975 struct cfq_data *cfqd = q->elevator->elevator_data;
1977 if (unlikely(cfqd->rq_starved)) {
1978 struct request_list *rl = &q->rq;
1980 smp_mb();
1981 if (waitqueue_active(&rl->wait[READ]))
1982 wake_up(&rl->wait[READ]);
1983 if (waitqueue_active(&rl->wait[WRITE]))
1984 wake_up(&rl->wait[WRITE]);
1989 * queue lock held here
1991 static void cfq_put_request(request_queue_t *q, struct request *rq)
1993 struct cfq_data *cfqd = q->elevator->elevator_data;
1994 struct cfq_rq *crq = RQ_DATA(rq);
1996 if (crq) {
1997 struct cfq_queue *cfqq = crq->cfq_queue;
1998 const int rw = rq_data_dir(rq);
2000 BUG_ON(!cfqq->allocated[rw]);
2001 cfqq->allocated[rw]--;
2003 put_io_context(crq->io_context->ioc);
2005 mempool_free(crq, cfqd->crq_pool);
2006 rq->elevator_private = NULL;
2008 cfq_check_waiters(q, cfqq);
2009 cfq_put_queue(cfqq);
2014 * Allocate cfq data structures associated with this request.
2016 static int
2017 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
2018 gfp_t gfp_mask)
2020 struct cfq_data *cfqd = q->elevator->elevator_data;
2021 struct task_struct *tsk = current;
2022 struct cfq_io_context *cic;
2023 const int rw = rq_data_dir(rq);
2024 pid_t key = cfq_queue_pid(tsk, rw);
2025 struct cfq_queue *cfqq;
2026 struct cfq_rq *crq;
2027 unsigned long flags;
2028 int is_sync = key != CFQ_KEY_ASYNC;
2030 might_sleep_if(gfp_mask & __GFP_WAIT);
2032 cic = cfq_get_io_context(cfqd, gfp_mask);
2034 spin_lock_irqsave(q->queue_lock, flags);
2036 if (!cic)
2037 goto queue_fail;
2039 if (!cic->cfqq[is_sync]) {
2040 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2041 if (!cfqq)
2042 goto queue_fail;
2044 cic->cfqq[is_sync] = cfqq;
2045 } else
2046 cfqq = cic->cfqq[is_sync];
2048 cfqq->allocated[rw]++;
2049 cfq_clear_cfqq_must_alloc(cfqq);
2050 cfqd->rq_starved = 0;
2051 atomic_inc(&cfqq->ref);
2052 spin_unlock_irqrestore(q->queue_lock, flags);
2054 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2055 if (crq) {
2056 RB_CLEAR_NODE(&crq->rb_node);
2057 crq->rb_key = 0;
2058 crq->request = rq;
2059 INIT_HLIST_NODE(&crq->hash);
2060 crq->cfq_queue = cfqq;
2061 crq->io_context = cic;
2063 if (is_sync)
2064 cfq_mark_crq_is_sync(crq);
2065 else
2066 cfq_clear_crq_is_sync(crq);
2068 rq->elevator_private = crq;
2069 return 0;
2072 spin_lock_irqsave(q->queue_lock, flags);
2073 cfqq->allocated[rw]--;
2074 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2075 cfq_mark_cfqq_must_alloc(cfqq);
2076 cfq_put_queue(cfqq);
2077 queue_fail:
2078 if (cic)
2079 put_io_context(cic->ioc);
2081 * mark us rq allocation starved. we need to kickstart the process
2082 * ourselves if there are no pending requests that can do it for us.
2083 * that would be an extremely rare OOM situation
2085 cfqd->rq_starved = 1;
2086 cfq_schedule_dispatch(cfqd);
2087 spin_unlock_irqrestore(q->queue_lock, flags);
2088 return 1;
2091 static void cfq_kick_queue(void *data)
2093 request_queue_t *q = data;
2094 struct cfq_data *cfqd = q->elevator->elevator_data;
2095 unsigned long flags;
2097 spin_lock_irqsave(q->queue_lock, flags);
2099 if (cfqd->rq_starved) {
2100 struct request_list *rl = &q->rq;
2103 * we aren't guaranteed to get a request after this, but we
2104 * have to be opportunistic
2106 smp_mb();
2107 if (waitqueue_active(&rl->wait[READ]))
2108 wake_up(&rl->wait[READ]);
2109 if (waitqueue_active(&rl->wait[WRITE]))
2110 wake_up(&rl->wait[WRITE]);
2113 blk_remove_plug(q);
2114 q->request_fn(q);
2115 spin_unlock_irqrestore(q->queue_lock, flags);
2119 * Timer running if the active_queue is currently idling inside its time slice
2121 static void cfq_idle_slice_timer(unsigned long data)
2123 struct cfq_data *cfqd = (struct cfq_data *) data;
2124 struct cfq_queue *cfqq;
2125 unsigned long flags;
2127 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2129 if ((cfqq = cfqd->active_queue) != NULL) {
2130 unsigned long now = jiffies;
2133 * expired
2135 if (time_after(now, cfqq->slice_end))
2136 goto expire;
2139 * only expire and reinvoke request handler, if there are
2140 * other queues with pending requests
2142 if (!cfqd->busy_queues)
2143 goto out_cont;
2146 * not expired and it has a request pending, let it dispatch
2148 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2149 cfq_mark_cfqq_must_dispatch(cfqq);
2150 goto out_kick;
2153 expire:
2154 cfq_slice_expired(cfqd, 0);
2155 out_kick:
2156 cfq_schedule_dispatch(cfqd);
2157 out_cont:
2158 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2162 * Timer running if an idle class queue is waiting for service
2164 static void cfq_idle_class_timer(unsigned long data)
2166 struct cfq_data *cfqd = (struct cfq_data *) data;
2167 unsigned long flags, end;
2169 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2172 * race with a non-idle queue, reset timer
2174 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2175 if (!time_after_eq(jiffies, end))
2176 mod_timer(&cfqd->idle_class_timer, end);
2177 else
2178 cfq_schedule_dispatch(cfqd);
2180 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2183 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2185 del_timer_sync(&cfqd->idle_slice_timer);
2186 del_timer_sync(&cfqd->idle_class_timer);
2187 blk_sync_queue(cfqd->queue);
2190 static void cfq_exit_queue(elevator_t *e)
2192 struct cfq_data *cfqd = e->elevator_data;
2193 request_queue_t *q = cfqd->queue;
2195 cfq_shutdown_timer_wq(cfqd);
2197 spin_lock(&cfq_exit_lock);
2198 spin_lock_irq(q->queue_lock);
2200 if (cfqd->active_queue)
2201 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2203 while (!list_empty(&cfqd->cic_list)) {
2204 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2205 struct cfq_io_context,
2206 queue_list);
2207 if (cic->cfqq[ASYNC]) {
2208 cfq_put_queue(cic->cfqq[ASYNC]);
2209 cic->cfqq[ASYNC] = NULL;
2211 if (cic->cfqq[SYNC]) {
2212 cfq_put_queue(cic->cfqq[SYNC]);
2213 cic->cfqq[SYNC] = NULL;
2215 cic->key = NULL;
2216 list_del_init(&cic->queue_list);
2219 spin_unlock_irq(q->queue_lock);
2220 spin_unlock(&cfq_exit_lock);
2222 cfq_shutdown_timer_wq(cfqd);
2224 mempool_destroy(cfqd->crq_pool);
2225 kfree(cfqd->crq_hash);
2226 kfree(cfqd->cfq_hash);
2227 kfree(cfqd);
2230 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
2232 struct cfq_data *cfqd;
2233 int i;
2235 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2236 if (!cfqd)
2237 return NULL;
2239 memset(cfqd, 0, sizeof(*cfqd));
2241 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2242 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2244 INIT_LIST_HEAD(&cfqd->busy_rr);
2245 INIT_LIST_HEAD(&cfqd->cur_rr);
2246 INIT_LIST_HEAD(&cfqd->idle_rr);
2247 INIT_LIST_HEAD(&cfqd->empty_list);
2248 INIT_LIST_HEAD(&cfqd->cic_list);
2250 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2251 if (!cfqd->crq_hash)
2252 goto out_crqhash;
2254 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2255 if (!cfqd->cfq_hash)
2256 goto out_cfqhash;
2258 cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2259 if (!cfqd->crq_pool)
2260 goto out_crqpool;
2262 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2263 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2264 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2265 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2267 cfqd->queue = q;
2269 init_timer(&cfqd->idle_slice_timer);
2270 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2271 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2273 init_timer(&cfqd->idle_class_timer);
2274 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2275 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2277 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2279 cfqd->cfq_queued = cfq_queued;
2280 cfqd->cfq_quantum = cfq_quantum;
2281 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2282 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2283 cfqd->cfq_back_max = cfq_back_max;
2284 cfqd->cfq_back_penalty = cfq_back_penalty;
2285 cfqd->cfq_slice[0] = cfq_slice_async;
2286 cfqd->cfq_slice[1] = cfq_slice_sync;
2287 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2288 cfqd->cfq_slice_idle = cfq_slice_idle;
2290 return cfqd;
2291 out_crqpool:
2292 kfree(cfqd->cfq_hash);
2293 out_cfqhash:
2294 kfree(cfqd->crq_hash);
2295 out_crqhash:
2296 kfree(cfqd);
2297 return NULL;
2300 static void cfq_slab_kill(void)
2302 if (crq_pool)
2303 kmem_cache_destroy(crq_pool);
2304 if (cfq_pool)
2305 kmem_cache_destroy(cfq_pool);
2306 if (cfq_ioc_pool)
2307 kmem_cache_destroy(cfq_ioc_pool);
2310 static int __init cfq_slab_setup(void)
2312 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2313 NULL, NULL);
2314 if (!crq_pool)
2315 goto fail;
2317 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2318 NULL, NULL);
2319 if (!cfq_pool)
2320 goto fail;
2322 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2323 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2324 if (!cfq_ioc_pool)
2325 goto fail;
2327 return 0;
2328 fail:
2329 cfq_slab_kill();
2330 return -ENOMEM;
2334 * sysfs parts below -->
2337 static ssize_t
2338 cfq_var_show(unsigned int var, char *page)
2340 return sprintf(page, "%d\n", var);
2343 static ssize_t
2344 cfq_var_store(unsigned int *var, const char *page, size_t count)
2346 char *p = (char *) page;
2348 *var = simple_strtoul(p, &p, 10);
2349 return count;
2352 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2353 static ssize_t __FUNC(elevator_t *e, char *page) \
2355 struct cfq_data *cfqd = e->elevator_data; \
2356 unsigned int __data = __VAR; \
2357 if (__CONV) \
2358 __data = jiffies_to_msecs(__data); \
2359 return cfq_var_show(__data, (page)); \
2361 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2362 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2363 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2364 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2365 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2366 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2367 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2368 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2369 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2370 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2371 #undef SHOW_FUNCTION
2373 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2374 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2376 struct cfq_data *cfqd = e->elevator_data; \
2377 unsigned int __data; \
2378 int ret = cfq_var_store(&__data, (page), count); \
2379 if (__data < (MIN)) \
2380 __data = (MIN); \
2381 else if (__data > (MAX)) \
2382 __data = (MAX); \
2383 if (__CONV) \
2384 *(__PTR) = msecs_to_jiffies(__data); \
2385 else \
2386 *(__PTR) = __data; \
2387 return ret; \
2389 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2390 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2391 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2392 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2393 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2394 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2395 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2396 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2397 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2398 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2399 #undef STORE_FUNCTION
2401 #define CFQ_ATTR(name) \
2402 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2404 static struct elv_fs_entry cfq_attrs[] = {
2405 CFQ_ATTR(quantum),
2406 CFQ_ATTR(queued),
2407 CFQ_ATTR(fifo_expire_sync),
2408 CFQ_ATTR(fifo_expire_async),
2409 CFQ_ATTR(back_seek_max),
2410 CFQ_ATTR(back_seek_penalty),
2411 CFQ_ATTR(slice_sync),
2412 CFQ_ATTR(slice_async),
2413 CFQ_ATTR(slice_async_rq),
2414 CFQ_ATTR(slice_idle),
2415 __ATTR_NULL
2418 static struct elevator_type iosched_cfq = {
2419 .ops = {
2420 .elevator_merge_fn = cfq_merge,
2421 .elevator_merged_fn = cfq_merged_request,
2422 .elevator_merge_req_fn = cfq_merged_requests,
2423 .elevator_dispatch_fn = cfq_dispatch_requests,
2424 .elevator_add_req_fn = cfq_insert_request,
2425 .elevator_activate_req_fn = cfq_activate_request,
2426 .elevator_deactivate_req_fn = cfq_deactivate_request,
2427 .elevator_queue_empty_fn = cfq_queue_empty,
2428 .elevator_completed_req_fn = cfq_completed_request,
2429 .elevator_former_req_fn = cfq_former_request,
2430 .elevator_latter_req_fn = cfq_latter_request,
2431 .elevator_set_req_fn = cfq_set_request,
2432 .elevator_put_req_fn = cfq_put_request,
2433 .elevator_may_queue_fn = cfq_may_queue,
2434 .elevator_init_fn = cfq_init_queue,
2435 .elevator_exit_fn = cfq_exit_queue,
2436 .trim = cfq_trim,
2438 .elevator_attrs = cfq_attrs,
2439 .elevator_name = "cfq",
2440 .elevator_owner = THIS_MODULE,
2443 static int __init cfq_init(void)
2445 int ret;
2448 * could be 0 on HZ < 1000 setups
2450 if (!cfq_slice_async)
2451 cfq_slice_async = 1;
2452 if (!cfq_slice_idle)
2453 cfq_slice_idle = 1;
2455 if (cfq_slab_setup())
2456 return -ENOMEM;
2458 ret = elv_register(&iosched_cfq);
2459 if (ret)
2460 cfq_slab_kill();
2462 return ret;
2465 static void __exit cfq_exit(void)
2467 DECLARE_COMPLETION(all_gone);
2468 elv_unregister(&iosched_cfq);
2469 ioc_gone = &all_gone;
2470 /* ioc_gone's update must be visible before reading ioc_count */
2471 smp_wmb();
2472 if (atomic_read(&ioc_count))
2473 wait_for_completion(ioc_gone);
2474 synchronize_rcu();
2475 cfq_slab_kill();
2478 module_init(cfq_init);
2479 module_exit(cfq_exit);
2481 MODULE_AUTHOR("Jens Axboe");
2482 MODULE_LICENSE("GPL");
2483 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");