2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
20 static const int cfq_quantum
= 4; /* max queue in one round of service */
21 static const int cfq_queued
= 8; /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
23 static const int cfq_back_max
= 16 * 1024; /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty
= 2; /* penalty of a backwards seek */
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
31 #define CFQ_IDLE_GRACE (HZ / 10)
32 #define CFQ_SLICE_SCALE (5)
34 #define CFQ_KEY_ASYNC (0)
36 static DEFINE_SPINLOCK(cfq_exit_lock
);
39 * for the hash of cfqq inside the cfqd
41 #define CFQ_QHASH_SHIFT 6
42 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
46 * for the hash of crq inside the cfqq
48 #define CFQ_MHASH_SHIFT 6
49 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
55 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
58 #define RQ_DATA(rq) (rq)->elevator_private
63 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
64 #define rq_rb_key(rq) (rq)->sector
66 static kmem_cache_t
*crq_pool
;
67 static kmem_cache_t
*cfq_pool
;
68 static kmem_cache_t
*cfq_ioc_pool
;
70 static atomic_t ioc_count
= ATOMIC_INIT(0);
71 static struct completion
*ioc_gone
;
73 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
74 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
75 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
76 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
81 #define cfq_cfqq_dispatched(cfqq) \
82 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
84 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
86 #define cfq_cfqq_sync(cfqq) \
87 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
89 #define sample_valid(samples) ((samples) > 80)
92 * Per block device queue structure
95 request_queue_t
*queue
;
98 * rr list of queues with requests and the count of them
100 struct list_head rr_list
[CFQ_PRIO_LISTS
];
101 struct list_head busy_rr
;
102 struct list_head cur_rr
;
103 struct list_head idle_rr
;
104 unsigned int busy_queues
;
107 * non-ordered list of empty cfqq's
109 struct list_head empty_list
;
114 struct hlist_head
*cfq_hash
;
117 * global crq hash for all queues
119 struct hlist_head
*crq_hash
;
127 * schedule slice state info
130 * idle window management
132 struct timer_list idle_slice_timer
;
133 struct work_struct unplug_work
;
135 struct cfq_queue
*active_queue
;
136 struct cfq_io_context
*active_cic
;
137 int cur_prio
, cur_end_prio
;
138 unsigned int dispatch_slice
;
140 struct timer_list idle_class_timer
;
142 sector_t last_sector
;
143 unsigned long last_end_request
;
145 unsigned int rq_starved
;
148 * tunables, see top of file
150 unsigned int cfq_quantum
;
151 unsigned int cfq_queued
;
152 unsigned int cfq_fifo_expire
[2];
153 unsigned int cfq_back_penalty
;
154 unsigned int cfq_back_max
;
155 unsigned int cfq_slice
[2];
156 unsigned int cfq_slice_async_rq
;
157 unsigned int cfq_slice_idle
;
159 struct list_head cic_list
;
163 * Per process-grouping structure
166 /* reference count */
168 /* parent cfq_data */
169 struct cfq_data
*cfqd
;
170 /* cfqq lookup hash */
171 struct hlist_node cfq_hash
;
174 /* on either rr or empty list of cfqd */
175 struct list_head cfq_list
;
176 /* sorted list of pending requests */
177 struct rb_root sort_list
;
178 /* if fifo isn't expired, next request to serve */
179 struct cfq_rq
*next_crq
;
180 /* requests queued in sort_list */
182 /* currently allocated requests */
184 /* fifo list of requests in sort_list */
185 struct list_head fifo
;
187 unsigned long slice_start
;
188 unsigned long slice_end
;
189 unsigned long slice_left
;
190 unsigned long service_last
;
192 /* number of requests that are on the dispatch list */
195 /* io prio of this group */
196 unsigned short ioprio
, org_ioprio
;
197 unsigned short ioprio_class
, org_ioprio_class
;
199 /* various state flags, see below */
204 struct rb_node rb_node
;
206 struct request
*request
;
207 struct hlist_node hash
;
209 struct cfq_queue
*cfq_queue
;
210 struct cfq_io_context
*io_context
;
212 unsigned int crq_flags
;
215 enum cfqq_state_flags
{
216 CFQ_CFQQ_FLAG_on_rr
= 0,
217 CFQ_CFQQ_FLAG_wait_request
,
218 CFQ_CFQQ_FLAG_must_alloc
,
219 CFQ_CFQQ_FLAG_must_alloc_slice
,
220 CFQ_CFQQ_FLAG_must_dispatch
,
221 CFQ_CFQQ_FLAG_fifo_expire
,
222 CFQ_CFQQ_FLAG_idle_window
,
223 CFQ_CFQQ_FLAG_prio_changed
,
226 #define CFQ_CFQQ_FNS(name) \
227 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
229 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
231 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
233 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
235 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
237 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
241 CFQ_CFQQ_FNS(wait_request
);
242 CFQ_CFQQ_FNS(must_alloc
);
243 CFQ_CFQQ_FNS(must_alloc_slice
);
244 CFQ_CFQQ_FNS(must_dispatch
);
245 CFQ_CFQQ_FNS(fifo_expire
);
246 CFQ_CFQQ_FNS(idle_window
);
247 CFQ_CFQQ_FNS(prio_changed
);
250 enum cfq_rq_state_flags
{
251 CFQ_CRQ_FLAG_is_sync
= 0,
254 #define CFQ_CRQ_FNS(name) \
255 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
257 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
259 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
261 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
263 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
265 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
268 CFQ_CRQ_FNS(is_sync
);
271 static struct cfq_queue
*cfq_find_cfq_hash(struct cfq_data
*, unsigned int, unsigned short);
272 static void cfq_dispatch_insert(request_queue_t
*, struct cfq_rq
*);
273 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, struct task_struct
*tsk
, gfp_t gfp_mask
);
276 * lots of deadline iosched dupes, can be abstracted later...
278 static inline void cfq_del_crq_hash(struct cfq_rq
*crq
)
280 hlist_del_init(&crq
->hash
);
283 static inline void cfq_add_crq_hash(struct cfq_data
*cfqd
, struct cfq_rq
*crq
)
285 const int hash_idx
= CFQ_MHASH_FN(rq_hash_key(crq
->request
));
287 hlist_add_head(&crq
->hash
, &cfqd
->crq_hash
[hash_idx
]);
290 static struct request
*cfq_find_rq_hash(struct cfq_data
*cfqd
, sector_t offset
)
292 struct hlist_head
*hash_list
= &cfqd
->crq_hash
[CFQ_MHASH_FN(offset
)];
293 struct hlist_node
*entry
, *next
;
295 hlist_for_each_safe(entry
, next
, hash_list
) {
296 struct cfq_rq
*crq
= list_entry_hash(entry
);
297 struct request
*__rq
= crq
->request
;
299 if (!rq_mergeable(__rq
)) {
300 cfq_del_crq_hash(crq
);
304 if (rq_hash_key(__rq
) == offset
)
312 * scheduler run of queue, if there are requests pending and no one in the
313 * driver that will restart queueing
315 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
317 if (cfqd
->busy_queues
)
318 kblockd_schedule_work(&cfqd
->unplug_work
);
321 static int cfq_queue_empty(request_queue_t
*q
)
323 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
325 return !cfqd
->busy_queues
;
328 static inline pid_t
cfq_queue_pid(struct task_struct
*task
, int rw
)
330 if (rw
== READ
|| rw
== WRITE_SYNC
)
333 return CFQ_KEY_ASYNC
;
337 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
338 * We choose the request that is closest to the head right now. Distance
339 * behind the head is penalized and only allowed to a certain extent.
341 static struct cfq_rq
*
342 cfq_choose_req(struct cfq_data
*cfqd
, struct cfq_rq
*crq1
, struct cfq_rq
*crq2
)
344 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
345 unsigned long back_max
;
346 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
347 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
348 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
350 if (crq1
== NULL
|| crq1
== crq2
)
355 if (cfq_crq_is_sync(crq1
) && !cfq_crq_is_sync(crq2
))
357 else if (cfq_crq_is_sync(crq2
) && !cfq_crq_is_sync(crq1
))
360 s1
= crq1
->request
->sector
;
361 s2
= crq2
->request
->sector
;
363 last
= cfqd
->last_sector
;
366 * by definition, 1KiB is 2 sectors
368 back_max
= cfqd
->cfq_back_max
* 2;
371 * Strict one way elevator _except_ in the case where we allow
372 * short backward seeks which are biased as twice the cost of a
373 * similar forward seek.
377 else if (s1
+ back_max
>= last
)
378 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
380 wrap
|= CFQ_RQ1_WRAP
;
384 else if (s2
+ back_max
>= last
)
385 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
387 wrap
|= CFQ_RQ2_WRAP
;
389 /* Found required data */
392 * By doing switch() on the bit mask "wrap" we avoid having to
393 * check two variables for all permutations: --> faster!
396 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
412 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both crqs wrapped */
415 * Since both rqs are wrapped,
416 * start with the one that's further behind head
417 * (--> only *one* back seek required),
418 * since back seek takes more time than forward.
428 * would be nice to take fifo expire time into account as well
430 static struct cfq_rq
*
431 cfq_find_next_crq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
434 struct cfq_rq
*crq_next
= NULL
, *crq_prev
= NULL
;
435 struct rb_node
*rbnext
, *rbprev
;
437 if (!(rbnext
= rb_next(&last
->rb_node
))) {
438 rbnext
= rb_first(&cfqq
->sort_list
);
439 if (rbnext
== &last
->rb_node
)
443 rbprev
= rb_prev(&last
->rb_node
);
446 crq_prev
= rb_entry_crq(rbprev
);
448 crq_next
= rb_entry_crq(rbnext
);
450 return cfq_choose_req(cfqd
, crq_next
, crq_prev
);
453 static void cfq_update_next_crq(struct cfq_rq
*crq
)
455 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
457 if (cfqq
->next_crq
== crq
)
458 cfqq
->next_crq
= cfq_find_next_crq(cfqq
->cfqd
, cfqq
, crq
);
461 static void cfq_resort_rr_list(struct cfq_queue
*cfqq
, int preempted
)
463 struct cfq_data
*cfqd
= cfqq
->cfqd
;
464 struct list_head
*list
, *entry
;
466 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
468 list_del(&cfqq
->cfq_list
);
470 if (cfq_class_rt(cfqq
))
471 list
= &cfqd
->cur_rr
;
472 else if (cfq_class_idle(cfqq
))
473 list
= &cfqd
->idle_rr
;
476 * if cfqq has requests in flight, don't allow it to be
477 * found in cfq_set_active_queue before it has finished them.
478 * this is done to increase fairness between a process that
479 * has lots of io pending vs one that only generates one
480 * sporadically or synchronously
482 if (cfq_cfqq_dispatched(cfqq
))
483 list
= &cfqd
->busy_rr
;
485 list
= &cfqd
->rr_list
[cfqq
->ioprio
];
489 * if queue was preempted, just add to front to be fair. busy_rr
490 * isn't sorted, but insert at the back for fairness.
492 if (preempted
|| list
== &cfqd
->busy_rr
) {
496 list_add_tail(&cfqq
->cfq_list
, list
);
501 * sort by when queue was last serviced
504 while ((entry
= entry
->prev
) != list
) {
505 struct cfq_queue
*__cfqq
= list_entry_cfqq(entry
);
507 if (!__cfqq
->service_last
)
509 if (time_before(__cfqq
->service_last
, cfqq
->service_last
))
513 list_add(&cfqq
->cfq_list
, entry
);
517 * add to busy list of queues for service, trying to be fair in ordering
518 * the pending list according to last request service
521 cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
523 BUG_ON(cfq_cfqq_on_rr(cfqq
));
524 cfq_mark_cfqq_on_rr(cfqq
);
527 cfq_resort_rr_list(cfqq
, 0);
531 cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
533 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
534 cfq_clear_cfqq_on_rr(cfqq
);
535 list_move(&cfqq
->cfq_list
, &cfqd
->empty_list
);
537 BUG_ON(!cfqd
->busy_queues
);
542 * rb tree support functions
544 static inline void cfq_del_crq_rb(struct cfq_rq
*crq
)
546 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
547 struct cfq_data
*cfqd
= cfqq
->cfqd
;
548 const int sync
= cfq_crq_is_sync(crq
);
550 BUG_ON(!cfqq
->queued
[sync
]);
551 cfqq
->queued
[sync
]--;
553 cfq_update_next_crq(crq
);
555 rb_erase(&crq
->rb_node
, &cfqq
->sort_list
);
557 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
558 cfq_del_cfqq_rr(cfqd
, cfqq
);
561 static struct cfq_rq
*
562 __cfq_add_crq_rb(struct cfq_rq
*crq
)
564 struct rb_node
**p
= &crq
->cfq_queue
->sort_list
.rb_node
;
565 struct rb_node
*parent
= NULL
;
566 struct cfq_rq
*__crq
;
570 __crq
= rb_entry_crq(parent
);
572 if (crq
->rb_key
< __crq
->rb_key
)
574 else if (crq
->rb_key
> __crq
->rb_key
)
580 rb_link_node(&crq
->rb_node
, parent
, p
);
584 static void cfq_add_crq_rb(struct cfq_rq
*crq
)
586 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
587 struct cfq_data
*cfqd
= cfqq
->cfqd
;
588 struct request
*rq
= crq
->request
;
589 struct cfq_rq
*__alias
;
591 crq
->rb_key
= rq_rb_key(rq
);
592 cfqq
->queued
[cfq_crq_is_sync(crq
)]++;
595 * looks a little odd, but the first insert might return an alias.
596 * if that happens, put the alias on the dispatch list
598 while ((__alias
= __cfq_add_crq_rb(crq
)) != NULL
)
599 cfq_dispatch_insert(cfqd
->queue
, __alias
);
601 rb_insert_color(&crq
->rb_node
, &cfqq
->sort_list
);
603 if (!cfq_cfqq_on_rr(cfqq
))
604 cfq_add_cfqq_rr(cfqd
, cfqq
);
607 * check if this request is a better next-serve candidate
609 cfqq
->next_crq
= cfq_choose_req(cfqd
, cfqq
->next_crq
, crq
);
613 cfq_reposition_crq_rb(struct cfq_queue
*cfqq
, struct cfq_rq
*crq
)
615 rb_erase(&crq
->rb_node
, &cfqq
->sort_list
);
616 cfqq
->queued
[cfq_crq_is_sync(crq
)]--;
621 static struct request
*
622 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
624 struct task_struct
*tsk
= current
;
625 pid_t key
= cfq_queue_pid(tsk
, bio_data_dir(bio
));
626 struct cfq_queue
*cfqq
;
630 cfqq
= cfq_find_cfq_hash(cfqd
, key
, tsk
->ioprio
);
634 sector
= bio
->bi_sector
+ bio_sectors(bio
);
635 n
= cfqq
->sort_list
.rb_node
;
637 struct cfq_rq
*crq
= rb_entry_crq(n
);
639 if (sector
< crq
->rb_key
)
641 else if (sector
> crq
->rb_key
)
651 static void cfq_activate_request(request_queue_t
*q
, struct request
*rq
)
653 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
655 cfqd
->rq_in_driver
++;
658 * If the depth is larger 1, it really could be queueing. But lets
659 * make the mark a little higher - idling could still be good for
660 * low queueing, and a low queueing number could also just indicate
661 * a SCSI mid layer like behaviour where limit+1 is often seen.
663 if (!cfqd
->hw_tag
&& cfqd
->rq_in_driver
> 4)
667 static void cfq_deactivate_request(request_queue_t
*q
, struct request
*rq
)
669 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
671 WARN_ON(!cfqd
->rq_in_driver
);
672 cfqd
->rq_in_driver
--;
675 static void cfq_remove_request(struct request
*rq
)
677 struct cfq_rq
*crq
= RQ_DATA(rq
);
679 list_del_init(&rq
->queuelist
);
681 cfq_del_crq_hash(crq
);
685 cfq_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
687 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
688 struct request
*__rq
;
691 __rq
= cfq_find_rq_hash(cfqd
, bio
->bi_sector
);
692 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
693 ret
= ELEVATOR_BACK_MERGE
;
697 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
698 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
699 ret
= ELEVATOR_FRONT_MERGE
;
703 return ELEVATOR_NO_MERGE
;
709 static void cfq_merged_request(request_queue_t
*q
, struct request
*req
)
711 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
712 struct cfq_rq
*crq
= RQ_DATA(req
);
714 cfq_del_crq_hash(crq
);
715 cfq_add_crq_hash(cfqd
, crq
);
717 if (rq_rb_key(req
) != crq
->rb_key
) {
718 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
720 cfq_update_next_crq(crq
);
721 cfq_reposition_crq_rb(cfqq
, crq
);
726 cfq_merged_requests(request_queue_t
*q
, struct request
*rq
,
727 struct request
*next
)
729 cfq_merged_request(q
, rq
);
732 * reposition in fifo if next is older than rq
734 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
735 time_before(next
->start_time
, rq
->start_time
))
736 list_move(&rq
->queuelist
, &next
->queuelist
);
738 cfq_remove_request(next
);
742 __cfq_set_active_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
746 * stop potential idle class queues waiting service
748 del_timer(&cfqd
->idle_class_timer
);
750 cfqq
->slice_start
= jiffies
;
752 cfqq
->slice_left
= 0;
753 cfq_clear_cfqq_must_alloc_slice(cfqq
);
754 cfq_clear_cfqq_fifo_expire(cfqq
);
757 cfqd
->active_queue
= cfqq
;
761 * current cfqq expired its slice (or was too idle), select new one
764 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
767 unsigned long now
= jiffies
;
769 if (cfq_cfqq_wait_request(cfqq
))
770 del_timer(&cfqd
->idle_slice_timer
);
772 if (!preempted
&& !cfq_cfqq_dispatched(cfqq
)) {
773 cfqq
->service_last
= now
;
774 cfq_schedule_dispatch(cfqd
);
777 cfq_clear_cfqq_must_dispatch(cfqq
);
778 cfq_clear_cfqq_wait_request(cfqq
);
781 * store what was left of this slice, if the queue idled out
784 if (time_after(cfqq
->slice_end
, now
))
785 cfqq
->slice_left
= cfqq
->slice_end
- now
;
787 cfqq
->slice_left
= 0;
789 if (cfq_cfqq_on_rr(cfqq
))
790 cfq_resort_rr_list(cfqq
, preempted
);
792 if (cfqq
== cfqd
->active_queue
)
793 cfqd
->active_queue
= NULL
;
795 if (cfqd
->active_cic
) {
796 put_io_context(cfqd
->active_cic
->ioc
);
797 cfqd
->active_cic
= NULL
;
800 cfqd
->dispatch_slice
= 0;
803 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int preempted
)
805 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
808 __cfq_slice_expired(cfqd
, cfqq
, preempted
);
821 static int cfq_get_next_prio_level(struct cfq_data
*cfqd
)
830 for (p
= cfqd
->cur_prio
; p
<= cfqd
->cur_end_prio
; p
++) {
831 if (!list_empty(&cfqd
->rr_list
[p
])) {
840 if (++cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
841 cfqd
->cur_end_prio
= 0;
848 if (unlikely(prio
== -1))
851 BUG_ON(prio
>= CFQ_PRIO_LISTS
);
853 list_splice_init(&cfqd
->rr_list
[prio
], &cfqd
->cur_rr
);
855 cfqd
->cur_prio
= prio
+ 1;
856 if (cfqd
->cur_prio
> cfqd
->cur_end_prio
) {
857 cfqd
->cur_end_prio
= cfqd
->cur_prio
;
860 if (cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
862 cfqd
->cur_end_prio
= 0;
868 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
870 struct cfq_queue
*cfqq
= NULL
;
873 * if current list is non-empty, grab first entry. if it is empty,
874 * get next prio level and grab first entry then if any are spliced
876 if (!list_empty(&cfqd
->cur_rr
) || cfq_get_next_prio_level(cfqd
) != -1)
877 cfqq
= list_entry_cfqq(cfqd
->cur_rr
.next
);
880 * If no new queues are available, check if the busy list has some
881 * before falling back to idle io.
883 if (!cfqq
&& !list_empty(&cfqd
->busy_rr
))
884 cfqq
= list_entry_cfqq(cfqd
->busy_rr
.next
);
887 * if we have idle queues and no rt or be queues had pending
888 * requests, either allow immediate service if the grace period
889 * has passed or arm the idle grace timer
891 if (!cfqq
&& !list_empty(&cfqd
->idle_rr
)) {
892 unsigned long end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
894 if (time_after_eq(jiffies
, end
))
895 cfqq
= list_entry_cfqq(cfqd
->idle_rr
.next
);
897 mod_timer(&cfqd
->idle_class_timer
, end
);
900 __cfq_set_active_queue(cfqd
, cfqq
);
904 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
906 static int cfq_arm_slice_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
909 struct cfq_io_context
*cic
;
912 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
913 WARN_ON(cfqq
!= cfqd
->active_queue
);
916 * idle is disabled, either manually or by past process history
918 if (!cfqd
->cfq_slice_idle
)
920 if (!cfq_cfqq_idle_window(cfqq
))
923 * task has exited, don't wait
925 cic
= cfqd
->active_cic
;
926 if (!cic
|| !cic
->ioc
->task
)
929 cfq_mark_cfqq_must_dispatch(cfqq
);
930 cfq_mark_cfqq_wait_request(cfqq
);
932 sl
= min(cfqq
->slice_end
- 1, (unsigned long) cfqd
->cfq_slice_idle
);
935 * we don't want to idle for seeks, but we do want to allow
936 * fair distribution of slice time for a process doing back-to-back
937 * seeks. so allow a little bit of time for him to submit a new rq
939 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
942 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
946 static void cfq_dispatch_insert(request_queue_t
*q
, struct cfq_rq
*crq
)
948 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
949 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
952 cfqq
->next_crq
= cfq_find_next_crq(cfqd
, cfqq
, crq
);
953 cfq_remove_request(crq
->request
);
954 cfqq
->on_dispatch
[cfq_crq_is_sync(crq
)]++;
955 elv_dispatch_sort(q
, crq
->request
);
957 rq
= list_entry(q
->queue_head
.prev
, struct request
, queuelist
);
958 cfqd
->last_sector
= rq
->sector
+ rq
->nr_sectors
;
962 * return expired entry, or NULL to just start from scratch in rbtree
964 static inline struct cfq_rq
*cfq_check_fifo(struct cfq_queue
*cfqq
)
966 struct cfq_data
*cfqd
= cfqq
->cfqd
;
970 if (cfq_cfqq_fifo_expire(cfqq
))
973 if (!list_empty(&cfqq
->fifo
)) {
974 int fifo
= cfq_cfqq_class_sync(cfqq
);
976 crq
= RQ_DATA(list_entry_fifo(cfqq
->fifo
.next
));
978 if (time_after(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
])) {
979 cfq_mark_cfqq_fifo_expire(cfqq
);
988 * Scale schedule slice based on io priority. Use the sync time slice only
989 * if a queue is marked sync and has sync io queued. A sync queue with async
990 * io only, should not get full sync slice length.
993 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
995 const int base_slice
= cfqd
->cfq_slice
[cfq_cfqq_sync(cfqq
)];
997 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
999 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - cfqq
->ioprio
));
1003 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1005 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
1009 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1011 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1013 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1015 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1019 * get next queue for service
1021 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1023 unsigned long now
= jiffies
;
1024 struct cfq_queue
*cfqq
;
1026 cfqq
= cfqd
->active_queue
;
1033 if (!cfq_cfqq_must_dispatch(cfqq
) && time_after(now
, cfqq
->slice_end
))
1037 * if queue has requests, dispatch one. if not, check if
1038 * enough slice is left to wait for one
1040 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1042 else if (cfq_cfqq_dispatched(cfqq
)) {
1045 } else if (cfq_cfqq_class_sync(cfqq
)) {
1046 if (cfq_arm_slice_timer(cfqd
, cfqq
))
1051 cfq_slice_expired(cfqd
, 0);
1053 cfqq
= cfq_set_active_queue(cfqd
);
1059 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1064 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1070 * follow expired path, else get first next available
1072 if ((crq
= cfq_check_fifo(cfqq
)) == NULL
)
1073 crq
= cfqq
->next_crq
;
1076 * finally, insert request into driver dispatch list
1078 cfq_dispatch_insert(cfqd
->queue
, crq
);
1080 cfqd
->dispatch_slice
++;
1083 if (!cfqd
->active_cic
) {
1084 atomic_inc(&crq
->io_context
->ioc
->refcount
);
1085 cfqd
->active_cic
= crq
->io_context
;
1088 if (RB_EMPTY_ROOT(&cfqq
->sort_list
))
1091 } while (dispatched
< max_dispatch
);
1094 * if slice end isn't set yet, set it.
1096 if (!cfqq
->slice_end
)
1097 cfq_set_prio_slice(cfqd
, cfqq
);
1100 * expire an async queue immediately if it has used up its slice. idle
1101 * queue always expire after 1 dispatch round.
1103 if ((!cfq_cfqq_sync(cfqq
) &&
1104 cfqd
->dispatch_slice
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1105 cfq_class_idle(cfqq
) ||
1106 !cfq_cfqq_idle_window(cfqq
))
1107 cfq_slice_expired(cfqd
, 0);
1113 cfq_forced_dispatch_cfqqs(struct list_head
*list
)
1115 struct cfq_queue
*cfqq
, *next
;
1120 list_for_each_entry_safe(cfqq
, next
, list
, cfq_list
) {
1121 while ((crq
= cfqq
->next_crq
)) {
1122 cfq_dispatch_insert(cfqq
->cfqd
->queue
, crq
);
1125 BUG_ON(!list_empty(&cfqq
->fifo
));
1132 cfq_forced_dispatch(struct cfq_data
*cfqd
)
1134 int i
, dispatched
= 0;
1136 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
1137 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->rr_list
[i
]);
1139 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->busy_rr
);
1140 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->cur_rr
);
1141 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->idle_rr
);
1143 cfq_slice_expired(cfqd
, 0);
1145 BUG_ON(cfqd
->busy_queues
);
1151 cfq_dispatch_requests(request_queue_t
*q
, int force
)
1153 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1154 struct cfq_queue
*cfqq
, *prev_cfqq
;
1157 if (!cfqd
->busy_queues
)
1160 if (unlikely(force
))
1161 return cfq_forced_dispatch(cfqd
);
1165 while ((cfqq
= cfq_select_queue(cfqd
)) != NULL
) {
1169 * Don't repeat dispatch from the previous queue.
1171 if (prev_cfqq
== cfqq
)
1174 cfq_clear_cfqq_must_dispatch(cfqq
);
1175 cfq_clear_cfqq_wait_request(cfqq
);
1176 del_timer(&cfqd
->idle_slice_timer
);
1178 max_dispatch
= cfqd
->cfq_quantum
;
1179 if (cfq_class_idle(cfqq
))
1182 dispatched
+= __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1185 * If the dispatch cfqq has idling enabled and is still
1186 * the active queue, break out.
1188 if (cfq_cfqq_idle_window(cfqq
) && cfqd
->active_queue
)
1198 * task holds one reference to the queue, dropped when task exits. each crq
1199 * in-flight on this queue also holds a reference, dropped when crq is freed.
1201 * queue lock must be held here.
1203 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1205 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1207 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1209 if (!atomic_dec_and_test(&cfqq
->ref
))
1212 BUG_ON(rb_first(&cfqq
->sort_list
));
1213 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1214 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1216 if (unlikely(cfqd
->active_queue
== cfqq
))
1217 __cfq_slice_expired(cfqd
, cfqq
, 0);
1220 * it's on the empty list and still hashed
1222 list_del(&cfqq
->cfq_list
);
1223 hlist_del(&cfqq
->cfq_hash
);
1224 kmem_cache_free(cfq_pool
, cfqq
);
1227 static inline struct cfq_queue
*
1228 __cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned int prio
,
1231 struct hlist_head
*hash_list
= &cfqd
->cfq_hash
[hashval
];
1232 struct hlist_node
*entry
;
1233 struct cfq_queue
*__cfqq
;
1235 hlist_for_each_entry(__cfqq
, entry
, hash_list
, cfq_hash
) {
1236 const unsigned short __p
= IOPRIO_PRIO_VALUE(__cfqq
->org_ioprio_class
, __cfqq
->org_ioprio
);
1238 if (__cfqq
->key
== key
&& (__p
== prio
|| !prio
))
1245 static struct cfq_queue
*
1246 cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned short prio
)
1248 return __cfq_find_cfq_hash(cfqd
, key
, prio
, hash_long(key
, CFQ_QHASH_SHIFT
));
1251 static void cfq_free_io_context(struct io_context
*ioc
)
1253 struct cfq_io_context
*__cic
;
1257 while ((n
= rb_first(&ioc
->cic_root
)) != NULL
) {
1258 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1259 rb_erase(&__cic
->rb_node
, &ioc
->cic_root
);
1260 kmem_cache_free(cfq_ioc_pool
, __cic
);
1264 if (atomic_sub_and_test(freed
, &ioc_count
) && ioc_gone
)
1268 static void cfq_trim(struct io_context
*ioc
)
1270 ioc
->set_ioprio
= NULL
;
1271 cfq_free_io_context(ioc
);
1275 * Called with interrupts disabled
1277 static void cfq_exit_single_io_context(struct cfq_io_context
*cic
)
1279 struct cfq_data
*cfqd
= cic
->key
;
1287 WARN_ON(!irqs_disabled());
1289 spin_lock(q
->queue_lock
);
1291 if (cic
->cfqq
[ASYNC
]) {
1292 if (unlikely(cic
->cfqq
[ASYNC
] == cfqd
->active_queue
))
1293 __cfq_slice_expired(cfqd
, cic
->cfqq
[ASYNC
], 0);
1294 cfq_put_queue(cic
->cfqq
[ASYNC
]);
1295 cic
->cfqq
[ASYNC
] = NULL
;
1298 if (cic
->cfqq
[SYNC
]) {
1299 if (unlikely(cic
->cfqq
[SYNC
] == cfqd
->active_queue
))
1300 __cfq_slice_expired(cfqd
, cic
->cfqq
[SYNC
], 0);
1301 cfq_put_queue(cic
->cfqq
[SYNC
]);
1302 cic
->cfqq
[SYNC
] = NULL
;
1306 list_del_init(&cic
->queue_list
);
1307 spin_unlock(q
->queue_lock
);
1310 static void cfq_exit_io_context(struct io_context
*ioc
)
1312 struct cfq_io_context
*__cic
;
1313 unsigned long flags
;
1317 * put the reference this task is holding to the various queues
1319 spin_lock_irqsave(&cfq_exit_lock
, flags
);
1321 n
= rb_first(&ioc
->cic_root
);
1323 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1325 cfq_exit_single_io_context(__cic
);
1329 spin_unlock_irqrestore(&cfq_exit_lock
, flags
);
1332 static struct cfq_io_context
*
1333 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1335 struct cfq_io_context
*cic
= kmem_cache_alloc(cfq_ioc_pool
, gfp_mask
);
1338 memset(cic
, 0, sizeof(*cic
));
1339 cic
->last_end_request
= jiffies
;
1340 INIT_LIST_HEAD(&cic
->queue_list
);
1341 cic
->dtor
= cfq_free_io_context
;
1342 cic
->exit
= cfq_exit_io_context
;
1343 atomic_inc(&ioc_count
);
1349 static void cfq_init_prio_data(struct cfq_queue
*cfqq
)
1351 struct task_struct
*tsk
= current
;
1354 if (!cfq_cfqq_prio_changed(cfqq
))
1357 ioprio_class
= IOPRIO_PRIO_CLASS(tsk
->ioprio
);
1358 switch (ioprio_class
) {
1360 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1361 case IOPRIO_CLASS_NONE
:
1363 * no prio set, place us in the middle of the BE classes
1365 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1366 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1368 case IOPRIO_CLASS_RT
:
1369 cfqq
->ioprio
= task_ioprio(tsk
);
1370 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1372 case IOPRIO_CLASS_BE
:
1373 cfqq
->ioprio
= task_ioprio(tsk
);
1374 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1376 case IOPRIO_CLASS_IDLE
:
1377 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1379 cfq_clear_cfqq_idle_window(cfqq
);
1384 * keep track of original prio settings in case we have to temporarily
1385 * elevate the priority of this queue
1387 cfqq
->org_ioprio
= cfqq
->ioprio
;
1388 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1390 if (cfq_cfqq_on_rr(cfqq
))
1391 cfq_resort_rr_list(cfqq
, 0);
1393 cfq_clear_cfqq_prio_changed(cfqq
);
1396 static inline void changed_ioprio(struct cfq_io_context
*cic
)
1398 struct cfq_data
*cfqd
= cic
->key
;
1399 struct cfq_queue
*cfqq
;
1401 if (unlikely(!cfqd
))
1404 spin_lock(cfqd
->queue
->queue_lock
);
1406 cfqq
= cic
->cfqq
[ASYNC
];
1408 struct cfq_queue
*new_cfqq
;
1409 new_cfqq
= cfq_get_queue(cfqd
, CFQ_KEY_ASYNC
, cic
->ioc
->task
,
1412 cic
->cfqq
[ASYNC
] = new_cfqq
;
1413 cfq_put_queue(cfqq
);
1417 cfqq
= cic
->cfqq
[SYNC
];
1419 cfq_mark_cfqq_prio_changed(cfqq
);
1421 spin_unlock(cfqd
->queue
->queue_lock
);
1425 * callback from sys_ioprio_set, irqs are disabled
1427 static int cfq_ioc_set_ioprio(struct io_context
*ioc
, unsigned int ioprio
)
1429 struct cfq_io_context
*cic
;
1432 spin_lock(&cfq_exit_lock
);
1434 n
= rb_first(&ioc
->cic_root
);
1436 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1438 changed_ioprio(cic
);
1442 spin_unlock(&cfq_exit_lock
);
1447 static struct cfq_queue
*
1448 cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, struct task_struct
*tsk
,
1451 const int hashval
= hash_long(key
, CFQ_QHASH_SHIFT
);
1452 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1453 unsigned short ioprio
;
1456 ioprio
= tsk
->ioprio
;
1457 cfqq
= __cfq_find_cfq_hash(cfqd
, key
, ioprio
, hashval
);
1463 } else if (gfp_mask
& __GFP_WAIT
) {
1464 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1465 new_cfqq
= kmem_cache_alloc(cfq_pool
, gfp_mask
);
1466 spin_lock_irq(cfqd
->queue
->queue_lock
);
1469 cfqq
= kmem_cache_alloc(cfq_pool
, gfp_mask
);
1474 memset(cfqq
, 0, sizeof(*cfqq
));
1476 INIT_HLIST_NODE(&cfqq
->cfq_hash
);
1477 INIT_LIST_HEAD(&cfqq
->cfq_list
);
1478 INIT_LIST_HEAD(&cfqq
->fifo
);
1481 hlist_add_head(&cfqq
->cfq_hash
, &cfqd
->cfq_hash
[hashval
]);
1482 atomic_set(&cfqq
->ref
, 0);
1484 cfqq
->service_last
= 0;
1486 * set ->slice_left to allow preemption for a new process
1488 cfqq
->slice_left
= 2 * cfqd
->cfq_slice_idle
;
1489 cfq_mark_cfqq_idle_window(cfqq
);
1490 cfq_mark_cfqq_prio_changed(cfqq
);
1491 cfq_init_prio_data(cfqq
);
1495 kmem_cache_free(cfq_pool
, new_cfqq
);
1497 atomic_inc(&cfqq
->ref
);
1499 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1504 cfq_drop_dead_cic(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1506 spin_lock(&cfq_exit_lock
);
1507 rb_erase(&cic
->rb_node
, &ioc
->cic_root
);
1508 list_del_init(&cic
->queue_list
);
1509 spin_unlock(&cfq_exit_lock
);
1510 kmem_cache_free(cfq_ioc_pool
, cic
);
1511 atomic_dec(&ioc_count
);
1514 static struct cfq_io_context
*
1515 cfq_cic_rb_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1518 struct cfq_io_context
*cic
;
1519 void *k
, *key
= cfqd
;
1522 n
= ioc
->cic_root
.rb_node
;
1524 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1525 /* ->key must be copied to avoid race with cfq_exit_queue() */
1528 cfq_drop_dead_cic(ioc
, cic
);
1544 cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1545 struct cfq_io_context
*cic
)
1548 struct rb_node
*parent
;
1549 struct cfq_io_context
*__cic
;
1555 ioc
->set_ioprio
= cfq_ioc_set_ioprio
;
1558 p
= &ioc
->cic_root
.rb_node
;
1561 __cic
= rb_entry(parent
, struct cfq_io_context
, rb_node
);
1562 /* ->key must be copied to avoid race with cfq_exit_queue() */
1565 cfq_drop_dead_cic(ioc
, cic
);
1571 else if (cic
->key
> k
)
1572 p
= &(*p
)->rb_right
;
1577 spin_lock(&cfq_exit_lock
);
1578 rb_link_node(&cic
->rb_node
, parent
, p
);
1579 rb_insert_color(&cic
->rb_node
, &ioc
->cic_root
);
1580 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1581 spin_unlock(&cfq_exit_lock
);
1585 * Setup general io context and cfq io context. There can be several cfq
1586 * io contexts per general io context, if this process is doing io to more
1587 * than one device managed by cfq.
1589 static struct cfq_io_context
*
1590 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1592 struct io_context
*ioc
= NULL
;
1593 struct cfq_io_context
*cic
;
1595 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1597 ioc
= get_io_context(gfp_mask
);
1601 cic
= cfq_cic_rb_lookup(cfqd
, ioc
);
1605 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1609 cfq_cic_link(cfqd
, ioc
, cic
);
1613 put_io_context(ioc
);
1618 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1620 unsigned long elapsed
, ttime
;
1623 * if this context already has stuff queued, thinktime is from
1624 * last queue not last end
1627 if (time_after(cic
->last_end_request
, cic
->last_queue
))
1628 elapsed
= jiffies
- cic
->last_end_request
;
1630 elapsed
= jiffies
- cic
->last_queue
;
1632 elapsed
= jiffies
- cic
->last_end_request
;
1635 ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1637 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1638 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1639 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1643 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1649 if (cic
->last_request_pos
< crq
->request
->sector
)
1650 sdist
= crq
->request
->sector
- cic
->last_request_pos
;
1652 sdist
= cic
->last_request_pos
- crq
->request
->sector
;
1655 * Don't allow the seek distance to get too large from the
1656 * odd fragment, pagein, etc
1658 if (cic
->seek_samples
<= 60) /* second&third seek */
1659 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1661 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1663 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1664 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1665 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1666 do_div(total
, cic
->seek_samples
);
1667 cic
->seek_mean
= (sector_t
)total
;
1671 * Disable idle window if the process thinks too long or seeks so much that
1675 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1676 struct cfq_io_context
*cic
)
1678 int enable_idle
= cfq_cfqq_idle_window(cfqq
);
1680 if (!cic
->ioc
->task
|| !cfqd
->cfq_slice_idle
||
1681 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1683 else if (sample_valid(cic
->ttime_samples
)) {
1684 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1691 cfq_mark_cfqq_idle_window(cfqq
);
1693 cfq_clear_cfqq_idle_window(cfqq
);
1698 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1699 * no or if we aren't sure, a 1 will cause a preempt.
1702 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1705 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1707 if (cfq_class_idle(new_cfqq
))
1713 if (cfq_class_idle(cfqq
))
1715 if (!cfq_cfqq_wait_request(new_cfqq
))
1718 * if it doesn't have slice left, forget it
1720 if (new_cfqq
->slice_left
< cfqd
->cfq_slice_idle
)
1722 if (cfq_crq_is_sync(crq
) && !cfq_cfqq_sync(cfqq
))
1729 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1730 * let it have half of its nominal slice.
1732 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1734 struct cfq_queue
*__cfqq
, *next
;
1736 list_for_each_entry_safe(__cfqq
, next
, &cfqd
->cur_rr
, cfq_list
)
1737 cfq_resort_rr_list(__cfqq
, 1);
1739 if (!cfqq
->slice_left
)
1740 cfqq
->slice_left
= cfq_prio_to_slice(cfqd
, cfqq
) / 2;
1742 cfqq
->slice_end
= cfqq
->slice_left
+ jiffies
;
1743 cfq_slice_expired(cfqd
, 1);
1744 __cfq_set_active_queue(cfqd
, cfqq
);
1748 * should really be a ll_rw_blk.c helper
1750 static void cfq_start_queueing(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1752 request_queue_t
*q
= cfqd
->queue
;
1754 if (!blk_queue_plugged(q
))
1757 __generic_unplug_device(q
);
1761 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1762 * something we should do about it
1765 cfq_crq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1768 struct cfq_io_context
*cic
= crq
->io_context
;
1771 * we never wait for an async request and we don't allow preemption
1772 * of an async request. so just return early
1774 if (!cfq_crq_is_sync(crq
)) {
1776 * sync process issued an async request, if it's waiting
1777 * then expire it and kick rq handling.
1779 if (cic
== cfqd
->active_cic
&&
1780 del_timer(&cfqd
->idle_slice_timer
)) {
1781 cfq_slice_expired(cfqd
, 0);
1782 cfq_start_queueing(cfqd
, cfqq
);
1787 cfq_update_io_thinktime(cfqd
, cic
);
1788 cfq_update_io_seektime(cfqd
, cic
, crq
);
1789 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1791 cic
->last_queue
= jiffies
;
1792 cic
->last_request_pos
= crq
->request
->sector
+ crq
->request
->nr_sectors
;
1794 if (cfqq
== cfqd
->active_queue
) {
1796 * if we are waiting for a request for this queue, let it rip
1797 * immediately and flag that we must not expire this queue
1800 if (cfq_cfqq_wait_request(cfqq
)) {
1801 cfq_mark_cfqq_must_dispatch(cfqq
);
1802 del_timer(&cfqd
->idle_slice_timer
);
1803 cfq_start_queueing(cfqd
, cfqq
);
1805 } else if (cfq_should_preempt(cfqd
, cfqq
, crq
)) {
1807 * not the active queue - expire current slice if it is
1808 * idle and has expired it's mean thinktime or this new queue
1809 * has some old slice time left and is of higher priority
1811 cfq_preempt_queue(cfqd
, cfqq
);
1812 cfq_mark_cfqq_must_dispatch(cfqq
);
1813 cfq_start_queueing(cfqd
, cfqq
);
1817 static void cfq_insert_request(request_queue_t
*q
, struct request
*rq
)
1819 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1820 struct cfq_rq
*crq
= RQ_DATA(rq
);
1821 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1823 cfq_init_prio_data(cfqq
);
1825 cfq_add_crq_rb(crq
);
1827 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1829 if (rq_mergeable(rq
))
1830 cfq_add_crq_hash(cfqd
, crq
);
1832 cfq_crq_enqueued(cfqd
, cfqq
, crq
);
1835 static void cfq_completed_request(request_queue_t
*q
, struct request
*rq
)
1837 struct cfq_rq
*crq
= RQ_DATA(rq
);
1838 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1839 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1840 const int sync
= cfq_crq_is_sync(crq
);
1845 WARN_ON(!cfqd
->rq_in_driver
);
1846 WARN_ON(!cfqq
->on_dispatch
[sync
]);
1847 cfqd
->rq_in_driver
--;
1848 cfqq
->on_dispatch
[sync
]--;
1850 if (!cfq_class_idle(cfqq
))
1851 cfqd
->last_end_request
= now
;
1853 if (!cfq_cfqq_dispatched(cfqq
)) {
1854 if (cfq_cfqq_on_rr(cfqq
)) {
1855 cfqq
->service_last
= now
;
1856 cfq_resort_rr_list(cfqq
, 0);
1861 crq
->io_context
->last_end_request
= now
;
1864 * If this is the active queue, check if it needs to be expired,
1865 * or if we want to idle in case it has no pending requests.
1867 if (cfqd
->active_queue
== cfqq
) {
1868 if (time_after(now
, cfqq
->slice_end
))
1869 cfq_slice_expired(cfqd
, 0);
1870 else if (sync
&& RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1871 if (!cfq_arm_slice_timer(cfqd
, cfqq
))
1872 cfq_schedule_dispatch(cfqd
);
1877 static struct request
*
1878 cfq_former_request(request_queue_t
*q
, struct request
*rq
)
1880 struct cfq_rq
*crq
= RQ_DATA(rq
);
1881 struct rb_node
*rbprev
= rb_prev(&crq
->rb_node
);
1884 return rb_entry_crq(rbprev
)->request
;
1889 static struct request
*
1890 cfq_latter_request(request_queue_t
*q
, struct request
*rq
)
1892 struct cfq_rq
*crq
= RQ_DATA(rq
);
1893 struct rb_node
*rbnext
= rb_next(&crq
->rb_node
);
1896 return rb_entry_crq(rbnext
)->request
;
1902 * we temporarily boost lower priority queues if they are holding fs exclusive
1903 * resources. they are boosted to normal prio (CLASS_BE/4)
1905 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1907 const int ioprio_class
= cfqq
->ioprio_class
;
1908 const int ioprio
= cfqq
->ioprio
;
1910 if (has_fs_excl()) {
1912 * boost idle prio on transactions that would lock out other
1913 * users of the filesystem
1915 if (cfq_class_idle(cfqq
))
1916 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1917 if (cfqq
->ioprio
> IOPRIO_NORM
)
1918 cfqq
->ioprio
= IOPRIO_NORM
;
1921 * check if we need to unboost the queue
1923 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1924 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1925 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1926 cfqq
->ioprio
= cfqq
->org_ioprio
;
1930 * refile between round-robin lists if we moved the priority class
1932 if ((ioprio_class
!= cfqq
->ioprio_class
|| ioprio
!= cfqq
->ioprio
) &&
1933 cfq_cfqq_on_rr(cfqq
))
1934 cfq_resort_rr_list(cfqq
, 0);
1938 __cfq_may_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1939 struct task_struct
*task
, int rw
)
1941 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1942 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1943 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1944 return ELV_MQUEUE_MUST
;
1947 return ELV_MQUEUE_MAY
;
1950 static int cfq_may_queue(request_queue_t
*q
, int rw
, struct bio
*bio
)
1952 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1953 struct task_struct
*tsk
= current
;
1954 struct cfq_queue
*cfqq
;
1957 * don't force setup of a queue from here, as a call to may_queue
1958 * does not necessarily imply that a request actually will be queued.
1959 * so just lookup a possibly existing queue, or return 'may queue'
1962 cfqq
= cfq_find_cfq_hash(cfqd
, cfq_queue_pid(tsk
, rw
), tsk
->ioprio
);
1964 cfq_init_prio_data(cfqq
);
1965 cfq_prio_boost(cfqq
);
1967 return __cfq_may_queue(cfqd
, cfqq
, tsk
, rw
);
1970 return ELV_MQUEUE_MAY
;
1973 static void cfq_check_waiters(request_queue_t
*q
, struct cfq_queue
*cfqq
)
1975 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1977 if (unlikely(cfqd
->rq_starved
)) {
1978 struct request_list
*rl
= &q
->rq
;
1981 if (waitqueue_active(&rl
->wait
[READ
]))
1982 wake_up(&rl
->wait
[READ
]);
1983 if (waitqueue_active(&rl
->wait
[WRITE
]))
1984 wake_up(&rl
->wait
[WRITE
]);
1989 * queue lock held here
1991 static void cfq_put_request(request_queue_t
*q
, struct request
*rq
)
1993 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1994 struct cfq_rq
*crq
= RQ_DATA(rq
);
1997 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1998 const int rw
= rq_data_dir(rq
);
2000 BUG_ON(!cfqq
->allocated
[rw
]);
2001 cfqq
->allocated
[rw
]--;
2003 put_io_context(crq
->io_context
->ioc
);
2005 mempool_free(crq
, cfqd
->crq_pool
);
2006 rq
->elevator_private
= NULL
;
2008 cfq_check_waiters(q
, cfqq
);
2009 cfq_put_queue(cfqq
);
2014 * Allocate cfq data structures associated with this request.
2017 cfq_set_request(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
,
2020 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2021 struct task_struct
*tsk
= current
;
2022 struct cfq_io_context
*cic
;
2023 const int rw
= rq_data_dir(rq
);
2024 pid_t key
= cfq_queue_pid(tsk
, rw
);
2025 struct cfq_queue
*cfqq
;
2027 unsigned long flags
;
2028 int is_sync
= key
!= CFQ_KEY_ASYNC
;
2030 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2032 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2034 spin_lock_irqsave(q
->queue_lock
, flags
);
2039 if (!cic
->cfqq
[is_sync
]) {
2040 cfqq
= cfq_get_queue(cfqd
, key
, tsk
, gfp_mask
);
2044 cic
->cfqq
[is_sync
] = cfqq
;
2046 cfqq
= cic
->cfqq
[is_sync
];
2048 cfqq
->allocated
[rw
]++;
2049 cfq_clear_cfqq_must_alloc(cfqq
);
2050 cfqd
->rq_starved
= 0;
2051 atomic_inc(&cfqq
->ref
);
2052 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2054 crq
= mempool_alloc(cfqd
->crq_pool
, gfp_mask
);
2056 RB_CLEAR_NODE(&crq
->rb_node
);
2059 INIT_HLIST_NODE(&crq
->hash
);
2060 crq
->cfq_queue
= cfqq
;
2061 crq
->io_context
= cic
;
2064 cfq_mark_crq_is_sync(crq
);
2066 cfq_clear_crq_is_sync(crq
);
2068 rq
->elevator_private
= crq
;
2072 spin_lock_irqsave(q
->queue_lock
, flags
);
2073 cfqq
->allocated
[rw
]--;
2074 if (!(cfqq
->allocated
[0] + cfqq
->allocated
[1]))
2075 cfq_mark_cfqq_must_alloc(cfqq
);
2076 cfq_put_queue(cfqq
);
2079 put_io_context(cic
->ioc
);
2081 * mark us rq allocation starved. we need to kickstart the process
2082 * ourselves if there are no pending requests that can do it for us.
2083 * that would be an extremely rare OOM situation
2085 cfqd
->rq_starved
= 1;
2086 cfq_schedule_dispatch(cfqd
);
2087 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2091 static void cfq_kick_queue(void *data
)
2093 request_queue_t
*q
= data
;
2094 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2095 unsigned long flags
;
2097 spin_lock_irqsave(q
->queue_lock
, flags
);
2099 if (cfqd
->rq_starved
) {
2100 struct request_list
*rl
= &q
->rq
;
2103 * we aren't guaranteed to get a request after this, but we
2104 * have to be opportunistic
2107 if (waitqueue_active(&rl
->wait
[READ
]))
2108 wake_up(&rl
->wait
[READ
]);
2109 if (waitqueue_active(&rl
->wait
[WRITE
]))
2110 wake_up(&rl
->wait
[WRITE
]);
2115 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2119 * Timer running if the active_queue is currently idling inside its time slice
2121 static void cfq_idle_slice_timer(unsigned long data
)
2123 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2124 struct cfq_queue
*cfqq
;
2125 unsigned long flags
;
2127 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2129 if ((cfqq
= cfqd
->active_queue
) != NULL
) {
2130 unsigned long now
= jiffies
;
2135 if (time_after(now
, cfqq
->slice_end
))
2139 * only expire and reinvoke request handler, if there are
2140 * other queues with pending requests
2142 if (!cfqd
->busy_queues
)
2146 * not expired and it has a request pending, let it dispatch
2148 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2149 cfq_mark_cfqq_must_dispatch(cfqq
);
2154 cfq_slice_expired(cfqd
, 0);
2156 cfq_schedule_dispatch(cfqd
);
2158 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2162 * Timer running if an idle class queue is waiting for service
2164 static void cfq_idle_class_timer(unsigned long data
)
2166 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2167 unsigned long flags
, end
;
2169 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2172 * race with a non-idle queue, reset timer
2174 end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
2175 if (!time_after_eq(jiffies
, end
))
2176 mod_timer(&cfqd
->idle_class_timer
, end
);
2178 cfq_schedule_dispatch(cfqd
);
2180 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2183 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2185 del_timer_sync(&cfqd
->idle_slice_timer
);
2186 del_timer_sync(&cfqd
->idle_class_timer
);
2187 blk_sync_queue(cfqd
->queue
);
2190 static void cfq_exit_queue(elevator_t
*e
)
2192 struct cfq_data
*cfqd
= e
->elevator_data
;
2193 request_queue_t
*q
= cfqd
->queue
;
2195 cfq_shutdown_timer_wq(cfqd
);
2197 spin_lock(&cfq_exit_lock
);
2198 spin_lock_irq(q
->queue_lock
);
2200 if (cfqd
->active_queue
)
2201 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2203 while (!list_empty(&cfqd
->cic_list
)) {
2204 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2205 struct cfq_io_context
,
2207 if (cic
->cfqq
[ASYNC
]) {
2208 cfq_put_queue(cic
->cfqq
[ASYNC
]);
2209 cic
->cfqq
[ASYNC
] = NULL
;
2211 if (cic
->cfqq
[SYNC
]) {
2212 cfq_put_queue(cic
->cfqq
[SYNC
]);
2213 cic
->cfqq
[SYNC
] = NULL
;
2216 list_del_init(&cic
->queue_list
);
2219 spin_unlock_irq(q
->queue_lock
);
2220 spin_unlock(&cfq_exit_lock
);
2222 cfq_shutdown_timer_wq(cfqd
);
2224 mempool_destroy(cfqd
->crq_pool
);
2225 kfree(cfqd
->crq_hash
);
2226 kfree(cfqd
->cfq_hash
);
2230 static void *cfq_init_queue(request_queue_t
*q
, elevator_t
*e
)
2232 struct cfq_data
*cfqd
;
2235 cfqd
= kmalloc(sizeof(*cfqd
), GFP_KERNEL
);
2239 memset(cfqd
, 0, sizeof(*cfqd
));
2241 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2242 INIT_LIST_HEAD(&cfqd
->rr_list
[i
]);
2244 INIT_LIST_HEAD(&cfqd
->busy_rr
);
2245 INIT_LIST_HEAD(&cfqd
->cur_rr
);
2246 INIT_LIST_HEAD(&cfqd
->idle_rr
);
2247 INIT_LIST_HEAD(&cfqd
->empty_list
);
2248 INIT_LIST_HEAD(&cfqd
->cic_list
);
2250 cfqd
->crq_hash
= kmalloc(sizeof(struct hlist_head
) * CFQ_MHASH_ENTRIES
, GFP_KERNEL
);
2251 if (!cfqd
->crq_hash
)
2254 cfqd
->cfq_hash
= kmalloc(sizeof(struct hlist_head
) * CFQ_QHASH_ENTRIES
, GFP_KERNEL
);
2255 if (!cfqd
->cfq_hash
)
2258 cfqd
->crq_pool
= mempool_create_slab_pool(BLKDEV_MIN_RQ
, crq_pool
);
2259 if (!cfqd
->crq_pool
)
2262 for (i
= 0; i
< CFQ_MHASH_ENTRIES
; i
++)
2263 INIT_HLIST_HEAD(&cfqd
->crq_hash
[i
]);
2264 for (i
= 0; i
< CFQ_QHASH_ENTRIES
; i
++)
2265 INIT_HLIST_HEAD(&cfqd
->cfq_hash
[i
]);
2269 init_timer(&cfqd
->idle_slice_timer
);
2270 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2271 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2273 init_timer(&cfqd
->idle_class_timer
);
2274 cfqd
->idle_class_timer
.function
= cfq_idle_class_timer
;
2275 cfqd
->idle_class_timer
.data
= (unsigned long) cfqd
;
2277 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
, q
);
2279 cfqd
->cfq_queued
= cfq_queued
;
2280 cfqd
->cfq_quantum
= cfq_quantum
;
2281 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2282 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2283 cfqd
->cfq_back_max
= cfq_back_max
;
2284 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2285 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2286 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2287 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2288 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2292 kfree(cfqd
->cfq_hash
);
2294 kfree(cfqd
->crq_hash
);
2300 static void cfq_slab_kill(void)
2303 kmem_cache_destroy(crq_pool
);
2305 kmem_cache_destroy(cfq_pool
);
2307 kmem_cache_destroy(cfq_ioc_pool
);
2310 static int __init
cfq_slab_setup(void)
2312 crq_pool
= kmem_cache_create("crq_pool", sizeof(struct cfq_rq
), 0, 0,
2317 cfq_pool
= kmem_cache_create("cfq_pool", sizeof(struct cfq_queue
), 0, 0,
2322 cfq_ioc_pool
= kmem_cache_create("cfq_ioc_pool",
2323 sizeof(struct cfq_io_context
), 0, 0, NULL
, NULL
);
2334 * sysfs parts below -->
2338 cfq_var_show(unsigned int var
, char *page
)
2340 return sprintf(page
, "%d\n", var
);
2344 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2346 char *p
= (char *) page
;
2348 *var
= simple_strtoul(p
, &p
, 10);
2352 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2353 static ssize_t __FUNC(elevator_t *e, char *page) \
2355 struct cfq_data *cfqd = e->elevator_data; \
2356 unsigned int __data = __VAR; \
2358 __data = jiffies_to_msecs(__data); \
2359 return cfq_var_show(__data, (page)); \
2361 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2362 SHOW_FUNCTION(cfq_queued_show
, cfqd
->cfq_queued
, 0);
2363 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2364 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2365 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2366 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2367 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2368 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2369 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2370 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2371 #undef SHOW_FUNCTION
2373 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2374 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2376 struct cfq_data *cfqd = e->elevator_data; \
2377 unsigned int __data; \
2378 int ret = cfq_var_store(&__data, (page), count); \
2379 if (__data < (MIN)) \
2381 else if (__data > (MAX)) \
2384 *(__PTR) = msecs_to_jiffies(__data); \
2386 *(__PTR) = __data; \
2389 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2390 STORE_FUNCTION(cfq_queued_store
, &cfqd
->cfq_queued
, 1, UINT_MAX
, 0);
2391 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1, UINT_MAX
, 1);
2392 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1, UINT_MAX
, 1);
2393 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2394 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1, UINT_MAX
, 0);
2395 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2396 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2397 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2398 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1, UINT_MAX
, 0);
2399 #undef STORE_FUNCTION
2401 #define CFQ_ATTR(name) \
2402 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2404 static struct elv_fs_entry cfq_attrs
[] = {
2407 CFQ_ATTR(fifo_expire_sync
),
2408 CFQ_ATTR(fifo_expire_async
),
2409 CFQ_ATTR(back_seek_max
),
2410 CFQ_ATTR(back_seek_penalty
),
2411 CFQ_ATTR(slice_sync
),
2412 CFQ_ATTR(slice_async
),
2413 CFQ_ATTR(slice_async_rq
),
2414 CFQ_ATTR(slice_idle
),
2418 static struct elevator_type iosched_cfq
= {
2420 .elevator_merge_fn
= cfq_merge
,
2421 .elevator_merged_fn
= cfq_merged_request
,
2422 .elevator_merge_req_fn
= cfq_merged_requests
,
2423 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2424 .elevator_add_req_fn
= cfq_insert_request
,
2425 .elevator_activate_req_fn
= cfq_activate_request
,
2426 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2427 .elevator_queue_empty_fn
= cfq_queue_empty
,
2428 .elevator_completed_req_fn
= cfq_completed_request
,
2429 .elevator_former_req_fn
= cfq_former_request
,
2430 .elevator_latter_req_fn
= cfq_latter_request
,
2431 .elevator_set_req_fn
= cfq_set_request
,
2432 .elevator_put_req_fn
= cfq_put_request
,
2433 .elevator_may_queue_fn
= cfq_may_queue
,
2434 .elevator_init_fn
= cfq_init_queue
,
2435 .elevator_exit_fn
= cfq_exit_queue
,
2438 .elevator_attrs
= cfq_attrs
,
2439 .elevator_name
= "cfq",
2440 .elevator_owner
= THIS_MODULE
,
2443 static int __init
cfq_init(void)
2448 * could be 0 on HZ < 1000 setups
2450 if (!cfq_slice_async
)
2451 cfq_slice_async
= 1;
2452 if (!cfq_slice_idle
)
2455 if (cfq_slab_setup())
2458 ret
= elv_register(&iosched_cfq
);
2465 static void __exit
cfq_exit(void)
2467 DECLARE_COMPLETION(all_gone
);
2468 elv_unregister(&iosched_cfq
);
2469 ioc_gone
= &all_gone
;
2470 /* ioc_gone's update must be visible before reading ioc_count */
2472 if (atomic_read(&ioc_count
))
2473 wait_for_completion(ioc_gone
);
2478 module_init(cfq_init
);
2479 module_exit(cfq_exit
);
2481 MODULE_AUTHOR("Jens Axboe");
2482 MODULE_LICENSE("GPL");
2483 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");