[PATCH] slab: optimize kmalloc_node the same way as kmalloc
[linux-2.6.22.y-op.git] / mm / slab.c
blob5e59ce7a46c86922c09fb811c9c9e06bd5b99b35
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/rtmutex.h>
112 #include <asm/uaccess.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 #include <asm/page.h>
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
143 #endif
145 #ifndef ARCH_KMALLOC_MINALIGN
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
154 #define ARCH_KMALLOC_MINALIGN 0
155 #endif
157 #ifndef ARCH_SLAB_MINALIGN
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
165 #define ARCH_SLAB_MINALIGN 0
166 #endif
168 #ifndef ARCH_KMALLOC_FLAGS
169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170 #endif
172 /* Legal flag mask for kmem_cache_create(). */
173 #if DEBUG
174 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176 SLAB_CACHE_DMA | \
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
180 #else
181 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
185 #endif
188 * kmem_bufctl_t:
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 typedef unsigned int kmem_bufctl_t;
207 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
209 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
213 * struct slab
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 struct slab {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
229 * struct slab_rcu
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
242 * We assume struct slab_rcu can overlay struct slab when destroying.
244 struct slab_rcu {
245 struct rcu_head head;
246 struct kmem_cache *cachep;
247 void *addr;
251 * struct array_cache
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
262 struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
267 spinlock_t lock;
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
287 * The slab lists for all objects.
289 struct kmem_list3 {
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned int free_limit;
295 unsigned int colour_next; /* Per-node cache coloring */
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308 #define CACHE_CACHE 0
309 #define SIZE_AC 1
310 #define SIZE_L3 (1 + MAX_NUMNODES)
312 static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
316 static void enable_cpucache(struct kmem_cache *cachep);
317 static void cache_reap(void *unused);
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 static __always_inline int index_of(const size_t size)
325 extern void __bad_size(void);
327 if (__builtin_constant_p(size)) {
328 int i = 0;
330 #define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335 #include "linux/kmalloc_sizes.h"
336 #undef CACHE
337 __bad_size();
338 } else
339 __bad_size();
340 return 0;
343 static int slab_early_init = 1;
345 #define INDEX_AC index_of(sizeof(struct arraycache_init))
346 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348 static void kmem_list3_init(struct kmem_list3 *parent)
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
355 parent->colour_next = 0;
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
361 #define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
365 } while (0)
367 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
375 * struct kmem_cache
377 * manages a cache.
380 struct kmem_cache {
381 /* 1) per-cpu data, touched during every alloc/free */
382 struct array_cache *array[NR_CPUS];
383 /* 2) Cache tunables. Protected by cache_chain_mutex */
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
388 unsigned int buffer_size;
389 /* 3) touched by every alloc & free from the backend */
390 struct kmem_list3 *nodelists[MAX_NUMNODES];
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
395 /* 4) cache_grow/shrink */
396 /* order of pgs per slab (2^n) */
397 unsigned int gfporder;
399 /* force GFP flags, e.g. GFP_DMA */
400 gfp_t gfpflags;
402 size_t colour; /* cache colouring range */
403 unsigned int colour_off; /* colour offset */
404 struct kmem_cache *slabp_cache;
405 unsigned int slab_size;
406 unsigned int dflags; /* dynamic flags */
408 /* constructor func */
409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
411 /* de-constructor func */
412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
414 /* 5) cache creation/removal */
415 const char *name;
416 struct list_head next;
418 /* 6) statistics */
419 #if STATS
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
429 unsigned long node_overflow;
430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
434 #endif
435 #if DEBUG
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
442 int obj_offset;
443 int obj_size;
444 #endif
447 #define CFLGS_OFF_SLAB (0x80000000UL)
448 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
450 #define BATCHREFILL_LIMIT 16
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
455 * OTOH the cpuarrays can contain lots of objects,
456 * which could lock up otherwise freeable slabs.
458 #define REAPTIMEOUT_CPUC (2*HZ)
459 #define REAPTIMEOUT_LIST3 (4*HZ)
461 #if STATS
462 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
463 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465 #define STATS_INC_GROWN(x) ((x)->grown++)
466 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
467 #define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
472 #define STATS_INC_ERR(x) ((x)->errors++)
473 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
474 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
475 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
476 #define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
481 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485 #else
486 #define STATS_INC_ACTIVE(x) do { } while (0)
487 #define STATS_DEC_ACTIVE(x) do { } while (0)
488 #define STATS_INC_ALLOCED(x) do { } while (0)
489 #define STATS_INC_GROWN(x) do { } while (0)
490 #define STATS_ADD_REAPED(x,y) do { } while (0)
491 #define STATS_SET_HIGH(x) do { } while (0)
492 #define STATS_INC_ERR(x) do { } while (0)
493 #define STATS_INC_NODEALLOCS(x) do { } while (0)
494 #define STATS_INC_NODEFREES(x) do { } while (0)
495 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
496 #define STATS_SET_FREEABLE(x, i) do { } while (0)
497 #define STATS_INC_ALLOCHIT(x) do { } while (0)
498 #define STATS_INC_ALLOCMISS(x) do { } while (0)
499 #define STATS_INC_FREEHIT(x) do { } while (0)
500 #define STATS_INC_FREEMISS(x) do { } while (0)
501 #endif
503 #if DEBUG
506 * memory layout of objects:
507 * 0 : objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
518 static int obj_offset(struct kmem_cache *cachep)
520 return cachep->obj_offset;
523 static int obj_size(struct kmem_cache *cachep)
525 return cachep->obj_size;
528 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
534 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
538 return (unsigned long *)(objp + cachep->buffer_size -
539 2 * BYTES_PER_WORD);
540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
543 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
549 #else
551 #define obj_offset(x) 0
552 #define obj_size(cachep) (cachep->buffer_size)
553 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
557 #endif
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
563 #if defined(CONFIG_LARGE_ALLOCS)
564 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
565 #define MAX_GFP_ORDER 13 /* up to 32Mb */
566 #elif defined(CONFIG_MMU)
567 #define MAX_OBJ_ORDER 5 /* 32 pages */
568 #define MAX_GFP_ORDER 5 /* 32 pages */
569 #else
570 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
571 #define MAX_GFP_ORDER 8 /* up to 1Mb */
572 #endif
575 * Do not go above this order unless 0 objects fit into the slab.
577 #define BREAK_GFP_ORDER_HI 1
578 #define BREAK_GFP_ORDER_LO 0
579 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
586 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
588 page->lru.next = (struct list_head *)cache;
591 static inline struct kmem_cache *page_get_cache(struct page *page)
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
595 BUG_ON(!PageSlab(page));
596 return (struct kmem_cache *)page->lru.next;
599 static inline void page_set_slab(struct page *page, struct slab *slab)
601 page->lru.prev = (struct list_head *)slab;
604 static inline struct slab *page_get_slab(struct page *page)
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
608 BUG_ON(!PageSlab(page));
609 return (struct slab *)page->lru.prev;
612 static inline struct kmem_cache *virt_to_cache(const void *obj)
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
618 static inline struct slab *virt_to_slab(const void *obj)
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
624 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
627 return slab->s_mem + cache->buffer_size * idx;
630 static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 struct cache_sizes malloc_sizes[] = {
640 #define CACHE(x) { .cs_size = (x) },
641 #include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643 #undef CACHE
645 EXPORT_SYMBOL(malloc_sizes);
647 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
648 struct cache_names {
649 char *name;
650 char *name_dma;
653 static struct cache_names __initdata cache_names[] = {
654 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655 #include <linux/kmalloc_sizes.h>
656 {NULL,}
657 #undef CACHE
660 static struct arraycache_init initarray_cache __initdata =
661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662 static struct arraycache_init initarray_generic =
663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
665 /* internal cache of cache description objs */
666 static struct kmem_cache cache_cache = {
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
670 .buffer_size = sizeof(struct kmem_cache),
671 .name = "kmem_cache",
672 #if DEBUG
673 .obj_size = sizeof(struct kmem_cache),
674 #endif
677 #ifdef CONFIG_LOCKDEP
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
686 static struct lock_class_key on_slab_key;
688 static inline void init_lock_keys(struct cache_sizes *s)
690 int q;
692 for (q = 0; q < MAX_NUMNODES; q++) {
693 if (!s->cs_cachep->nodelists[q] || OFF_SLAB(s->cs_cachep))
694 continue;
695 lockdep_set_class(&s->cs_cachep->nodelists[q]->list_lock,
696 &on_slab_key);
700 #else
701 static inline void init_lock_keys(struct cache_sizes *s)
704 #endif
708 /* Guard access to the cache-chain. */
709 static DEFINE_MUTEX(cache_chain_mutex);
710 static struct list_head cache_chain;
713 * vm_enough_memory() looks at this to determine how many slab-allocated pages
714 * are possibly freeable under pressure
716 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
718 atomic_t slab_reclaim_pages;
721 * chicken and egg problem: delay the per-cpu array allocation
722 * until the general caches are up.
724 static enum {
725 NONE,
726 PARTIAL_AC,
727 PARTIAL_L3,
728 FULL
729 } g_cpucache_up;
732 * used by boot code to determine if it can use slab based allocator
734 int slab_is_available(void)
736 return g_cpucache_up == FULL;
739 static DEFINE_PER_CPU(struct work_struct, reap_work);
741 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
743 return cachep->array[smp_processor_id()];
746 static inline struct kmem_cache *__find_general_cachep(size_t size,
747 gfp_t gfpflags)
749 struct cache_sizes *csizep = malloc_sizes;
751 #if DEBUG
752 /* This happens if someone tries to call
753 * kmem_cache_create(), or __kmalloc(), before
754 * the generic caches are initialized.
756 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
757 #endif
758 while (size > csizep->cs_size)
759 csizep++;
762 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
763 * has cs_{dma,}cachep==NULL. Thus no special case
764 * for large kmalloc calls required.
766 if (unlikely(gfpflags & GFP_DMA))
767 return csizep->cs_dmacachep;
768 return csizep->cs_cachep;
771 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
773 return __find_general_cachep(size, gfpflags);
776 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
778 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
782 * Calculate the number of objects and left-over bytes for a given buffer size.
784 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
785 size_t align, int flags, size_t *left_over,
786 unsigned int *num)
788 int nr_objs;
789 size_t mgmt_size;
790 size_t slab_size = PAGE_SIZE << gfporder;
793 * The slab management structure can be either off the slab or
794 * on it. For the latter case, the memory allocated for a
795 * slab is used for:
797 * - The struct slab
798 * - One kmem_bufctl_t for each object
799 * - Padding to respect alignment of @align
800 * - @buffer_size bytes for each object
802 * If the slab management structure is off the slab, then the
803 * alignment will already be calculated into the size. Because
804 * the slabs are all pages aligned, the objects will be at the
805 * correct alignment when allocated.
807 if (flags & CFLGS_OFF_SLAB) {
808 mgmt_size = 0;
809 nr_objs = slab_size / buffer_size;
811 if (nr_objs > SLAB_LIMIT)
812 nr_objs = SLAB_LIMIT;
813 } else {
815 * Ignore padding for the initial guess. The padding
816 * is at most @align-1 bytes, and @buffer_size is at
817 * least @align. In the worst case, this result will
818 * be one greater than the number of objects that fit
819 * into the memory allocation when taking the padding
820 * into account.
822 nr_objs = (slab_size - sizeof(struct slab)) /
823 (buffer_size + sizeof(kmem_bufctl_t));
826 * This calculated number will be either the right
827 * amount, or one greater than what we want.
829 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
830 > slab_size)
831 nr_objs--;
833 if (nr_objs > SLAB_LIMIT)
834 nr_objs = SLAB_LIMIT;
836 mgmt_size = slab_mgmt_size(nr_objs, align);
838 *num = nr_objs;
839 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
842 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
844 static void __slab_error(const char *function, struct kmem_cache *cachep,
845 char *msg)
847 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
848 function, cachep->name, msg);
849 dump_stack();
852 #ifdef CONFIG_NUMA
854 * Special reaping functions for NUMA systems called from cache_reap().
855 * These take care of doing round robin flushing of alien caches (containing
856 * objects freed on different nodes from which they were allocated) and the
857 * flushing of remote pcps by calling drain_node_pages.
859 static DEFINE_PER_CPU(unsigned long, reap_node);
861 static void init_reap_node(int cpu)
863 int node;
865 node = next_node(cpu_to_node(cpu), node_online_map);
866 if (node == MAX_NUMNODES)
867 node = first_node(node_online_map);
869 __get_cpu_var(reap_node) = node;
872 static void next_reap_node(void)
874 int node = __get_cpu_var(reap_node);
877 * Also drain per cpu pages on remote zones
879 if (node != numa_node_id())
880 drain_node_pages(node);
882 node = next_node(node, node_online_map);
883 if (unlikely(node >= MAX_NUMNODES))
884 node = first_node(node_online_map);
885 __get_cpu_var(reap_node) = node;
888 #else
889 #define init_reap_node(cpu) do { } while (0)
890 #define next_reap_node(void) do { } while (0)
891 #endif
894 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
895 * via the workqueue/eventd.
896 * Add the CPU number into the expiration time to minimize the possibility of
897 * the CPUs getting into lockstep and contending for the global cache chain
898 * lock.
900 static void __devinit start_cpu_timer(int cpu)
902 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
905 * When this gets called from do_initcalls via cpucache_init(),
906 * init_workqueues() has already run, so keventd will be setup
907 * at that time.
909 if (keventd_up() && reap_work->func == NULL) {
910 init_reap_node(cpu);
911 INIT_WORK(reap_work, cache_reap, NULL);
912 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
916 static struct array_cache *alloc_arraycache(int node, int entries,
917 int batchcount)
919 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
920 struct array_cache *nc = NULL;
922 nc = kmalloc_node(memsize, GFP_KERNEL, node);
923 if (nc) {
924 nc->avail = 0;
925 nc->limit = entries;
926 nc->batchcount = batchcount;
927 nc->touched = 0;
928 spin_lock_init(&nc->lock);
930 return nc;
934 * Transfer objects in one arraycache to another.
935 * Locking must be handled by the caller.
937 * Return the number of entries transferred.
939 static int transfer_objects(struct array_cache *to,
940 struct array_cache *from, unsigned int max)
942 /* Figure out how many entries to transfer */
943 int nr = min(min(from->avail, max), to->limit - to->avail);
945 if (!nr)
946 return 0;
948 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
949 sizeof(void *) *nr);
951 from->avail -= nr;
952 to->avail += nr;
953 to->touched = 1;
954 return nr;
957 #ifdef CONFIG_NUMA
958 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
959 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
961 static struct array_cache **alloc_alien_cache(int node, int limit)
963 struct array_cache **ac_ptr;
964 int memsize = sizeof(void *) * MAX_NUMNODES;
965 int i;
967 if (limit > 1)
968 limit = 12;
969 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
970 if (ac_ptr) {
971 for_each_node(i) {
972 if (i == node || !node_online(i)) {
973 ac_ptr[i] = NULL;
974 continue;
976 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
977 if (!ac_ptr[i]) {
978 for (i--; i <= 0; i--)
979 kfree(ac_ptr[i]);
980 kfree(ac_ptr);
981 return NULL;
985 return ac_ptr;
988 static void free_alien_cache(struct array_cache **ac_ptr)
990 int i;
992 if (!ac_ptr)
993 return;
994 for_each_node(i)
995 kfree(ac_ptr[i]);
996 kfree(ac_ptr);
999 static void __drain_alien_cache(struct kmem_cache *cachep,
1000 struct array_cache *ac, int node)
1002 struct kmem_list3 *rl3 = cachep->nodelists[node];
1004 if (ac->avail) {
1005 spin_lock(&rl3->list_lock);
1007 * Stuff objects into the remote nodes shared array first.
1008 * That way we could avoid the overhead of putting the objects
1009 * into the free lists and getting them back later.
1011 if (rl3->shared)
1012 transfer_objects(rl3->shared, ac, ac->limit);
1014 free_block(cachep, ac->entry, ac->avail, node);
1015 ac->avail = 0;
1016 spin_unlock(&rl3->list_lock);
1021 * Called from cache_reap() to regularly drain alien caches round robin.
1023 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1025 int node = __get_cpu_var(reap_node);
1027 if (l3->alien) {
1028 struct array_cache *ac = l3->alien[node];
1030 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1031 __drain_alien_cache(cachep, ac, node);
1032 spin_unlock_irq(&ac->lock);
1037 static void drain_alien_cache(struct kmem_cache *cachep,
1038 struct array_cache **alien)
1040 int i = 0;
1041 struct array_cache *ac;
1042 unsigned long flags;
1044 for_each_online_node(i) {
1045 ac = alien[i];
1046 if (ac) {
1047 spin_lock_irqsave(&ac->lock, flags);
1048 __drain_alien_cache(cachep, ac, i);
1049 spin_unlock_irqrestore(&ac->lock, flags);
1054 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1056 struct slab *slabp = virt_to_slab(objp);
1057 int nodeid = slabp->nodeid;
1058 struct kmem_list3 *l3;
1059 struct array_cache *alien = NULL;
1062 * Make sure we are not freeing a object from another node to the array
1063 * cache on this cpu.
1065 if (likely(slabp->nodeid == numa_node_id()))
1066 return 0;
1068 l3 = cachep->nodelists[numa_node_id()];
1069 STATS_INC_NODEFREES(cachep);
1070 if (l3->alien && l3->alien[nodeid]) {
1071 alien = l3->alien[nodeid];
1072 spin_lock(&alien->lock);
1073 if (unlikely(alien->avail == alien->limit)) {
1074 STATS_INC_ACOVERFLOW(cachep);
1075 __drain_alien_cache(cachep, alien, nodeid);
1077 alien->entry[alien->avail++] = objp;
1078 spin_unlock(&alien->lock);
1079 } else {
1080 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1081 free_block(cachep, &objp, 1, nodeid);
1082 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1084 return 1;
1087 #else
1089 #define drain_alien_cache(cachep, alien) do { } while (0)
1090 #define reap_alien(cachep, l3) do { } while (0)
1092 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1094 return (struct array_cache **) 0x01020304ul;
1097 static inline void free_alien_cache(struct array_cache **ac_ptr)
1101 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1103 return 0;
1106 #endif
1108 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1109 unsigned long action, void *hcpu)
1111 long cpu = (long)hcpu;
1112 struct kmem_cache *cachep;
1113 struct kmem_list3 *l3 = NULL;
1114 int node = cpu_to_node(cpu);
1115 int memsize = sizeof(struct kmem_list3);
1117 switch (action) {
1118 case CPU_UP_PREPARE:
1119 mutex_lock(&cache_chain_mutex);
1121 * We need to do this right in the beginning since
1122 * alloc_arraycache's are going to use this list.
1123 * kmalloc_node allows us to add the slab to the right
1124 * kmem_list3 and not this cpu's kmem_list3
1127 list_for_each_entry(cachep, &cache_chain, next) {
1129 * Set up the size64 kmemlist for cpu before we can
1130 * begin anything. Make sure some other cpu on this
1131 * node has not already allocated this
1133 if (!cachep->nodelists[node]) {
1134 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1135 if (!l3)
1136 goto bad;
1137 kmem_list3_init(l3);
1138 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1139 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1142 * The l3s don't come and go as CPUs come and
1143 * go. cache_chain_mutex is sufficient
1144 * protection here.
1146 cachep->nodelists[node] = l3;
1149 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1150 cachep->nodelists[node]->free_limit =
1151 (1 + nr_cpus_node(node)) *
1152 cachep->batchcount + cachep->num;
1153 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1157 * Now we can go ahead with allocating the shared arrays and
1158 * array caches
1160 list_for_each_entry(cachep, &cache_chain, next) {
1161 struct array_cache *nc;
1162 struct array_cache *shared;
1163 struct array_cache **alien;
1165 nc = alloc_arraycache(node, cachep->limit,
1166 cachep->batchcount);
1167 if (!nc)
1168 goto bad;
1169 shared = alloc_arraycache(node,
1170 cachep->shared * cachep->batchcount,
1171 0xbaadf00d);
1172 if (!shared)
1173 goto bad;
1175 alien = alloc_alien_cache(node, cachep->limit);
1176 if (!alien)
1177 goto bad;
1178 cachep->array[cpu] = nc;
1179 l3 = cachep->nodelists[node];
1180 BUG_ON(!l3);
1182 spin_lock_irq(&l3->list_lock);
1183 if (!l3->shared) {
1185 * We are serialised from CPU_DEAD or
1186 * CPU_UP_CANCELLED by the cpucontrol lock
1188 l3->shared = shared;
1189 shared = NULL;
1191 #ifdef CONFIG_NUMA
1192 if (!l3->alien) {
1193 l3->alien = alien;
1194 alien = NULL;
1196 #endif
1197 spin_unlock_irq(&l3->list_lock);
1198 kfree(shared);
1199 free_alien_cache(alien);
1201 mutex_unlock(&cache_chain_mutex);
1202 break;
1203 case CPU_ONLINE:
1204 start_cpu_timer(cpu);
1205 break;
1206 #ifdef CONFIG_HOTPLUG_CPU
1207 case CPU_DEAD:
1209 * Even if all the cpus of a node are down, we don't free the
1210 * kmem_list3 of any cache. This to avoid a race between
1211 * cpu_down, and a kmalloc allocation from another cpu for
1212 * memory from the node of the cpu going down. The list3
1213 * structure is usually allocated from kmem_cache_create() and
1214 * gets destroyed at kmem_cache_destroy().
1216 /* fall thru */
1217 case CPU_UP_CANCELED:
1218 mutex_lock(&cache_chain_mutex);
1219 list_for_each_entry(cachep, &cache_chain, next) {
1220 struct array_cache *nc;
1221 struct array_cache *shared;
1222 struct array_cache **alien;
1223 cpumask_t mask;
1225 mask = node_to_cpumask(node);
1226 /* cpu is dead; no one can alloc from it. */
1227 nc = cachep->array[cpu];
1228 cachep->array[cpu] = NULL;
1229 l3 = cachep->nodelists[node];
1231 if (!l3)
1232 goto free_array_cache;
1234 spin_lock_irq(&l3->list_lock);
1236 /* Free limit for this kmem_list3 */
1237 l3->free_limit -= cachep->batchcount;
1238 if (nc)
1239 free_block(cachep, nc->entry, nc->avail, node);
1241 if (!cpus_empty(mask)) {
1242 spin_unlock_irq(&l3->list_lock);
1243 goto free_array_cache;
1246 shared = l3->shared;
1247 if (shared) {
1248 free_block(cachep, l3->shared->entry,
1249 l3->shared->avail, node);
1250 l3->shared = NULL;
1253 alien = l3->alien;
1254 l3->alien = NULL;
1256 spin_unlock_irq(&l3->list_lock);
1258 kfree(shared);
1259 if (alien) {
1260 drain_alien_cache(cachep, alien);
1261 free_alien_cache(alien);
1263 free_array_cache:
1264 kfree(nc);
1267 * In the previous loop, all the objects were freed to
1268 * the respective cache's slabs, now we can go ahead and
1269 * shrink each nodelist to its limit.
1271 list_for_each_entry(cachep, &cache_chain, next) {
1272 l3 = cachep->nodelists[node];
1273 if (!l3)
1274 continue;
1275 drain_freelist(cachep, l3, l3->free_objects);
1277 mutex_unlock(&cache_chain_mutex);
1278 break;
1279 #endif
1281 return NOTIFY_OK;
1282 bad:
1283 mutex_unlock(&cache_chain_mutex);
1284 return NOTIFY_BAD;
1287 static struct notifier_block __cpuinitdata cpucache_notifier = {
1288 &cpuup_callback, NULL, 0
1292 * swap the static kmem_list3 with kmalloced memory
1294 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1295 int nodeid)
1297 struct kmem_list3 *ptr;
1299 BUG_ON(cachep->nodelists[nodeid] != list);
1300 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1301 BUG_ON(!ptr);
1303 local_irq_disable();
1304 memcpy(ptr, list, sizeof(struct kmem_list3));
1306 * Do not assume that spinlocks can be initialized via memcpy:
1308 spin_lock_init(&ptr->list_lock);
1310 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1311 cachep->nodelists[nodeid] = ptr;
1312 local_irq_enable();
1316 * Initialisation. Called after the page allocator have been initialised and
1317 * before smp_init().
1319 void __init kmem_cache_init(void)
1321 size_t left_over;
1322 struct cache_sizes *sizes;
1323 struct cache_names *names;
1324 int i;
1325 int order;
1327 for (i = 0; i < NUM_INIT_LISTS; i++) {
1328 kmem_list3_init(&initkmem_list3[i]);
1329 if (i < MAX_NUMNODES)
1330 cache_cache.nodelists[i] = NULL;
1334 * Fragmentation resistance on low memory - only use bigger
1335 * page orders on machines with more than 32MB of memory.
1337 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1338 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1340 /* Bootstrap is tricky, because several objects are allocated
1341 * from caches that do not exist yet:
1342 * 1) initialize the cache_cache cache: it contains the struct
1343 * kmem_cache structures of all caches, except cache_cache itself:
1344 * cache_cache is statically allocated.
1345 * Initially an __init data area is used for the head array and the
1346 * kmem_list3 structures, it's replaced with a kmalloc allocated
1347 * array at the end of the bootstrap.
1348 * 2) Create the first kmalloc cache.
1349 * The struct kmem_cache for the new cache is allocated normally.
1350 * An __init data area is used for the head array.
1351 * 3) Create the remaining kmalloc caches, with minimally sized
1352 * head arrays.
1353 * 4) Replace the __init data head arrays for cache_cache and the first
1354 * kmalloc cache with kmalloc allocated arrays.
1355 * 5) Replace the __init data for kmem_list3 for cache_cache and
1356 * the other cache's with kmalloc allocated memory.
1357 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1360 /* 1) create the cache_cache */
1361 INIT_LIST_HEAD(&cache_chain);
1362 list_add(&cache_cache.next, &cache_chain);
1363 cache_cache.colour_off = cache_line_size();
1364 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1365 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1367 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1368 cache_line_size());
1370 for (order = 0; order < MAX_ORDER; order++) {
1371 cache_estimate(order, cache_cache.buffer_size,
1372 cache_line_size(), 0, &left_over, &cache_cache.num);
1373 if (cache_cache.num)
1374 break;
1376 BUG_ON(!cache_cache.num);
1377 cache_cache.gfporder = order;
1378 cache_cache.colour = left_over / cache_cache.colour_off;
1379 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1380 sizeof(struct slab), cache_line_size());
1382 /* 2+3) create the kmalloc caches */
1383 sizes = malloc_sizes;
1384 names = cache_names;
1387 * Initialize the caches that provide memory for the array cache and the
1388 * kmem_list3 structures first. Without this, further allocations will
1389 * bug.
1392 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1393 sizes[INDEX_AC].cs_size,
1394 ARCH_KMALLOC_MINALIGN,
1395 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1396 NULL, NULL);
1398 if (INDEX_AC != INDEX_L3) {
1399 sizes[INDEX_L3].cs_cachep =
1400 kmem_cache_create(names[INDEX_L3].name,
1401 sizes[INDEX_L3].cs_size,
1402 ARCH_KMALLOC_MINALIGN,
1403 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1404 NULL, NULL);
1407 slab_early_init = 0;
1409 while (sizes->cs_size != ULONG_MAX) {
1411 * For performance, all the general caches are L1 aligned.
1412 * This should be particularly beneficial on SMP boxes, as it
1413 * eliminates "false sharing".
1414 * Note for systems short on memory removing the alignment will
1415 * allow tighter packing of the smaller caches.
1417 if (!sizes->cs_cachep) {
1418 sizes->cs_cachep = kmem_cache_create(names->name,
1419 sizes->cs_size,
1420 ARCH_KMALLOC_MINALIGN,
1421 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1422 NULL, NULL);
1424 init_lock_keys(sizes);
1426 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1427 sizes->cs_size,
1428 ARCH_KMALLOC_MINALIGN,
1429 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1430 SLAB_PANIC,
1431 NULL, NULL);
1432 sizes++;
1433 names++;
1435 /* 4) Replace the bootstrap head arrays */
1437 struct array_cache *ptr;
1439 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1441 local_irq_disable();
1442 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1443 memcpy(ptr, cpu_cache_get(&cache_cache),
1444 sizeof(struct arraycache_init));
1446 * Do not assume that spinlocks can be initialized via memcpy:
1448 spin_lock_init(&ptr->lock);
1450 cache_cache.array[smp_processor_id()] = ptr;
1451 local_irq_enable();
1453 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1455 local_irq_disable();
1456 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1457 != &initarray_generic.cache);
1458 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1459 sizeof(struct arraycache_init));
1461 * Do not assume that spinlocks can be initialized via memcpy:
1463 spin_lock_init(&ptr->lock);
1465 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1466 ptr;
1467 local_irq_enable();
1469 /* 5) Replace the bootstrap kmem_list3's */
1471 int node;
1472 /* Replace the static kmem_list3 structures for the boot cpu */
1473 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1474 numa_node_id());
1476 for_each_online_node(node) {
1477 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1478 &initkmem_list3[SIZE_AC + node], node);
1480 if (INDEX_AC != INDEX_L3) {
1481 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1482 &initkmem_list3[SIZE_L3 + node],
1483 node);
1488 /* 6) resize the head arrays to their final sizes */
1490 struct kmem_cache *cachep;
1491 mutex_lock(&cache_chain_mutex);
1492 list_for_each_entry(cachep, &cache_chain, next)
1493 enable_cpucache(cachep);
1494 mutex_unlock(&cache_chain_mutex);
1497 /* Done! */
1498 g_cpucache_up = FULL;
1501 * Register a cpu startup notifier callback that initializes
1502 * cpu_cache_get for all new cpus
1504 register_cpu_notifier(&cpucache_notifier);
1507 * The reap timers are started later, with a module init call: That part
1508 * of the kernel is not yet operational.
1512 static int __init cpucache_init(void)
1514 int cpu;
1517 * Register the timers that return unneeded pages to the page allocator
1519 for_each_online_cpu(cpu)
1520 start_cpu_timer(cpu);
1521 return 0;
1523 __initcall(cpucache_init);
1526 * Interface to system's page allocator. No need to hold the cache-lock.
1528 * If we requested dmaable memory, we will get it. Even if we
1529 * did not request dmaable memory, we might get it, but that
1530 * would be relatively rare and ignorable.
1532 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1534 struct page *page;
1535 int nr_pages;
1536 int i;
1538 #ifndef CONFIG_MMU
1540 * Nommu uses slab's for process anonymous memory allocations, and thus
1541 * requires __GFP_COMP to properly refcount higher order allocations
1543 flags |= __GFP_COMP;
1544 #endif
1545 flags |= cachep->gfpflags;
1547 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1548 if (!page)
1549 return NULL;
1551 nr_pages = (1 << cachep->gfporder);
1552 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1553 atomic_add(nr_pages, &slab_reclaim_pages);
1554 add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
1555 for (i = 0; i < nr_pages; i++)
1556 __SetPageSlab(page + i);
1557 return page_address(page);
1561 * Interface to system's page release.
1563 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1565 unsigned long i = (1 << cachep->gfporder);
1566 struct page *page = virt_to_page(addr);
1567 const unsigned long nr_freed = i;
1569 sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
1570 while (i--) {
1571 BUG_ON(!PageSlab(page));
1572 __ClearPageSlab(page);
1573 page++;
1575 if (current->reclaim_state)
1576 current->reclaim_state->reclaimed_slab += nr_freed;
1577 free_pages((unsigned long)addr, cachep->gfporder);
1578 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1579 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1582 static void kmem_rcu_free(struct rcu_head *head)
1584 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1585 struct kmem_cache *cachep = slab_rcu->cachep;
1587 kmem_freepages(cachep, slab_rcu->addr);
1588 if (OFF_SLAB(cachep))
1589 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1592 #if DEBUG
1594 #ifdef CONFIG_DEBUG_PAGEALLOC
1595 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1596 unsigned long caller)
1598 int size = obj_size(cachep);
1600 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1602 if (size < 5 * sizeof(unsigned long))
1603 return;
1605 *addr++ = 0x12345678;
1606 *addr++ = caller;
1607 *addr++ = smp_processor_id();
1608 size -= 3 * sizeof(unsigned long);
1610 unsigned long *sptr = &caller;
1611 unsigned long svalue;
1613 while (!kstack_end(sptr)) {
1614 svalue = *sptr++;
1615 if (kernel_text_address(svalue)) {
1616 *addr++ = svalue;
1617 size -= sizeof(unsigned long);
1618 if (size <= sizeof(unsigned long))
1619 break;
1624 *addr++ = 0x87654321;
1626 #endif
1628 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1630 int size = obj_size(cachep);
1631 addr = &((char *)addr)[obj_offset(cachep)];
1633 memset(addr, val, size);
1634 *(unsigned char *)(addr + size - 1) = POISON_END;
1637 static void dump_line(char *data, int offset, int limit)
1639 int i;
1640 printk(KERN_ERR "%03x:", offset);
1641 for (i = 0; i < limit; i++)
1642 printk(" %02x", (unsigned char)data[offset + i]);
1643 printk("\n");
1645 #endif
1647 #if DEBUG
1649 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1651 int i, size;
1652 char *realobj;
1654 if (cachep->flags & SLAB_RED_ZONE) {
1655 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1656 *dbg_redzone1(cachep, objp),
1657 *dbg_redzone2(cachep, objp));
1660 if (cachep->flags & SLAB_STORE_USER) {
1661 printk(KERN_ERR "Last user: [<%p>]",
1662 *dbg_userword(cachep, objp));
1663 print_symbol("(%s)",
1664 (unsigned long)*dbg_userword(cachep, objp));
1665 printk("\n");
1667 realobj = (char *)objp + obj_offset(cachep);
1668 size = obj_size(cachep);
1669 for (i = 0; i < size && lines; i += 16, lines--) {
1670 int limit;
1671 limit = 16;
1672 if (i + limit > size)
1673 limit = size - i;
1674 dump_line(realobj, i, limit);
1678 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1680 char *realobj;
1681 int size, i;
1682 int lines = 0;
1684 realobj = (char *)objp + obj_offset(cachep);
1685 size = obj_size(cachep);
1687 for (i = 0; i < size; i++) {
1688 char exp = POISON_FREE;
1689 if (i == size - 1)
1690 exp = POISON_END;
1691 if (realobj[i] != exp) {
1692 int limit;
1693 /* Mismatch ! */
1694 /* Print header */
1695 if (lines == 0) {
1696 printk(KERN_ERR
1697 "Slab corruption: start=%p, len=%d\n",
1698 realobj, size);
1699 print_objinfo(cachep, objp, 0);
1701 /* Hexdump the affected line */
1702 i = (i / 16) * 16;
1703 limit = 16;
1704 if (i + limit > size)
1705 limit = size - i;
1706 dump_line(realobj, i, limit);
1707 i += 16;
1708 lines++;
1709 /* Limit to 5 lines */
1710 if (lines > 5)
1711 break;
1714 if (lines != 0) {
1715 /* Print some data about the neighboring objects, if they
1716 * exist:
1718 struct slab *slabp = virt_to_slab(objp);
1719 unsigned int objnr;
1721 objnr = obj_to_index(cachep, slabp, objp);
1722 if (objnr) {
1723 objp = index_to_obj(cachep, slabp, objnr - 1);
1724 realobj = (char *)objp + obj_offset(cachep);
1725 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1726 realobj, size);
1727 print_objinfo(cachep, objp, 2);
1729 if (objnr + 1 < cachep->num) {
1730 objp = index_to_obj(cachep, slabp, objnr + 1);
1731 realobj = (char *)objp + obj_offset(cachep);
1732 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1733 realobj, size);
1734 print_objinfo(cachep, objp, 2);
1738 #endif
1740 #if DEBUG
1742 * slab_destroy_objs - destroy a slab and its objects
1743 * @cachep: cache pointer being destroyed
1744 * @slabp: slab pointer being destroyed
1746 * Call the registered destructor for each object in a slab that is being
1747 * destroyed.
1749 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1751 int i;
1752 for (i = 0; i < cachep->num; i++) {
1753 void *objp = index_to_obj(cachep, slabp, i);
1755 if (cachep->flags & SLAB_POISON) {
1756 #ifdef CONFIG_DEBUG_PAGEALLOC
1757 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1758 OFF_SLAB(cachep))
1759 kernel_map_pages(virt_to_page(objp),
1760 cachep->buffer_size / PAGE_SIZE, 1);
1761 else
1762 check_poison_obj(cachep, objp);
1763 #else
1764 check_poison_obj(cachep, objp);
1765 #endif
1767 if (cachep->flags & SLAB_RED_ZONE) {
1768 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1769 slab_error(cachep, "start of a freed object "
1770 "was overwritten");
1771 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1772 slab_error(cachep, "end of a freed object "
1773 "was overwritten");
1775 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1776 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1779 #else
1780 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1782 if (cachep->dtor) {
1783 int i;
1784 for (i = 0; i < cachep->num; i++) {
1785 void *objp = index_to_obj(cachep, slabp, i);
1786 (cachep->dtor) (objp, cachep, 0);
1790 #endif
1793 * slab_destroy - destroy and release all objects in a slab
1794 * @cachep: cache pointer being destroyed
1795 * @slabp: slab pointer being destroyed
1797 * Destroy all the objs in a slab, and release the mem back to the system.
1798 * Before calling the slab must have been unlinked from the cache. The
1799 * cache-lock is not held/needed.
1801 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1803 void *addr = slabp->s_mem - slabp->colouroff;
1805 slab_destroy_objs(cachep, slabp);
1806 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1807 struct slab_rcu *slab_rcu;
1809 slab_rcu = (struct slab_rcu *)slabp;
1810 slab_rcu->cachep = cachep;
1811 slab_rcu->addr = addr;
1812 call_rcu(&slab_rcu->head, kmem_rcu_free);
1813 } else {
1814 kmem_freepages(cachep, addr);
1815 if (OFF_SLAB(cachep))
1816 kmem_cache_free(cachep->slabp_cache, slabp);
1821 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1822 * size of kmem_list3.
1824 static void set_up_list3s(struct kmem_cache *cachep, int index)
1826 int node;
1828 for_each_online_node(node) {
1829 cachep->nodelists[node] = &initkmem_list3[index + node];
1830 cachep->nodelists[node]->next_reap = jiffies +
1831 REAPTIMEOUT_LIST3 +
1832 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1837 * calculate_slab_order - calculate size (page order) of slabs
1838 * @cachep: pointer to the cache that is being created
1839 * @size: size of objects to be created in this cache.
1840 * @align: required alignment for the objects.
1841 * @flags: slab allocation flags
1843 * Also calculates the number of objects per slab.
1845 * This could be made much more intelligent. For now, try to avoid using
1846 * high order pages for slabs. When the gfp() functions are more friendly
1847 * towards high-order requests, this should be changed.
1849 static size_t calculate_slab_order(struct kmem_cache *cachep,
1850 size_t size, size_t align, unsigned long flags)
1852 unsigned long offslab_limit;
1853 size_t left_over = 0;
1854 int gfporder;
1856 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1857 unsigned int num;
1858 size_t remainder;
1860 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1861 if (!num)
1862 continue;
1864 if (flags & CFLGS_OFF_SLAB) {
1866 * Max number of objs-per-slab for caches which
1867 * use off-slab slabs. Needed to avoid a possible
1868 * looping condition in cache_grow().
1870 offslab_limit = size - sizeof(struct slab);
1871 offslab_limit /= sizeof(kmem_bufctl_t);
1873 if (num > offslab_limit)
1874 break;
1877 /* Found something acceptable - save it away */
1878 cachep->num = num;
1879 cachep->gfporder = gfporder;
1880 left_over = remainder;
1883 * A VFS-reclaimable slab tends to have most allocations
1884 * as GFP_NOFS and we really don't want to have to be allocating
1885 * higher-order pages when we are unable to shrink dcache.
1887 if (flags & SLAB_RECLAIM_ACCOUNT)
1888 break;
1891 * Large number of objects is good, but very large slabs are
1892 * currently bad for the gfp()s.
1894 if (gfporder >= slab_break_gfp_order)
1895 break;
1898 * Acceptable internal fragmentation?
1900 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1901 break;
1903 return left_over;
1906 static void setup_cpu_cache(struct kmem_cache *cachep)
1908 if (g_cpucache_up == FULL) {
1909 enable_cpucache(cachep);
1910 return;
1912 if (g_cpucache_up == NONE) {
1914 * Note: the first kmem_cache_create must create the cache
1915 * that's used by kmalloc(24), otherwise the creation of
1916 * further caches will BUG().
1918 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1921 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1922 * the first cache, then we need to set up all its list3s,
1923 * otherwise the creation of further caches will BUG().
1925 set_up_list3s(cachep, SIZE_AC);
1926 if (INDEX_AC == INDEX_L3)
1927 g_cpucache_up = PARTIAL_L3;
1928 else
1929 g_cpucache_up = PARTIAL_AC;
1930 } else {
1931 cachep->array[smp_processor_id()] =
1932 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1934 if (g_cpucache_up == PARTIAL_AC) {
1935 set_up_list3s(cachep, SIZE_L3);
1936 g_cpucache_up = PARTIAL_L3;
1937 } else {
1938 int node;
1939 for_each_online_node(node) {
1940 cachep->nodelists[node] =
1941 kmalloc_node(sizeof(struct kmem_list3),
1942 GFP_KERNEL, node);
1943 BUG_ON(!cachep->nodelists[node]);
1944 kmem_list3_init(cachep->nodelists[node]);
1948 cachep->nodelists[numa_node_id()]->next_reap =
1949 jiffies + REAPTIMEOUT_LIST3 +
1950 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1952 cpu_cache_get(cachep)->avail = 0;
1953 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1954 cpu_cache_get(cachep)->batchcount = 1;
1955 cpu_cache_get(cachep)->touched = 0;
1956 cachep->batchcount = 1;
1957 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1961 * kmem_cache_create - Create a cache.
1962 * @name: A string which is used in /proc/slabinfo to identify this cache.
1963 * @size: The size of objects to be created in this cache.
1964 * @align: The required alignment for the objects.
1965 * @flags: SLAB flags
1966 * @ctor: A constructor for the objects.
1967 * @dtor: A destructor for the objects.
1969 * Returns a ptr to the cache on success, NULL on failure.
1970 * Cannot be called within a int, but can be interrupted.
1971 * The @ctor is run when new pages are allocated by the cache
1972 * and the @dtor is run before the pages are handed back.
1974 * @name must be valid until the cache is destroyed. This implies that
1975 * the module calling this has to destroy the cache before getting unloaded.
1977 * The flags are
1979 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1980 * to catch references to uninitialised memory.
1982 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1983 * for buffer overruns.
1985 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1986 * cacheline. This can be beneficial if you're counting cycles as closely
1987 * as davem.
1989 struct kmem_cache *
1990 kmem_cache_create (const char *name, size_t size, size_t align,
1991 unsigned long flags,
1992 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1993 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1995 size_t left_over, slab_size, ralign;
1996 struct kmem_cache *cachep = NULL, *pc;
1999 * Sanity checks... these are all serious usage bugs.
2001 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2002 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2003 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2004 name);
2005 BUG();
2009 * Prevent CPUs from coming and going.
2010 * lock_cpu_hotplug() nests outside cache_chain_mutex
2012 lock_cpu_hotplug();
2014 mutex_lock(&cache_chain_mutex);
2016 list_for_each_entry(pc, &cache_chain, next) {
2017 mm_segment_t old_fs = get_fs();
2018 char tmp;
2019 int res;
2022 * This happens when the module gets unloaded and doesn't
2023 * destroy its slab cache and no-one else reuses the vmalloc
2024 * area of the module. Print a warning.
2026 set_fs(KERNEL_DS);
2027 res = __get_user(tmp, pc->name);
2028 set_fs(old_fs);
2029 if (res) {
2030 printk("SLAB: cache with size %d has lost its name\n",
2031 pc->buffer_size);
2032 continue;
2035 if (!strcmp(pc->name, name)) {
2036 printk("kmem_cache_create: duplicate cache %s\n", name);
2037 dump_stack();
2038 goto oops;
2042 #if DEBUG
2043 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2044 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2045 /* No constructor, but inital state check requested */
2046 printk(KERN_ERR "%s: No con, but init state check "
2047 "requested - %s\n", __FUNCTION__, name);
2048 flags &= ~SLAB_DEBUG_INITIAL;
2050 #if FORCED_DEBUG
2052 * Enable redzoning and last user accounting, except for caches with
2053 * large objects, if the increased size would increase the object size
2054 * above the next power of two: caches with object sizes just above a
2055 * power of two have a significant amount of internal fragmentation.
2057 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2058 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2059 if (!(flags & SLAB_DESTROY_BY_RCU))
2060 flags |= SLAB_POISON;
2061 #endif
2062 if (flags & SLAB_DESTROY_BY_RCU)
2063 BUG_ON(flags & SLAB_POISON);
2064 #endif
2065 if (flags & SLAB_DESTROY_BY_RCU)
2066 BUG_ON(dtor);
2069 * Always checks flags, a caller might be expecting debug support which
2070 * isn't available.
2072 BUG_ON(flags & ~CREATE_MASK);
2075 * Check that size is in terms of words. This is needed to avoid
2076 * unaligned accesses for some archs when redzoning is used, and makes
2077 * sure any on-slab bufctl's are also correctly aligned.
2079 if (size & (BYTES_PER_WORD - 1)) {
2080 size += (BYTES_PER_WORD - 1);
2081 size &= ~(BYTES_PER_WORD - 1);
2084 /* calculate the final buffer alignment: */
2086 /* 1) arch recommendation: can be overridden for debug */
2087 if (flags & SLAB_HWCACHE_ALIGN) {
2089 * Default alignment: as specified by the arch code. Except if
2090 * an object is really small, then squeeze multiple objects into
2091 * one cacheline.
2093 ralign = cache_line_size();
2094 while (size <= ralign / 2)
2095 ralign /= 2;
2096 } else {
2097 ralign = BYTES_PER_WORD;
2101 * Redzoning and user store require word alignment. Note this will be
2102 * overridden by architecture or caller mandated alignment if either
2103 * is greater than BYTES_PER_WORD.
2105 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2106 ralign = BYTES_PER_WORD;
2108 /* 2) arch mandated alignment: disables debug if necessary */
2109 if (ralign < ARCH_SLAB_MINALIGN) {
2110 ralign = ARCH_SLAB_MINALIGN;
2111 if (ralign > BYTES_PER_WORD)
2112 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2114 /* 3) caller mandated alignment: disables debug if necessary */
2115 if (ralign < align) {
2116 ralign = align;
2117 if (ralign > BYTES_PER_WORD)
2118 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2121 * 4) Store it.
2123 align = ralign;
2125 /* Get cache's description obj. */
2126 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2127 if (!cachep)
2128 goto oops;
2130 #if DEBUG
2131 cachep->obj_size = size;
2134 * Both debugging options require word-alignment which is calculated
2135 * into align above.
2137 if (flags & SLAB_RED_ZONE) {
2138 /* add space for red zone words */
2139 cachep->obj_offset += BYTES_PER_WORD;
2140 size += 2 * BYTES_PER_WORD;
2142 if (flags & SLAB_STORE_USER) {
2143 /* user store requires one word storage behind the end of
2144 * the real object.
2146 size += BYTES_PER_WORD;
2148 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2149 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2150 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2151 cachep->obj_offset += PAGE_SIZE - size;
2152 size = PAGE_SIZE;
2154 #endif
2155 #endif
2158 * Determine if the slab management is 'on' or 'off' slab.
2159 * (bootstrapping cannot cope with offslab caches so don't do
2160 * it too early on.)
2162 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2164 * Size is large, assume best to place the slab management obj
2165 * off-slab (should allow better packing of objs).
2167 flags |= CFLGS_OFF_SLAB;
2169 size = ALIGN(size, align);
2171 left_over = calculate_slab_order(cachep, size, align, flags);
2173 if (!cachep->num) {
2174 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2175 kmem_cache_free(&cache_cache, cachep);
2176 cachep = NULL;
2177 goto oops;
2179 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2180 + sizeof(struct slab), align);
2183 * If the slab has been placed off-slab, and we have enough space then
2184 * move it on-slab. This is at the expense of any extra colouring.
2186 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2187 flags &= ~CFLGS_OFF_SLAB;
2188 left_over -= slab_size;
2191 if (flags & CFLGS_OFF_SLAB) {
2192 /* really off slab. No need for manual alignment */
2193 slab_size =
2194 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2197 cachep->colour_off = cache_line_size();
2198 /* Offset must be a multiple of the alignment. */
2199 if (cachep->colour_off < align)
2200 cachep->colour_off = align;
2201 cachep->colour = left_over / cachep->colour_off;
2202 cachep->slab_size = slab_size;
2203 cachep->flags = flags;
2204 cachep->gfpflags = 0;
2205 if (flags & SLAB_CACHE_DMA)
2206 cachep->gfpflags |= GFP_DMA;
2207 cachep->buffer_size = size;
2209 if (flags & CFLGS_OFF_SLAB) {
2210 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2212 * This is a possibility for one of the malloc_sizes caches.
2213 * But since we go off slab only for object size greater than
2214 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2215 * this should not happen at all.
2216 * But leave a BUG_ON for some lucky dude.
2218 BUG_ON(!cachep->slabp_cache);
2220 cachep->ctor = ctor;
2221 cachep->dtor = dtor;
2222 cachep->name = name;
2225 setup_cpu_cache(cachep);
2227 /* cache setup completed, link it into the list */
2228 list_add(&cachep->next, &cache_chain);
2229 oops:
2230 if (!cachep && (flags & SLAB_PANIC))
2231 panic("kmem_cache_create(): failed to create slab `%s'\n",
2232 name);
2233 mutex_unlock(&cache_chain_mutex);
2234 unlock_cpu_hotplug();
2235 return cachep;
2237 EXPORT_SYMBOL(kmem_cache_create);
2239 #if DEBUG
2240 static void check_irq_off(void)
2242 BUG_ON(!irqs_disabled());
2245 static void check_irq_on(void)
2247 BUG_ON(irqs_disabled());
2250 static void check_spinlock_acquired(struct kmem_cache *cachep)
2252 #ifdef CONFIG_SMP
2253 check_irq_off();
2254 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2255 #endif
2258 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2260 #ifdef CONFIG_SMP
2261 check_irq_off();
2262 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2263 #endif
2266 #else
2267 #define check_irq_off() do { } while(0)
2268 #define check_irq_on() do { } while(0)
2269 #define check_spinlock_acquired(x) do { } while(0)
2270 #define check_spinlock_acquired_node(x, y) do { } while(0)
2271 #endif
2273 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2274 struct array_cache *ac,
2275 int force, int node);
2277 static void do_drain(void *arg)
2279 struct kmem_cache *cachep = arg;
2280 struct array_cache *ac;
2281 int node = numa_node_id();
2283 check_irq_off();
2284 ac = cpu_cache_get(cachep);
2285 spin_lock(&cachep->nodelists[node]->list_lock);
2286 free_block(cachep, ac->entry, ac->avail, node);
2287 spin_unlock(&cachep->nodelists[node]->list_lock);
2288 ac->avail = 0;
2291 static void drain_cpu_caches(struct kmem_cache *cachep)
2293 struct kmem_list3 *l3;
2294 int node;
2296 on_each_cpu(do_drain, cachep, 1, 1);
2297 check_irq_on();
2298 for_each_online_node(node) {
2299 l3 = cachep->nodelists[node];
2300 if (l3 && l3->alien)
2301 drain_alien_cache(cachep, l3->alien);
2304 for_each_online_node(node) {
2305 l3 = cachep->nodelists[node];
2306 if (l3)
2307 drain_array(cachep, l3, l3->shared, 1, node);
2312 * Remove slabs from the list of free slabs.
2313 * Specify the number of slabs to drain in tofree.
2315 * Returns the actual number of slabs released.
2317 static int drain_freelist(struct kmem_cache *cache,
2318 struct kmem_list3 *l3, int tofree)
2320 struct list_head *p;
2321 int nr_freed;
2322 struct slab *slabp;
2324 nr_freed = 0;
2325 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2327 spin_lock_irq(&l3->list_lock);
2328 p = l3->slabs_free.prev;
2329 if (p == &l3->slabs_free) {
2330 spin_unlock_irq(&l3->list_lock);
2331 goto out;
2334 slabp = list_entry(p, struct slab, list);
2335 #if DEBUG
2336 BUG_ON(slabp->inuse);
2337 #endif
2338 list_del(&slabp->list);
2340 * Safe to drop the lock. The slab is no longer linked
2341 * to the cache.
2343 l3->free_objects -= cache->num;
2344 spin_unlock_irq(&l3->list_lock);
2345 slab_destroy(cache, slabp);
2346 nr_freed++;
2348 out:
2349 return nr_freed;
2352 static int __cache_shrink(struct kmem_cache *cachep)
2354 int ret = 0, i = 0;
2355 struct kmem_list3 *l3;
2357 drain_cpu_caches(cachep);
2359 check_irq_on();
2360 for_each_online_node(i) {
2361 l3 = cachep->nodelists[i];
2362 if (!l3)
2363 continue;
2365 drain_freelist(cachep, l3, l3->free_objects);
2367 ret += !list_empty(&l3->slabs_full) ||
2368 !list_empty(&l3->slabs_partial);
2370 return (ret ? 1 : 0);
2374 * kmem_cache_shrink - Shrink a cache.
2375 * @cachep: The cache to shrink.
2377 * Releases as many slabs as possible for a cache.
2378 * To help debugging, a zero exit status indicates all slabs were released.
2380 int kmem_cache_shrink(struct kmem_cache *cachep)
2382 BUG_ON(!cachep || in_interrupt());
2384 return __cache_shrink(cachep);
2386 EXPORT_SYMBOL(kmem_cache_shrink);
2389 * kmem_cache_destroy - delete a cache
2390 * @cachep: the cache to destroy
2392 * Remove a struct kmem_cache object from the slab cache.
2393 * Returns 0 on success.
2395 * It is expected this function will be called by a module when it is
2396 * unloaded. This will remove the cache completely, and avoid a duplicate
2397 * cache being allocated each time a module is loaded and unloaded, if the
2398 * module doesn't have persistent in-kernel storage across loads and unloads.
2400 * The cache must be empty before calling this function.
2402 * The caller must guarantee that noone will allocate memory from the cache
2403 * during the kmem_cache_destroy().
2405 int kmem_cache_destroy(struct kmem_cache *cachep)
2407 int i;
2408 struct kmem_list3 *l3;
2410 BUG_ON(!cachep || in_interrupt());
2412 /* Don't let CPUs to come and go */
2413 lock_cpu_hotplug();
2415 /* Find the cache in the chain of caches. */
2416 mutex_lock(&cache_chain_mutex);
2418 * the chain is never empty, cache_cache is never destroyed
2420 list_del(&cachep->next);
2421 mutex_unlock(&cache_chain_mutex);
2423 if (__cache_shrink(cachep)) {
2424 slab_error(cachep, "Can't free all objects");
2425 mutex_lock(&cache_chain_mutex);
2426 list_add(&cachep->next, &cache_chain);
2427 mutex_unlock(&cache_chain_mutex);
2428 unlock_cpu_hotplug();
2429 return 1;
2432 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2433 synchronize_rcu();
2435 for_each_online_cpu(i)
2436 kfree(cachep->array[i]);
2438 /* NUMA: free the list3 structures */
2439 for_each_online_node(i) {
2440 l3 = cachep->nodelists[i];
2441 if (l3) {
2442 kfree(l3->shared);
2443 free_alien_cache(l3->alien);
2444 kfree(l3);
2447 kmem_cache_free(&cache_cache, cachep);
2448 unlock_cpu_hotplug();
2449 return 0;
2451 EXPORT_SYMBOL(kmem_cache_destroy);
2454 * Get the memory for a slab management obj.
2455 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2456 * always come from malloc_sizes caches. The slab descriptor cannot
2457 * come from the same cache which is getting created because,
2458 * when we are searching for an appropriate cache for these
2459 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2460 * If we are creating a malloc_sizes cache here it would not be visible to
2461 * kmem_find_general_cachep till the initialization is complete.
2462 * Hence we cannot have slabp_cache same as the original cache.
2464 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2465 int colour_off, gfp_t local_flags,
2466 int nodeid)
2468 struct slab *slabp;
2470 if (OFF_SLAB(cachep)) {
2471 /* Slab management obj is off-slab. */
2472 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2473 local_flags, nodeid);
2474 if (!slabp)
2475 return NULL;
2476 } else {
2477 slabp = objp + colour_off;
2478 colour_off += cachep->slab_size;
2480 slabp->inuse = 0;
2481 slabp->colouroff = colour_off;
2482 slabp->s_mem = objp + colour_off;
2483 slabp->nodeid = nodeid;
2484 return slabp;
2487 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2489 return (kmem_bufctl_t *) (slabp + 1);
2492 static void cache_init_objs(struct kmem_cache *cachep,
2493 struct slab *slabp, unsigned long ctor_flags)
2495 int i;
2497 for (i = 0; i < cachep->num; i++) {
2498 void *objp = index_to_obj(cachep, slabp, i);
2499 #if DEBUG
2500 /* need to poison the objs? */
2501 if (cachep->flags & SLAB_POISON)
2502 poison_obj(cachep, objp, POISON_FREE);
2503 if (cachep->flags & SLAB_STORE_USER)
2504 *dbg_userword(cachep, objp) = NULL;
2506 if (cachep->flags & SLAB_RED_ZONE) {
2507 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2508 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2511 * Constructors are not allowed to allocate memory from the same
2512 * cache which they are a constructor for. Otherwise, deadlock.
2513 * They must also be threaded.
2515 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2516 cachep->ctor(objp + obj_offset(cachep), cachep,
2517 ctor_flags);
2519 if (cachep->flags & SLAB_RED_ZONE) {
2520 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2521 slab_error(cachep, "constructor overwrote the"
2522 " end of an object");
2523 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2524 slab_error(cachep, "constructor overwrote the"
2525 " start of an object");
2527 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2528 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2529 kernel_map_pages(virt_to_page(objp),
2530 cachep->buffer_size / PAGE_SIZE, 0);
2531 #else
2532 if (cachep->ctor)
2533 cachep->ctor(objp, cachep, ctor_flags);
2534 #endif
2535 slab_bufctl(slabp)[i] = i + 1;
2537 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2538 slabp->free = 0;
2541 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2543 if (flags & SLAB_DMA)
2544 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2545 else
2546 BUG_ON(cachep->gfpflags & GFP_DMA);
2549 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2550 int nodeid)
2552 void *objp = index_to_obj(cachep, slabp, slabp->free);
2553 kmem_bufctl_t next;
2555 slabp->inuse++;
2556 next = slab_bufctl(slabp)[slabp->free];
2557 #if DEBUG
2558 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2559 WARN_ON(slabp->nodeid != nodeid);
2560 #endif
2561 slabp->free = next;
2563 return objp;
2566 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2567 void *objp, int nodeid)
2569 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2571 #if DEBUG
2572 /* Verify that the slab belongs to the intended node */
2573 WARN_ON(slabp->nodeid != nodeid);
2575 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2576 printk(KERN_ERR "slab: double free detected in cache "
2577 "'%s', objp %p\n", cachep->name, objp);
2578 BUG();
2580 #endif
2581 slab_bufctl(slabp)[objnr] = slabp->free;
2582 slabp->free = objnr;
2583 slabp->inuse--;
2587 * Map pages beginning at addr to the given cache and slab. This is required
2588 * for the slab allocator to be able to lookup the cache and slab of a
2589 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2591 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2592 void *addr)
2594 int nr_pages;
2595 struct page *page;
2597 page = virt_to_page(addr);
2599 nr_pages = 1;
2600 if (likely(!PageCompound(page)))
2601 nr_pages <<= cache->gfporder;
2603 do {
2604 page_set_cache(page, cache);
2605 page_set_slab(page, slab);
2606 page++;
2607 } while (--nr_pages);
2611 * Grow (by 1) the number of slabs within a cache. This is called by
2612 * kmem_cache_alloc() when there are no active objs left in a cache.
2614 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2616 struct slab *slabp;
2617 void *objp;
2618 size_t offset;
2619 gfp_t local_flags;
2620 unsigned long ctor_flags;
2621 struct kmem_list3 *l3;
2624 * Be lazy and only check for valid flags here, keeping it out of the
2625 * critical path in kmem_cache_alloc().
2627 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2628 if (flags & SLAB_NO_GROW)
2629 return 0;
2631 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2632 local_flags = (flags & SLAB_LEVEL_MASK);
2633 if (!(local_flags & __GFP_WAIT))
2635 * Not allowed to sleep. Need to tell a constructor about
2636 * this - it might need to know...
2638 ctor_flags |= SLAB_CTOR_ATOMIC;
2640 /* Take the l3 list lock to change the colour_next on this node */
2641 check_irq_off();
2642 l3 = cachep->nodelists[nodeid];
2643 spin_lock(&l3->list_lock);
2645 /* Get colour for the slab, and cal the next value. */
2646 offset = l3->colour_next;
2647 l3->colour_next++;
2648 if (l3->colour_next >= cachep->colour)
2649 l3->colour_next = 0;
2650 spin_unlock(&l3->list_lock);
2652 offset *= cachep->colour_off;
2654 if (local_flags & __GFP_WAIT)
2655 local_irq_enable();
2658 * The test for missing atomic flag is performed here, rather than
2659 * the more obvious place, simply to reduce the critical path length
2660 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2661 * will eventually be caught here (where it matters).
2663 kmem_flagcheck(cachep, flags);
2666 * Get mem for the objs. Attempt to allocate a physical page from
2667 * 'nodeid'.
2669 objp = kmem_getpages(cachep, flags, nodeid);
2670 if (!objp)
2671 goto failed;
2673 /* Get slab management. */
2674 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2675 if (!slabp)
2676 goto opps1;
2678 slabp->nodeid = nodeid;
2679 slab_map_pages(cachep, slabp, objp);
2681 cache_init_objs(cachep, slabp, ctor_flags);
2683 if (local_flags & __GFP_WAIT)
2684 local_irq_disable();
2685 check_irq_off();
2686 spin_lock(&l3->list_lock);
2688 /* Make slab active. */
2689 list_add_tail(&slabp->list, &(l3->slabs_free));
2690 STATS_INC_GROWN(cachep);
2691 l3->free_objects += cachep->num;
2692 spin_unlock(&l3->list_lock);
2693 return 1;
2694 opps1:
2695 kmem_freepages(cachep, objp);
2696 failed:
2697 if (local_flags & __GFP_WAIT)
2698 local_irq_disable();
2699 return 0;
2702 #if DEBUG
2705 * Perform extra freeing checks:
2706 * - detect bad pointers.
2707 * - POISON/RED_ZONE checking
2708 * - destructor calls, for caches with POISON+dtor
2710 static void kfree_debugcheck(const void *objp)
2712 struct page *page;
2714 if (!virt_addr_valid(objp)) {
2715 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2716 (unsigned long)objp);
2717 BUG();
2719 page = virt_to_page(objp);
2720 if (!PageSlab(page)) {
2721 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2722 (unsigned long)objp);
2723 BUG();
2727 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2729 unsigned long redzone1, redzone2;
2731 redzone1 = *dbg_redzone1(cache, obj);
2732 redzone2 = *dbg_redzone2(cache, obj);
2735 * Redzone is ok.
2737 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2738 return;
2740 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2741 slab_error(cache, "double free detected");
2742 else
2743 slab_error(cache, "memory outside object was overwritten");
2745 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2746 obj, redzone1, redzone2);
2749 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2750 void *caller)
2752 struct page *page;
2753 unsigned int objnr;
2754 struct slab *slabp;
2756 objp -= obj_offset(cachep);
2757 kfree_debugcheck(objp);
2758 page = virt_to_page(objp);
2760 slabp = page_get_slab(page);
2762 if (cachep->flags & SLAB_RED_ZONE) {
2763 verify_redzone_free(cachep, objp);
2764 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2765 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2767 if (cachep->flags & SLAB_STORE_USER)
2768 *dbg_userword(cachep, objp) = caller;
2770 objnr = obj_to_index(cachep, slabp, objp);
2772 BUG_ON(objnr >= cachep->num);
2773 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2775 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2777 * Need to call the slab's constructor so the caller can
2778 * perform a verify of its state (debugging). Called without
2779 * the cache-lock held.
2781 cachep->ctor(objp + obj_offset(cachep),
2782 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2784 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2785 /* we want to cache poison the object,
2786 * call the destruction callback
2788 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2790 #ifdef CONFIG_DEBUG_SLAB_LEAK
2791 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2792 #endif
2793 if (cachep->flags & SLAB_POISON) {
2794 #ifdef CONFIG_DEBUG_PAGEALLOC
2795 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2796 store_stackinfo(cachep, objp, (unsigned long)caller);
2797 kernel_map_pages(virt_to_page(objp),
2798 cachep->buffer_size / PAGE_SIZE, 0);
2799 } else {
2800 poison_obj(cachep, objp, POISON_FREE);
2802 #else
2803 poison_obj(cachep, objp, POISON_FREE);
2804 #endif
2806 return objp;
2809 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2811 kmem_bufctl_t i;
2812 int entries = 0;
2814 /* Check slab's freelist to see if this obj is there. */
2815 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2816 entries++;
2817 if (entries > cachep->num || i >= cachep->num)
2818 goto bad;
2820 if (entries != cachep->num - slabp->inuse) {
2821 bad:
2822 printk(KERN_ERR "slab: Internal list corruption detected in "
2823 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2824 cachep->name, cachep->num, slabp, slabp->inuse);
2825 for (i = 0;
2826 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2827 i++) {
2828 if (i % 16 == 0)
2829 printk("\n%03x:", i);
2830 printk(" %02x", ((unsigned char *)slabp)[i]);
2832 printk("\n");
2833 BUG();
2836 #else
2837 #define kfree_debugcheck(x) do { } while(0)
2838 #define cache_free_debugcheck(x,objp,z) (objp)
2839 #define check_slabp(x,y) do { } while(0)
2840 #endif
2842 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2844 int batchcount;
2845 struct kmem_list3 *l3;
2846 struct array_cache *ac;
2848 check_irq_off();
2849 ac = cpu_cache_get(cachep);
2850 retry:
2851 batchcount = ac->batchcount;
2852 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2854 * If there was little recent activity on this cache, then
2855 * perform only a partial refill. Otherwise we could generate
2856 * refill bouncing.
2858 batchcount = BATCHREFILL_LIMIT;
2860 l3 = cachep->nodelists[numa_node_id()];
2862 BUG_ON(ac->avail > 0 || !l3);
2863 spin_lock(&l3->list_lock);
2865 /* See if we can refill from the shared array */
2866 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2867 goto alloc_done;
2869 while (batchcount > 0) {
2870 struct list_head *entry;
2871 struct slab *slabp;
2872 /* Get slab alloc is to come from. */
2873 entry = l3->slabs_partial.next;
2874 if (entry == &l3->slabs_partial) {
2875 l3->free_touched = 1;
2876 entry = l3->slabs_free.next;
2877 if (entry == &l3->slabs_free)
2878 goto must_grow;
2881 slabp = list_entry(entry, struct slab, list);
2882 check_slabp(cachep, slabp);
2883 check_spinlock_acquired(cachep);
2884 while (slabp->inuse < cachep->num && batchcount--) {
2885 STATS_INC_ALLOCED(cachep);
2886 STATS_INC_ACTIVE(cachep);
2887 STATS_SET_HIGH(cachep);
2889 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2890 numa_node_id());
2892 check_slabp(cachep, slabp);
2894 /* move slabp to correct slabp list: */
2895 list_del(&slabp->list);
2896 if (slabp->free == BUFCTL_END)
2897 list_add(&slabp->list, &l3->slabs_full);
2898 else
2899 list_add(&slabp->list, &l3->slabs_partial);
2902 must_grow:
2903 l3->free_objects -= ac->avail;
2904 alloc_done:
2905 spin_unlock(&l3->list_lock);
2907 if (unlikely(!ac->avail)) {
2908 int x;
2909 x = cache_grow(cachep, flags, numa_node_id());
2911 /* cache_grow can reenable interrupts, then ac could change. */
2912 ac = cpu_cache_get(cachep);
2913 if (!x && ac->avail == 0) /* no objects in sight? abort */
2914 return NULL;
2916 if (!ac->avail) /* objects refilled by interrupt? */
2917 goto retry;
2919 ac->touched = 1;
2920 return ac->entry[--ac->avail];
2923 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2924 gfp_t flags)
2926 might_sleep_if(flags & __GFP_WAIT);
2927 #if DEBUG
2928 kmem_flagcheck(cachep, flags);
2929 #endif
2932 #if DEBUG
2933 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2934 gfp_t flags, void *objp, void *caller)
2936 if (!objp)
2937 return objp;
2938 if (cachep->flags & SLAB_POISON) {
2939 #ifdef CONFIG_DEBUG_PAGEALLOC
2940 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2941 kernel_map_pages(virt_to_page(objp),
2942 cachep->buffer_size / PAGE_SIZE, 1);
2943 else
2944 check_poison_obj(cachep, objp);
2945 #else
2946 check_poison_obj(cachep, objp);
2947 #endif
2948 poison_obj(cachep, objp, POISON_INUSE);
2950 if (cachep->flags & SLAB_STORE_USER)
2951 *dbg_userword(cachep, objp) = caller;
2953 if (cachep->flags & SLAB_RED_ZONE) {
2954 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2955 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2956 slab_error(cachep, "double free, or memory outside"
2957 " object was overwritten");
2958 printk(KERN_ERR
2959 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2960 objp, *dbg_redzone1(cachep, objp),
2961 *dbg_redzone2(cachep, objp));
2963 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2964 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2966 #ifdef CONFIG_DEBUG_SLAB_LEAK
2968 struct slab *slabp;
2969 unsigned objnr;
2971 slabp = page_get_slab(virt_to_page(objp));
2972 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2973 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2975 #endif
2976 objp += obj_offset(cachep);
2977 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2978 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2980 if (!(flags & __GFP_WAIT))
2981 ctor_flags |= SLAB_CTOR_ATOMIC;
2983 cachep->ctor(objp, cachep, ctor_flags);
2985 return objp;
2987 #else
2988 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2989 #endif
2991 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2993 void *objp;
2994 struct array_cache *ac;
2996 #ifdef CONFIG_NUMA
2997 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2998 objp = alternate_node_alloc(cachep, flags);
2999 if (objp != NULL)
3000 return objp;
3002 #endif
3004 check_irq_off();
3005 ac = cpu_cache_get(cachep);
3006 if (likely(ac->avail)) {
3007 STATS_INC_ALLOCHIT(cachep);
3008 ac->touched = 1;
3009 objp = ac->entry[--ac->avail];
3010 } else {
3011 STATS_INC_ALLOCMISS(cachep);
3012 objp = cache_alloc_refill(cachep, flags);
3014 return objp;
3017 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3018 gfp_t flags, void *caller)
3020 unsigned long save_flags;
3021 void *objp;
3023 cache_alloc_debugcheck_before(cachep, flags);
3025 local_irq_save(save_flags);
3026 objp = ____cache_alloc(cachep, flags);
3027 local_irq_restore(save_flags);
3028 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3029 caller);
3030 prefetchw(objp);
3031 return objp;
3034 #ifdef CONFIG_NUMA
3036 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3038 * If we are in_interrupt, then process context, including cpusets and
3039 * mempolicy, may not apply and should not be used for allocation policy.
3041 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3043 int nid_alloc, nid_here;
3045 if (in_interrupt())
3046 return NULL;
3047 nid_alloc = nid_here = numa_node_id();
3048 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3049 nid_alloc = cpuset_mem_spread_node();
3050 else if (current->mempolicy)
3051 nid_alloc = slab_node(current->mempolicy);
3052 if (nid_alloc != nid_here)
3053 return __cache_alloc_node(cachep, flags, nid_alloc);
3054 return NULL;
3058 * A interface to enable slab creation on nodeid
3060 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3061 int nodeid)
3063 struct list_head *entry;
3064 struct slab *slabp;
3065 struct kmem_list3 *l3;
3066 void *obj;
3067 int x;
3069 l3 = cachep->nodelists[nodeid];
3070 BUG_ON(!l3);
3072 retry:
3073 check_irq_off();
3074 spin_lock(&l3->list_lock);
3075 entry = l3->slabs_partial.next;
3076 if (entry == &l3->slabs_partial) {
3077 l3->free_touched = 1;
3078 entry = l3->slabs_free.next;
3079 if (entry == &l3->slabs_free)
3080 goto must_grow;
3083 slabp = list_entry(entry, struct slab, list);
3084 check_spinlock_acquired_node(cachep, nodeid);
3085 check_slabp(cachep, slabp);
3087 STATS_INC_NODEALLOCS(cachep);
3088 STATS_INC_ACTIVE(cachep);
3089 STATS_SET_HIGH(cachep);
3091 BUG_ON(slabp->inuse == cachep->num);
3093 obj = slab_get_obj(cachep, slabp, nodeid);
3094 check_slabp(cachep, slabp);
3095 l3->free_objects--;
3096 /* move slabp to correct slabp list: */
3097 list_del(&slabp->list);
3099 if (slabp->free == BUFCTL_END)
3100 list_add(&slabp->list, &l3->slabs_full);
3101 else
3102 list_add(&slabp->list, &l3->slabs_partial);
3104 spin_unlock(&l3->list_lock);
3105 goto done;
3107 must_grow:
3108 spin_unlock(&l3->list_lock);
3109 x = cache_grow(cachep, flags, nodeid);
3111 if (!x)
3112 return NULL;
3114 goto retry;
3115 done:
3116 return obj;
3118 #endif
3121 * Caller needs to acquire correct kmem_list's list_lock
3123 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3124 int node)
3126 int i;
3127 struct kmem_list3 *l3;
3129 for (i = 0; i < nr_objects; i++) {
3130 void *objp = objpp[i];
3131 struct slab *slabp;
3133 slabp = virt_to_slab(objp);
3134 l3 = cachep->nodelists[node];
3135 list_del(&slabp->list);
3136 check_spinlock_acquired_node(cachep, node);
3137 check_slabp(cachep, slabp);
3138 slab_put_obj(cachep, slabp, objp, node);
3139 STATS_DEC_ACTIVE(cachep);
3140 l3->free_objects++;
3141 check_slabp(cachep, slabp);
3143 /* fixup slab chains */
3144 if (slabp->inuse == 0) {
3145 if (l3->free_objects > l3->free_limit) {
3146 l3->free_objects -= cachep->num;
3147 /* No need to drop any previously held
3148 * lock here, even if we have a off-slab slab
3149 * descriptor it is guaranteed to come from
3150 * a different cache, refer to comments before
3151 * alloc_slabmgmt.
3153 slab_destroy(cachep, slabp);
3154 } else {
3155 list_add(&slabp->list, &l3->slabs_free);
3157 } else {
3158 /* Unconditionally move a slab to the end of the
3159 * partial list on free - maximum time for the
3160 * other objects to be freed, too.
3162 list_add_tail(&slabp->list, &l3->slabs_partial);
3167 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3169 int batchcount;
3170 struct kmem_list3 *l3;
3171 int node = numa_node_id();
3173 batchcount = ac->batchcount;
3174 #if DEBUG
3175 BUG_ON(!batchcount || batchcount > ac->avail);
3176 #endif
3177 check_irq_off();
3178 l3 = cachep->nodelists[node];
3179 spin_lock(&l3->list_lock);
3180 if (l3->shared) {
3181 struct array_cache *shared_array = l3->shared;
3182 int max = shared_array->limit - shared_array->avail;
3183 if (max) {
3184 if (batchcount > max)
3185 batchcount = max;
3186 memcpy(&(shared_array->entry[shared_array->avail]),
3187 ac->entry, sizeof(void *) * batchcount);
3188 shared_array->avail += batchcount;
3189 goto free_done;
3193 free_block(cachep, ac->entry, batchcount, node);
3194 free_done:
3195 #if STATS
3197 int i = 0;
3198 struct list_head *p;
3200 p = l3->slabs_free.next;
3201 while (p != &(l3->slabs_free)) {
3202 struct slab *slabp;
3204 slabp = list_entry(p, struct slab, list);
3205 BUG_ON(slabp->inuse);
3207 i++;
3208 p = p->next;
3210 STATS_SET_FREEABLE(cachep, i);
3212 #endif
3213 spin_unlock(&l3->list_lock);
3214 ac->avail -= batchcount;
3215 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3219 * Release an obj back to its cache. If the obj has a constructed state, it must
3220 * be in this state _before_ it is released. Called with disabled ints.
3222 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3224 struct array_cache *ac = cpu_cache_get(cachep);
3226 check_irq_off();
3227 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3229 if (cache_free_alien(cachep, objp))
3230 return;
3232 if (likely(ac->avail < ac->limit)) {
3233 STATS_INC_FREEHIT(cachep);
3234 ac->entry[ac->avail++] = objp;
3235 return;
3236 } else {
3237 STATS_INC_FREEMISS(cachep);
3238 cache_flusharray(cachep, ac);
3239 ac->entry[ac->avail++] = objp;
3244 * kmem_cache_alloc - Allocate an object
3245 * @cachep: The cache to allocate from.
3246 * @flags: See kmalloc().
3248 * Allocate an object from this cache. The flags are only relevant
3249 * if the cache has no available objects.
3251 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3253 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3255 EXPORT_SYMBOL(kmem_cache_alloc);
3258 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3259 * @cache: The cache to allocate from.
3260 * @flags: See kmalloc().
3262 * Allocate an object from this cache and set the allocated memory to zero.
3263 * The flags are only relevant if the cache has no available objects.
3265 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3267 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3268 if (ret)
3269 memset(ret, 0, obj_size(cache));
3270 return ret;
3272 EXPORT_SYMBOL(kmem_cache_zalloc);
3275 * kmem_ptr_validate - check if an untrusted pointer might
3276 * be a slab entry.
3277 * @cachep: the cache we're checking against
3278 * @ptr: pointer to validate
3280 * This verifies that the untrusted pointer looks sane:
3281 * it is _not_ a guarantee that the pointer is actually
3282 * part of the slab cache in question, but it at least
3283 * validates that the pointer can be dereferenced and
3284 * looks half-way sane.
3286 * Currently only used for dentry validation.
3288 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3290 unsigned long addr = (unsigned long)ptr;
3291 unsigned long min_addr = PAGE_OFFSET;
3292 unsigned long align_mask = BYTES_PER_WORD - 1;
3293 unsigned long size = cachep->buffer_size;
3294 struct page *page;
3296 if (unlikely(addr < min_addr))
3297 goto out;
3298 if (unlikely(addr > (unsigned long)high_memory - size))
3299 goto out;
3300 if (unlikely(addr & align_mask))
3301 goto out;
3302 if (unlikely(!kern_addr_valid(addr)))
3303 goto out;
3304 if (unlikely(!kern_addr_valid(addr + size - 1)))
3305 goto out;
3306 page = virt_to_page(ptr);
3307 if (unlikely(!PageSlab(page)))
3308 goto out;
3309 if (unlikely(page_get_cache(page) != cachep))
3310 goto out;
3311 return 1;
3312 out:
3313 return 0;
3316 #ifdef CONFIG_NUMA
3318 * kmem_cache_alloc_node - Allocate an object on the specified node
3319 * @cachep: The cache to allocate from.
3320 * @flags: See kmalloc().
3321 * @nodeid: node number of the target node.
3323 * Identical to kmem_cache_alloc, except that this function is slow
3324 * and can sleep. And it will allocate memory on the given node, which
3325 * can improve the performance for cpu bound structures.
3326 * New and improved: it will now make sure that the object gets
3327 * put on the correct node list so that there is no false sharing.
3329 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3331 unsigned long save_flags;
3332 void *ptr;
3334 cache_alloc_debugcheck_before(cachep, flags);
3335 local_irq_save(save_flags);
3337 if (nodeid == -1 || nodeid == numa_node_id() ||
3338 !cachep->nodelists[nodeid])
3339 ptr = ____cache_alloc(cachep, flags);
3340 else
3341 ptr = __cache_alloc_node(cachep, flags, nodeid);
3342 local_irq_restore(save_flags);
3344 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3345 __builtin_return_address(0));
3347 return ptr;
3349 EXPORT_SYMBOL(kmem_cache_alloc_node);
3351 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3353 struct kmem_cache *cachep;
3355 cachep = kmem_find_general_cachep(size, flags);
3356 if (unlikely(cachep == NULL))
3357 return NULL;
3358 return kmem_cache_alloc_node(cachep, flags, node);
3360 EXPORT_SYMBOL(__kmalloc_node);
3361 #endif
3364 * __do_kmalloc - allocate memory
3365 * @size: how many bytes of memory are required.
3366 * @flags: the type of memory to allocate (see kmalloc).
3367 * @caller: function caller for debug tracking of the caller
3369 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3370 void *caller)
3372 struct kmem_cache *cachep;
3374 /* If you want to save a few bytes .text space: replace
3375 * __ with kmem_.
3376 * Then kmalloc uses the uninlined functions instead of the inline
3377 * functions.
3379 cachep = __find_general_cachep(size, flags);
3380 if (unlikely(cachep == NULL))
3381 return NULL;
3382 return __cache_alloc(cachep, flags, caller);
3386 void *__kmalloc(size_t size, gfp_t flags)
3388 #ifndef CONFIG_DEBUG_SLAB
3389 return __do_kmalloc(size, flags, NULL);
3390 #else
3391 return __do_kmalloc(size, flags, __builtin_return_address(0));
3392 #endif
3394 EXPORT_SYMBOL(__kmalloc);
3396 #ifdef CONFIG_DEBUG_SLAB
3397 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3399 return __do_kmalloc(size, flags, caller);
3401 EXPORT_SYMBOL(__kmalloc_track_caller);
3402 #endif
3404 #ifdef CONFIG_SMP
3406 * percpu_depopulate - depopulate per-cpu data for given cpu
3407 * @__pdata: per-cpu data to depopulate
3408 * @cpu: depopulate per-cpu data for this cpu
3410 * Depopulating per-cpu data for a cpu going offline would be a typical
3411 * use case. You need to register a cpu hotplug handler for that purpose.
3413 void percpu_depopulate(void *__pdata, int cpu)
3415 struct percpu_data *pdata = __percpu_disguise(__pdata);
3416 if (pdata->ptrs[cpu]) {
3417 kfree(pdata->ptrs[cpu]);
3418 pdata->ptrs[cpu] = NULL;
3421 EXPORT_SYMBOL_GPL(percpu_depopulate);
3424 * percpu_depopulate_mask - depopulate per-cpu data for some cpu's
3425 * @__pdata: per-cpu data to depopulate
3426 * @mask: depopulate per-cpu data for cpu's selected through mask bits
3428 void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask)
3430 int cpu;
3431 for_each_cpu_mask(cpu, *mask)
3432 percpu_depopulate(__pdata, cpu);
3434 EXPORT_SYMBOL_GPL(__percpu_depopulate_mask);
3437 * percpu_populate - populate per-cpu data for given cpu
3438 * @__pdata: per-cpu data to populate further
3439 * @size: size of per-cpu object
3440 * @gfp: may sleep or not etc.
3441 * @cpu: populate per-data for this cpu
3443 * Populating per-cpu data for a cpu coming online would be a typical
3444 * use case. You need to register a cpu hotplug handler for that purpose.
3445 * Per-cpu object is populated with zeroed buffer.
3447 void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
3449 struct percpu_data *pdata = __percpu_disguise(__pdata);
3450 int node = cpu_to_node(cpu);
3452 BUG_ON(pdata->ptrs[cpu]);
3453 if (node_online(node)) {
3454 /* FIXME: kzalloc_node(size, gfp, node) */
3455 pdata->ptrs[cpu] = kmalloc_node(size, gfp, node);
3456 if (pdata->ptrs[cpu])
3457 memset(pdata->ptrs[cpu], 0, size);
3458 } else
3459 pdata->ptrs[cpu] = kzalloc(size, gfp);
3460 return pdata->ptrs[cpu];
3462 EXPORT_SYMBOL_GPL(percpu_populate);
3465 * percpu_populate_mask - populate per-cpu data for more cpu's
3466 * @__pdata: per-cpu data to populate further
3467 * @size: size of per-cpu object
3468 * @gfp: may sleep or not etc.
3469 * @mask: populate per-cpu data for cpu's selected through mask bits
3471 * Per-cpu objects are populated with zeroed buffers.
3473 int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
3474 cpumask_t *mask)
3476 cpumask_t populated = CPU_MASK_NONE;
3477 int cpu;
3479 for_each_cpu_mask(cpu, *mask)
3480 if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) {
3481 __percpu_depopulate_mask(__pdata, &populated);
3482 return -ENOMEM;
3483 } else
3484 cpu_set(cpu, populated);
3485 return 0;
3487 EXPORT_SYMBOL_GPL(__percpu_populate_mask);
3490 * percpu_alloc_mask - initial setup of per-cpu data
3491 * @size: size of per-cpu object
3492 * @gfp: may sleep or not etc.
3493 * @mask: populate per-data for cpu's selected through mask bits
3495 * Populating per-cpu data for all online cpu's would be a typical use case,
3496 * which is simplified by the percpu_alloc() wrapper.
3497 * Per-cpu objects are populated with zeroed buffers.
3499 void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask)
3501 void *pdata = kzalloc(sizeof(struct percpu_data), gfp);
3502 void *__pdata = __percpu_disguise(pdata);
3504 if (unlikely(!pdata))
3505 return NULL;
3506 if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask)))
3507 return __pdata;
3508 kfree(pdata);
3509 return NULL;
3511 EXPORT_SYMBOL_GPL(__percpu_alloc_mask);
3514 * percpu_free - final cleanup of per-cpu data
3515 * @__pdata: object to clean up
3517 * We simply clean up any per-cpu object left. No need for the client to
3518 * track and specify through a bis mask which per-cpu objects are to free.
3520 void percpu_free(void *__pdata)
3522 __percpu_depopulate_mask(__pdata, &cpu_possible_map);
3523 kfree(__percpu_disguise(__pdata));
3525 EXPORT_SYMBOL_GPL(percpu_free);
3526 #endif /* CONFIG_SMP */
3529 * kmem_cache_free - Deallocate an object
3530 * @cachep: The cache the allocation was from.
3531 * @objp: The previously allocated object.
3533 * Free an object which was previously allocated from this
3534 * cache.
3536 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3538 unsigned long flags;
3540 BUG_ON(virt_to_cache(objp) != cachep);
3542 local_irq_save(flags);
3543 __cache_free(cachep, objp);
3544 local_irq_restore(flags);
3546 EXPORT_SYMBOL(kmem_cache_free);
3549 * kfree - free previously allocated memory
3550 * @objp: pointer returned by kmalloc.
3552 * If @objp is NULL, no operation is performed.
3554 * Don't free memory not originally allocated by kmalloc()
3555 * or you will run into trouble.
3557 void kfree(const void *objp)
3559 struct kmem_cache *c;
3560 unsigned long flags;
3562 if (unlikely(!objp))
3563 return;
3564 local_irq_save(flags);
3565 kfree_debugcheck(objp);
3566 c = virt_to_cache(objp);
3567 debug_check_no_locks_freed(objp, obj_size(c));
3568 __cache_free(c, (void *)objp);
3569 local_irq_restore(flags);
3571 EXPORT_SYMBOL(kfree);
3573 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3575 return obj_size(cachep);
3577 EXPORT_SYMBOL(kmem_cache_size);
3579 const char *kmem_cache_name(struct kmem_cache *cachep)
3581 return cachep->name;
3583 EXPORT_SYMBOL_GPL(kmem_cache_name);
3586 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3588 static int alloc_kmemlist(struct kmem_cache *cachep)
3590 int node;
3591 struct kmem_list3 *l3;
3592 struct array_cache *new_shared;
3593 struct array_cache **new_alien;
3595 for_each_online_node(node) {
3597 new_alien = alloc_alien_cache(node, cachep->limit);
3598 if (!new_alien)
3599 goto fail;
3601 new_shared = alloc_arraycache(node,
3602 cachep->shared*cachep->batchcount,
3603 0xbaadf00d);
3604 if (!new_shared) {
3605 free_alien_cache(new_alien);
3606 goto fail;
3609 l3 = cachep->nodelists[node];
3610 if (l3) {
3611 struct array_cache *shared = l3->shared;
3613 spin_lock_irq(&l3->list_lock);
3615 if (shared)
3616 free_block(cachep, shared->entry,
3617 shared->avail, node);
3619 l3->shared = new_shared;
3620 if (!l3->alien) {
3621 l3->alien = new_alien;
3622 new_alien = NULL;
3624 l3->free_limit = (1 + nr_cpus_node(node)) *
3625 cachep->batchcount + cachep->num;
3626 spin_unlock_irq(&l3->list_lock);
3627 kfree(shared);
3628 free_alien_cache(new_alien);
3629 continue;
3631 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3632 if (!l3) {
3633 free_alien_cache(new_alien);
3634 kfree(new_shared);
3635 goto fail;
3638 kmem_list3_init(l3);
3639 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3640 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3641 l3->shared = new_shared;
3642 l3->alien = new_alien;
3643 l3->free_limit = (1 + nr_cpus_node(node)) *
3644 cachep->batchcount + cachep->num;
3645 cachep->nodelists[node] = l3;
3647 return 0;
3649 fail:
3650 if (!cachep->next.next) {
3651 /* Cache is not active yet. Roll back what we did */
3652 node--;
3653 while (node >= 0) {
3654 if (cachep->nodelists[node]) {
3655 l3 = cachep->nodelists[node];
3657 kfree(l3->shared);
3658 free_alien_cache(l3->alien);
3659 kfree(l3);
3660 cachep->nodelists[node] = NULL;
3662 node--;
3665 return -ENOMEM;
3668 struct ccupdate_struct {
3669 struct kmem_cache *cachep;
3670 struct array_cache *new[NR_CPUS];
3673 static void do_ccupdate_local(void *info)
3675 struct ccupdate_struct *new = info;
3676 struct array_cache *old;
3678 check_irq_off();
3679 old = cpu_cache_get(new->cachep);
3681 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3682 new->new[smp_processor_id()] = old;
3685 /* Always called with the cache_chain_mutex held */
3686 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3687 int batchcount, int shared)
3689 struct ccupdate_struct new;
3690 int i, err;
3692 memset(&new.new, 0, sizeof(new.new));
3693 for_each_online_cpu(i) {
3694 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3695 batchcount);
3696 if (!new.new[i]) {
3697 for (i--; i >= 0; i--)
3698 kfree(new.new[i]);
3699 return -ENOMEM;
3702 new.cachep = cachep;
3704 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3706 check_irq_on();
3707 cachep->batchcount = batchcount;
3708 cachep->limit = limit;
3709 cachep->shared = shared;
3711 for_each_online_cpu(i) {
3712 struct array_cache *ccold = new.new[i];
3713 if (!ccold)
3714 continue;
3715 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3716 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3717 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3718 kfree(ccold);
3721 err = alloc_kmemlist(cachep);
3722 if (err) {
3723 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3724 cachep->name, -err);
3725 BUG();
3727 return 0;
3730 /* Called with cache_chain_mutex held always */
3731 static void enable_cpucache(struct kmem_cache *cachep)
3733 int err;
3734 int limit, shared;
3737 * The head array serves three purposes:
3738 * - create a LIFO ordering, i.e. return objects that are cache-warm
3739 * - reduce the number of spinlock operations.
3740 * - reduce the number of linked list operations on the slab and
3741 * bufctl chains: array operations are cheaper.
3742 * The numbers are guessed, we should auto-tune as described by
3743 * Bonwick.
3745 if (cachep->buffer_size > 131072)
3746 limit = 1;
3747 else if (cachep->buffer_size > PAGE_SIZE)
3748 limit = 8;
3749 else if (cachep->buffer_size > 1024)
3750 limit = 24;
3751 else if (cachep->buffer_size > 256)
3752 limit = 54;
3753 else
3754 limit = 120;
3757 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3758 * allocation behaviour: Most allocs on one cpu, most free operations
3759 * on another cpu. For these cases, an efficient object passing between
3760 * cpus is necessary. This is provided by a shared array. The array
3761 * replaces Bonwick's magazine layer.
3762 * On uniprocessor, it's functionally equivalent (but less efficient)
3763 * to a larger limit. Thus disabled by default.
3765 shared = 0;
3766 #ifdef CONFIG_SMP
3767 if (cachep->buffer_size <= PAGE_SIZE)
3768 shared = 8;
3769 #endif
3771 #if DEBUG
3773 * With debugging enabled, large batchcount lead to excessively long
3774 * periods with disabled local interrupts. Limit the batchcount
3776 if (limit > 32)
3777 limit = 32;
3778 #endif
3779 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3780 if (err)
3781 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3782 cachep->name, -err);
3786 * Drain an array if it contains any elements taking the l3 lock only if
3787 * necessary. Note that the l3 listlock also protects the array_cache
3788 * if drain_array() is used on the shared array.
3790 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3791 struct array_cache *ac, int force, int node)
3793 int tofree;
3795 if (!ac || !ac->avail)
3796 return;
3797 if (ac->touched && !force) {
3798 ac->touched = 0;
3799 } else {
3800 spin_lock_irq(&l3->list_lock);
3801 if (ac->avail) {
3802 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3803 if (tofree > ac->avail)
3804 tofree = (ac->avail + 1) / 2;
3805 free_block(cachep, ac->entry, tofree, node);
3806 ac->avail -= tofree;
3807 memmove(ac->entry, &(ac->entry[tofree]),
3808 sizeof(void *) * ac->avail);
3810 spin_unlock_irq(&l3->list_lock);
3815 * cache_reap - Reclaim memory from caches.
3816 * @unused: unused parameter
3818 * Called from workqueue/eventd every few seconds.
3819 * Purpose:
3820 * - clear the per-cpu caches for this CPU.
3821 * - return freeable pages to the main free memory pool.
3823 * If we cannot acquire the cache chain mutex then just give up - we'll try
3824 * again on the next iteration.
3826 static void cache_reap(void *unused)
3828 struct kmem_cache *searchp;
3829 struct kmem_list3 *l3;
3830 int node = numa_node_id();
3832 if (!mutex_trylock(&cache_chain_mutex)) {
3833 /* Give up. Setup the next iteration. */
3834 schedule_delayed_work(&__get_cpu_var(reap_work),
3835 REAPTIMEOUT_CPUC);
3836 return;
3839 list_for_each_entry(searchp, &cache_chain, next) {
3840 check_irq_on();
3843 * We only take the l3 lock if absolutely necessary and we
3844 * have established with reasonable certainty that
3845 * we can do some work if the lock was obtained.
3847 l3 = searchp->nodelists[node];
3849 reap_alien(searchp, l3);
3851 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3854 * These are racy checks but it does not matter
3855 * if we skip one check or scan twice.
3857 if (time_after(l3->next_reap, jiffies))
3858 goto next;
3860 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3862 drain_array(searchp, l3, l3->shared, 0, node);
3864 if (l3->free_touched)
3865 l3->free_touched = 0;
3866 else {
3867 int freed;
3869 freed = drain_freelist(searchp, l3, (l3->free_limit +
3870 5 * searchp->num - 1) / (5 * searchp->num));
3871 STATS_ADD_REAPED(searchp, freed);
3873 next:
3874 cond_resched();
3876 check_irq_on();
3877 mutex_unlock(&cache_chain_mutex);
3878 next_reap_node();
3879 refresh_cpu_vm_stats(smp_processor_id());
3880 /* Set up the next iteration */
3881 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3884 #ifdef CONFIG_PROC_FS
3886 static void print_slabinfo_header(struct seq_file *m)
3889 * Output format version, so at least we can change it
3890 * without _too_ many complaints.
3892 #if STATS
3893 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3894 #else
3895 seq_puts(m, "slabinfo - version: 2.1\n");
3896 #endif
3897 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3898 "<objperslab> <pagesperslab>");
3899 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3900 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3901 #if STATS
3902 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3903 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3904 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3905 #endif
3906 seq_putc(m, '\n');
3909 static void *s_start(struct seq_file *m, loff_t *pos)
3911 loff_t n = *pos;
3912 struct list_head *p;
3914 mutex_lock(&cache_chain_mutex);
3915 if (!n)
3916 print_slabinfo_header(m);
3917 p = cache_chain.next;
3918 while (n--) {
3919 p = p->next;
3920 if (p == &cache_chain)
3921 return NULL;
3923 return list_entry(p, struct kmem_cache, next);
3926 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3928 struct kmem_cache *cachep = p;
3929 ++*pos;
3930 return cachep->next.next == &cache_chain ?
3931 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3934 static void s_stop(struct seq_file *m, void *p)
3936 mutex_unlock(&cache_chain_mutex);
3939 static int s_show(struct seq_file *m, void *p)
3941 struct kmem_cache *cachep = p;
3942 struct slab *slabp;
3943 unsigned long active_objs;
3944 unsigned long num_objs;
3945 unsigned long active_slabs = 0;
3946 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3947 const char *name;
3948 char *error = NULL;
3949 int node;
3950 struct kmem_list3 *l3;
3952 active_objs = 0;
3953 num_slabs = 0;
3954 for_each_online_node(node) {
3955 l3 = cachep->nodelists[node];
3956 if (!l3)
3957 continue;
3959 check_irq_on();
3960 spin_lock_irq(&l3->list_lock);
3962 list_for_each_entry(slabp, &l3->slabs_full, list) {
3963 if (slabp->inuse != cachep->num && !error)
3964 error = "slabs_full accounting error";
3965 active_objs += cachep->num;
3966 active_slabs++;
3968 list_for_each_entry(slabp, &l3->slabs_partial, list) {
3969 if (slabp->inuse == cachep->num && !error)
3970 error = "slabs_partial inuse accounting error";
3971 if (!slabp->inuse && !error)
3972 error = "slabs_partial/inuse accounting error";
3973 active_objs += slabp->inuse;
3974 active_slabs++;
3976 list_for_each_entry(slabp, &l3->slabs_free, list) {
3977 if (slabp->inuse && !error)
3978 error = "slabs_free/inuse accounting error";
3979 num_slabs++;
3981 free_objects += l3->free_objects;
3982 if (l3->shared)
3983 shared_avail += l3->shared->avail;
3985 spin_unlock_irq(&l3->list_lock);
3987 num_slabs += active_slabs;
3988 num_objs = num_slabs * cachep->num;
3989 if (num_objs - active_objs != free_objects && !error)
3990 error = "free_objects accounting error";
3992 name = cachep->name;
3993 if (error)
3994 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3996 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3997 name, active_objs, num_objs, cachep->buffer_size,
3998 cachep->num, (1 << cachep->gfporder));
3999 seq_printf(m, " : tunables %4u %4u %4u",
4000 cachep->limit, cachep->batchcount, cachep->shared);
4001 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4002 active_slabs, num_slabs, shared_avail);
4003 #if STATS
4004 { /* list3 stats */
4005 unsigned long high = cachep->high_mark;
4006 unsigned long allocs = cachep->num_allocations;
4007 unsigned long grown = cachep->grown;
4008 unsigned long reaped = cachep->reaped;
4009 unsigned long errors = cachep->errors;
4010 unsigned long max_freeable = cachep->max_freeable;
4011 unsigned long node_allocs = cachep->node_allocs;
4012 unsigned long node_frees = cachep->node_frees;
4013 unsigned long overflows = cachep->node_overflow;
4015 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4016 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4017 reaped, errors, max_freeable, node_allocs,
4018 node_frees, overflows);
4020 /* cpu stats */
4022 unsigned long allochit = atomic_read(&cachep->allochit);
4023 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4024 unsigned long freehit = atomic_read(&cachep->freehit);
4025 unsigned long freemiss = atomic_read(&cachep->freemiss);
4027 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4028 allochit, allocmiss, freehit, freemiss);
4030 #endif
4031 seq_putc(m, '\n');
4032 return 0;
4036 * slabinfo_op - iterator that generates /proc/slabinfo
4038 * Output layout:
4039 * cache-name
4040 * num-active-objs
4041 * total-objs
4042 * object size
4043 * num-active-slabs
4044 * total-slabs
4045 * num-pages-per-slab
4046 * + further values on SMP and with statistics enabled
4049 struct seq_operations slabinfo_op = {
4050 .start = s_start,
4051 .next = s_next,
4052 .stop = s_stop,
4053 .show = s_show,
4056 #define MAX_SLABINFO_WRITE 128
4058 * slabinfo_write - Tuning for the slab allocator
4059 * @file: unused
4060 * @buffer: user buffer
4061 * @count: data length
4062 * @ppos: unused
4064 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4065 size_t count, loff_t *ppos)
4067 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4068 int limit, batchcount, shared, res;
4069 struct kmem_cache *cachep;
4071 if (count > MAX_SLABINFO_WRITE)
4072 return -EINVAL;
4073 if (copy_from_user(&kbuf, buffer, count))
4074 return -EFAULT;
4075 kbuf[MAX_SLABINFO_WRITE] = '\0';
4077 tmp = strchr(kbuf, ' ');
4078 if (!tmp)
4079 return -EINVAL;
4080 *tmp = '\0';
4081 tmp++;
4082 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4083 return -EINVAL;
4085 /* Find the cache in the chain of caches. */
4086 mutex_lock(&cache_chain_mutex);
4087 res = -EINVAL;
4088 list_for_each_entry(cachep, &cache_chain, next) {
4089 if (!strcmp(cachep->name, kbuf)) {
4090 if (limit < 1 || batchcount < 1 ||
4091 batchcount > limit || shared < 0) {
4092 res = 0;
4093 } else {
4094 res = do_tune_cpucache(cachep, limit,
4095 batchcount, shared);
4097 break;
4100 mutex_unlock(&cache_chain_mutex);
4101 if (res >= 0)
4102 res = count;
4103 return res;
4106 #ifdef CONFIG_DEBUG_SLAB_LEAK
4108 static void *leaks_start(struct seq_file *m, loff_t *pos)
4110 loff_t n = *pos;
4111 struct list_head *p;
4113 mutex_lock(&cache_chain_mutex);
4114 p = cache_chain.next;
4115 while (n--) {
4116 p = p->next;
4117 if (p == &cache_chain)
4118 return NULL;
4120 return list_entry(p, struct kmem_cache, next);
4123 static inline int add_caller(unsigned long *n, unsigned long v)
4125 unsigned long *p;
4126 int l;
4127 if (!v)
4128 return 1;
4129 l = n[1];
4130 p = n + 2;
4131 while (l) {
4132 int i = l/2;
4133 unsigned long *q = p + 2 * i;
4134 if (*q == v) {
4135 q[1]++;
4136 return 1;
4138 if (*q > v) {
4139 l = i;
4140 } else {
4141 p = q + 2;
4142 l -= i + 1;
4145 if (++n[1] == n[0])
4146 return 0;
4147 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4148 p[0] = v;
4149 p[1] = 1;
4150 return 1;
4153 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4155 void *p;
4156 int i;
4157 if (n[0] == n[1])
4158 return;
4159 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4160 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4161 continue;
4162 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4163 return;
4167 static void show_symbol(struct seq_file *m, unsigned long address)
4169 #ifdef CONFIG_KALLSYMS
4170 char *modname;
4171 const char *name;
4172 unsigned long offset, size;
4173 char namebuf[KSYM_NAME_LEN+1];
4175 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4177 if (name) {
4178 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4179 if (modname)
4180 seq_printf(m, " [%s]", modname);
4181 return;
4183 #endif
4184 seq_printf(m, "%p", (void *)address);
4187 static int leaks_show(struct seq_file *m, void *p)
4189 struct kmem_cache *cachep = p;
4190 struct slab *slabp;
4191 struct kmem_list3 *l3;
4192 const char *name;
4193 unsigned long *n = m->private;
4194 int node;
4195 int i;
4197 if (!(cachep->flags & SLAB_STORE_USER))
4198 return 0;
4199 if (!(cachep->flags & SLAB_RED_ZONE))
4200 return 0;
4202 /* OK, we can do it */
4204 n[1] = 0;
4206 for_each_online_node(node) {
4207 l3 = cachep->nodelists[node];
4208 if (!l3)
4209 continue;
4211 check_irq_on();
4212 spin_lock_irq(&l3->list_lock);
4214 list_for_each_entry(slabp, &l3->slabs_full, list)
4215 handle_slab(n, cachep, slabp);
4216 list_for_each_entry(slabp, &l3->slabs_partial, list)
4217 handle_slab(n, cachep, slabp);
4218 spin_unlock_irq(&l3->list_lock);
4220 name = cachep->name;
4221 if (n[0] == n[1]) {
4222 /* Increase the buffer size */
4223 mutex_unlock(&cache_chain_mutex);
4224 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4225 if (!m->private) {
4226 /* Too bad, we are really out */
4227 m->private = n;
4228 mutex_lock(&cache_chain_mutex);
4229 return -ENOMEM;
4231 *(unsigned long *)m->private = n[0] * 2;
4232 kfree(n);
4233 mutex_lock(&cache_chain_mutex);
4234 /* Now make sure this entry will be retried */
4235 m->count = m->size;
4236 return 0;
4238 for (i = 0; i < n[1]; i++) {
4239 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4240 show_symbol(m, n[2*i+2]);
4241 seq_putc(m, '\n');
4243 return 0;
4246 struct seq_operations slabstats_op = {
4247 .start = leaks_start,
4248 .next = s_next,
4249 .stop = s_stop,
4250 .show = leaks_show,
4252 #endif
4253 #endif
4256 * ksize - get the actual amount of memory allocated for a given object
4257 * @objp: Pointer to the object
4259 * kmalloc may internally round up allocations and return more memory
4260 * than requested. ksize() can be used to determine the actual amount of
4261 * memory allocated. The caller may use this additional memory, even though
4262 * a smaller amount of memory was initially specified with the kmalloc call.
4263 * The caller must guarantee that objp points to a valid object previously
4264 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4265 * must not be freed during the duration of the call.
4267 unsigned int ksize(const void *objp)
4269 if (unlikely(objp == NULL))
4270 return 0;
4272 return obj_size(virt_to_cache(objp));